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Abstract 

A difference equation model based in biological mechanisms is presented describing the 

laboratory population dynamics of the flour beetle Tribolium freemani. This is the first 

time a model for this insect species is presented. The model was fitted to laboratory data 

and evaluated. The results suggest that the model’s predictive ability is good and that 

the biological mechanisms taken under consideration are sufficient to explain the 

dynamics. For certain parameter manipulations the model predicts chaotic behaviour 

with strong statistical confidence. These manipulations can be experimentally imposed. 

An experiment is proposed in order to verify the model’s predictions. 
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Introduction 

Henri Poincare was the first man who realised how complicated the behaviour of a 

deterministic dynamical system can be while studying, what is known in celestial 

mechanics as, “The three body problem” [1]. It was Edward Lorenz though, who gave 

rise to the study of chaos with his discovery of a strange attractor in a meteorological 

model [2]. Today chaos, a term first given by Li and Yorke in [3] is well established and 

demonstrated in many scientific fields [4-7]. 

The main feature among the different mathematical definitions of chaos is the 

sensitivity to initials conditions [8]. Sensitivity to initial conditions means that even the 

smallest disturbance on a deterministic dynamical system will have an amplified effect 

over the course of time. This characteristic though, is not necessarily sufficient for a 

dynamical system to be chaotic.  

Robert May popularized chaos among the ecologists, by revealing that simple 

deterministic population models can have a very complicated (chaotic) dynamical 

behaviour which in first sight might appear as random [9,10]. May’s hypothesis that the 

erratic fluctuations observed in population data could be explained by simple 

deterministic rules, started a new era in population dynamics. But the initial excitement 

has turned to scepticism [11]. Until today there are only a few cases providing enough 

evidence of chaos in ecological systems [12-17]. As mentioned in [16] this could be 

attributed to the difficulties incorporated in analyzing ecological data but it could also 

be the case that chaos is indeed rare in ecology.  Searching for chaos in time series data 

is based in methods which try to reconstruct the attractor of the system [18] or to 

calculate Lyapunov exponents [19,20] for which a positive value is an indication of 

chaos. The main problems though, in using the above methods are the need for long 

term data and noise, which in ecological data is always present.  

In [13,17] Costantino et al. followed a different path. Instead of analysing time series, 

they built a discrete time (difference equations) population model for the flour beetle 

Tribolium castaneum based on the cannibalistic relationships among different life stages 

of the species. They provided evidence from real data of the model’s predictions by 
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manipulating experimentally a number of parameters demonstrating transitions in the 

dynamical behaviour of the population from stable cycles to invariant loops and chaos. 

Besides providing evidence for the predicted chaos, the importance of their work was 

also the demonstration that a mathematical model in ecology can actually be very 

accurate and provide explanations for the mechanisms governing the dynamics of a 

species proving at the same time that ecology does not need to have mainly a 

descriptive character.  

This project, following the work on the dynamics of the T. castaneum [13,17,21,22], 

presents a discrete time model, proposed by R. Costantino, for the population dynamics 

of T. freemani. The difference in this species, from castaneum, is that apart from 

cannibalism there is a tactile mechanism which causes a larva to delay its pupation 

when sensing crowding of larvae population [23-25]. The model was fitted to laboratory 

data and evaluated in data both used and unused in the fitting. The evaluation suggests 

that the model’s predictions are accurate, indicating that the mechanisms of cannibalism 

and inhibition of pupation are sufficient to describe the dynamics of the species. For 

certain parameter values the model predicts, with strong statistical confidence, chaotic 

behaviour. A discrete state version of the model (system state variables take only integer 

values) is considered and a connection is made between the chaotic dynamics of the 

continuous state model and the corresponding dynamics of the discrete model. At last, 

an experimental scheme is outlined on how the model’s prediction about the induced 

chaotic dynamics could be verified considering the presence of noise in real data. 

