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Abstract 

Biodiversity is being lost at an alarming rate and the intensity of environmental pressures behind the 
decline show no sign of abating. Many limitations of biodiversity indicators are shared: models relate 
the response of biodiversity components to mechanisms of environmental change, but are often 
data deficient and assign qualitative classifications to intensities of change. By utilising remotely-
sensed MODIS Enhanced Vegetation Index (EVI), quantitative measures of habitat destruction 
intensity can be globally applied at local scales and related to local biodiversity. The spatio-temporal 
scale of EVI data must be large enough to capture environmental dynamics acting upon local 
biodiversity, but not so large as to include irrelevant dynamics: the optimal scale at which EVI can be 
related to local abundance is unclear. This study aims to: devise a method for MODIS remotely-
sensed data to be retrieved and applied to statistical modelling, and; identify an optimal spatio-
temporal scale of EVI for globally modelling local responses of abundance to environmental change. 
An R package – MODISTools – was developed to improve access and implementation of MODIS data 
to statistical modelling, and is available for download. MODISTools was used to retrieve EVI, which 
was related to local abundance using Generalized Linear Mixed Models (GLMMs) and Generalized 
Additive Mixed Models (GAMMs). Abundance data were a pooled collection from publications in the 
literature, producing abundances for many species in many locations: space was a surrogate for time, 
looking at the local relationship within each site, among many sites, building a global response. 
Random effects account for differences between studies, locations, and species. EVI data were 
spatially-weighted using a Gaussian kernel function. Effects of spatio-temporal scale were explored 
by fitting the model to data of varying scales and using model comparison via AIC and parameter 
estimates. EVI was considered within increasingly larger spatial extents to compare with smaller 
scales, and repeated for increasingly larger temporal extents, to find a scale that maximises model fit 
and provides meaningful parameter estimates for inference. Results show that the effects of scale 
are complex; AIC marginally decreases for increased spatial extents with little difference between 
temporal scales containing sufficient data. But spatial dependency in EVI parameters produce scales 
that are the best fit but poorly represent local dynamics. At low temporal scales AIC is unreliable but 
parameter estimates provide an increasingly detailed description of local dynamics with increasing 
spatial extent. Larger temporal scales facilitate more quality EVI data, allowing better discrimination 
between sites, but include dynamics irrelevant to the local response. Whereas, smaller temporal 
scales are data deficient in some locations, but where data is reliable, a more detailed response is 
elucidated and increasing spatial extent improves parameter estimates. In conclusion, there is a 
trade-off between model fit and a detailed description of local dynamics that must be met by 
balancing spatial and temporal scales. All models show high mean EVI has a positive effect on local 
abundance, but a nonlinear threshold effect is identified with locally scaled EVI. 
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Introduction 

Biodiversity is being lost at a steady or accelerating rate and the intensity of environmental 

pressures behind the decline show no sign of abating (Butchart et al., 2010; Mace & Baillie, 

2007; Mace et al., 2010). In the species-rich tropics there have been unparalleled rates of 

habitat destruction, degradation and fragmentation (Achard et al., 2002). This translates into 

estimated extinction rates drastically greater than the background rate (Pimm et al., 1995; 

CBD, 2010). To compound this trend, extinction debts lead to a time-lag in the realisation of 

species-loss as a result of current or past environmental pressures; the impacts of current 

pressures will continue to emerge in the future (Wearn et al., 2012; Rangel et al., 2012). 

Long-term studies are showing that the accumulation of diversity-dependent feedbacks 

cause high-diversity species combinations to become less functionally redundant over time 

(Reich et al., 2012); this means short-term studies may have underestimated the negative 

impacts of species loss.  

There is scope for intervention to reduce biodiversity loss through global policy (Pereira et 

al., 2010). Targets were set by the 192 states and the EU that are party to the Convention on 

Biological Diversity (CBD, 2010) to reduce biodiversity loss by 2010. There has been interest 

from policy-makers in methods of quantifying biodiversity change to assess if targets have 

been met: current global biodiversity indicators suggest they have not (Alkemade et al., 

2009; Certain et al., 2011; Collen et al., 2009; Gibson et al., 2011; Nichols et al., 2007; 

Scholes & Biggs, 2005). The new 2011-2020 Strategic Plan adopts the Aichi Biodiversity 

Targets set out in Nagoya 2010 (CBD, 2011); with the upcoming Global Biodiversity Outlook 4 

– the mid-plan assessment – and the emergence of GEO-BON (Scholes et al., 2008), there is 

a continual stream of opportunity to better inform policy.  

In response to CBD and the World Summit on Sustainable Development (WSSD) GLOBIO3 

was developed, combining some Global Environment Outlook 3 and Millennium Ecosystem 

Assessment (MA) approaches (MA, 2005; UNEP, 2001, 2002). GLOBIO3 (Alkemade et al., 

2009) is a biodiversity model designed to assess the intensity of impacts on biodiversity as a 

result of human activity, and make projections on future impacts based on given activity 

scenarios. GLOBIO3 is a meta-analysis of publications that establishes cause-effect 

relationships between environmental drivers and biodiversity impacts – measured in Mean 

Species Abundance (MSA) and defined as change in MSA relative to an undisturbed 
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equivalent ecosystem. The MSA metric used is similar to the Biodiversity Integrity Index 

(Majer & Beeston, 1996) and Biodiversity Intactness Index (Scholes & Biggs, 2005), the main 

difference being spatial weighting, where MSA gives equal weight to all spatial units and 

Biodiversity Intactness Index (BII) gives more weight to species rich areas. Other methods, 

such as the Living Planet Index (Collen et al., 2009; Loh et al., 2005) also use a reference to 

measure relative biodiversity loss, but unlike GLOBIO3 the Living Planet Index (LPI) uses a 

baseline of conditions at 1970 (Collen et al., 2009), making fewer assumptions of reference 

points being pristine habitats.  

Biodiversity can be measured in different ways due to its complex multidimensionality, 

encompassing many components, such as composition, structure and function all at many 

spatial scales. As a result, there can be no all-inclusive single metric for biodiversity 

(Magurran, 2004; Purvis & Hector, 2000). Species richness – the most commonly used 

measure of biodiversity – does not alone provide enough information for diversity estimates 

(Lyashevska & Farnsworth, 2012; Wisley et al., 2005); functional, structural and other 

taxonomic levels uncorrelated with species richness provide independent information 

(Gallardo et al., 2011; Cadotte et al., 2010). Many of the limitations of biodiversity indicator 

approaches are shared. Due to data requirements of methodologies, the measures are often 

restricted in their scope of studies. By averaging among species and giving no method of 

weighting, individual responses of species, or ecologically similar taxa, are lost. However, it is 

well established that taxa do not respond equally to threat, in terms of timescales and 

intensity of response (Mace et al., 2003; Isaac & Cowlishaw, 2004). GLOBIO3, unlike other 

approaches, makes no mention of calculating variances around MSA estimates, meaning less 

is known about the uncertainty inherent in estimates; this has not been included in 

implementations of GLOBIO3 at a later date (Alkemade et al., 2011; Alkemade et al., 2012). 

With some exceptions, biodiversity indicators use Generalized Linear Mixed Models 

(GLMMs) to model the response of some diversity metric or effect size to the chosen 

explanatory variables. GLMMs have emerged in recent years as a powerful statistical tool, 

providing greater flexibility than classical procedures when dealing with non-normal data 

with complex structures, as is often the case in ecology (Bolker et al., 2009; Zuur et al., 

2009). This framework better deals with count data, such as abundances, and allows the 

indicators to account for idiosyncratic variations between publications, locations and 
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species, focusing on the response to changes in the environmental variables of interest. 

