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Abstract 

Environmental change can simultaneously cause responses in population dynamics, life 

history, gene frequencies and phenotypic traits in a number of species. Because ecological 

and evolutionary dynamics are intimately linked and affected by the environment, a major 

challenge is to disentangle their relative roles in maintaining individual variability within a 

population. Here I implemented an integral projection model on the bighorn ewes and 

investigated the interaction between demography, life-history trait dynamics, quantitative 

genetics and an individual trait. By following individual fates and body size at different life-

history stages, I investigated how body size influenced demographic rates. Moreover I 

analyzed cohort dynamics by following the fate of newborns in the population through 

their life and estimating heritability of body mass. By implementing a prospective 

perturbation analysis, I mimicked the effect of environmental changes and addressed which 

stage-specific demographic or trait-transition rate had the greatest influence on population 

dynamics, phenotypic plasticity, character heritability, additive variance and phenotypic 

variance among parents. Different age classes responded differently to environmental 

changes, highlighting the importance of accounting for different life-history stages in the 

analyses of population and evolutionary biology. Population growth rate, character mean, 

and the quantitative genetics quantities estimated responded differently to environmental 

changes, suggesting that environmental change can generate a very wide range of eco-

evolutionary dynamics. Finally, I showed that fertility rates and ontogenetic development of 

body mass mostly affected body mass heritability and additive variance estimates in the 

bighorn sheep. 

Key-words: integral-projection models; body mass; bighorn sheep; Ovis canadensis; eco-

evolutionary dynamics; life-history theory; heritability 
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Introduction 

Body size is frequently a central consideration in study of evolutionary biology, life-

history theory and population dynamic (review in Peters 1983). This is because body size is 

considered to be a fitness-related trait in many taxa, where bigger individuals are more 

likely to survive or successfully reproduce (Roff 2002). Body size is a phenotypic trait that 

varies among populations and within populations. This variation is shaped by the genetic 

composition of the population, as well as a range of environmental variables, such as 

resource availability and weather (e.g. through costs of thermoregulation Steinheim et al. 

2004). Importantly, the environment may influence an individual’s phenotype directly 

(phenotypic plasticity, Gause 1947), it may change the genotype-phenotype map (genotype-

environment interactions, Via and Lande 1985), and finally it may shape how phenotypic 

variation is related to variation in fitness (environment-dependent selection, Siepielski et al. 

2009). 

Evolutionary biology, life-history theory and population dynamics deal with 

different aspects of the distribution of fitness-related phenotypes in a population and have 

traditionally studied different aspects of the distribution of body size. For example, 

evolutionary biology is interested in the presence of heritable variation in body size to study 

evolutionary responses to selection. The heritability (  ) expresses the potential for a trait 

to evolve and is defined as the ratio of additive genetic variance to total phenotypic 

variance (    ⁄ ) (Falconer and Mackay 1996). Fitness related traits, such as body size, are 

expected to be under strong directional selection, and therefore should exhibit little 

additive genetic variance (Fisher 1930). However empirical studies have both corroborated 

(e.g. Mousseau and Roff 1987, Kruuk 2004) and disproved this hypothesis (e.g. Mousseau 

and Roff 1987). Since body size is not a static trait of phenotype and the selective pressure 

acting on individuals changes over their lifetime (e.g. juvenile vs. adult viability), the 

covariance between size and fitness may differ at particular ages or ontogenetic stages. Life-
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history theory primarily focuses on size at birth, growth pattern, size of offspring, and age- 

and size- reproductive investments (Stearns 1992). Finally, population ecology concentrates 

on population size fluctuations by analyzing the means and variances of the distribution of 

body size in the population (Coulson et al. 2010). Despite the fact that population ecology, 

life history and evolutionary biology were developed as separate disciplines, recently there 

has been growing interest in the effects that ecological and evolutionary processes have on 

each other (review in Pelletier et al. 2009). For example life-histories emerge from 

transitions between life stages and can therefore influence population dynamics (Saether 

and Bakke 2000, Oli and Dobson 2003); and phenotypic change can influence population 

growth and dynamics (Ozgul et al. 2009). Given that ecological and evolutionary processes 

are intertwined, studying these linkages and the relative role of ecological and evolutionary 

dynamics would allow a deeper understanding of the relationships between phenotype, 

genotype, fitness and environment.  

From an evolutionary perspective, phenotypic changes of continuous traits over 

time depend mainly on the intensity of the selection and the heritable fraction of the trait 

(Falconer and Mackay 1996). Selection on quantitative traits is generally estimated by 

relating individual measurements to individual relative fitness (Lande and Arnold 1983), 

but, even in presence of selection, an essential requirement for evolutionary change is the 

amount of genetic variability expressed for the trait under selection (Charmantier and 

Garant 2005). Early investigations of trait heritability (       ⁄ ) showed that the 

magnitude of genetic and environmental components in total phenotypic variation for 

specific traits can change with environmental conditions (Hoffmann and Parsons 1991). 

This implies that the amount of additive genetic variation on which evolution could act 

varies according to the environment. Understanding the amplitude and direction of this 

change depending on environmental conditions would greatly improve the extent to which 

one could predict evolutionary change (Charmantier and Garant 2005). However, there has 

been discussion about whether unfavorable versus favorable environments should increase 

or decrease heritable variation (Hoffmann and Merila 1999). Several empirical studies 

found an increase of heritability under favorable conditions (e.g. Charmantier and Garant 

2005), or lower heritability in unfavorable conditions (e.g. Merila and Sheldon 2001); while 

others found higher heritable variation in unfavorable conditions (e.g. Hoffmann and 

Parsons 1991). Finally, some studies found complex and unpredictable responses to 
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changing environmental conditions (e.g. Ebert et al. 1993). These results suggest that the 

relationship between environment, phenotype and potential evolutionary change are 

extremely complex. Given that environment influences also population dynamics (see 

above), understanding the feedback between environment, ecology and evolution is 

important in predicting dynamics and evolutionary potentials of populations under 

environmental change (Billington and Pelham 1991, Charmantier and Garant 2005). 

Unfortunately simply tracking the dynamics of a character distribution, such as 

body size, is not sufficient to link the fields of population ecology, life history and character 

evolution: it is necessary to derive a model that incorporates different key processes that 

interest each field (Coulson et al. 2010). Integral projection models (IPMs) are powerful 

models for studying population with complex structure. They are discrete time structured 

population model and allow population structure to be defined by a mix of continuous and 

discrete individual attributes such as size, age, or any other attribute that affect 

demographic rates (Easterling et al. 2000, Ellner and Rees 2006). IPMs can be deterministic 

or stochastic, and provide predictions for population growth and life time reproduction 

success under density dependent and independent conditions. The ease, with which these 

models can be parameterized, means that both simple and more complex models can be 

constructed using data routinely collected by biologists (Coulson 2012).  Coulson and 

Tuljapurkar (2008) and Coulson et al. (2010) developed general theory linking IPMs, the 

Price equation (Price 1970), generation length and biometric heritabilities estimates 

(Jacquard 1983) from mother-daughter regression. By analyzing the relationships between 

body size, age and survival, fertility, ontogenetic development and inheritance of the 

character, this new modeling approach allows the simultaneous calculation of fundamental 

quantities that underpin population ecology, evolutionary biology and life history. For 

example, from this structured model one can calculate: (i) the distribution of modeled 

character; (ii) the covariance between parent and offspring character that is often 

interpreted as an estimate of additive genetic variance; (iii) the biometric heritability of the 

character calculated from the parent-offspring phenotypic covariance; (iv) descriptors of 

the life history including generation length; and (v) the strength of selection on characters 

via lifetime reproductive success. Because a range of quantities can be calculated from a 

single model one can gain insight into how the different quantities are associated. 