 

Experimental Data 

The data were obtained from an experiment done by Robert F. Costantino. The data 

consisted of twelve replicates, each of 80 weeks in length. All replicates were initiated 

from the same conditions (number of insects). The first three replicates were the control 

replicates for which the habitat volume (expressed in units of grams of medium) was 

kept stable at 54g. For the rest of the replicates the habitat volume, for each transition 

from time t to time t+1, was given randomly fluctuating values but for different 

“colour” (different kind of autocorrelation in the successive random volume values) of 
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fluctuations for replicates 4-6, 7-9 and 10-12. Replicates 3, 6, 9 and 12 were not used in 

the fitting in order to have the chance to evaluate the model using data not used for 

fitting. The different “colours” of noise were not intended for the purposes of this 

project, but there was no problem in using them for fitting the model. The numbers of 

ordinary larvae, delayed larvae, pupae and adults were counted every two weeks. 

As an example, in figures 1a-1d the volume fluctuations are shown for the first replicate 

in each group of replicates (1-3, 4-6, 7-9 and 10-12). Again, the label of the y axes in 

each graph, “Volume in grams”, means that volumes were expressed in grams of 

medium. 

 

 

 

 

Figure 1a: Volumes in replicate 1. Constant at 54g. 
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Figure 1b: Volumes in replicate 4. Red noise, positive autocorrelation. 

 

Figure 1c: Volumes in replicate 7. White noise, no autocorrelation. 
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Figure 1d: Volumes in replicate 10. Blue noise, negative autocorrelation. 

 

The mathematical model 

The beetles belonging to the Tribolium genus have four life stages: egg, larva, pupa and 

adult [17]. Many species of the genus Tribolium are cannibalistic, larvae cannibalize on 

eggs while adults cannibalize on both eggs and pupae [17]. In previous work 

[13,17,21,22], it has been demonstrated that a discrete time model, built under the 

assumption that cannibalism is driving the population dynamics of T. castaneum, can 

predict with accuracy the observed, from laboratory data, dynamics. In T. freemani, 

which is the case of this work, there is another biological mechanism that plays a major 

role in the population dynamics of the species along with cannibalism. Crowding of 

larvae (10 larvae per gram of media) inhibits their pupation [23-25]. The following 

deterministic discrete time model was proposed by R. F. Costantino and it is based on 

the biological mechanisms sketched above.  
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The state variable )1(

t
L is the number of ordinary larvae, )2(

t
L  are the delayed (to go into 

pupation) larvae, 
t

P  is the number of non-feeding larvae, pupae and callow adults and 

t
A  are the sexually mature adults at time t. The time scale is 2 weeks which is 

approximately the time needed for an individual to go from larva to pupa (in the 

absence of crowding) and from pupa to adult under the experimental conditions. The 

eggs are not considered in the model since it takes 2-3 days for an egg to hatch and 

because eggs are difficult to count experimentally. Habitat size 
t

V
 
is a time-dependent, 

external forcing parameter (random or periodic). The exponential terms in the model 

account for cannibalism, with 
paeaee

cccc ,,,
21

 being the coefficients of cannibalism of 

)2()1(
, LL  larvae on eggs, adults on eggs and adults on pupae respectively. For example 

the term )/exp( VAc
pa

  in the last equation is the probability that a pupa in a habitat of 

volume V at time t will not get eaten by an adult until time t+1. The average adult 

fecundity is denoted as b while the mortality rates for )2()1(
, LL and adults are denoted 

as
a

 ,,
21

. The parameter E is the experimentally imposed emigration rate of 

)2(
L larvae (set at E=0.55 in the experiment). Emigration of )2(

L would take place 

naturally in a population outside the lab. 
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larvae that will be pupae at time t+1. The parameter 

1
h  is the density 

of larvae where the pupation rate is 50%, and 
2

h
 
is the “sharpness” of the “shoulder” of 

the f function (see appendix). Each larval stage ( (1) ( 2 )
 and L L ) influences the pupation of 

only larvae of the same stage. 

What should be demanded from a deterministic model in biology is to describe 

mathematically the main biological mechanisms driving the dynamics of the system. 

But, every dynamical system in nature is subject to noise. In ecological systems noise 

(or else stochasticity) is distinguished in two types, demographic and environmental 

[21]. Demographic noise accounts for random (unpredicted by the deterministic model) 

variations in birth, mortality and migration rate of individuals which in turn they have 

an impact on the total population. Environmental noise accounts for the variation in 

vital rates caused by environmental changes which affect a large part or the whole 

population. For example a period of extreme low temperatures which might increase the 

mortality rate of a whole species population is environmental noise. Since the insect 

populations were cultured in a controlled laboratory environment it is reasonable to 

expect that the type of noise present in the data would be demographic.  