Generalized Additive Mixed Models (GAMMs) relax the assumption of linearity by fitting 

non-parametric smoothing parameters to fixed effects, allowing any non-linear responses 

such as threshold effects to emerge from the data, reducing to a linear form if the data 

permit (Wood, 2006). 

In order to effectively estimate biodiversity loss, there are things we need to be true of our 

models and data: to incorporate as much data as possible through few restrictions and data 

requirements; to incorporate the given data in a way that is representative of biodiversity, 

reducing effects of sampling bias taxonomically and geographically; to model the effects of 

sources of environmental change in simple yet not overly-simplistic ways; to make estimates 

applicable to many spatial scales so that it can be disaggregated to estimate for different 

components or resolutions; to quantify degrees of uncertainty in estimates; to incorporate 

as many ecological measures as possible to capture the different aspects of biodiversity. 

Some of these requirements mirror identified areas for progression in macroecology (Beck et 

al., 2012). Meeting data requirements are key to macroecological development: not only do 

datasets tailored for macroecological questions need to be developed, but also the inclusion 

of past data so that analyses over larger temporal scales can be implemented. Further 

consideration of local processes is important to understand variability at different scales. The 

application of remotely-sensed data can help meet these aims for development.  

Remote-sensing provides large amounts of regularly collected quantitative data that can be 

used to investigate a wide variety of questions in versatile ways. The data are often collected 

globally, and at increasingly finer resolutions, facilitating questions that need to be asked at 

different spatial scales. Application of remote-sensing in ecology, conservation biology and 

global change research is being increasingly recognised (Bai et al., 2008; Chawla et al., 2012; 

Donoghue, 2002; Justice et al., 1998; Kerr & Ostrovsky, 2003; Naeem et al., 2012). Many 

datasets are in their infancy, but represent an opportunity for long-term data collection on 

time-scales otherwise difficult to achieve in ecology. One such resource providing useful 

data for ecological analyses is the freely-available Land Processes Distributed Active Archive 

Center (LP DAAC). LP DAAC, one of the discipline-specific data centres within the NASA Earth 

Observing System Data and Information System (EOSDIS), contains land observations 

collected by NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) instrument 
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(NASA, 2012). The MODIS archive encompasses a wide range of data for many applications, 

including vegetation indices that provide consistent, regular, and quantifiable comparisons 

on vegetation conditions.  

The Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) 

monitor global vegetation conditions and can be used in modelling climatic, biogeochemical 

and hydrologic processes, or land surface biophysical processes, such as primary production 

or land cover conversion (Justice et al., 1998, 2002; Running et al., 2004; Sellers et al., 1994; 

Zhang et al., 2003). The use of NDVI in ecological studies, particularly on environmental 

change in an ecosystem context, is now well documented (Gao et al., 2012; Gould, 2000; 

Pettorelli et al., 2005). EVI presents some modifications of the older NDVI, providing the 

same use but with more reliable data. These vegetation indices can be used to represent 

environmental change in a whole range of contexts, including habitat destruction, 

degradation and fragmentation (Holm et al., 2003; Thiam, 2003), and have been used in 

correlative studies to identify declines in population abundances (Carey et al., 2001) or 

species richness (Bar-Massada et al., 2012). Remotely-sensed data, such as the MODIS 

archive, are becoming increasingly available and user-friendly. But, the potential for 

widespread application in fields such as macroecology or conservation biology may be 

realised further by providing simpler ‘canned’ methods for data collection, handling, and 

implementation in modelling. 

With data on both diversity and environmental change, the responses of diversity to 

environmental change can be elucidated. The question remains, however, at what spatio-

temporal scale should environmental data be collected in order to effectively capture the 

dynamics of the environmental change acting upon diversity? Diversity data – such as 

abundance – are often collected at very small-scaled locations, via traps, quadrats or similar 

methods. But these methods infer upon abundance in a wider spatial context and clearly the 

sampling level is not a sensible scale to collect environmental data. So what is? The spatial 

extent of environmental data must be large enough to sensibly capture information on the 

changes which are of interest. But, not so large as to include dynamics that are unrelated to 

the locations with respect to diversity data, blurring out the environmental picture that is 

important for abundance at the location of interest (Figure 1). It is not obvious which spatial 

extent has the optimum explanatory power for modelling local biodiversity responses to  
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Figure 1. The environment picked up 

depends on the spatial scale at which 

MODIS data is extracted. Colours 

represent different land cover classes. 

By taking the centre pixel only nearby 

land cover clustered around the 

location, which may be relevant, are 

not considered. But extending the 

spatial scale too far may include land 

cover, and dynamics, that are 

unrelated to the location of interest. 

Figure 2. A time-series of EVI fluctuations in a location (centre pixel in blue, an average of all pixels within 5km2 in red). A shows 

one year of EVI data (2011-2012), B shows 6 years (2006-2012), and C shows 12 years (2000-2012). Seasonality and stochastic 

differences between years may mean A does not contain enough information to optimally describe the environmental conditions 

in an area. However, extending beyond B seems to include much larger fluctuations, possibly indicative of previous dynamics that 

are unrelated to the abundance found at that location in 2012. The averaged pixel time-series is much more stable than the 

centre pixel, suggesting space and time have complementary effects on providing a clear picture of EVI dynamics in a given 

location. 

Images courtesy of Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC, 2012). 

 



Sean Tuck 9 MSc Quantitative Biology 

environmental change, or how this varies for different habitat types or biomes, or when 

related to different taxa. 

Similarly, how can the temporal characteristics of the environmental change be most 

optimally represented? A time-series of environmental data can be collected for a given 

length prior to the date of abundance collection to better represent the dynamics that have 

led to the abundances recorded in a given location. There, a balance must be found between 

accounting for seasonal and inter-annual variations, and including time-series data that are 

not relevant in determining the abundances recorded at the time of collection (Figure 2). 

In light of this, the following questions are presented: Is just the focal pixel overlaying the 

known coordinate location for diversity data enough? Or, is a wider spatial extent around the 

location needed to optimally explain how abundance responds to change in EVI? What 

temporal scale should a mean EVI value be taken over to optimally represent pertinent EVI 

dynamics? The study aims are: to devise a method for MODIS remotely-sensed data to be 

easily retrieved and applied to statistical modelling of scientific questions – ecological and 

beyond, and; identify an optimal spatial and temporal scale at which this data can be used in 

a global model of local responses of abundance to mechanisms of environmental change. 

MODISTools R Package 
MODIS environmental data can be retrieved from the Oak Ridge National Laboratory 

Distributed Active Archive Center (ORNL DAAC), available online. Current available tools 

online allow for a subset to be requested for a given location, specifying the subset 

description in terms of product type (e.g. Vegetation Indices – MOD13Q1), size of 

surrounding spatial extent (centred on the location), and time-series length each time. By 

writing a tool to automate this process for a batch of locations researcher effort, and most 

importantly opportunity for human error in the data collection process, is greatly reduced. 

This tool would also be applicable to the extraction of any MODIS subsets: given the broad 

interest that MODIS data attracts, this tool would be useful to a wide-ranging scope of 

research, not only to this study. 

As such, a software package for R Statistical Computing Language and Environment – 

MODISTools – was created for use in this study and beyond, housing a set of tools useful for 

MODIS archive extraction and application that can be distributed to MODIS users 
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(MODISTools pdf manual and R code for some key functions can be found in the 

appendices). MODISTools uses the GNU General Public License (GPL-2) and is available for 

download from a github repository (Tuck, 2012). The R package has been checked and 

installed on linux, mac and windows. 

MODISTools uses an SOAP web service – processing the web services description language 

and setting up an SOAP-client interface in R – to interrogate the MODIS database remotely. 

