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Abstract 

Predicting species abundance distributions at scales larger than the available data is a 

key tool in estimating biodiversity. However, there are few techniques available that can 

do this successfully, with most approaches being far too general to be of practical use, 

and many techniques requiring a priori estimation of parameters. One of the key 

insights generated by research in this area is that the shape of a species abundance 

distribution is a function of sample scale. To this end, the Tchebichef method is a new 

approach that uses Tchebichef polynomials to approximate a probability density 

function, using only the scaling behaviour displayed by moments of sample areas. To 

date, this has been tested once, against tree and shrub species from Barro Colorado 

Island, with great success. Tests here against neutral model populations show 

encouraging results despite limitations of the available data. Attempts were also made to 

use this method in the context of bacterial communities, for which an appropriate 

scaling parameter was not determined. Results suggest that further testing will 

determine the Tchebichef method, with its minimal requirements, to be a valuable tool 

in upscaling species abundance distributions. 
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Introduction 

 

The importance of biodiversity is beyond doubt, and the value of a better understanding 

is not just an academic pursuit. Ecosystems display greater stability at higher diversities 

(McCann, 2000), and human-mediated processes have already produced marked 

changes on species diversity (Chapin et al. 2000).  As social and political interest in 

biodiversity continues to grow, there is an increasing need to develop better tools and 

measures for study, with an eye towards conservation efforts.  

One of the key tools in describing biodiversity is relative species abundance (Hubbell 

2001). This species abundance distribution (SAD) is presented as the number of species 

in a community with a given abundance (this abundance often represented in log2). 

Overwhelmingly, SADs indicate a prevalence of rare species, with comparatively fewer 

highly abundant species, a pattern often referred to as the ‘hollow curve’ (McGill et al. 

2007). Historically, the development of the understanding of SADs began with Fisher et 

al. (1943), whose famous logseries distribution for Lepidoptera abundance followed 

from probabilistic considerations of the negative binomial distribution.  Preston (1948) 

went on to claim that SADs follow a lognormal distribution, and that the rarest species 

are likely to either be underrepresented or unrepresented by a partial sample of a 

community, resulting in what appears to be a logseries distribution. Preston introduced 

this as the concept of the ‘veil line’, with an apparent logseries distribution becoming 

progressively lognormal as the sample size increases and the “veil-line” is shifted 

further left (figure 1).  

                      

Figure 1. Preston’s ‘veil line’, demonstrating the convergence to lognormality as sample size increases, 

and the ‘veil line’ shifts leftwards. 
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However, the existence of the “veil line” has been disproven theoretically (Dewdney 

1998, Williamson and Gaston 2005), and also has empirical evidence against it (Forster 

and Warton 2007).  

All told, since initial work by Fisher, dozens of distributions and models have been 

suggested as the best candidate to explain this hollow curve (the review by McGill et al. 

2007 outlines 27 such models). Of the research done, some consensus has been reached. 

Some of the most important conclusions have been that a) rather than a lognormal 

distribution, SADs regularly show a definite left-skew (Nee et al. 1991, Hubbell 2001), 

and b) the shape of a SAD is in fact a function of sampling scale (McGill 2003, Borda-

de-Água et al. 2012), particularly when we assume spatial aggregation of species, or 

equivalently, non-random sampling regimes (Green and Plotkin 2007). Further insights 

have been provided by Hubbell’s unified neutral theory of biodiversity and 

biogeography (UNTB), in particular, Hubbell’s zero-sum multinomial (ZSM) 

distributions, which better fit empirical data (Forster and Warton 2007), as well as 

allowing for the excess of singletons empirically observed (Borda-de-Água et al. 2012). 

In addition, work by Etienne et al. (2007) further refined the ZSM to a dispersal-limited 

multinomial (DLM), showing the importance of dispersal in determining the shape of 

SADs. 