In order to incorporate demographic noise into the deterministic noise we add “square-

root” scale noise (see [17] for theory). This means that, under some perquisites, a 

discrete time system of equations  
tt

XfX 
1

 where, AAf
n
: , would take 

the form   
2

1 ttt
EXfX 


 with  

T

ntttt
EEEE ,...,

21
 being a random vector 

having approximately normal distribution. Applying the above to the first three 

equations of the deterministic model we get the stochastic version, 
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In case the addition of a random term,
it

E , to the squared deterministic part of one of the 

first three equations of model (1) results in a negative number then the value is set to 

zero. The reason why the last equation takes the above form is because the parameters 

pa
c  and

a
 , were experimentally manipulated to take values 0.01 and 0.7 respectively. 

The notation “round[x]” means the closest integer to x. The rounding is because the 

manipulation was done by adding or removing adults in each census and because insects 

come only in integer numbers.  

 

Methods 

Parameter Estimation 

In order to obtain estimates for the parameters of the model, we fitted the stochastic 

model in the data using the Maximum Likelihood method. Solving the equations of the 

stochastic model for 
it

E  (i=1, 2, 3) we get: 
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Because of the manipulation of the parameters 
pa

c  and
a

 , there were no parameters to 

estimate for the last equation therefore it was not used in the fitting. We assume that the 

random vector  
ttt

EEE
321

,,  has a normal distribution with mean vector of zeros and a 

variance-covariance matrix  with the off diagonal elements equal to zero (i.e. zero 

covariances). The parameters involved in the first equation appear only in the first 

equation, therefore the best fit parameters values for 
eaee

cccb ,,,
21

 are the values which 

minimize the sum of squared errors  


n

t

t
E

1

2

1
. But because the parameters 

2121
,,, hh  

appear in both equations 2 and 3, under the assumptions we made for the random 

vector, it follows from the probability density function of a multivariate normal random 

vector that the best fit parameter values are those which minimise the sum (see appendix 

for details),    
   


 















n

t

tt

v

E

v

E
vv

1 3

2

3

2

2

2

32
loglog , where 

2
v  and 

3
v  are the unknown 

variances of 
2

E and 
3

E  considered as unknown parameters. The two sums were 

minimized (separately) using the Nelder-Mead simplex algorithm.  

 

Model Evaluation 

After the model was fitted to the data, we calculated the generalized 2
R values (as it was 

done in [21]) for each equation for each replicate, including the replicates not used for 

fitting. The 2
R values are a measure of how much of the variability of the data is 

explained by the (deterministic) model. Each equation of the (stochastic) model has the 
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form   
2

1 ttt
EXfY 


 , where  

ttttt
APLLX ,,,

)2()1(
  and 

1t
Y

 
is one of the )1(

1t
L , 

)2(

1t
L , 

1t
P , 

1t
A . If we consider that 

1t
Y  is a real data value at time t+1 and  

t
Xf  is 

the square root of the prediction of the deterministic model for time t+1 using the data 

values at time t then we have the residuals,  
ttt

XfYE 
1

. The 

 




n

t

t
ESSE

1

2
is the sum of the squared values 

t
E  for a certain equation of the model 

for data values drawn from a certain replicate, while the   




n

t

t
YmeanYSST

1

2

. 

Then the R^2 value for the corresponding equation and replicate is calculated as 

SST

SSE
R  1

2 . The closer this value is to 1 the more variability is explained by the 

model. Statistical tests were used to check for normality and autocorrelation of the 

residuals. The statistical tests done on the residuals were:  

1. Shapiro-Wilk test ([26]) on the residuals of each equation for each replicate and 

for each “Colour” treatment (combining residuals from replicates within a 

treatment, separately for each equation) to test if the residuals came from a 

normal distribution. 

 

2. Durbin-Watson test ([27-29]) on the residuals of each equation for each replicate 

to check for autocorrelation in the residuals. 