Various functions within the package return the requested subsets of different forms into R 

and downloaded to a local server. For organisation and analysis practicality, a file is written 

for each location specified, containing all the requested information – all data band values 

for a given product at the pixel level for all requested dates. R, being a software primarily for 

statistical data analysis, is a reasonable environment to apply this SOAP client to, because 

many researchers who may wish to use MODIS data are not programmers and whose 

programming experience may be restricted to R. MODISTools imports the packages SSOAP 

and XMLSchema (Temple Lang, 2012a, 2012b) for web service functionality. 

One of the most important functions is MODISSubsets, which allows the user to request 

subsets from a given MODIS product for a specified time-series of a given area surrounding 

many locations at a time, greatly reducing time, effort, and human error. These locations are 

described by a lat-long coordinate in WGS-1984 coordinate system. Alternatively 

MODISTransects expands upon MODISSubsets by extracting MODIS data along a transect 

and a specified surrounding neighbourhood. Downloaded subsets are saved in ascii files 

along with a subset download log that lists all the unique time-series downloaded and their 

download status; any error and warning messages encountered during downloading are 

caught and can be traced to the problematic time-series. 

The subsets can then be accessed by MODISSummaries for computing summary statistics 

and data processing. The processed data are also organised back with the original input data 

into one csv file that can be easily used for modelling; this provides efficient storage of data 

and a transparent process from data collection to processing into a form that is ready for 

final use. MODISTools also includes other minor functions that facilitate its main purpose, 

including: a lat-long coordinate conversion tool (ConvertToDD) for converting degrees, 

minutes seconds, or degrees, decimal minutes coordinates into the decimal degrees format, 
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and; functions for listing product types and data bands available through the MODIS Web 

Service. 

Method 

Data Collection 
The explanatory variables used to model how biodiversity responds to human impacts were 

retrieved from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) instrument 

on board the Terra (EOS AM) and Aqua (EOS PM) satellites. Vegetation indices were used as 

continuous proxies for habitat destruction and degradation, allowing modelling of 

biodiversity responses to the intensity of habitat destruction. EVI is preferred here to NDVI 

as it improves upon detection of changes in canopy structure, such as canopy type and leaf 

area index (Gao et al., 2000) and is less saturating in high-biomass regions such as the 

tropics (Huete et al., 2002). It also reduces noise from atmospheric effects like aerosol 

conditions (Xiao et al., 2003). These vegetation indices are direct transformations of 

calculated surface bidirectional reflectance values (ρ) from several spectral bands, making no 

assumptions of land cover type, soil type or climate. EVI takes the form: 

𝐸𝑉𝐼 = 𝐺 
𝜌𝑁𝐼𝑅 − 𝜌𝑟𝑒𝑑

(𝜌𝑁𝐼𝑅 + 𝐶1 ∙ 𝜌𝑟𝑒𝑑) − (𝐶2 ∙ 𝜌𝑏𝑙𝑢𝑒 + 𝐿)
 

where G is a gain factor that limits EVI values to a fixed range, ρ are atmospherically 

corrected reflectance values for near-infrared (NIR), red and blue spectral bands 

respectively, L is an adjustment for NIR and red radiant transfer, for canopy-related 

improvements on NDVI, and C1 and C2 are coefficients dealing with atmospheric noise, using 

the blue band to account for aerosol effects on the red band. The MODIS algorithm adopts 

the following coefficient values: G=2.5; L=1; C1=6; C2=7.5. The valid range of values for EVI 

data is between -2000 and 10000, which are then multiplied by a scale factor of 0.0001. 

These data can be globally downloaded from MODIS at a pixel resolution of 250x250m, for 

16 day intervals, from 2000 to present. The MODISSubsets function was used to retrieve EVI 

and a measure of data reliability at each pixel from the MOD13Q1 product for 197 locations 

where diversity data have been attained. The data were downloaded for 10km2 spatial 

extents, centred on the site location, with several time-series lengths prior to the date the 

specific abundance data were recorded. 
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Any missing values or with a reliability score > 0 (which, non-intuitively, indicate problems 

with the reliability of EVI scores), were removed from each time-series and replaced by 

linearly interpolating between reliable data. A mean EVI value across the whole time-series 

was then calculated for each pixel. 

Mean EVI values at each pixel were aggregated into distance bands, averaging all values that 

were the same distance from the centre pixel as each other. This was done for modelling 

simplicity and assumes that the underlying habitat characteristics and corresponding spatial 

relationships are uniformly distributed in accordance with complete spatial randomness. 

Therefore, there is an assumption of no directional bias in the distance-decay of relatedness 

to the centre pixel, and a spatially stationary response to EVI. Mean EVI values for each 

distance band were then spatially weighted, using a distance-decay function to approximate 

how the importance of an EVI value attenuates with distance from the centre pixel. 

 

 

 

 

 

  

Figure 3. A surface of EVI values for a tile of pixels at a given location centred on a coordinate of abundance data (A) is 

transformed by a Gaussian weighting kernel (B), which weights each pixel EVI value by its distance from the centre of the tile, 

changing the topography of EVI (C) so that values close to the location of the abundance data have a greater influence than those 

further away. 

A 

B 

C 
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A Gaussian weighting kernel function of the following form was used: 

𝜔𝑛 =  𝑒
(−

𝑛2

𝑏2)
 

Where ωn is the weighting term for an observation at distance band n from the centre pixel, 

and b is the basal width of the kernel function (the outermost distance band). ω decreases 

according to a Gaussian curve as distance from the centre pixel increases. The centre pixel is 

weighted at 1. All weighted EVI distance band values were then summed, to give a 

cumulative tile EVI value: 

𝐸𝑉𝐼 =  ∑ 𝐸𝑉𝐼𝑛 ∙ 𝑒
(−

𝑛2

𝑏2)
𝑏

𝑛=0

 

This means that the equivalent EVI change in two different distance bands have differing 

impacts on the total tile EVI value, as defined by this Gaussian weighting kernel. 

 

The diversity data, provided by Helen Phillips, was collected from relevant publications 

between 2000 and present; the time period for which MODIS data is recorded. The decision 

tree for selecting relevant papers (appendices) screens papers for data collected in relevant 

times that consider the human impact on named taxa at multiple sites, giving useful 

biodiversity measures as a result. Species abundances were used as a measure for 

biodiversity response, as opposed to observed species-level changes such as species 

richness. As population decline occurs on shorter timescales to species-level extinction, and 

provides more information at different spatial scales, it may be more responsive to changes 

in threat intensity and be a more sensitive indicator of biodiversity loss on the short time-

scales dealt with (Ceballos & Ehrlich, 2002; Balmford et al., 2003). 

The data to look at how biodiversity responds to environmental change over time simply 

does not exist. Instead, space is used as a surrogate for time; looking at the local relationship 

between abundance and environmental conditions within each site, among many sites, to 

ascertain a global response of abundance to environmental change. The data were collected 

from as many tropical locations as possible, incorporating as many taxa as possible, including 
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plants, invertebrates, mammals, and birds. Within each major taxon many species were 

recorded, spanning different groups that perform distinct ecosystem functions. There are 

few requirements for data based on habitat type: as four different habitats and land-covers 

are included, with no requirement for ‘pristine’ conditions based on an arbitrary baseline. By 

modelling the response locally within sites – allowing the variation between studies and 

habitat types to be treated as a random effect – a wider scope of locations and their 

inherent habitats/land-covers can be incorporated. 