Furthermore, perturbation analysis can elucidate the relative importance of the different 

demographic and trait transition functions constituting the model in shaping the size and 
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shape of the phenotype distribution and in contributing to processes such as ontogeny and 

genetics (Coulson et al. 2010). However, despite their great promise, the applications of 

these techniques to link population dynamics and quantitative genetics remain scarce (but 

see e.g. Ozgul et al. 2009, Ozgul et al. 2010). 

In this paper I analyze body mass and life-history data from a long-term individual 

based study of the bighorn sheep (Ovis canadensis) inhabiting Ram Mountain, Alberta, 

Canada. I implement the modeling approach developed by Coulson et al. (2010) to 

calculate population biology, life-history theory and quantitative genetics quantities. The 

objective is to evaluate the relative importance of demographic and trait transition in 

shaping the population dynamics and in determining life-history descriptors at different 

ages. Since cohort variations in early development mass can affect life-history traits and 

population-dynamics (Clutton-Brock et al. 1987, Post et al. 1997, Rose et al. 1998), I am 

particularly interested in the role of each part of the life cycle in influencing heritability of 

body mass and additive genetic variance in the population. To do so, I investigate and 

compare the effect of perturbations to the parameter estimates constituting the IPM on 

different life-history and population descriptors. At the best of my knowledge, it is the first 

time that a study implementing an IPM simultaneously analyzes the sensitivities of 

heritability of body mass, parent-offspring phenotypic covariance and phenotypic variance 

among parents to perturbations to model parameters. Finally, this approach allows making 

predictions of the population consequences of environmental change. 

Materials and methods 

(i) The integral projection model 

IPMs provide a powerful framework to simultaneously investigate population 

dynamics and quantitative genetics and their relation with environmental change (e.g. 

Coulson et al. 2011). I developed, applied, and analyzed an IPM to explore how population 

dynamics and heritability of body mass in the bighorn ewes may respond to changes in the 

vital rates. 

The IPM describes the temporal dynamics of the distribution of body weight at 

different ages. The model consists of functions describing associations between individual 

body mass and: (i) annual survival (the survival function          ) being the probability of 
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an individual of age   weighting    to survive from time   to    ; (ii) the probability of a 

surviving individual growing from weight    at time   to weight   at time     (the growth 

function            ); (iii) the probability of producing a female lamb between   and 

    that survives to      (the recruitment function          ); and (iv) the probability 

that a parent of body weight    at time   produces an offspring with body weight   at time 

    when the offspring recruits to the population (the inheritance function            ). 

These functions constituting the IPM describe how the body weight distribution is 

transformed by the fundamental biological processes of reproduction, inheritance, survival 

and development (Easterling et al. 2000). The IPM is extended to include age- dependent 

demography, to account for age- related differences in survival, body growth, recruitment, 

and inheritance probabilities. The term          denotes the number of density of 

individuals at age   and character value  . The dynamics of this distribution from time   to 

    can be written: 

            ∑∫                                                                        

 

 

              ∫                                                                 

Definitions of variables are provided in Table 1. Eqn (1) gives the number density 

distribution of character values among recruits to be added to the population at time     

as a function of parental character values at time   in all the fertile ages. The recruitment 

function           produces a number density distribution of parental character values 

that is then multiplied by the probability density function             to give the number 

density distribution of offspring character values. The integral is taken over all character 

values. The population level number density distribution of newborns corresponds to the 

sum of the age-specific number density distributions of offspring character across all fertile 

ages. Eqn (2) describes how the survival function           lowers the number density 

from           and how the character values distribution changes among survivors via 

ontogenetic development            . 
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It is convenient to write the age- structured IPM in matrix form (matrices are 

denoted with bold-face uppercase, letters and vectors with bold lowercase letters), which is 

given by: 

                                                                                                                                

where   terms from 1 to   and   is the matrix: 

 

 

(

 
 

                                                      

               

               

   
                              )

 
 

      

and                                                  . In other words, the 

associations of the demographic rates with body mass, functions           and          , 

are described by diagonal matrices        and        respectively. The trait transitions 

kernels,             and             are described by square matrices        and 

       respectively, with columns summing to unity to fulfill the normalization 

requirements ∫                and ∫               . These matrices are all 

incorporated into one big matrix  . To solve the model it is necessary to use numerical 

integration methods (Easterling et al. 2000): each component function is evaluated at   

equally spaced quadrature meshpoints,   . Details of the numerical approximation of eqn 

(3) are explained in the appendix A2. 

Childs et al. 2003 proved that the   matrix of an age-size structure IPM, under 

biologically reasonable conditions, has a dominant eigenvalue  , that is positive and strictly 

exceeds all others. A population growing at a constant rate  , settles to a stable size-age 

distribution, which is given by the right dominant eigenvector of  . The left eigenvector 

associated with   is the reproductive value. The mean character value in the population  ̅, 

is given by  ̅  ∑     ∑    ⁄ ; where   is a vector of body mass midpoints across ages 

and      is a vector of number of individuals at time  . 
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(ii) Calculating quantitative genetic quantities 

As shown by Coulson and Tuljapurkar (2008) and Coulson et al. (2010), IPMs can 

be used to calculate life history descriptors, as well as quantitative genetics quantities, such 

as the estimate of character heritability and selection on the character via lifetime 

reproductive success. I now define the main quantities that I use to describe life history and 

quantitative genetic; other mathematical details and formulas are in the appendix A1. 

Theory has been formulated by Fisher (1930), and Lande (1982). Coulson and Tuljapurkar 

(2008) and Coulson et al. (2010) implemented IPM to combine evolutionary and ecological 

dynamics. 

The performance of cohorts is tracked in terms of survivorship and fertility. Given 

a cohort of newborns in the population, survivorship describes the fraction of the 

individual of the cohort alive through time and their body mass distribution. In other 

words, it is the probability of living to age at least  , and is derived from the survival 

          and ontogenetic development             functions. Survivorship is denoted 

by            for a cohort of individuals that have born with character value  ; and by 

               in the other ages, where   is the body mass at age 1. 

The expected distribution of offspring with character value   produced at age   by 

a parent born at time   with a character value   is denoted by                 and is 

calculated from the inheritance             and fertility           functions and the 

survivorship function above defined. 

The lifetime reproduction             of a parent born at time t with character 

value   is calculated adding all the offspring produced at all ages. Ages are extended to a 

large maximum age  , which has to be higher than the average life-spam and is different 

from the maximum age   used in the IPM. 

The equations that calculate survivorship, expected distribution of offspring, and 

lifetime reproductive success are used to calculate a number of life history quantities. In the 

formulation developed by Coulson et al. (2010) such calculations are implemented in a 

constant, density-independent environment, when rates are time-independent. Generation 

length             is the average age of reproduction in a population in stable age 

distribution. In species reproducing at several ages, the extent of iteroparity is described by 
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the dispersion of reproduction with respect to age. The parameter measuring the dispersion 

of reproduction events across age is called demographic dispersion   
 . In other words, the 

demographic dispersion measures the age dispersion of reproduction, the extent of 

iteroparity, and whether individuals often skip breeding years (Tuljapurkar et al. 2009). 

One can also adapt the IPM approach to address quantitative genetic analysis. The 

breeder’s equation has been widely used to understand phenotypic change of heritable 

characters (Bulmer 1980, Lande and Arnold 1983). Specifically it describes the response to 

selection defined as the per generation change in the mean of the breeding value 

distribution. A breeding value of a character describes the additive genetic worth of a 

parent for that character (Coulson et al. 2010). 