Of course, when obtaining SADs for different communities, a complete census is almost 

always out of the question for practical reasons including time and resources, and we 

must make the best of what information is obtainable. To this end, there has been 

interest in predicting SADs for areas at larger scales than data is available for. It has 

been shown that the shapes of SADs at different scales may be a result of a spatial 

analogy of the central limit theorem, with local SADs converging to regional SADs as 

scale increases (Sizling et al. 2009a) and that predictions based on upscaling are a valid 

avenue of interest (Kunin 1998, Zhang 2006, Sizling et al. 2009b). The upscaling of 

SADs is still in its infancy, however. Harte et al. (2009) used a maximum-entropy (akin 

to maximum likelihood) technique, and though promising, this approach required a 

priori estimation of parameters including metabolic rate, where present concern is 

predicting SADs using only existing SADs of known scale. Zillio and He (2010) used 

Bayesian techniques, and though there were also some a priori assumptions made, these 

were using probabilistic arguments relating to number of individuals and sampling 

technique, which are soluble in the present context. Results were highly variable, but 

again, they show some promise.  
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One particularly striking technique (and the inspiration for the present work) is the 

Tchebichef method of Borda-de-Água et al. (2012), which uses the scaling properties of 

the moments of the distribution in order to upscale SADs. The method has been shown 

to successfully predict SADs of tree species on Barro Colorado Island (BCI), Panama, 

and one essential improvement over other methods is its ability to retain the rare 

singletons across all scales. The present work will attempt to test this method against 

datasets generated via a spatially explicit neutral model, across different speciation 

rates, dispersal distances and area sizes, provided by Dr. James Rosindell, and bacterial 

community datasets collected by Dr. Thomas Bell. The latter is data taken from distinct 

tree holes (communities) rather than subsets of a regional pool, and so in addition to 

testing the predictive power of this method on scales vastly dissimilar to eukaryotes, it 

also aims to test the method in a setting more similar in context to islands of different 

scale. 

 

Methods 

Moments and SADs 

Predicting SADs for scales larger than the available data requires taking existing 

moments, scaling over available areas, extrapolating the predicted moments, converting 

these to Tchebichef moments, and then using these to approximate the abundance 

distribution for the desired area.  

I will provide the appropriate background for the method and mathematics behind it, 

based on the works of Mukundan et al. (2001) and  Borda-de-Água (2012), which give 

further details. 

 

A moment is a descriptive measure of a distribution (Crawley 2005). For example, the 

first four moments characterise the mean, variance, skew and kurtosis of a distribution, 

respectively. In present context, the moment of order n, Mn of a SAD is given by Eq. 

(1), 

 

 
 
where the total number of species is given by S, and the jth species contains x 

individuals in log2. 
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With moments calculated for each dataset, the log10 moments are plotted against log10 

area, as scaling laws are observed for the moments (Borda-de-Água 2002), and so 

available areas can be used to calculate predicted moments of a new area for which data 

is unavailable. To this end, regression is used and residuals are analysed in order to 

decide the appropriate scaling region, and the highest order moment to use when 

converting the Tchebichef moments to a probability density function (pdf). 

 

As a given SAD can be seen as a pdf, this pdf can be linked to the moments of the 

distribution via a characteristic moment function (Morrison 1995), whereby the function 

is in a polynomial form such as to allow the reconstruction of the distribution. However, 

conventional moment functions have their drawbacks, such as computational demands 

(Borda-de-Água et al. 2012), limitations of domain (e.g. Legendre polynomials require 

the domain to be within the bounds [-1,1], which require further transformation of the 

distribution), and larger ranges of error at higher order moments (Mukundun et al. 

2001). 

As such the technique used within is based on a method of discrete orthogonal 

Tchebichef moments which do not have the above mentioned drawbacks, introduced by 

Mukundan et al. (2001) and first used within this context by Borda-de-Água et al 

(2012). Equations for calculating the Tchebichef moments, and relating these moments 

to a pdf and thus a SAD, can be found in the Appendix.  

 

When presenting the SAD as a histogram, choice of bins (abundance classes) was 

informed by Williamson and Gaston (2005), who suggest centering the bins on the 

logarithms of the powers of 2, with boundaries at log(2
n±0.5

). This serves the dual 

purpose of ensuring that the boundaries exactly double, and as these are multiples of the 

root of 2 (and thus irrational), no species can contain a number of individuals which 

falls exactly between adjacent bins. 

 

In addition, as the Tchebichef moments generate a probability density function, the total 

number of species over which to apply this function need also be extrapolated, as does 

the number of bins, to accommodate larger abundance classes. Extrapolation is done 

with regressions of log2 abundance and log10 number of species against log2 area. 
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Data 

The method of scaling moments was used on two datasets, Dr. James Rosindell’s 

spatially explicit neutral model populations, and bacterial datasets provided by Dr. 

Thomas Bell.  