A data structure within publications was established: data collected using distinctly different 

methodologies or at different times are considered different studies, and within studies, 

data collected is divided into sites. Sites are defined as subsets of data that are either 

spatially explicit – being at least 1km apart – or drawn from methodologically distinct 

collections. Site is the level within which the relationship is modelled. In total, data was 

collected from 14 publications, divided into 20 studies. From these, a total of 197 sites are 

identified. Within each site are abundance values for each species recorded, giving 21,611 

records of abundance for all species within the 197 locations. This dataset, which was 

provided for this study, contains a fantastically large amount of abundance data for a wide 

taxonomic variety, including under-represented taxa (e.g. invertebrates and plants) and for 

the tropical biome – an under-represented region – making this a high-quality dataset for 

such analysis that can facilitate parameter intensive modelling. 

Location data received from the publication authors were in various formats, projections and 

coordinate systems. These had to be converted into WGS-1984 (Transverse Mercator 

projection) decimal degrees format, both for consistency and so coordinates were 

compatible with MODISTools functions: only WGS-1984 decimal degrees could be processed 

by the MODIS web service. To do this, degrees coordinates of different formats were 

converted to decimal degrees using ConvertToDD included in MODISTools, and locations in 

other coordinate/projection systems were re-projected in WGS-1984 using ArcGIS. 
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Modelling Framework 
The relationship between biodiversity and intensity of mechanisms for environmental 

change was tested by fitting several models of increasing complexity to the data. 

Generalized Linear Mixed Models (GLMMs) were fitted to the data, with the environmental 

data as fixed-effects. The error structure specification was explored by looking at residual 

diagnostics from model outputs. 

The structure of the data was accounted for by fitting random effects: site nested within 

study crossed with species as grouping structures. There are unexplainable variations in the 

responses of different species that must be accounted for, and variations as a result of 

location and differences in study methodologies. This random effects specification 

disregards the variation among taxa and among studies, looking at the local responses 

within the context of each site and taxon. The random effects specification was then 

optimised by model comparison using Likelihood Ratio Tests (LRT). If overdispersion is 

identified and accounted for, the inclusion of fixed-effects can be justified using AIC 

Figure 4. Map showing the distribution of abundance data collected. Data points are colour coded at the publication level 

(14). Publications are relatively evenly distributed across tropical regions, well representing the whole tropical biome. The map 

highlights Africa as the most data deficient continent, particularly the West African tropical forests. 
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comparison (Richards, 2008) and testing of parameter estimates using Wald χ2 (Bolker et al., 

2009). 

Additional variation may be explained by including random slopes with respect to EVI; a 

random intercept and slope at the species-level, and an uncorrelated random intercept at 

the site-level and slope at the study-level were all tested. This specification not only allows 

species and locations to have different intercepts, but also for abundances of different 

species or in different sites to respond differently to mean EVI. The uncorrelated slope and 

intercept for locations assumes that all sites within a study – as they are in close proximity 

with each other – show the same response to EVI, but that the intercept may vary: slopes 

are allowed to vary at the study level. 

Generalized Additive Mixed Models (GAMMs) were then fitted to the data to test for 

significant nonlinearity. The inclusion of a non-parametric smoothing parameter relaxes the 

assumption of linearity in the relationship and allows curvature to emerge from the data. 

This may be important in identifying nonlinear behaviour in the relationship, such as 

threshold effects in the impact of threat intensity on biodiversity. 

Overdispersion and zero-inflation were explored in the response data and attempts were 

made to account for them. Some zero-inflated poisson distribution is likely to be the best fit, 

but is often difficult to achieve with additive mixed-models that have complex random-

effects structures, exemplified by the low level of support in R. A logarithmic transformation 

may deal with overdispersion, but there is little reason to expect the error structure be 

multiplicative. Also, with zeros in the data a log-transformation can only be applied to 

adjusted data – most commonly log(data+1). The level of adjustment made can bias the 

model fit (O'Hara & Kotze, 2010).  

Overdispersion was tested for by computing: 𝐷 = (𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝜎2)/(𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝜎2) × (𝑛 − 1), where 

the theoretical variance is of data drawn from a poisson process, and n is the number of 

observations – overdispersion can be tested for. If D is approximately χ2 distributed with n-1 

degrees of freedom, then a poisson distribution would be a good fit to the data. It can be 

accounted for using a negative binomial (poisson-gamma) or a poisson-lognormal model 

(Breslow, 1990). Including a normally-distributed, observation-level random-effect in a 

model with a poisson error structure and log link effectively specifies a poisson-lognormal 
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mixture distribution (Elston et al., 2001; Breslow, 1990; Lawless, 1987; Hinde, 1982). This 

poisson-lognormal model is computationally intensive but can be estimated using Gauss-

Hermite Quadrature Approximation (Hinde, 1982). 

The question of spatio-temporal extents was approached by fitting the minimal adequate 

model to the data of varying spatial and temporal extents and using model comparison via 

AIC and parameter estimates. To begin, mean EVI was considered in terms of only the centre 

pixel overlaying the abundance coordinate location derived from time-series of three years 

for each pixel; the spatial extent of environmental data was then increased to compare with 

results that use smaller extents. By successively increasing the spatial extent of EVI by one 

distance band of pixels and assessing model fit each time, an optimum spatial extent can be 

identified. This process was then carried out for mean EVI calculated from time-series of 

increasingly longer lengths, finding the optimal environmental scale that maximises model 

likelihood estimates and provides the best confidence intervals around the parameter 

estimates. 

 

Results 
Figure 5 shows the distribution of 

abundance is highly skewed. The 

overriding characteristic of the data is 

zero-inflation. The data appear to 

conform to a zero-inflated poisson, 

with high overdispersion. Looking at 

mean=1.4, and variance=99.2, we can 

see there is high overdispersion (χ2, 

d.f. = 21610: p < 0.001). 

 

Species grouping structure is most the important random-effect – when specified as random 

intercepts – explaining 58% of the variation in a null model. The random slopes significantly 

improve model fit (LRT, d.f. = 2: p < 1.379e-15), so they are kept in the model. Again, the 

Figure 5. Histogram of abundance. The high frequency of zeros 

shows the data conform to a zero-inflated poisson distribution. 

High overdispersion is also an important characteristic in the data. 
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additional complexity of an observation-level random-effect is justified and a poisson-

lognormal model is a much better fit to the data than a poisson (LRT, d.f. = 1: p < 2.2e-16). 

Two categorical fixed-effects – one that defines habitat type and one that defines the 

intensity of land-use in the area – are introduced individually and then together, to show the 

ΔAIC that each variable causes, and then combined. The tests show that inclusion of habitat 

type significantly improves the models explanatory power, but that land-use intensity does 

not.  

The minimal adequate model therefore considers the response of abundance to intensity of 

environmental pressures by including mean EVI and habitat type as fixed effects, with site 

nested within study, crossed with species grouping structures of random slope and intercept 

models, and a poisson-lognormal error structure. Residual diagnostics (figure 6) of the 

minimal adequate model show some non-normality in errors and heteroscedasticity around 

low fitted values: these issues are most likely caused by the zero-inflated data that is not 

easily accounted for. 

Figure 6. Model residuals diagnostics. Top: the Q-Q Plot shows some deviation from normality, suggesting the assumption of 

normally-distributed errors is being violated. The non-normal behaviour is exclusive to the high end of the range. This could be 

due to the zero-inflation: possibly this change in behaviour indicates the additional zeros arise from a separate process, 

indicating a two-step hurdle model could be appropriate. Bottom: a plot of residuals vs fitted values clearly shows the impact of 

the zero-inflated data. There is heterogeneity in the data, arising almost entirely from high variance in the zeros. Zero-inflation 

is clearly an important component in the data, but is difficult to specify in models complex as those used in this study. 
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Figure 7. Plot of a Generalised Additive Mixed Model showing how relative abundance changes in response to 3-year mean 

EVI at a spatial extent of 250m2 (centre pixel only). A saturation of EVI occurs where any additional increase does not determine 

any significant change in relative abundance. However, this nonlinearity may not be significantly improves the models 

explanatory power. 