The breeder’s equation, in the form implemented by Coulson et al. (2010) contains 

two terms: (i) a selection differential between the character   and lifetime reproductive 

success (  ) and (ii) a character heritability   . The heritability is the ratio of the additive 

genetic variance to the phenotypic variance:     ⁄    Heritabilities and additive genetic 

variance are estimated through a regression of daughter body mass at age   against 

maternal body mass at age  . Twice the slope of the regression line is the character 

heritability (Falconer and Mackay 1996). To estimate the biometric heritability of body 

mass measured at age 1, it is necessary to start with a cohort of newborns who progress 

through the life cycle and become parents. This cohort of newborns is described by a 

number density over character values         , which is iterated to track the number 

density distribution of offspring produced at each age in the life course. From the iteration 

one can calculate the number density distribution of the stage classes of offspring born to 

parents with a certain body mass at age 1 through their life course (Coulson et al. 2010). 

Considering a one sex model, the regression of offspring trait value    on parental trait 

value    has a slope that equals half the heritability, 

  

 
  

          

      
                                                                                                                   

Equations to estimate            and        can be found in the appendix A1. Here I 

need to note only that these equations yield the mean character values of parents and 

offspring, and the variance among parents and can be used to explore several aspects of 

biometric heritability. First, it is possible to analyze the effects of changes in the mean 
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environment and in the vital rates on life history transitions. To do so, I compare the 

equilibrium heritability obtained by starting with a stable character density distribution of 

newborns with time-dependent values for cohorts who are observed over their 

reproductive lives (Coulson et al. 2010).  Second, it is possible to examine the effects of age 

on heritability of body mass. This is done by considering only offspring produced at age   

and estimating biometric heritabilities at each age  . 

All the quantities here presented are integral functions of body size. They are 

approximated by a discrete matrix, in a similar way that eqns (1) and (2) are approximated 

by eqn (3). Details on numerical calculation can be found in the appendix A2. 

(iii) Study species and data collection 

The bighorn sheep has been studied at Ram Mountain, in Alberta, Canada, about 

30km east of the main range of the Canadian Rockies (52ºN, 115ºW, elevation 1082-2173 

m). Potential predators include wolves (Canis lupus), cougars (Felis concolor), black bears 

(Ursus americanus), coyotes (Canis latrans), and golden eagles (Aquila chrysaetos). Rams are 

hunted during the summer. 

Individuals were captured in a corral trap baited with salt from late May to early 

October, and marked with colored plastic ear tags or collars for individual identification 

since 1973. At each capture, sheep were weighted to the nearest 125 g with a Detecto 

spring scale. Data collection methods are described in details elsewhere (e.g. Jorgenson et 

al. 1993b, FestaBianchet et al. 1997). The capture efficiency rate was extremely high: more 

than 98% of the sheep were individually recognizable; all ewes were marked from 1976 

onward; and in most years, more than 80% of the lambs were captured (e.g. Festa-Bianchet 

and Jorgenson 1998). I used data on life history and body masses collected from the female 

component of the population between 1973 and 2011. Females that died during trapping 

(     ) or were culled (      ; (Jorgenson et al. 1993a) were not considered in the 

analysis. Ewes live a long life, with the oldest female ever trapped at age 19. However, ewes 

aged 14+ were pooled to ensure reasonable sample sizes. Females start to reproduce at age 

2. Ewes always produced singleton lambs. Because they are highly philopatric, do not 

preferentially associate with adult kin, and all ewes in the population use the same home 

range, common environmental effects on heritability estimates should be very limited 

(Reale et al. 1999). The mean birthdate of bighorn sheep lambs in Alberta corresponds to 
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May 25 (Festa-Bianchet 1988). Lamb-ewe matches were established through repeated 

observations of suckling. Yearly individual reproductive success was measured by lamb 

survival till September 15, the approximate time of weaning (Festa-Bianchet 1988). 

Ewes of all ages were typically caught between four and six times each summer. 

Body mass of individual sheep was adjusted to September 15 by fitting mass as a function 

of date using linear mixed models (Martin and Pelletier 2011). I chose to analyze autumn 

mass because by mid-September adult ewes were near their peak yearly mass. Mortality 

tended to occur during the winter months, and body mass in September has been related to 

individual survival over winter (e.g. FestaBianchet et al. 1997). I used the number of adult 

females (≥ 2 years old) in June each year as an index of density. From 1973 to 1981, the 

population was maintained at low density (average of 34 ewes) through yearly removals of 

12-24% of ewes (Jorgenson et al. 1993b). After 1981, the population increased, peaking at 

104 ewes in 1992 and declining to 24 ewes in 2011. This observed decline has been related 

with an apparent deteriorament of environmental conditions (Pelletier et al. 2007b). 

(iv) Model parameterization 

 

The probabilities that an individual, given its body weight at time   (i) survives from 

time   to time    ; (ii) reproduces between time   and    ; (iii) grows to a certain body 

mass at    ; and (iv) produces a lamb of a certain body mass at time     were 

estimated using individual data collected from 1973 to 2011. 

All the statistical analyses were run in R version 2.15.1 (R Development Core Team 2011) 

using the lme4 package (Bates et al. 2011). All associations were tested using general linear 

mixed model (glmm) under the appropriate error structure (binomial for survival and 

recruitment, Gaussian for ontogenetic development and inheritance functions). Body mass 

and population size were held as fixed effects. Year was added as a random effect to 

correct for temporal variation in demographic rates. Age was treated as a factor. To 

increase the fit of each glmm to the data and to apply the principle of parsimony, ages were 

grouped in age classes. Competing models characterized by different age classes were then 

compared using their Akaike information criterion values (AIC, e.g. Burnham and 

Anderson 2004). The model with lower AIC value was preferred. In the same way the 

slopes of body mass were allowed to differ between age classes only after comparing 

models by their AIC score. It follows that the survival, recruitment, ontogenetic 
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development and inheritance functions in the IPM were parameterized according to 

different age classes’ classification. For example, if lambs and yearlings are characterized by 

the same probability to survive from time   to    , the parameter estimates   and   (see 

below for definition of parameter values) for the survival functions in the IPM in the ages 0 

and 1 will be set to the same parameter value. However, if the ontogenetic development 

probabilities were found statistically different between lambs and yearlings, the parameter 

estimates   and   for the growth functions in the IPM in the ages 0 and 1 will have 

different parameter values. The process of increasing model fit to the data is essential 

because an IPM will only accurately capture the dynamics of a population and character 

distributions if the statistical functions used to construct the model accurately capture 

observation (Coulson et al. 2010). I tested all the functions for nonlinearity using 

generalized mixed additive models (mgcv package, Wood 2012),  but found no compelling 

evidence for nonlinearity. 

The character-survival functions           are of the form 

                                                where  ,  ,  , and 

   are obtained from logistic regressions for survival. The fertility functions assume a 

similar form. The body weight development functions             describe how body 

mass changes among survivors from time   to    . Of course, some individuals will have 

identical masses, some will lose weight, some others will gain mass between a time step. 

Therefore, to estimate the growth kernel it is necessary to evaluate a function describing 

mean body size at time     given body size at time  , and also a function describing the 

variance around these associations. These functions are combined and then scaled so that 

all transition rates out of an age-stage class sum to unity. To estimate the variance function 

I regressed the squared residuals around the mean body mass function against the fixed and 

random factors defining the glmm as above mentioned (Easterling et al. 2000). Define 

              and    respectively the intercept, slope for body mass, slope for density and 

variance for year effect of the linear regression of ontogenetic development. Then define 

           and    respectively the intercept, slope for body mass, slope for population 

size and variance for year effect of the variance function. It follows that      and      are 

      √            (    ) and                    (    ). In the 



14 
 

age- structured IPM the probability density functions describing transition rates between   

and    in each age are: 

             
 

√      
   ( (       )

 
      ⁄ )                                                    

The             functions for each age are similarly defined and assume analogous form. 