 

The neutral model populations allow application of the method on population sizes not 

obtainable in the field and also serve as a spatial test of neutral models. Area lengths 

used were 2, 4, 8, et seq. up to 2048, with area size and number of individuals being 4, 

16, 64, et seq. Speciation rates varied from 1x10
-7

 to 3x10
-1

, with dispersal distances 

ranging from 1 to 64. In total, the Tchebichef method was applied to 2210 populations. 

It should be noted that each dataset contained the species-abundance in the form of 

pooled data from between 50-500 readings, and while the moments from pooled data 

are accurate representations of the true moments, this led to issues and considerations in 

extrapolating the number of species for the new desired area, which will be covered in 

the results. 

The bacterial datasets were collected from tree-hole communities, which allow a test of 

the method on prokaryotes, whose spatial distribution and dispersal are dissimilar to 

those of conventionally studied species, and also allow examination of the behaviour of 

the moments on a scale unlikely to behave triphasically (Horner-Devine et al. 2004). In 

total, 199 datasets obtained from 6 sites around the U.K. were used. Samples were 

collected after homogenizing (stirring) the tree-hole water. Genomic DNA was 

extracted, and PCR techniques were used in order to amplify regions of the 16S rRNA 

locus. Fragments of approximately 400 base pairs from the variable V6 and V7 regions 

were sequenced on a Roche 454 sequencing platform and sequences were processed 

using the Clovr pipeline, down to a genus level, of which there were found to be 

approximately 750 genera. 

Of the 6 sites, one contained only 3 samples and so was discarded. Of the remaining 

sites, sequences were generated from 10ml samples, and one of the sites also contained 

sequences generated from 25 ml samples. An exploratory analysis of species abundance 

and moments was performed first by comparing abundance against parameters of tree-

hole volume (l), depth (cm), width (cm) and length (cm) for all sites of the same sample 

(ml) size, using the highest resolution of data available, that of genus. These were then 

divided by site in order to examine what, if any, scaling behaviour was present. 
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Results 

Neutral model populations 

For the neutral datasets, areas from area length 2 up to those of length 512 or 1024 were 

used in order to extrapolate the SAD for the area of length 1024 or 2048, respectively, 

dependent on the largest available area. Within each parameter combination of 

speciation and dispersal, the maximum number of moments that could be used was 

equal to the number of bins in the largest area. 

Though Borda-de-Água et al. (2012) found a power-law behaviour for the logarithm of 

the moments against the logarithm of the area, visual inspection makes it clear that there 

is a definite curvature to the log10 moments generated by a neutral model, and that at 

larger areas, the moments are lower than those predicted by a linear power-law. This is 

a result of the moments being calculated from pooled data, which overestimate species 

number at larger areas, more about which in the discussion section. 

As a result of this, moments were primarily extrapolated using polynomial regression, 

which gave R
2
 values of 0.99 and above, with p<0.05 for all available parameter 

combinations, though p-values were used only as a first approximation due to the fact 

that moments are not independent. See Fig 1. for comparison of linear (1a) and 

polynomial (1b) fits. 

 

 

Figure 1.        (a)  R
2
 is 0.92 for linear, p>0.05                             (b) R

2
 is 0.99 for polynomial, p<0.05 
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The scaling region was initially informed by evaluating which of the lower area datasets 

only contained one or two abundance classes. While moments of order M0 are always 1, 

moments of order M1 and above produce 0 when only one abundance class is present, 

which evaluated to negative infinity when taking the log10 moments. In cases where 

there were only two abundance classes, these were of course 1 and 2, which gave log2 

abundance classes of 0 and 1, and as a result, moments of order M1 and above all 

evaluated to the same value, which led to regression lines being heavily inflected 

downwards and reducing fit significantly. As a result, a minimum of 3 abundance 

classes were required as a low bound for scaling region (thus area length 2 not being 

used for the line-of-fit in Figure 1 above). With this area bound (Al) determined, 

polynomial regressions were performed on all possible scaling regions, and the 

moments predicted from intercept and slope coefficients were compared to the original 

moments, using sum of squared residuals (SSR). This showed that when using 

polynomial regression, there was no deviance in the behaviour of the moments at larger 

areas, and as a result, the best fit was in fact the scaling region from Al to the largest 

available area. 