Figure 8. Plot of a Generalised Additive Mixed Model showing how relative abundance changes in response to 3-year mean 

EVI at a spatial extent of 10km2. The additional spatial extent has estimated a response with narrower confidence intervals, 

producing a slope for EVI significantly different from 0, which has reduced to a linear form. 
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Figure 7 shows a minimal adequate GAMM for 3-year mean EVI using only the central pixel 

of data. There is a nonlinear response of abundance to increase in EVI, showing a steady 

increase at low EVI followed by saturation at mean EVI of approximately 0.5; any further 

increase beyond this point produces no significant change in relative abundance. Figure 7, 

however, shows large confidence intervals around the response and figure 9 shows the 

parameter estimate for EVI is not significantly different from 0. By increasing the spatial 

extent for 3-year mean EVI, the relationship becomes linear (figure 8): the meaning of this 

can be interpreted by exploring ΔAIC and behaviour of the EVI parameter estimate with 

increasing spatial extent.  

Upon increasing the spatial extent of 3-year mean EVI to the maximum analysed (21 pixels: 

10km2 tiles), the AIC decreased (ΔAIC = -8.2; no incremental distance band increases yielded 

a significant drop in AIC – figure 10), confidence intervals narrowed, and the slope for EVI 

became significantly different from 0 (p < 0.05), shown in figure 9. This pattern in the 

changes in AIC with spatial extent are matched at larger temporal scales, from 3 years and 

Figure 9. Plot showing the parameter estimates for the minimal adequate model with 3-year mean EVI taken from the centre 

pixel only (250m2 extent) in red, and from a spatial extent of 10km2 in blue. The habitat type coefficients have no appreciable 

difference when including the greater EVI extent, but our confidence on the slope value for EVI dramatically increases, with 

much narrower intervals on the parameter estimate, becoming significantly different from 0. The EVI estimate also dramatically 

decreases, indicating some unexpected processes occurring (see figure 10). 
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above. The changes in EVI parameter estimates at these temporal scales also follow the 

same pattern: a rapid decrease in the mean and variance of the parameter estimate. 

The decrease in AIC indicates that increasing the spatial extent of environmental data has 

improved our confidence on estimates and enabled a better description of the relationship 

between abundance and mean EVI. However, as the AIC value and confidence on the 

parameter estimate improve, the coefficient value decreases and is no longer representative 

of the dynamics estimated at local scales (figure 11). When modelled using local EVI data, at 

a 3-year mean EVI value of 0.5 the estimated relative abundance yields a 0.6706 increase on 

the intercept value, whereas a 0.06799 increase is estimated from the equivalent EVI 

modelled using a 10km2 extent: the local response estimated using local EVI is roughly 10 

times stronger than that from 10km2, at the 3-year temporal scale. Inferences made on EVI 

at greater spatial scales should therefore be questioned (see discussion). 

Increasing the time-series length beyond 3 years seems to have little impact on AIC, as the 

pattern of decrease remains similar and no additional significant decreases in AIC, relative to 

the 3-year mean, are evident (table 1). The parameter estimates are much more responsive 

to changes in spatial or temporal extent and are proving a more informative description of 

how our inference from the models change with varying the spatio-temporal scale of EVI, 

and how confident we can be of these inferences. The lowest AIC produced is with a spatial 

extent of 10km2 using 3-year mean (AIC=22356.9), but not sufficiently different to claim it is 

the optimal extent; this spatio-temporal scale does not produce the most informative 

parameter estimates, therefore selection of this scale as optimal based on AIC is rejected. 

The parameter estimates at 1- and 2-year temporal scales show interesting differences 

compared with larger temporal scales (figure 11). Initially, local parameter estimates are 

similar for all temporal scales, showing some marginal increase in significance with 

increasing temporal scale. As spatial scale is increased, however, parameter estimates 

increase and then stabilise, with narrowed confidence intervals; parameters remain 

representative of dynamics that were estimated at the local scale. Therefore, increasing 

spatial extent at short temporal scales is beneficial, but doing so at long temporal scales 

hinders drawing meaningful model inferences. 
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Figure 10. AIC values for minimal adequate models change as spatial extents are increased for all temporal scales (1-6 years). 

ΔAIC is defined relative to AIC at 1 (considering only the centre pixel). Mean EVI calculated from 1 and 2 years are unreliable due 

to few high quality data in some places, as the prominence of short-term interference increases (e.g. cloud-cover). Increasing the 

time-series length provides more quality data, producing expected patterns for ΔAIC with increasing spatial extent. AIC may 

increase for short time-series because more pixels allow for more inadequate data. There is a decrease in AIC for mean EVI 

calculated from time-series of 3, 4, 5 and 6 years: all show similar patterns in the decrease of AIC, and minimum values do not 

vary drastically. This suggests increasing the time-series beyond 3-years does not increase model fit. 
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Figure 11.  

A: Changes in parameter estimate with increasing spatial extent for 2-year mean EVI. The AIC (figure 10) for 1- and 2-year 

mean EVI are erratic and identified poor quality data. The parameter estimates, however, show an interesting result: increasing 

spatial extent causes the parameter estimate to slightly increase and rapidly settle on a value that seems informative and 

maintains details of local dynamics. Confidence intervals around the parameter estimates also improve. This finding, coupled 

with the AIC behaviour suggests that, in some places, there is insufficient data at small temporal scales, but where there are 

sufficient data, the model provides a much richer description of local dynamics.  

B & C: The same plot for time-series lengths of 3-years (B) and 6-years (B). Parameter estimates at the local scale are similar to 

A, but a different pattern with increased spatial extent is shown. The parameter estimate mean and variance decreases as the 

estimate declines until the estimate becomes statistically significant. However, AIC suggests an improved fit. By increasing EVI 

spatial extent, the model better discriminates between low and high EVI sites, but includes increasingly irrelevant EVI 

information, blurring the local abundance response to environmental pressures at that site. These findings suggest some trade-

off between model fit (and reliable data) and meaningful parameter estimates. 
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Figure 12. The local scaled mean EVI parameter estimate for all temporal scales. As time-series length is increased the 

significance of the estimate improves, but only marginally. Estimates remain as variable. This indicates that 6-year mean EVI at 

the most local of scales is the most informative, although there is little room for discrimination between time-series lengths. 1- 

and 2-year means follow a similar pattern at this local scale, but as shown above (figure 11), may prove to be the most 

informative temporal scales when spatial extent is increased. 

Time-series length 
(years) 

AIC d.f. ΔAIC 

1 22365.6 12 0.8 
2 22369.2 12 4.4 
3 22365.0 12 0.3 
4 22365.3 12 0.5 
5 22365.4 12 0.7 
6 22364.8 12 0.0 

Table 1. The AIC values from minimal adequate models, using an EVI extent of the central pixel only, for 

differing temporal scales. There is no significant decrease in AIC as temporal scale is increased. This suggests 

that by taking the mean of EVI over a longer time period model fit is not improved. Changes in parameter 

estimates should also be considered before drawing inferences, but this suggests including additional years is 

not worthwhile. Time-series lengths of 1 and 2 years have already been identified as unreliable, so the most 

parsimonious time-series length would be 3 years. 
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Discussion 

Synthesis 
MODISTools has provided a simple and efficient method for accessing and making use of 

remotely-sensed data, and models have shown that the retrieved EVI data from MODIS has 

been informative as a proxy for habitat destruction and degradation, in modelling how local 

abundance responds to the intensity of mechanisms of environmental change. 