 

(v) Implementation of the IPM and perturbation analysis 

Given the parameter values estimated I construct and analyze the age-structured 

IPM in R 2.15.1 (R Development Core Team 2011). Code for constructing IPMs is 

provided by Easterling et al. (2000) and Ellner and Rees (2006).  The integration limit in 

eqns (1) and (2) was from 10.44 kg below the smallest value of   observed (11.6 kg) and to 

97.9 kg above the largest value (89.0 kg). I discretized the continuous component of the 

IPM into 150 bins, which provided sufficient resolution for convergence of model output. 

I constructed a deterministic IPM (Easterling et al. 2000) by fixing the random effects and 

population size at constant values (Coulson 2012). In particular the year random effect was 

fixed at 0, while the population size ( ) was fixed at the average of 60 females. I firstly 

calculate key quantities from the age-size structure IPM at equilibrium. Secondly, to 

estimate quantitative genetics quantities I iterated the last age-class to a larger maximum age 

chosen to be 50, in order to let the functions stabilize to a stable distribution. Finally, I 

perturbed individual parameter values in the character-demography functions and 

examined how each perturbation altered the following quantities: ,  ̅,   ,   ,    and   
 . 

The direction of each perturbation was chosen so as to increase  . The proportional 

change of a quantity,  , from the equilibrium value due to a small perturbation of 0.1% to a 

specific parameter value    is given by a partial derivative     ⁄  and is approximated by 

                   
     ⁄ ; where   is the new estimate of the quantity  , and     is the 

value of the parameter value    after a perturbation of 0.1%.  This is a form of sensitivity 

analysis (Caswell 2001) and it is commonly implemented in the analysis of IPM (e.g. 

Coulson et al. 2010, Coulson et al. 2011). Altering the intercepts and slope distributions 

mimics environmental variation and changes in the vital rates. For example, increasing the 

value of the intercept for the survival function mimics the effect of environmental change 

that improves average annual survival rates (Coulson et al. 2011). Instead, increasing the 

value of the slope mimics the effect of change that improves average annual survival rates 
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for all individuals, but by imposing stronger trait dependence, bigger weight individuals 

have bigger increased survival rates than smaller individuals. Perturbation analysis can be 

also used to analyze the action of natural selection. In fact, selection deals with 

perturbations: it favors changes in the phenotype that increase fitness. Fitness is a 

demographic concept (the rate at which a genotype propagates itself), so an essential part 

of the theory of natural selection is devoted to understand how changes in the phenotype 

affect   (Keyfitz and Caswell 2005). For example, by separately perturbing the parameter 

estimates in the IPM it is possible to predict the rates that mostly impact  . Similarly 

perturbation of parameter values can be implemented to examine how each perturbation 

alters any of the quantities calculated from the IPM. 

Results 

(i) Model parameterization 

The relationship between body mass and survival, fertility, growth among survivors 

and inheritance of body mass in different age classes are displayed in fig. 1. The statistical 

analysis demonstrates that the probabilities to survive, reproduce, grow to a different body 

mass and produce an offspring of a certain body mass at time     differ in respect to age 

at time  . In fact ages are grouped in different age classes in each function and kernel. 

Parameter values for all functions and details on the age classification are in the appendix 

A3. In general, the generalized linear mixed models predict that females with bigger body 

weight are more likely to survive, reproduce, gain weight next year and produce bigger 

offspring in all the age classes (fig.1). It makes an exception the survival function in the age 

class from 2 to 8 years, where the probability of survival is almost 1 in all the body mass 

range. The slope for body mass in the function is near to 0 indicating that the relation 

between survival and body mass between 2 and 8 years of age is random. Population size 

negatively affects population growth, suggesting a decrease in the population density 

distribution at time      for large population sizes at time  . The year effect variance is 

quite large in most functions, which suggests that yearly variations play an important role 

on shaping population density distribution. 
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Parameter Definition 

  Age 

  Maximum age 

  Time 

     Character value 

  Character value at age 1 

 ̅ the population mean of variable y 

  
  population variance of y 

  predicted mean fitness at equilibrium population structure 

                continuous, discrete distribution of character values in age class   at time   

                 

continuous function, matrix describing expected survival in age class   at 

time   

                 

continuous function, matrix describing expected recruitment in age class   

at time   

                   

continuous function, matrix describing expected development kernel in 

age class   at time   

                   

continuous function, matrix describing expected reproductive allocation 

kernel in age class   at time   

   generation time 

   character heritability 

   additive genetic variance of the character 

   variance of the character among parents 

   lifetime reproductive success 

  female population size 

  
  dispersion of reproduction 

 

Tab. 1 Definitions of variables used in the text. 

(ii) Descriptive properties of the model 

The IPM was evaluated in a deterministic framework, at an average population size 

of 60 females, and fixing the year random effect at 0. The descriptive properties of the 
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parameterized model can be assessed by calculating the stable size-age distribution 

numerically and comparing this with the data. The observed and predicted values for mean 

body mass in the population are compared in fig. 2. The stable mass distribution predicted 

by the IPM captures the bimodal distribution of body mass in the population: the smaller 

peak represents the juveniles, while the second peak represents the adults. 

The values predicted by the model and those calculated from the observed data are 

displayed in tab. 2. Many estimates made from approximating the IPM as a matrix model 

are reasonably close to the observed values, whilst others correspond less well. In general 

the model overestimates values. The predicted estimate for mean body mass is in excellent 

agreement with the field data (tab. 2). However, a large mismatch occurs between observed 

and predicted population growth rate. This mismatch probably occurs because the model is 

density independent and does not include environmental stochasticity. Population size 

greatly fluctuated between 1973 and 2011, with a maximum value of 103 females in 1992. 

As the number of ewes increased, the population showed clear evidence of resource 

limitation, including delayed age of primiparity (Jorgenson et al. 1993a), lower survival of 

lambs and of yearlings (FestaBianchet et al. 1997, Jorgenson et al. 1997), and reduced mass 

gain and horn growth for young sheep (Festa-Bianchet et al. 1998). After 1992, lamb 

survival was low and variable and the population started to decline, reaching a minimum of 

16 females in 2007. Moreover, variable weather conditions have been asserted affecting 

survival and fertility rates (e.g. FestaBianchet et al. 1997).  

A large disparity between observation and prediction from the IPM was also in the 

generation time. A better estimate is given for the mean lifetime reproductive success (tab. 

2). The estimate of character heritability is consistent to the one estimated from the animal 

model (Coltman et al. 2005). However it is important to note that the   calculated from 

the animal model includes male offspring and corrects for maternal effect. 

(iii) Perturbation analysis 

I now describe how model predictions change as model parameters are altered. I 

focused my attention to six quantities: the population growth rate, the character mean, the 

heritability of body mass, the additive variance, the parent’s character variance, and the 

dispersion of reproduction. Fig. 3 shows how perturbations of 0.1% impact these 

quantities. In general, perturbations to the slopes for body mass in most of the functions 
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had greater effects than perturbations to the intercepts. Increasing the intercept of the 

function of survival, for example, mimics the effects of environmental changes that 

improves average annual survival rates; whereas increasing the slope for body mass in the 

same function mimics the effect of changes that favor especially bigger individuals (bigger 

individuals have bigger increased demographic rates than smaller individuals). The latter 

might be related to asymmetrical intra-specific competition which leads some individuals of 

better quality to survive, grow and reproduce well, while others are suppressed in growth 

(contest competition, Nicholson 1954). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Shapes of the statistical functions between body mass and survival, fertility, mean growth rate, and 

mean reproductive allocation within the age classes (see also Appendix A3 for age class classification) used 

to parameterize the IPM. Body-mass variance functions are not displayed. Points represent the raw data, 

lines the predictions from the statistical model. In the third and fourth rows of the plot the grey dotted lines 

represent the function    . In the time transition from age 0 to age 1, ewes are infertile and therefore 

their probability of reproduce is 0 and there is no heritability estimate. 
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Fig. 2. Stable September body mass distribution (line) for the bighorn ewes. Bars indicate the observed 

distribution of body mass in the population between 1973 and 2011. Vertical lines show the observed 

(dotted line) and predicted (continuous line) mean body masses. 