 

3. Kolmogorov-Smirnov test for each equation for each pair of replicates to test if 

the residuals came from the same distribution. 

 

Confidence Intervals 

In order to calculate confidence intervals for the parameter estimates, 2000 bootstrapped 

data sets were created. The bootstrapping was done by resampling the residuals. That is, 

in order to create a “fake” replicate we start with the initial values 
00

)2(

0

)1(

0
,,, APLL  of a 

replicate from the real data (every replicate in the data had the same initial conditions). 
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Then we randomly choose a triplet  
ttt

EEE
321

,,  from the residuals obtained from the 

fitting and we create the values 
11

)2(

1

)1(

1
,,, APLL  using the stochastic model. In case a sum 

under a square root was negative the predicted value was set to zero. We repeat the 

process until the “fake” replicate has as many data as the real one. If the “fake” replicate 

we wanted to create was a (fake) control replicate the  triplet  
ttt

EEE
321

,,  was chosen 

randomly from the corresponding residuals of the control replicates, otherwise it was 

randomly chosen from the rest of the residuals. After doing the above for every replicate 

we have a complete “fake” data set. After each “fake” data set is created we fit in the 

model and obtain new estimates for the parameters. After collecting (2000 in our case) 

sets of parameter estimates we can obtain 95% confidence intervals by calculating the 

0.025 and 0.975 quantiles from the estimated set of values for each parameter. The 

bootstrapping method is a way of trying to estimate what would happen if the 

experiment was to be repeated many times. The bootstrapped parameter estimates were 

also used to calculate confidence intervals for the maximum Lyapunov exponents which 

are discussed in the following paragraph.  

 

Lyapunov Exponents 

Starting with an initial condition  
00

)2(

0

)1(

00
,,, APLLX  , we can calculate the set 

 
n

XXX ,...,,
10

 using the deterministic model. The set of all successive states of the 

system with
0

X  as initial condition is called the (forward) orbit of
0

X . The maximum 

Lyapunov exponent of the orbit is given by the limit (if the limit exists)  

      ||...||ln
1

lim
021

XJXJXJ
n

nn
n




 where )( XJ  is the Jacobian matrix calculated at X 

and ||.|| is any matrix norm. The Jacobian matrix )( XJ  is a linear approximation of the 

system around a close “neighbourhood” of X. The Jacobian matrix of the nth iteration 

of the system with initial condition
0

X , )(
0

XJ
n , maps a sphere centred at

0
X  with 

radius one into an ellipsoid. This means that in general the initial distance of some 

points sufficiently close to 
0

X  will be magnified (by the non-linear model) while for 

other points it will shrink. If the length of the kth longest orthogonal axes of the ellipse 
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is n

k
r  then, the kth Lyapunov exponent of the orbit of 

0
X  is defined as the 

limit n

k
n

r
n

log
1

lim


. A bounded (not going to infinity) orbit with at least one positive 

Lyapunov exponent which is not asymptomatically periodic and does not have any 

Lyapunov exponent equal to zero is called a chaotic orbit (see [30] for theory). A 

chaotic orbit indicates that the system might have a chaotic attractor. An attractor, in 

simple words, is a set towards which a number of initial points (which in total have 

positive area, volume etc., depending on the system’s dimension) converge. In applied 

cases, like this, it is not easy to prove mathematically that the system is chaotic. A usual 

practice is to find under what values for the parameters the maximum Lyapunov 

exponent is positive and with computer simulations see if there is evidence of a chaotic 

attractor. The numerical calculation of the maximum Lyapunov exponents has been 

done by implementing an algorithm in R following the scheme described in the 

appendix of [21]. 

 

Software 

All the analysis was conducted using R [41], except from the calculation of the 

Lyapunov spectrum (all the Lyapunov exponents of an orbit) for which the LET 

(Lyapunov Exponent Toolbox. Author: Steve Wai Kam SIU) for MATLAB [42] was 

used. 
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Model Fitting Results 

Parameter Estimation 

In table 1 are the parameter estimations and the corresponding 95% confidence intervals 

acquired from the bootstrapping. 