Whilst the data have been informative, it is not clear what spatio-temporal extent of EVI 

provides the most explanatory power to answer this biological question. There appears to be 

a trade-off between model fit according to AIC and capturing a detailed relationship 

between local abundance and the mean EVI in that local area. Prior to undertaking this 

study, it was assumed that local processes could be modelled using only the local 

environmental conditions, but by increasing the spatial extent to encompass an 

environmental neighbourhood a more reliable estimate of environmental pressures in that 

area could be derived. What we see at increased spatial extent, however, is a decline on the 

coefficient of mean EVI and its variance shrinking; as the coefficient value declines the 

estimated slope for EVI becomes weaker. The increase in significance corresponds with AIC 

decrease at large temporal scales, suggesting an improved model fit. By increasing EVI 

spatial extent the model better discriminates between low and high EVI sites, but 

increasingly irrelevant EVI information is included, blurring the local response of abundance 

to environmental pressures at that site. This causes an underestimation of coefficient values 

and a less detailed picture of how abundance is responding to local environmental 

pressures. 

This finding is corroborated when the GAMM plots in figures 7 and 8 are compared: when 

unaware of the spatial dependency of the parameter estimate (it should be noted, only the 

mean EVI parameter is spatially dependent – see figure 9) the improved AIC suggests that 

the reduction to a linear form at larger extents is the product of a better description of the 

relationship between abundance and EVI. With the identified spatial dependency in mind, 

however, it is more likely that the nonlinear response found in figure 7 is a more detailed 

local response, and that the increased spatial extent is producing a less clear picture, giving a 
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linear form as a result. Therefore, in order to find an optimal extent, a trade-off between AIC 

and local detail must be met.  

Figure 11 shows how the coefficient of mean EVI is affected by increasing the spatial and 

temporal extent. At temporal scales of 3 years and above, the estimate rapidly decreases as 

more pixels are included. For these models and data, the decrease in AIC with spatial extent 

(-8.2 when increasing extent from 1 250x250m pixel, to 10km2 tile of pixels, for 3-year mean 

EVI) is not sufficient enough to justify losing any detail in the local response. Therefore, for a 

detailed local picture to be maintained the spatial extent should be limited to only the 

central pixel overlaying the abundance location. 

The EVI parameter estimate marginally increases as temporal extent is increased. In fact, the 

increase from 3 to 6 years is enough for the estimate to become significantly different from 

0. AIC has no appreciable change, however, the slightly improved confidence on the 

parameter estimate whilst maintaining a detailed local response warrants including a greater 

temporal extent when calculating mean EVI. As the parameter estimate actually increases 

slightly, it could be argued that by including a greater time span of the local environmental 

conditions prior to the abundance recording an even clearer picture of the local dynamics 

are being elucidated. 

As shown in figure 11, at temporal scales lower than 3 years, a very different inference can 

be made from the models. The AIC values at varying spatial extents for 1- and 2-year mean 

EVI are unreliable and erratic, as a result of insufficient data in the time-series at some 

locations. The parameter estimates, however, show a much more meaningful trend as 

spatial extent is increased. A value similar to the most local estimate is converged upon and 

confidence intervals have narrowed, maintaining the detailed local response that is 

identified when considering only the most local dynamics. The behaviour of AIC values and 

parameter estimates with increasing spatial scale show contrasting results, in that improved 

(but marginal) model fit (figure 10) is met with less meaningful parameter estimates (figure 

11). 

Larger temporal scales facilitate a greater proportion of high quality EVI data, which allows 

better discrimination between high and low EVI sites, but includes EVI dynamics that are 

increasingly irrelevant to the local response. Whereas, smaller temporal scales are data 
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deficient in some locations, but at locations where EVI data is high quality, a more detailed 

response of abundance can be elucidated and increasing spatial extent can help improve 

estimates on the relationship between abundance and mean EVI. This trade-off between 

model fit and meaningful parameter estimates manifests itself as a trade-off between 

temporal and spatial extent. 

For these models and data, increasing spatial and temporal scale of environmental data does 

not improve our inference of local abundance response to EVI. Increasing either temporal or 

spatial scale separately, however, can be beneficial. The trade-off between scales witnessed 

highlights the importance of using environmental data that is pertinent to the biological 

question being asked. Here, a local response of abundance to EVI was modelled. By taking 

either the local dynamics for a long period of time, or a wider surrounding extent of data 

around the local dynamics, descriptive model parameters can be estimated and meaningful 

inferences drawn. But, including wider spatial extents for long time-periods prior to 

abundance observation can blur out the environmental picture that is pertinent to the local 

dynamics of interest, producing less meaningful results. Changes in abundance, as opposed 

to species-level biodiversity measures, occur on relatively short timescales (Balmford et al., 

2003); this means increasing the temporal extent may easily surpass the scale of abundance 

dynamics, including irrelevant past conditions as a result. Judgement on the boundary 

between relevant and irrelevant inference is open to interpretation. 

Limitations & Further Work 
The form of distance-decay of EVI from the location of interest is assumed to follow a 

Gaussian curve. This was chosen because it has previously been used when testing spatial 

dependency and nonstationarity in vegetation indices (Gao et al., 2012). It is possible that 

other distance-decay functions better describe how importance of EVI decreases with 

distance from the location of interest. A different exponential form, for example, or a power 

law decay on a constant that could be parameterised using maximum likelihood estimation. 

A power law decay function was attempted, but parameterisation of the function to 

converge on a value for the constant, for models as complex as those used in this study, 

proved very difficult and computationally intensive. Other spatial models such as 

Geographically Weighted Regression (GWR) or Spatial Autoregressive Models (SAR) may 

have been useful, but specification when fitting to a dataset with as complex a structure as 
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that used in this study would be problematic, and would require more detailed coordinate 

data down to the pixel-level. 

The Modifiable Areal Unit Problem always exists in spatial analysis: our inferences for spatial 

extent may be valid using these models and data, but if EVI becomes available at a finer 

resolution it is possible our inference would change. Further spatial extents may give more 

insights into the impact of environmental scale. However, there must be a reasonable, finite 

limit to the maximum scale implemented. The results indicate that local dynamics are 

already being lost at spatial scales of 10km2, so it could be argued that increasing spatial 

extent further is unlikely to be informative. 

An assumption of the models used is that the explanatory variables are measured without 

error. EVI measurements do vary as a result of environmental conditions, although it does 

perform better than NDVI in removing effects of aerosol and background soil interference. 

Additional steps are taken to maximise the quality of EVI by removing values with a low 

reliability score (as part of the MOD13Q1 product downloaded) and linearly interpolating 

between high quality values to take a time-series mean. 

The model residuals are shown to be non-normal and there is heteroscedasticity (figure 6): 

these are most likely the result of unaccounted for zero-inflation. Zero-inflation was not 

dealt with because there is little support within R for parameterising complex GAMMs with 

zero-inflation incorporated. It may have been possible to implement a two-step hurdle 

model (Welsh et al., 1996; Heilbron, 1994), where the additional zeros not expected from a 

poisson process are dealt with using a binomial model, after which, the remaining data is 

treated with a truncated poisson model (or similar). However, assumptions arise from this 

method too: the additional zeros are assumed to be produced by a separate process to the 

rest of the data (e.g. observation error – an additional complication of dealing with this is 

that observation error will vary between studies). 

Methods for model evaluation and selection with GLMMs and GAMMs are deceptively 

difficult (Zuur et al., 2009), as maximum likelihood estimates can only be found by 

integrating over all possible values for the random-effects (Bolker et al., 2009). Analysing 

mixed models can be problematic because tests used to make inferences on results assume 

that the null values of the parameters to be estimated are not at the edge of their possible 
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values (Bolker et al., 2009; Zuur et al., 2009): this assumption is violated when standard 

deviations for a random effect are estimated because its value has to be ≥ 0 (null value is 0). 