Quantity Observed Predicted 

  1.03 1.16 

 ̅ 58.01 58.58 

   0.25 0.23 

   6.54 8.73 

   0.25±0.04 0.26 

   
 

29.66 

   
 

113.46 

  
  

 
53.22 

 

Tab. 2. Observed values from the data and predicted quantities from the model assuming equilibrium age-

character structure. The estimated   is calculated as the asymptotic ratio between population size in 

subsequent time steps (N(t+1)/N(t)). Weights are measured in kg. 

 

The population growth rate lambda strongly increased with increasing slopes of 

survival and fertility rates, and also with increasing the slope of mean body growth. This is 

no surprise. In fact the population growth rate in deterministic environment is a measure 
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of fitness (Caswell 2001). By increasing survival and fertility rates individuals move more 

quickly to the fertile ages, and produce a higher number of offspring that survive to 

weaning. This means an increase in population size. The mean body mass in the population 

responded differently. Unsurprisingly, increasing the slopes for the mean body growth 

caused an increase in the mean body mass of the population. Furthermore, increasing the 

slopes for the recruitment functions produced a decrease in the mean body mass. With 

increasing the fertility functions more young individuals are added to the population, which 

in turn implies that the averaged body mass in the population decreases. Similarly 

increasing the slope for survival in lambs and yearlings causes a decrease in the character 

mean, while increasing the slope for body mass in the survival functions for older 

individuals causes an increase in the mean body mass. Demographic dispersion of 

reproduction decreased with increasing slopes for body mass in the survival functions, and 

the slope for body mass in the adults (2-12 years old). At the opposite it increased with 

increasing slope for body mass in the mean ontogenetic development in senescent 

individuals (9-14 years old), and the slope in the fertility function for mothers at least 13 

years of age. These changes can be understood in terms of the changing age-stage 

distribution of the population. For example, when the slopes in the growth rates increase, 

the population shifts to include mostly larger but also smaller individuals. This might cause 

an increase in the dispersion of reproduction if the reproductive output becomes dispersed 

over a wide range of sizes. 

I now focus on the overall heritability. Since heritability of body mass equals the 

ratio between overall parent-offspring covariance and phenotypic variance among parents, 

the three quantities are correlated. Estimates of heritability were strongly influenced by 

changes in the fertility rates, and in the mean ontogenetic development, although the 

direction of change was often different. The fertility function is characterized by 3 age 

classes: (i) yearlings; (ii) females from 2 to 12 years of age; and (iii) females older than 13 

years. Increasing (iii) later fertility in the age class 13-14+ tends to strongly decrease the 

additive variance, and thus reduce heritability. On the other side increasing (ii) fertility rates 

in the adults (2-12 years of age) slightly reduces character heritability. This is because both 

additive variance and variance among mothers are negatively affected, thus changing the 

ratio between those two quantities. Increasing (i) the fertility rate in the yearling strongly 

increases additive variance, variance among parents and slightly increases character 

heritability. Furthermore, it is noteworthy that increasing the slopes for mean ontogenetic 
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development strongly affects character heritability, additive variance and variance among 

mothers. The growth function is characterized by 4 age classes: (i) lambs and yearlings; (ii) 

2 years old females; (iii) females between 3 to 8 years of age; and (iv) individuals older than 

9 years. Character heritability decreases after perturbations to the slopes of mean body 

mass development (i) in the young of 0 to 1 year of age, and (ii) in the prime aged adults (2 

years of age). This is due to a decrease in the overall parent-offspring covariance and also a 

smaller decrease in the variance among parents. Perturbing (iii) the slope for mean 

ontogenetic development in females from 3 to 8 years of age causes a decrease in the 

character heritability. Between 3 to 8 years of age females body mass increases 

exponentially to reach a maximum mean weight. Increasing the slope of this function 

implies that bigger females grow faster than smaller females and that the phenotypic 

variance among parents increases. The overall parent-offspring covariance also increases 

with a smaller proportional change. Finally, perturbing (iv) the slope for mean ontogenetic 

development in adults aged at least 9 years causes an increase in the heritability of body 

mass. This is because the additive variance increases in a bigger proportion than the 

variance among parents. Perturbing parameter values of survival also impacts additive 

variance and phenotypic variance among mothers. However the heritability of body mass 

was only slightly affected by the same perturbations. 

The dispersion of reproduction was mostly affected by perturbations (i) to the 

slopes for body mass in the mean ontogenetic development functions for ewes of 9 years 

of age or older; (ii) the slopes for body mass in the recruitment functions for females from 

2 to 12 years of age and for older females; and (iii) the slope for body mass in the survival 

function of females of 14+ years of age. 

Perturbing parameters in the inheritance function had no relevant effects on all 

quantities. Perturbing parameters in the variance functions used to construct the transition 

kernels             had also small effects in almost all the quantities. Exceptions to this 

are the heritability of body mass, additive variance and phenotypic variance among 

mothers, which are slightly affected by perturbations to the slopes for body mass in the 

            function. Increasing the variance around the mean ontogenetic development 

implies that the variability between individuals increases. The result is to slightly increase 

both the additive variance and the variance among mothers. It follows that character 

heritability slightly decreases. 
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Fig. 3. The proportional consequences of 0.1% perturbation to intercepts (white bars) and slopes (black 

bars) for body mass in the functions of survival, fertility, mean growth rate, variance around the mean 

growth rate, mean reproductive allocation, and variance around the mean reproductive allocation for 6 

quantities: (a) population growth rate  ; (b) the mean of body mass in the population  ̅ ; (c) the character’s 

heritability   ; (d) the dispersion of reproduction   
 ; (e) the additive variance    ; and (f) the variance 

among parents   . Vertical lines separate intercepts and slopes of different functions. The number of 

intercepts and slopes for body mass varies between functions because ages are grouped in different age classes 

in the four functions. In the survival function there are 4 age classes: 0-1 years, 2-8 years, 9-13 years, and 

14 years of age. In the recruitment function there are 3 age-classes: 1 year, 2-12 years and 13-14 years of 

age. In the ontogenetic development ewes are grouped as follow: 0-1 years, 2 years, 3-8 years and 9-14 years 

of age. Finally in the inheritance function there are 2 age classes: 1 year, and 2-14 years of age. 
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(iv) Biometric heritabilities at different ages 

I analyzed if heritability of body mass at age 1 varies with mother age. These 

heritability estimates are calculated from the covariance between parent and offspring (eqn 

(18) in appendix A1) considering only offspring produced at age  . Fig. 4 shows how 

character heritability varies in respect to age. The heritability of body mass in the lambs is 

estimated at 0 because sheep do not reproduce in the time transition between lamb and 

yearling. The character heritability fluctuates in mothers aged 2 to 4 years. In mothers 

between 5 and 10 years of age the heritabilities of body mass progressively decrease. In 

mothers aged 11 to 13 years the heritabilities increase. After 14 years of age the 

heritabilities estimates stabilize to a constant. I also conducted a perturbation analysis on 

the biometric heritabilities at different ages. The results are not shown here for space-limits. 

The results confirm those from the perturbation analysis of the overall character 

heritability: age-specific heritabilities are mostly affected by perturbations to the slopes in 

the recruitment and mean ontogenetic development functions. 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Age specific heritabilities of body mass. Heritabilities are calculated to a maximum age of 50 

years. 
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Discussion 

A growing number of studies are devoted to understand how evolutionary 

dynamics are shaped by ecological processes (e.g. Coulson et al. 2006, Pelletier et al. 2007a). 