In addition, assuming that the lower moments at larger areas were an artefact of 

calculating moments based on pooled data from multiple readings, linear regressions 

were also performed on the assumption that the lower areas behaved in accordance with 

a power-law (figure 2.), and ignoring the larger areas which show a pronounced 

curvature (aided by visual inspection and examination of residuals of the moments, see 

figure 3.), with an eye to seeing how linear and polynomial predictions fit to the actual 

data for the largest area. 
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Figure 2. (a) Polynomial regression fit for A1024                        (b) Linear regression fit for A1024 

                   R
2
 range = 0.99-1.00, p<0.05                                      R

2
 range = 0.38-0.88, p>0.05 

In both instances, the solid line is the scaling region used, and the dashed line and black points are the 

extrapolated predictions. 

 

 

Figure 3. Residuals of the moments M3,  M5 and M7, showing downward curvature at larger areas. In this 

case, this led to the two largest area lengths 256 and 512 not being used for linear regression extrapolation 

of moments. 

 

Choice of the highest order moment to use was informed by further investigation of the 

residuals of the moments. From moment order M6 and above, the residuals tended to 

increase by one order of magnitude, though compared to the actual values of the 

moments, they remained reliably small. This led to the choice of using moments of 

order M0 to M5, which was given mild support by p-values (despite the non-

independence of moments) often becoming non-significant from M6 and above. This is 

in accordance both with a preliminary study performed on an artificially generated and 
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repeatedly subsampled dataset, which gave clearer indication of moment behaviour than 

the 10 areas in the neutral dataset, as well as findings by Borda-de-Água et al. (2012), 

and recommendation by Boyd (2001). 

 

In addition to the predicted moments obtained by choice of scaling region and number 

of moments, the maximum abundance class and the number of species for the new 

predicted area (length 1024) need to be extrapolated. The former is required for binning 

of abundances, and the latter is required as the Tchebichef method results in a 

probability density function, and so this must be scaled over the appropriate number of 

species. 

As abundance classes and area lengths were both best represented in log2, a simple 

linear regression was adequate in order to extrapolate the number of bins needed for the 

predicted area. This extrapolation was reliable and consistent for all parameter 

combinations (a typical example is demonstrated in Figure 4a). For the extrapolation of 

the number of species, polynomial regression was unsuitable for reasons pertaining to 

estimation based on pooled data, as further explained in the discussion. With this in 

mind, larger areas were ignored after inspection of residuals, and linear regression was 

performed over the region which displayed power-law behaviour in the associated 

moments (Figure 4b).  

 

Figure 4. (a) Extrapolation of abundance classes                     (b) Both linear and polynomial regression 

                    was consistent and reliable.                                       fail to give a fair estimate of species 

number. 
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Unfortunately, both linear regression and polynomial regression greatly overestimated 

or underestimated the actual number of species present when compared with actual 

species data for the predicted area (sometimes on the order of 2 or 3 magnitudes), even 

when appropriately rescaled for the number of readings. When converting the 

extrapolated moments to Tchebichef moments and applying this pdf over this number of 

species, the predicted SAD displayed erratic behaviour, either not fitting within 

reasonable confines of the plot (for linear regression, see Figure 5a), or being distributed 

over so low a species number that the distribution was hugely misrepresentative (in the 

case of polynomial regression, Figure 5b). 

Figure 5. (a) Linear regression of species number                   (b) Polynomial regression of species number 

In both cases, the SAD is the actual SAD of the predicted area, while the polynomial and linear lines refer 

to the method of regression applied to the moments. 

  

Despite limitations imposed by pooled data, in order to test the efficacy of the 

Tchebichef method in principle, the predicted Tchebichef moments and associated pdf 

were applied using the total number of species (appropriately rescaled for number of 

readings), obtained from the actual data for the largest area. Figure 6a, 6b and 6c 

respectively display the predicted SAD based on linear and polynomial regression, for 

low (1x10
-6

), high (1x10
-4

) and realistically accepted (Rosindell and Cornell 2007, 

Pigolotti and Cencini 2009) speciation rates (1x10
-5

), at 3 dispersal lengths (4, 16 and 

64). 
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Figure 6. In all cases, the SAD is the actual SAD for the largest area for that parameter combination, with 

solid and dashed lines presenting the predicted SAD, respectively. 