There is also ambiguity in how degrees of freedom are calculated: here the minimum 

degrees of freedom contributed by random effects that affect the term being tested is used. 

The habitat type fixed-effect was determined based on the descriptions given in each 

publication and given a land-cover class that adheres to the classification system used in the 

major biodiversity indicator, GLOBIO3 (Alkemade et al., 2009). This gives consistency and 

opportunity for comparison, but may not be the best match for EVI. MODIS provide a 

surface of land-cover data calculated using EVI, recorded at the same resolution and time 

intervals. In so far as it uses EVI to differentiate between habitat types, using MODIS land-

cover as a categorical fixed-effect may provide a better description of how the local response 

of abundance varies in different habitats. However, any unreliability inherent in EVI would 

therefore propagate through to land-cover data. 

The impact of spatio-temporal extent was explored on a global level in the sense that all 

data were included, irrespective of habitat type or geographic region (e.g. continent). This 

analysis could be disaggregated to different levels to see if conclusions on environmental 

data scales differ between habitats or regions. The data used are exclusive to the tropics. 

Further work could also look at the same questions in other biomes. This may facilitate a 

more mechanistic approach to describing an optimal spatio-temporal environmental scale. 

The response of local abundance to intensity of environmental pressures may be better 

modelled by including additional explanatory variables that provide information on other 

mechanisms for environmental change. Layers of population density or distance from roads, 

for example, are commonly used as proxies for intensity of anthropogenic impact (Luck, 

2007). Remotely-sensed data on fire damage may explain effects of increased frequency and 

intensity of disturbance events (Cochrane & Laurance, 2002; Kerr & Ostrovsky, 2003), but 

may also be collinear with EVI. Physical characteristics of habitat quality – biogeochemical 

flux, for instance – may also be beneficial (Lee et al., 2010; Foster et al., 2011). 

Models need biological traits too; incorporating functional traits of specific taxa (Díaz & 

Cabido, 2001; Dawson et al., 2011) or community-level processes (Mokany et al., 2012, 

Magurran et al., 2010) to provide a more mechanistic explanation of biodiversity responses 
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environmental change. In terms of inferring upon wider biodiversity, abundance goes some 

way but an assessment of biodiversity would need to model the response of other 

measures, such as phylogenetic diversity, to capture its many components (Magurran, 2004; 

Lyashevska & Farnsworth, 2012). 

Concluding Remarks 
Conclusions made suggest that only the most local and current of EVI dynamics are 

important in describing the local response of abundance to EVI, but that reliability of these 

dynamics can be improved by including a small surrounding neighbourhood of dynamics or a 

short length of time previous to abundance observation. For a parsimonious but meaningful 

model of local abundance response to environmental pressures intensity, an EVI spatio-

temporal scale of 2-year mean for 2 pixel-bands (area ≈ 1km2) could be suggested (figure 

11). The most detailed description of local dynamics presented in the study is most likely the 

nonlinear response identified in figure 7. This model suggests that abundance saturates at 

high EVI values. From a biodiversity conservation perspective, this presents a threshold 

effect: habitat destruction/degradation up to a certain level may produce no observed 

abundance change over timescales concerned, but beyond a given threshold limit further 

EVI decline causes a significant decline in local abundance. 

The optimal spatio-temporal scale is debatable and its definition requires some judgement 

on behalf of the researcher in balancing model fit and meaningful model inference. Asking 

questions of scale in studies on biodiversity and wider ecological contexts is important, but 

the effects of scale are complex (Bar-Massada et al., 2012) and statistically challenging to 

infer upon (Whittaker et al., 2001; Foody, 2004). 
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Appendices 
MODISSubsets function R code: 

MODISSubsets <- function(LoadDat, LoadMethod='object' | 'ext.file', FileSep=NULL, Product, 

Bands, Size=c(), SaveDir=NULL, StartDate=FALSE, TimeSeriesLength=2, DateFormat='year' | 

'posixt', Transect=FALSE) 

{                                        

  if(LoadMethod == 'object') { dat<- data.frame(LoadDat) } # Load external file, or R object. 

  if(LoadMethod == 'ext.file') { dat<- read.delim(LoadDat, sep=FileSep) } 

  if(any(is.na(dat$lat) != is.na(dat$long)) == TRUE) { stop('Not equal amount of lats and 

longs: there must be locations with incomplete coordinate information.') }  # Test for missing 

lat/long data 

  Start<- rep(StartDate, length(dat$lat[!is.na(dat$lat)])) 

  ifelse(Start == TRUE, lat.long<- 

unique(cbind(lat=dat$lat[!is.na(dat$lat)],long=dat$long[!is.na(dat$lat)],end.date=dat$end.date

[!is.na(dat$lat)],start.date=dat$start.date[!is.na(dat$lat)])), lat.long<- 

unique(cbind(lat=dat$lat[!is.na(dat$lat)],long=dat$long[!is.na(dat$lat)],end.date=dat$end.date

[!is.na(dat$lat)])))          # Finds all unique time-series wanted, for each unique location. 

  print(paste('Found ',nrow(lat.long),' unique time-series to download.',sep='')) 

  Start<- rep(StartDate, nrow(lat.long)) 

  if(nrow(lat.long) != length(unique(dat$ID))) { 

    ifelse(Start == TRUE, ID<- 

paste(lat.long[,1],lat.long[,2],lat.long[,3],lat.long[,4],sep=''), ID<- 

paste(lat.long[,1],lat.long[,2],lat.long[,3],sep=''))    

    lat.long<- data.frame(SubsetID=ID,lat.long,Status=rep(NA,nrow(lat.long)))      

    print('IDs do not contain unique time-series: using subset IDs instead.')         

  } else { 

    lat.long<- data.frame(SubsetID=unique(dat$ID),lat.long,Status=rep(NA,nrow(lat.long))) 

  } 

  if(DateFormat == 'year') { 

    ifelse(Start == FALSE,start.date<-strptime(paste(lat.long[,4]-TimeSeriesLength,'-01-

01',sep=''),'%Y-%m-%d'),start.date<-strptime(paste(lat.long[,5],'-01-01',sep=''),'%Y-%m-%d')) 

    end.date<- strptime(paste(lat.long[,4],'-12-31',sep=''),'%Y-%m-%d')# Dates in POSIXlt.                        

    start.day<- start.date$yday 

    start.day[nchar(start.day) == 2]<- paste(0, start.day[nchar(start.day) == 2], sep='') 

    start.day[nchar(start.day) == 1]<- paste(0, 0, start.day[nchar(start.day) == 1], sep='') 

    end.day<- end.date$yday      

    end.day[nchar(end.day) == 2]<- paste(0, end.day[nchar(end.day) == 2], sep='') 

    end.day[nchar(end.day) == 1]<- paste(0, 0, end.day[nchar(end.day) == 1], sep='') 

    MODIS.start<- paste('A', substr(start.date, 1, 4), start.day, sep='')     

    MODIS.end<- paste('A', substr(end.date, 1, 4), end.day, sep='')   

  }  

  if(DateFormat == 'posixt') { 

    ifelse(Start == FALSE, start.date<- strptime(paste(lat.long[,4]-TimeSeriesLength,'-01-

01',sep=''),'%Y-%m-%d'), start.date<- strptime(lat.long[,5],'%Y-%m-%d')) 
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    end.date<- strptime(lat.long[,4],'%Y-%m-%d') 

    start.day<- start.date$yday 

    start.day[nchar(start.day) == 2]<- paste(0, start.day[nchar(start.day) == 2], sep='') 

    start.day[nchar(start.day) == 1]<- paste(0, 0, start.day[nchar(start.day) == 1], sep='') 

    end.day<- end.date$yday 

    end.day[nchar(end.day) == 2]<- paste(0, end.day[nchar(end.day) == 2], sep='') 

    end.day[nchar(end.day) == 1]<- paste(0, 0, end.day[nchar(end.day) == 1], sep='') 