This study contributes to this research network by implementing an IPM to analyze links 

between environmental change, population dynamics and life history traits. The model 

provides specific insight to the bighorn sheep system. By implementing an IPM, I show 

how changes in the vital rates simultaneously impact population dynamics and quantitative 

genetics descriptors. According to previous studies (Coulson et al. 2010, Ozgul et al. 2012), 

changes to attributes of the functions describing the association between body mass, age 

and demography transitions generate a wide range of eco-evolutionary dynamics. 

Furthermore, I show how feedback between environment and population descriptors can 

affect heritability of body mass, parent-offspring phenotypic covariance and phenotypic 

covariance among parents. These findings help understanding how environmental change 

might affect the genetic variability expressed for a fitness- related character and highlight 

the importance of accounting for different life- history stages in quantitative genetics 

analysis. 

(i) Model performance 

IPMs simultaneously describe the association between the values of a continuous 

phenotypic trait and the probability of an individual surviving, reproducing, but also how 

the character distribution changes among surviving individuals and newborns in the 

population (Easterling et al. 2000). As in the IPM herein implemented, IPMs can be 

extended to include discrete character such as age and account for age-related 

heterogeneities in the associations between body mass and demographic rates. Immigration 

and emigration are not comprised in the analysis. However emigration from the study areas 

has been observed only in a few individuals in the population. In fact Jorgenson et al. 

(1997) report only 3 females and 13 males emigrating from the population between 1973 

and 1996. These facts suggest that immigration and emigration rates are probably negligible 

in the ewes of Ram Mountain. 

The parameterized model provides an accurate description of the average size in 

the population, mean lifetime reproductive success and heritability of body mass. Despite 

this the predictions differ from the observed population growth rate (which corresponds to 
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population fitness in constant environments, Keyfitz and Caswell 2005) and generation 

length. These discrepancies indicate that important aspects of the selection pressure acting 

on the bighorn ewes are not included in the model, because the model is evaluated at the 

average population size of 60 individuals and the year effect is kept to 0. However, it is 

straightforward to include density dependence and environmental stochasticity in the 

framework I have developed. Previous studies on the sheep have proved that high density 

negatively affect survival (Jorgenson et al. 1997), recruitment (e.g. Portier et al. 1998), body 

mass gain (Festa-Bianchet and Jorgenson 1998), and heritability of body mass (Reale et al. 

1999). Annual survival, fertility rate and mass changes are also positively correlated with 

yearly weather conditions (FestaBianchet et al. 1996, Portier et al. 1998). Furthermore, 

Festa-Bianchet et al. (2006) demonstrated that stochastic predation events have dramatic 

impacts on bighorn population dynamics. Cougar predation on bighorn sheep occurs 

unpredictably, but, when predation occurs, cougars concentrate on the same bighorn 

population causing its drastic decline. For example, the mean annual growth rate for the 

bighorn sheep population in Ram Mountain declined from 1.017 to 0.789 in presence of 

cougar predation. Correcting for density-dependence, year variability and possibly 

stochastic predation would have provided a richer understanding of the dynamics of the 

study population. However, in this study I choose to analyze the model in a deterministic 

framework to categorize life history traits and to predict their eco-evolutionary dynamics at 

the stable stage distribution. This approach falls under the traditional theoretical research 

on life-history evolution that assumes constant environmental conditions (e.g. Fisher 1930, 

Stearns 1992). Recently Tuljapurkar et al. (2009) have argued that environmental 

stochasticity plays an important role in life-history evolution and that a stable environment 

may be an unrealistic assumption. In fact ‘optimal phenotypes’ in fluctuating environment 

are likely to differ from those in constant environments. The IPM for the bighorn sheep 

can be extended to include environmental stochasticity and density-dependence (e.g. Ellner 

and Rees 2006, 2007), and life-history descriptors could be calculated in a stochastic 

environment. Another option to test for the effect of density-dependence and 

environmental stochasticity is to examine how the quantities estimated vary as density and 

year effect are altered in the deterministic model (Coulson 2012). I will leave these for 

future work. 
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(ii) Perturbation analysis and population dynamics descriptors 

I next examined how perturbing model parameters influenced population biology 

and quantitative genetics quantities. Changes to most of the parameter in the model 

simultaneously influenced estimates of all the examined quantities. The impact of changes 

in the fundamental functions constituting the IPM vary among different age-classes, 

suggesting that each life-history stage responds differently to environmental changes and 

has a different impact on population dynamics. For example, increasing the survival in the 

age classes 0 to 1 year of age and 2 to 8 years of age had a greater impact on the population 

growth rate than increasing the survival rate in older ages. This confirms previous findings. 

In ungulates juvenile survival is typically more sensitive to degradation of environmental 

conditions while adult survival is high and shows low variability (Gaillard et al. 2000b). 

More specifically, FestaBianchet et al. (1997) showed that survival at the younger ages in 

the bighorn sheep is high but variable between years and strongly affected by weather 

conditions and population density. Therefore, increasing young survival has a stronger 

effect in terms of population dynamics. The survival rate in relation with body mass 

between ages 2 to 8 is almost random, because most ewes survive despite their body size. 

Increasing the slope for body mass mimics an increase especially in the survival of bigger 

individuals (while the survival in smaller individuals increases at a slower rate), which 

implies an increased survival of individuals of better quality. This in turn positively affects 

population growth if bigger individuals produce more and better quality offspring. Not 

surprisingly increasing fertility rates, and thus the number of new born, causes an increase 

in the population growth rate. Increasing the mean ontogenetic development had a smaller 

impact on population fitness suggesting that environmental change is more likely to impact 

survival and fertility rates rather than character trait distribution within the population. 

(iii) Heritability estimates 

In many ungulates early development mass is a good predictor of reproductive 

potential (Albon et al. 1987, Clutton-Brock et al. 1992) and affects life-history traits and 

population dynamics (Clutton-Brock et al. 1992, Post et al. 1997, Rose et al. 1998). In the 

bighorn sheep Festa-Bianchet et al. (2000) found a positive correlation between mass 

during early development and lifetime reproductive success. Since body mass is a heritable 

character in the sheep (e.g. Coltman et al. 2005), and climate change is predicted to be 
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particularly strong in mountainous habitat (Oechel et al. 1997), it follows that 

understanding how environmental changes, including climate change, can impact 

heritability of body mass in the bighorn ewes is important in a conservation prospective of 

the population. Here the heritability of body mass is estimated at the approximate time of 

weaning in September of the first year of life. The heritability estimates are based on the 

phenotypic covariance between parents and their offspring. Each cohort of new recruits to 

the population is followed through years: one can record the number density distribution 

of offspring trait values produced by each stage-class within the same cohort through years 

(Coulson et al. 2010). Estimating heritability from the IPM presents some differences from 

estimating the heritabilities using the animal model. The animal model corrects for 

contributions from maternal effects, and non-additive genetic variance (e.g. Kruuk 2004). 

At the opposite, the estimate of heritability from the IPM does not distinguish between 

different components of variance and therefore the estimate of additive genetic variance 

may not be as precise. However it is noteworthy that the relative difference between the 

heritability of body mass predicted by the model and the heritability estimated from the 

animal model is small. Similarly, Coulson et al. (2010) estimated heritability of body mass 

without correcting for maternal effects in the Soay sheep (Ovis aries) through the 

implementation of an IPM and found their estimates matched well with those obtained 

from the application of the animal model. This is perhaps no surprising: in spite of the 

advantages the animal model offers, heritability estimates with and without correcting for 

specific components of variance have often similar magnitude (Kruuk 2004). Despite the 

above mentioned limitations of the IPM, the implementation of matrix modeling and 

perturbation analysis allows a mechanistic understanding of the heritability of body mass. 