 

Parameter ML Estimates 95% C.I. 

b 12.08540 (11.91162, 12.62482) 

ce1 0.1995520 (0.1946968, 0.2120706) 

ce2 0.3611847 (0.3431656, 0.3814984) 

cea 0.3056472 (0.2780895, 0.3363196) 

1
  0.1133886 (0.1024374, 0.1290508) 

2
  0.1398072 (0.1193096, 0.1586580) 

h1 1.5020831 (1.485298, 1.519161) 

h2 3.079823 (2.944738, 3.229757) 

Table 1: Maximum likelihood estimates and 95% confidence intervals. 

 

The estimates of the variance-covariance matrices 
1

 and 
2

  of the random terms in the 

stochastic model for the control and the rest of the replicates respectively are given 

below. The values were obtained after the fitting by calculating the variances and 

covariances between the residuals of the first three equations of model (2).  

 























0.0820450350.01023690-50.01814236-

0.01023691-30.0356699460.00655025

0.01814237-60.0065502540.13245232

1
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





















0.252618230.01329814-0.02058459

0.01329814-0.257061610.03251455-

0.020584590.03251455-0.53082742

2
 

 

From the scatter-plot matrix of the bootstrap parameter estimates in figure 2 we can see 

that there was no substantial correlation among the parameters estimates, indicating that 

no parameter in the model was unneeded, and from the histograms in the diagonal that 

the distribution of the estimates was approximately normal. 

 

      Figure 2: Pair plots of the bootstrap parameter estimates. 

 

Model Evaluation 

As mentioned in the methods section, in order to evaluate how well the variability of the 

data is explained by the model we calculated the generalized 2
R  values for each 

equation (the first three equations of the model) for each of the replicates used for fitting 

and the ones not used for which 2
R gives a measure of out-of-sample predictive ability 

of the model. The 2
R  values are given in table 2. The AIC (Akaike Information 
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Criterion) value of the model for the data used for fitting was -31.61591. The AIC value 

does not provide, by itself, any information on how well the model fits. It has meaning 

only when compared with the AIC value of a different model. The model with lower 

AIC value is considered better. A number of slightly different models were fitted (see 

appendix) but none had better AIC value from the one presented here. 

 

 

 Equation 1 Equation 2 Equation 3 

Replicate 1 0.58522963 0.79979963 -0.09334033 

Replicate 2 0.49589773 0.81943425 -0.04237237 

Replicate 3 0.4320817 0.5721675 -0.3409283 

Replicate 4 0.9854110 0.9773697 0.9885831 

Replicate 5 0.9892377 0.9830765 0.9780964 

Replicate 6 0.9855375 0.9954118 0.9775155 

Replicate 7 0.9848538 0.9862035 0.9909290 

Replicate 8 0.9793289 0.9814534 0.9643740 

Replicate 9 0.9763612 0.9894264 0.9892925 

Replicate 10 0.9932420 0.9936360 0.9645656 

Replicate 11 0.9873704 0.9837609 0.9759205 

Replicate 12 0.9907734 0.9921892 0.9722996 

Table 2: Generalized 
2

R values. With red are the replicates that were not used in the fitting. 

 

The 2
R values for equations 1 and 2 for the control replicates are satisfactory. The 

values for the non-control replicates (4-12), for all three equations, are all very close to 

1. This means that the extra variability in the non-control replicates (see figures 5a and 

5b) caused by the fluctuations in the habitat volume is explained very well by the model 

(more than 96% of the variability is explained in every case). The 2
R values for 

equation 3 for the control replicates (1, 2 and 3) are very low. These values show that 

equation 3 is performing more or less the same as if we were making predictions using 
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the mean of the data for the P-stage for each replicate. Does this mean that equation 3 is 

not good? The average of the absolute values of the differences between the predictions 

from equation 3 and the real data from all the control replicates (replicates 1, 2, 3) is 

3.114443, while the mean the of pupae values in these replicates is 41.79339. Also from 

the histogram of these differences in figure 3 we can see that equation 3 is indeed doing 

well in predicting the numbers of pupae.  

 

Figure 3: Histogram of the distances between the predicted pupae values and the real data pupae 

values for replicates 1, 2 and 3. 