 

As can be seen, the best fitting predicted SAD is that of the lowest speciation, and 

lowest dispersal distance (6c, dispersal 4). Obviously, as dispersal and speciation 

increase, so too does total number of species present, and as previously described, an 

increase in the number of species contained within pooled data has serious effects on 

both the value of the moments and their power-law behaviour, which appears clearly in 

the predicted SADs other than the lowest speciation and dispersal distance. 
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With this in mind, the lowest speciation rate (1x10
-7

) and dispersal distance (1) was 

investigated and a SAD fitted, Figure 7. This is in accordance with the best fit in Figure 

6, suggesting that the Tchebichef method has potential when certain conditions are met. 

                                               

Figure 7. Predicted SAD for the lowest speciation rate and dispersal distance.  

 

Bacterial communities 

An examination of the moments of species abundance against the parameters of tree-

hole volume (l), width (cm), depth (cm) and length (cm) was first performed against all 

available sites of each sample (ml) size. Figure 8 shows the behaviour of the moments 

using the volume parameter. 

Figure 8. Moments for all sites of a given volume, with linear regression lines. 



16 
 

As is clear, no scaling behaviour exists for total sites, with 10ml sites having an R
2
 

between 0.001 and 0.02, and 25ml sites having an R
2
 of between 0.04 and 0.09. 

Similar lack of fit occurred for the parameters of tree-hole width, length and depth. 

Subsequently, samples were split by site and site-specific scaling behaviour was 

investigated. However, no behaviour presented itself. Table 2 shows the minimum and 

maximum R
2
 values by site, using the volume parameter, and Figure 9 shows moments 

for 2 of the sites. Again, similar lack-of-fit was found when examining other parameters 

for scaling behaviour. 

Site 

Sample 

(ml) Min R
2
 Max R

2
 

Ashridge 10 0.001 0.04 

Burnham Beeches 10 0.05 0.05 

Warburg 10 0 0.002 

Wychwood 10 0.01 0.02 

Wytham 10 0.002 0.01 

Wytham 25 0.04 0.09 
Table 2. Site-specific fit of moments.  

 

 

 

Figure 9. Moment-parameter behaviour for two of the 10ml sites. 

With no such scaling behaviour found, no moment extrapolation could be performed, 

and so no predicted SADs could be fitted.  
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Discussion 

As mentioned in the results, estimation based on pooled data led to a misrepresentation 

of the true moments and of the true species number, with this effect being significantly 

pronounced at larger areas. The reason for this becomes clear when considering the 

manner in which the data was generated, and the form of the moments equation, Eq. (1). 

The original work (Borda-de-Água et al. 2012) calculated the moments of individual 

repeated subsamples, and then averaged them, whereas in the present work the 

individual readings which made up the pooled data could not be teased apart. Pooled 

data has no problem producing the true average moment, as shown in Table 1a. 

  

A B Pooled  

Abundance S Abundance S Abundance S 

1 4 1 5 1 9 

2 3 2 2 2 5 

3 2 3 2 3 4 

4 1 4 1 4 2 

Total I 20 Total I 20 Total I 39 

Total S 10 Total S 10 Total S 20 

M1 2 M1 1.9 M1 1.95 
                Table 1a. The first-order moment of two separate communities A and B, and of the pooled data 

Using moment M1 for simplicity (no need to raise to higher powers, though this works 

with any order of moment), the moment is simply the total number of individuals over 

the total number of species. It is clear here that the moment of the pooled data, 1.95, is 

of course the average of each moment of community A (2) and community B (1.9). 

However, there is one important caveat: this works ideally when each community has 

the same number of individuals and species. With the pooled data from the neutral 

datasets, the number of species present among a given number of individuals (i.e. in a 

given area size) will not be constant.  

 

At smaller areas, the possible combination of abundances is limited, for example in an 

area containing 4 individuals, the only possible abundances are obviously between 1 

and 4. At larger areas, there are a greater amount of abundance classes, and more 

freedom within the partitioning of species needed to make up the necessary amount of 
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individuals, with the partitioning of any area size or number of individuals into 

abundance classes increasing exponentially (Folsom et al. 2012). 

 

Table 1b  demonstrates effect of species partitioning when there are a larger number of 

abundance classes: 

 

A B Pooled 

Abundance S Abundance S Abundance S 

1 4 1 1 1 5 

2 0 2 0 2 0 

3 2 3 0 3 2 

4 0 4 2 4 2 

5 1 5 0 5 1 

6 0 6 1 6 1 

Total I 15 Total I 15 Total I 30 

Total S 7 Total S 4 Total S 11 

M1 2.14 M1 3.75 M1 2.73 
Table 1b. The first-order moment of communities A and B, and of the pooled data when species number 

differ. 