This is a clear advantage if one aims to test the relative importance of vital rates on 

influencing the heritability of body mass, or to link population dynamics with evolutionary 

processes considerations. 

(iv) Perturbation analysis and heritability estimates 

The perturbation analysis showed that heritability of body mass is most strongly 

affected by ontogenetic development and fertility functions, and also that different age-

classes respond differently to environmental changes. For example increasing the slope of 

ontogenetic development in mothers younger than 8 years of age decreases the character 

heritability estimate. In females of 2 years of age or younger this is due mainly to a decrease 
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in the additive phenotypic variance. In terms of adjustment of energy allocation between 

reproduction and ontogenetic development (e.g. Murray et al. 2009), a reduced additive 

phenotypic variance estimate in response to increased mean development rate implies that 

younger mothers invest more on growing faster than on producing offspring as big as they 

were at weaning. This strategy might pose an ecological advantage if mothers’ fitness 

depends more on their own survival and future reproductive success rather than on 

reproductive success in a given year (Gaillard et al. 2003). In temperate environments 

juvenile survival is particularly constrained during winter and depends not only on body 

mass in late autumn but also on resource availability during winter (Gaillard et al. 2000a). 

Given that weather is extremely unpredictable during winter, low reproductive effort 

should be favored to avoid compromising maternal survival over lamb survival (Gaillard et 

al. 2003). In females from 3 to 8 years of age the decrease in heritability estimate is more 

complex and related with strong increases in both the additive genetic variance and 

phenotypic variance among mothers: the resemblance in body mass between mothers and 

newborns increases, and also the phenotypic variation among parents increases. This 

suggests that energetically favorable conditions lower individual differences, so that more 

females produce offspring of similar body mass as they were themselves at weaning. A 

similar result was found by Coltman et al. (2001) in the Soay sheep: heritability of parasite 

resistance did not differ in favorable and unfavorable conditions, but additive genetic 

variance was higher in favorable ones. Finally perturbation of the slope for body mass in 

the growth function in individuals of 9 years of age or older causes an increase in both 

heritability and additive variance estimates. An increase of heritability of size-related traits 

under favorable conditions has been found also in birds (Gebhardthenrich and 

Vannoordwijk 1991, Hoffmann and Merila 1999, Charmantier and Garant 2005). An 

hypothesis proposed to explain this trend is that increasing growth conditions enhances the 

genetic potential (Gebhardthenrich and Vannoordwijk 1991). Moreover, in good 

conditions residual or environmental variance tends to decrease, because the effects of 

local environmental differences are diminished compared with the genetic effects 

(Vannoordwijk and Marks 1998). It is perhaps easier to think at the opposite situation: in 

stressful environmental conditions, offspring size should be determined more from food 

abundance than any developmental genetic program (Vannoordwijk and Marks 1998). In 

the bighorn ewes, when growth conditions become more favorable oldest females can 

invest more energy on reproduction and produce lamb of similar size as they were 
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themselves at weaning. Another interesting result is that heritability and parent-offspring 

covariance estimates are negatively affected by increasing the fertility function in most of 

the ages (females from 2 to 12 years of age, and females older than 12 years). This implies 

than if females produce more lambs, they will invest less energy in each reproductive event 

and produce lambs of different body mass as they were themselves at birth. These findings 

show that the relation between environmental change, vital rates, life- history stages and 

character heritability are extremely complex. 

(v) Conclusion 

The analysis has provided several insights. First, changes in the function of survival, 

fertility and ontogenetic development in each life-history stage had different impacts in the 

quantities calculated from the model. Second, population fitness is more strongly related 

with survival and recruitment rates, than with individual ontogenetic development or 

inheritance of body mass. Third, changing fertility rates and mean ontogenetic 

development had strong impact on heritability of body mass and parent- offspring 

phenotypic covariance, but the magnitude of these impacts depended also on the age class 

considered. This suggests that the amount of additive genetic variation on which evolution 

could act varies not only according to environmental conditions but also to life- history 

stages. Finally, this study is consistent with research by Coulson et al. (2010) and Ozgul et 

al. (2009, 2012), and confirm that populations and individuals respond to environmental 

change in complex ways depending on which character-demography association is altered 

and on age. It remains to test how density-dependence and environmental stochasticity 

would influence these predictions. 
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Supplementary information 

(i) Appendix A1 

In this appendix I explain and show mathematical equations to calculate life-history and 

quantitative genetics quantities from an IPM.  

The survivorship function describes the probability of individuals in a cohort to survive to 

at least age  . In the model, cohort dynamics are simulated by iterating eqn (2):                       

              ∫                                       . Let  ̃      and 

 ̃      represent the integral operator of the ontogenetic development and survival 

functions (integral operators are denoted by tildes). Between age 1 and 2, changes in a 

cohort are described by the integral operator  ̃       ̃       as in eqn (2)). Between ages 2 

and 3, the corresponding integral operator is  ̃       ̃     , and so on. By combining 

these transitions for each age, I obtain the survivorship functions, which are defined as 

follow: 

 ̃       ̃                                                                                                                                  

 ̃            ( ̃      ̃     )     ̃                                                               

where  ̃ is the identity matrix. That means for a cohort          ∫              giving 

the number of newborns at time  , the number of survivors of age  , denoted by 

        ∫              can be obtained via iteration:  

 ̃                                                                                                                               

             ̃                     ̃      ̃               

 ∫                                                                            

I can write eqn (9) and (10) for a cohort structured by age (discrete) and a continuous trait 

  in a continuous notation: 

 ̃                                                                                                                                 

such that 
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 ̃                            ∫                                             

and 

 ̃                       ∫                           
      

                                                                                                 

where        is the Dirac delta function,   is the character value at age 1,    represents 

the character value at time   and   the character value at time    . 

The expected number density of offspring with character value   produced at age   by a 

parent born at time   with a character value  ,                is given by:  

 ̃            ̃      ̃        ̃                                                                    

The lifetime reproduction  ̃ of a parent born at time   with character value   is given by: 

  ̃      ∑  ̃                                                                                                      
    

where A is a large maximum age A. In the bighorn ewes case, by allowing parent to 

reproduce until a maximum age of 50 years I make sure that the estimates of   ̃     settle 

down to the equilibrium. 

The  ̃      operator describes how each stage-class at age   and time   contributes to 

different stage classes at age     and time    . The  ̃      operator describes how 

each stage-class among mothers of age   contribute to the stage classes of age 1 offspring 

at time    . 

Generation length    is given by the identity              where   is the asymptotic 

growth rate and   is the dominant eigenvalue of   ̃  in eqn (14). The asymptotic growth 

rate   is calculated from eqn (13) at the stationary stable stage. In the stationary state these 

operators do not depend on time. Using matrix notation it can be written as    

 
         

    
; where   is a vector of ages and     ,      and      are defined as above.  

Demographic dispersion of reproduction   
  is given by   

    
          

    
   . 
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It remains to specify how to compute   of body mass from the IPM. Let   denote 

the offspring character value, and   the parental character value at age 1. The lifetime 

reproduction of a cohort born at time   is  ̃    , and  ̃       is the distribution across 

character values of all offspring of that cohort. Considering all offspring produced over a 

lifetime, the joint number density distribution of offspring character value   is proportional 

to  ̃                . 

From the joint number density distribution it is possible to calculate the mean character 

values of parents: 

    
∫            

∫            
                                                                                                               

and the mean character values of offspring: 

    
∫                      

∫                      
                                                                                         

The parent –offspring covariance is then given by: 

            
∫                                   

∫                      
                                       

and the variance among parents is given by: 

       
∫                  

∫           
                                                                                         

From eqn(18) and (19) it is possible to compute    by eqn(5): 

   ⁄                  ⁄   All the integral equations here presented are approximated 

by discrete matrices and iterated using numerical integration methods. 