 

The reason why the 2
R values for equation 3 for the control replicates 1, 2 and 3 are low 

is because there is no substantial enough variation from the mean of the pupae values to 

be explained. In order to give a visual notion of this, figure 4a shows a plot of equation 

3 (as a surface) along with the corresponding data values of all the control replicates (1, 

2 and 3). In figure 4b the surface is plotted for smaller range of )1(
L  and )2(

L  values 

while in figure 4c instead of the equation surface there is a horizontal plane with the 

mean of the pupae values as intercept. With green are the points above the surfaces and 

with red those below (the graphs are presented in such angles so as the data points along 

with the fitness of the surfaces are as visible as possible). Note that in the data points are 

also those from control replicate 3 which was not used in the fitting. 
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Figure 4a: Equation 3 plotted as a surface along with the corresponding data points from the control 

replicates 1, 2 and 3. With green are the points above the surface while with red those below. 
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    Figure 4b: A closer look on the surface of figure 3a where the data points are concentrated. 

 

 

 

 

 

Figure 4c: The plane with intercept the mean of the pupae values in the control replicates 1, 2 and 3 

along with the data points from those replicates. With green are the points above the plane while 

with red those below. 
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Figure 5a shows the projection of the data points and the plane of figure 4c on the L1 at 

time t, P at time t+1 plane in order to give a better picture of the small variation of 

pupae from their mean in the control replicates. For comparison the same was done for 

the L2 stage (which is predicted by equation 2) in figure 5b.   

 

 

    Figure 5a: Small variation from the mean.               Figure 5b: Larger variation from the mean. 

 

Table 3 shows the SSE and SST values for equations 1, 2 and 3 for the control replicates. Notice 

that the SST values for equation 3 are always smaller from those of the other equations. 

 

Replicate 1 SSE SST 

Equation 1 7.247521 17.47358 

Equation 2 1.804384 9.01289 

Equation 3 4.117422 3.76591 

Replicate 2 SSE SST 

Equation 1 4.719977 9.363134 

Equation 2 1.022360 5.661984 
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Equation 3 2.693146 2.58367 

Replicate 3 SSE SST 

Equation 1 5.851134 10.30278 

Equation 2 2.618583 6.120579 

Equation 3 3.955057 2.949491 

Table 3: SSE and SST values for equations 1, 2 and 3 for the control replicates. 

 

Another way to see if the model is doing well is to look on the time series for the 

)2()1(
, LL  larvae stages and for the pupae and the corresponding one step predictions. In 

figure 6a in blue circles are the time series of the data of replicate 3 for each of the three 

stages (and volumes) while the red circles are the one step predictions from the 

deterministic model. Figure 6b shows the same as figure 6a but for replicate 6. 

 

 

   Figure 6a: Times series of replicate 3 and the corresponding one step predictions. 



21 
 

 

  Figure 6b: Time series of replicate 6 and the corresponding one step predictions. 

 

First, remember that replicates 3 and 6 were not used in the fitting. Also notice in figure 

6a that for the pupae stage (which had low 2
R values) except from the fact that the 

errors in predictions are not big, the directions in most of the one step predictions are 

correct. It is obvious from figure 6b that for the non control replicate 6 the model is 

doing very well. The two figures of times series are representative of the general 

“picture” of the times series and the one step predictions for the rest of the replicates 

(see also appendix). Because of the volume fluctuations in the non control replicates the 

noise does not have a big impact. On the other hand, in the control replicates because 

the population is in equilibrium, noise has an effect that is easily visible from the time 

series.   

The analysis of the residuals showed that there was no autocorrelation and that the 

residuals in each replicate came from the same distribution. There were departures from 

normality though, for the residuals of equations 2 and 3. Tables with the p-values and 

the test statistic values from the analysis are given in the appendix. 
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Chaos and Discrete State Dynamics 

Following the footsteps of the work presented in [17] for the dynamics of T. castaneum 

we wanted to see for what parameter manipulations the deterministic model predicts 

chaotic behaviour. But, as mentioned in [21], it is also important to estimate confidence 

intervals for the maximum Lyapunov exponents. We will also refer to what is the 

connection of the continuous state model (populations can take non integer values) with 

a discrete state version model when the continuous state model predicts chaotic 

dynamics. We will refer to the corresponding dynamics of the discrete state model as 

underlying chaos since mathematically a discrete state model cannot be chaotic. In the 

following, the reader should assume that E=0.55, 54
t

V , 01.0
pa

c , 7.0
a

 and all 

the other parameter values were set to the estimated values from the fitting (shown in 

table 1), otherwise if a parameter varies or has given a different value it will be stated. 