 

Here, communities A and B have the same number of individuals, yet the number of 

species differs. The average of the moments for A and B is 2.95. However, the moment 

for the pooled data is 2.73, underestimating the true average. As the species abundances 

of the neutral datasets were totalled from between approximately 50-100 readings, it is 

evident that at larger areas this led to the moments being lower than would be predicted 

by a power law. 

This was further confirmed by comparing moments for the same area, but a different 

number of readings. For example, looking at data for speciation rate 1x10
-
7, the largest 

number of readings for area length 512 was 356, while the lowest was 142. These were 

for the dispersal distances of 8 and 2, respectively. The moments predicted by linear 

regression were expressed as a fraction of the actual moments for that area, in order to 

have a proportional measure which also takes into account the fact that different 

dispersal distances have different moments. For the lower number of readings, predicted 

values for the first 6 moments ranged from a minimum of 90.0 to 92.7% accuracy, 

while for the great number of readings, accuracy was between -35.6 to 44.9%, further 

suggesting that pooled data creates issues at larger areas. 
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As a result, the use of pooled data is recognized as a poor alternative to use of separate 

readings for which the number of species can be obtained and reliably averaged. It also 

casts serious doubt on the accuracy of the ordinary moments in circumstances with a 

large number of species. 

Despite this, the extreme case of using the true species value with the predicted 

probability density function for low speciation rates (Figures 6 and 7) hints that is 

potentially a powerful and promising method under the right conditions, in addition to 

the already suggestive results with empirical data, found by  Borda-de-Água et al. 

(2012). Species abundance downscaling is well-covered ground (He and Reed 2006), 

but species abundance upscaling is still a new (and long overdue) technique, with the 

only methods suggested so far being the maximum-entropy approach of Harte et al. 

(2009), as well as a Bayesian method developed by Zillio and He (2010). The approach 

by Harte et al required a priori parameter estimation, and was more concerned with 

species richness, so it is difficult to compare their results to the current work. Zillio and 

He (2010), however, tested their method on the same BCI data as Borda-de-Água et al. 

(2012), and so can be directly compared to a use of the Tchebichef method which meets 

the appropriate conditions (namely, averaging from individually available readings 

rather than pooled data), in Figure 10. It can be seen that with appropriate data structure, 

the Tchebichef method not only approximates the desired SAD to a much closer extent, 

but also has the benefit of predicting the presence of rare singletons, which neither the 

maximum-entropy nor Bayesian methods do. As such, the Tchebichef method promises 

to be a useful technique for both future research, and in practical use of predicting 

species abundances in a biodiversity context. Also in its favour is the ability to use it 

‘straight out of the box’, as requiring only a set of SADs across different scales makes it 

a very inviting technique, particularly in the latter application of conservation efforts. 

In addition, despite not finding the appropriate moment behaviour for bacterial 

communities, I remain confident that further work and analysis of the parameter space 

may yet provide a workable scaling parameter, allowing the Tchebichef method to 

provide insight into the spatial scaling of bacterial species abundance distributions.  
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Figure 10. The SADs on the left are from Zillio and He (2010), and those on the right are from Borda-de-

Água et al. (2012). In both cases, the measure a expresses the fraction of the desired area used in order to 

predict for that area.  
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Appendix 

Equations for calculating Tchebichef moments and polynomials 

Here the relevant equations and formulas for the Tchebichef method are reproduced. 

Full mathematical details of the Tchebichef method can be found in Mukundan et al 

(2001), and also specific to the current context, Borda-de-Água et al. (2012). 

 

For N bins, the Tchebichef moments of order n, Tn, with 0≤n<N, are given by Eq. (1) 

                

Here, Mi is the moment of order i, estimated using  Eq. 1 (from main text). 

  
   

are the Stirling numbers of the first kind. 

Ck(n,N) is given by Eq. (2) 

 

          
and  ̃(n,N) is given by Eq. (3) 
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The scaled Tchebichef polynomials  ̃n(x) are calculated with the following recurrence 

formulas 

 

         
 

 

The Tchebichef moments and polynomials can then be related to the probability density 

function f(x) using Eq. (4) 

 

                            
 

(The functions in R to implement the Tchebichef calculations were provided by Dr. 

Luís Borda-de-Água, and are available upon request). 