(ii) Appendix A2: Numerical implementation 

This appendix provides more information about numerical methods for implementing an 

           integral model. The model written in eqns (1) and (2) in the text is a series of 

one-dimensional integrals.  To solve an IPM it is necessary to write it in matrix form and 

implement numerical integration (Easterling et al. 2000).  
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The   matrix in                (eqn (3)) is used to iterate      to       . 

It contains a set of squared matrices consisting of an array of age-specific matrices. Each 

component of the square age matrix corresponds to two meshpoints        . The 

meshpoints are equally spaced and   in number, so the square age matrices have dimension 

     .  

The term      in eqn (3) can then be written as: 

                                                           
                    

The parameter   denotes age, while the parameter   denotes the maximum possible age in 

the model. Definitions for other parameters are in tab. 1 in the text. Each element of this 

vector represents the number of individuals in a specific age-class   and character class  . 

Each age-class is further separated into the same number of character classes. The 

character class   in      is set to 0 if there are no individuals of weight   in age class  .  

I define the following equalities: 

           
   

 
                                                                                                 

and  

        (  
   

 
  |                                                                                               

where        , and        . It follows that 

   

(

 
 

                        

        

        

   
              )

 
 

                                                   

The whole    matrix has then dimensions                    Age   is an absorbing age 

class. In fact       in the   matrix represents survival and ontogenetic development of 

individuals m+ years old who will still have age m+ the following year if they survive. 

      represent fertility and inheritance of body mass of m+ years old individuals. 
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In the time transition from lamb to yearling females do not reproduce, thus       is equal 

to a null matrix of       dimensions. 

The equations above correspond to those in Coulson et al. (2010), but follow a different 

mathematical notation. 

(iii) Appendix A3: Parameter values 

The parameter values describing the relationship between September body mass and 

demographic and trait transition rates are shown in tab. 3. As explained in the methods, to 

increase the fit of the statistical models to the data I grouped ages in different age classes. 

Tab. 4 shows the Akaike information criterion (AIC, e.g. Burhman and Andersan 2004) 

values in the full statistical model with 14 ages and in the age- structured models. In the 

survival function females are grouped with respect to age as follow: (i) lambs and yearling; 

(ii) prime aged adults between 2 and 8 years of age; (iii) adults between 9 and 13 years of 

age; (iv) senescent of 14+ years of age. In the function of development of body mass 

females are grouped in four age classes: (i) lambs and yearlings; (ii) 2 years old adults; (iii) 

adults between 3 and 8 years of age; and (iv) senescent individuals older than 9 years. 

Lambs are not included in the fertility and inheritance functions because lambs are not 

sexually mature. Therefore the probability of reproduce in the time step between lamb and 

yearling is 0. The age structure differentiates individuals of (i) 1 year of age; (ii) 2-12 years 

of age; and (iii) 13-14 years of age based on their probability of reproduce at time     

given their body mass at time  . In the inheritance function age classes are grouped as 

follow: (i) yearlings; and (ii) all the individuals older than 2, but the slopes for mother body 

mass don’t differ between the two age classes. When ages are grouped in a specific 

function, the parameter values in the IPM for those specific ages are identical. For example, 

if lambs and yearlings have the same probability to survive in a time step given their body 

mass, the intercepts and slopes for body mass in the survival functions           and 

          are set to be identical. 
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Parameter: S 
G 

Mean 

G 

Variance 
R 

D 

Mean 
D Variance 

 Age       

Intercept a = 1 -1.3336 26.7286 24.6153 0 0 0 

Intercept a = 2 -1.3336 26.7286 24.6153 -13.9874 13.6512 5.5222 

Intercept a = 3 3.4342 36.3546 30.0608 -3.1370 15.0133 5.9658 

Intercept a = 4 3.4342 23.9293 19.4668 -3.1370 15.0133 5.9658 

Intercept a = 5 3.4342 23.9293 19.4668 -3.1370 15.0133 5.9658 

Intercept a = 6 3.4342 23.9293 19.4668 -3.1370 15.0133 5.9658 

Intercept a = 7 3.4342 23.9293 19.4668 -3.1370 15.0133 5.9658 

Intercept a = 8 3.4342 23.9293 19.4668 -3.1370 15.0133 5.9658 

Intercept a = 9 3.4342 23.9293 19.4668 -3.1370 15.0133 5.9658 

Intercept a = 10 -6.5999 19.4634 9.0613 -3.1370 15.0133 5.9658 

Intercept a = 11 -6.5999 19.4634 9.0613 -3.1370 15.0133 5.9658 

Intercept a = 12 -6.5999 19.4634 9.0613 -3.1370 15.0133 5.9658 

Intercept a = 13 -6.5999 19.4634 9.0613 -3.1370 15.0133 5.9658 

Intercept a = 14 -6.5999 19.4634 9.0613 -11.7587 15.0133 5.9658 

Intercept a = 15 -5.8961 19.4634 9.0613 -11.7587 15.0133 5.9658 

Slope for   a = 1 0.0796 0.7038 -0.1911 0 0 0 

Slope for   a = 2 0.0796 0.7038 -0.1911 0.2322 0.1963 0.1043 

Slope for   a = 3 -0.0058 0.5001 -0.1880 0.0348 0.1963 0.1043 

Slope for   a = 4 -0.0058 0.6910 -0.0660 0.0348 0.1963 0.1043 

Slope for   a = 5 -0.0058 0.6910 -0.0660 0.0348 0.1963 0.1043 

Slope for   a = 6 -0.0058 0.6910 -0.0660 0.0348 0.1963 0.1043 

Slope for   a = 7 -0.0058 0.6910 -0.0660 0.0348 0.1963 0.1043 

Slope for   a = 8 -0.0058 0.6910 -0.0660 0.0348 0.1963 0.1043 

Slope for   a = 9 -0.0058 0.6910 -0.0660 0.0348 0.1963 0.1043 

Slope for   a = 10 0.1189 0.7476 0.0496 0.0348 0.1963 0.1043 

Slope for   a = 11 0.1189 0.7476 0.0496 0.0348 0.1963 0.1043 

Slope for   a = 12 0.1189 0.7476 0.0496 0.0348 0.1963 0.1043 

Slope for   a = 13 0.1189 0.7476 0.0496 0.0348 0.1963 0.1043 

Slope for   a = 14 0.1189 0.7476 0.0496 0.1370 0.1963 0.1043 

Slope for   a = 15 0.0910 0.7476 0.0496 0.1370 0.1963 0.1043 

Slope for   

 

-0.0042 -0.0189 -0.0726 -0.0041 -0.0530 -0.0520 

Year effect    

 

0.4418 1.9572 7.1342 0.4758 2.3299 0.0037 

 

Tab. 3. Parameter estimates describing relationship between body mass and probability of survival (S), 

recruitment (R), ontogenetic development (G) and inheritance (D) of body mass. (  = body mass,  = 

population size,    = standard error year effect). In the recruitment and inheritance functions parameters 

estimates for lambs are set to dummy values because lambs do not reproduce. 
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full model 

age-

structured 

model 
 

Statistical model: AIC AIC ΔAIC 

Survival 1731 1718 -13 

Fertility 1706 1679 -27 

Mean body mass development 10180 10122 -58 

Mean offspring body mass 2024 2022 -2 

 

Tab. 4. AIC values of statistical models describing associations between body-mass and: survival and 

fertility rates, and mean growth and offspring body mass transitions. The table shows: AIC values in the 

full model accounting for 14 ages (1st column), AIC values in the age-structured model (2nd column), and 

AIC values difference (ΔAIC) between the competing models.  
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