 

Chaotic dynamics 

The model has in total 12 (including volume) parameters. Three of them, 
apa

c ,  and E 

were manipulated experimentally. Figure 7 shows the bifurcation diagram of the total 

population when the parameter for imposed emigration rate of 
)2(

L  larvae, E, is set to 

0.35 and the adult mortality rate, 
a

 , varies from 0 to 1. The bifurcation diagram gives 

a first notion of what is the dynamical behaviour of a certain orbit, after transients are 

removed, for different values of the parameter
a

 . The initial conditions used for 

producing the bifurcation diagram were    35,28,59,138,,,
0

)2(

0

)1(

0


o
APLL . Vertically 

separate strands, in the bifurcation diagram, indicate that the orbit ended up in a cycle 

(periodic behaviour). Values of the parameter 
a

  where the total population values 

seem to fill whole intervals indicate aperiodic orbits. For aperiodic orbits the maximum 

Lyapunov exponent might be zero indicating that the orbit ends up in an invariant loop, 

the orbit on an invariant loop though is not chaotic. When the maximum Lyapunov 

exponent is positive this is an indication that a chaotic attractor might exist. Below the 
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bifurcation diagram, in figure 8 there is a plot of the maximum Lyapunov exponent 

values for the different values of
a

  (when E=0.35). 

 

 

Figure 7: Bifurcation diagram of the total population with a
  varying (E=0.35). The red line  

indicates where 95.0
a

 .    

 

Figure 8: Maximum Lyapunov exponents for varying values of a
  (E=0.35). The red line indicates 

where 95.0
a

 . 
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When E=0.35 and 95.0
a

 model (1) predicts that the system will have a global (as 

seen by simulations) chaotic attractor. The maximum Lyapunov exponent is  0.11 

while the corresponding 95% confidence interval is (0.09152199, 0.11486884). Also the 

simulations, using the 2000 parameters sets obtained from the bootstrapping, showed 

that the attractor is robust, in the sense that in most of the cases its shape did not 

affected substantially by the differences in the parameters. Below is a histogram of the 

2000 maximum Lyapunov exponents calculated using the 2000 bootstrapped parameter 

estimate sets.  

 

Figure 9: Histogram of the max. Lyapunov exponents calculated from the 2000 bootstrapped 

parameter estimate sets. 
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Figure 10 shows a 3D plot of the chaotic attractor. This picture is but a “shadow” of the 

real attractor since the system is four dimensional and )1(
L larvae stage is missing from 

the phase space. 

 

 

                         Figure 10: The chaotic attractor of the system when E=0.35 and 95.0
a

 . 

 

The attractor is actually a hyperchaotic attractor [31,32]. Except from the maximum 

Lyapunov exponent there are two other positive Lyapunov exponents (from the total of 

four Lyapunov exponents that an orbit has since the system is 4-dimensional). 

Hyperchaos is the case where at least two Lyapunov exponents are positive (see also 

section “Lyapunov Dimension” in the appendix).  

As mentioned in the introduction, there is more than one mathematical definition of 

chaos and the common feature shared among them is the sensitivity to initial conditions 

[8]. Figures 11a, 11b, and 11c, illustrate this feature of the system by depicting how the 

orbits of a set of initial conditions slightly apart one from another will diverge after a 

number of time steps using model (1) with E=0.35 and 95.0
a

 . 
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        Figure 11a: A sphere of initial conditions with radius 0.0001. 

 

 

                        Figure 11b: After 130 iterations. 
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                          Figure 11c: After 200 iterations. 