    MODIS.start<- paste('A', substr(start.date, 1, 4), start.day, sep='')       

    MODIS.end<- paste('A', substr(end.date, 1, 4), end.day, sep='') 

  }    

  ########## 

  # Get the MODIS Web Service Description Language and set up SOAP-Client interface. 

  ornlMODIS = processWSDL('http://daac.ornl.gov/cgi-

bin/MODIS/GLBVIZ_1_Glb_subset/MODIS_webservice.wsdl') 

  ornlMODISFuncs = genSOAPClientInterface(operations=ornlMODIS@operations[[1]], def=ornlMODIS) 

  ########## Retrieve the list of date codes to be requested and organise them in batches of 

time series' of length 10. 

  dates = ornlMODISFuncs@functions$getdates(lat.long[1,2], lat.long[1,3], Product) 

  ##########   

  # Use the getsubset function as described (http://daac.ornl.gov/MODIS/MODIS-

menu/modis_webservice.html) to retrieve data subsets for each location of a set of product 

bands, at a defined surrounding area, saving the data for each location into separate ascii 

files in /pixels dir in the working directory. 

  for(i in 1:nrow(lat.long)) {                          # Loop set up to make request and 

write a subset file for each location. 

    start.dates<- which(dates >= MODIS.start[i])        # Finds the start date and end date 

specific for each subset. 

    end.dates<- which(dates >= MODIS.end[i]) 

    date.res<- start.dates[which(start.dates %in% end.dates == FALSE)] 

    options(warn=-1); date.list<- matrix(dates[date.res], nrow=10); options(warn=0)                

    result<- list(NA) 

    subsets<- c() 

    print(paste('Getting subset for location ',i,' of ',nrow(lat.long),'...', sep='')) 

    for(n in 1:length(Bands)) {               # Loop for each band specified, to be requested 

individually and then dropped into subsets. 

      if(ncol(date.list) > 1) {               # Stops (ncol(date.list)-1) = 0 in the for loop. 

        for(x in 1:(ncol(date.list)-1)) {     # getsubset function return object of ModisData 

class, with a subset slot that only allows 10 elements (i.e. 10 dates), looped until all 

requested dates have been retrieved. 

           result[[n]] = try(ornlMODISFuncs@functions$getsubset(lat.long[i,2], lat.long[i,3], 

Product, Bands[n], date.list[1,x], date.list[10,x], Size[1], Size[2])) 

           if(class(result[[n]]) == 'try-error'){ 

              timer<- 1 
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              while(timer <= 50){ 

                  print(paste('Connection to the MODIS Web Service failed: trying again in 

30secs...attempt ',timer,sep='')) 

                  Sys.sleep(30) 

                  result[[n]] = try(ornlMODISFuncs@functions$getsubset(lat.long[i,2], 

lat.long[i,3], Product, Bands[n], date.list[1,x], date.list[10,x], Size[1], Size[2])) 

                  timer<- timer+1 

                  ifelse(class(result[[n]]) == 'try-error', next, break) 

              } 

              ifelse(class(result[[n]]) == 'try-error', print('Connection to the MODIS Web 

Service failed: Subset requested timed out after 10 failed attempts...stopping subset 

download.'), break) 

              stop(result[[n]]) 

           } 

           subsets<- as.vector(c(subsets, result[[n]]@subset))   # Stores retrieved data. 

        } 

      }                                                            

      result[[n]] = try(ornlMODISFuncs@functions$getsubset(lat.long[i,2], lat.long[i,3], 

Product, Bands[n], date.list[1,ncol(date.list)],    # Final batch of dates, finishes at 

end.date 

                date.list[which(date.list[,ncol(date.list)] >= dates[max(date.res)]), 

ncol(date.list)], Size[1], Size[2])) 

      if(class(result[[n]]) == 'try-error'){ 

          timer<- 1 

          while(timer <= 50){ 

              print(paste('Connection to the MODIS Web Service failed: trying again in 

30secs...attempt ',timer,sep='')) 

              Sys.sleep(30) 

              result[[n]] = try(ornlMODISFuncs@functions$getsubset(lat.long[i,2], 

lat.long[i,3], Product, Bands[n], date.list[1,ncol(date.list)],    # Final batch of dates, 

finishes at end.date 

                    date.list[which(date.list[,ncol(date.list)] >= dates[max(date.res)]), 

ncol(date.list)], Size[1], Size[2])) 

              timer<- timer+1 

              ifelse(class(result[[n]]) == 'try-error', next, break) 

          } 

          ifelse(class(result[[n]]) == 'try-error', print('Connection to the MODIS Web Service 

failed: Subset requested timed out after 10 failed attempts...stopping subset download.'), 

break) 

          stop(result[[n]]) 

      }           

      if(regexpr('Server is busy handling other requests in queue. Please try your subset 

order later.We apologize for the inconvenience', result[[n]]@subset[1]) != -1) { 

          stop('Server is busy handling other requests in queue. Please try your subset order 

later.') 
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      }           

      subsets<- as.vector(c(subsets, result[[n]]@subset)) # Stores all useful retrieved data. 

    } 

    if(length(subsets) != (length(date.res)*length(Bands))){ 

        ifelse(StartDate == TRUE, lat.long[i,6]<- 'Missing data in subset: try downloading 

again', lat.long[i,5]<- 'Missing data in subset: try downloading again') 

        print(paste('There is missing information in the subset downloaded for time-series 

',lat.long$ID[i],'. See subset download file.',sep='')) 

    } else { 

        ifelse(StartDate == TRUE, lat.long[i,6]<- 'Successful download', lat.long[i,5]<- 

'Successful download')  

    }     

    if(Transect == FALSE){ write(subsets, file=paste(SaveDir,lat.long[i,1],'_',Product,'.asc', 

sep=''), sep='') }             # Writes an ascii file for time-series into the wd. 

    if(Transect == TRUE){ 

      if(i == 1){ write(subsets, file=paste(SaveDir,lat.long[i,1],'_',Product,'.asc', sep=''), 

sep='') } 

      if(i != 1){ write(subsets, file=paste(SaveDir,lat.long[i,1],'_',Product,'.asc', sep=''), 

sep='', append=TRUE) } 

    }   

    if(i == nrow(lat.long)) { print('Full subset download complete. Writing the subset 

download file...') } 

  }  

  if(Transect == FALSE){ write.table(lat.long, file=paste(SaveDir,'Subset Download 

',Sys.Date(),'.csv',sep=''), col.names=TRUE, row.names=FALSE, sep=',') }             # Writes 

an ascii file with all dates for each band at a given location into the working directory. 

  if(Transect == TRUE){ 

    ifelse(SaveDir == NULL, DirList<- list.files(), DirList<- list.files(path=SaveDir)) 

    if(any(DirList == paste(SaveDir,'Subset Download ',Sys.Date(),'.csv',sep='')) == FALSE){ 

write.table(lat.long, file=paste(SaveDir,'Subset Download ',Sys.Date(),'.csv',sep=''), 

col.names=TRUE, row.names=FALSE, sep=',') } 

    if(any(DirList == paste(SaveDir,'Subset Download ',Sys.Date(),'.csv',sep=''))){ 

write.table(lat.long, file=paste(SaveDir,'Subset Download ',Sys.Date(),'.csv',sep=''), 

col.names=FALSE, row.names=FALSE, sep=',',append=TRUE) } 

  }   

  if(Transect == FALSE){ print('Done! Check the subset download file for correct subset 

information and any download messages.') }                                                                                     

} 

 