 

Discrete State Dynamics and Underlying chaos 

Since, in reality, insects come only in integer numbers, one could ask what would 

happen if we modify model (1) so that the state variables of the system are allowed to 

take only integer values.  Since the orbits of the model are bounded it is easy to see that 

the integerization of the model would have as a result the existence of only periodic 

cycles in the dynamic behaviour of the system (see for example [33]). So then the 

question is: Does the chaotic dynamics predicted by the continuous state model have 

any real meaning? Is there going to be anything different in the dynamics of the discrete 

state model for parameter values where the continuous state model behaves chaotically 

from parameter values where the continuous state model has a periodic cycle?  The 

point made in [17], for the T. castaneum model, is that the more the habitat volume 

increases the more the dynamics of the discrete state model will resemble those of the 

continuous one. Before this feature is illustrated for the model presented here, below, is 

the discrete state version of model (1). Note that the convergence of the discrete state 

attractor to the one of the continuous state model, as the volume increases, is based on 

simulations and not on a rigorous mathematical proof. 
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          (3) 

 

Figures 12a, 12b, and 12c show the attractor of the system by model (3) when E=0.35 

and 95.0
a

 for different values of (constant throughout time) volume. Note that the 

graphs below show the periodic attractor of a certain initial condition each time. There 

are also other periodic attractors, similar to the chaotic attractor from model (1), lying 

very close to each other. Also, as the volume increases the dynamics of a group of 

initially close to each other state conditions of the system will “imitate” those in figures 

11a, 11b and 11c. Although in the discrete case the minimum difference of two initial 

conditions is one individual this difference is becoming relatively smaller as the volume 

increases, either if it is seen as density, 1/V, or as relative to the total population which 

is becoming larger as the volume increases. 
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                                 Figure 12a: Attractor by model (3) when volume is set to 50g. 

 

                                Figure 12b: Attractor by model (3) when volume is set to 500g. 

 

                             Figure 12c: Attractor by model (3) when volume is set to 5000g. 
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A Proposed Experimental Scheme 

The validation of the model would require the comparison between the predicted 

behaviour and real data. In the same way used for the T. castaneum ([13]), the 

experimentalist could try to verify the dynamics predicted by the bifurcation diagram in 

figure 7 by manipulating the adult mortality rate for a number of different values. The 

interest of this work, though, is mostly on the chaotic and underlying chaotic behaviour 

predicted by models (1) and (3) respectively. First, below is the stochastic version of 

model (3).  
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     (4) 

 

Based on the facts that as the volume increases the dynamics of model (3) will resemble 

more the dynamics of model (1), the effect of demographic noise will be smaller, the 

obtained confidence interval for the maximum Lyapunov exponent when E=0.35 

and 95.0
a

 , and the robustness of the attractor, the following experimental scheme is 

proposed in order to investigate if there would be any (qualitative) evidence of the 

predicted behaviour in real data. 
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The basic idea is to collect data, in a relatively small period of time, by culturing T. 

freemani and imposing the manipulations mentioned in the above and after the data is 

collected to see if the picture we get by plotting the data in the phase space  APL ,,
)2(  is 

similar to the predicted one. There are two things to notice. The first is that because the 

number of data required is large (relative to the time scale) a number of cultures should 

be initiated for different initial conditions which by model (3) belong to the “chaotic” 

attractor. The second is that, in general, because of the presence of noise, in small 

volumes the deterministic influence in the real data is not going to be clear even if the 

picture we get matches adequately with the one by model (4). An example of this 

argument is given in the following. 

Figures 13a, 13b, 14a and 14b have been produced using model (4) with the random 

vector  
321

,, EEE  having a multivariate normal distribution with mean vector of zeros 

and variance covariance matrix the matrix
1

 .  

Figures 13a and 13b illustrate the outcome of a simulation of the above experimental 

scheme for different volumes when E=0.35, 6.0
a

  where model (1) predicts a stable 

seven-cycle. In figures 14a and 14b the same is done for E=0.35 and 7.0
a

 where 

model (1) predicts a chaotic attractor coexisting with a stable six-cycle. Notice that 

figures 13a and 14a look similar, but in figures 13b and 14b the difference of the 

underling dynamics is made clear. The data in each case came from 20 replicates of 60-

week length (if possible it would be better to have longer replicates or more replicates 

with larger volumes). Figure 14c depicts the chaotic attractor when E=0.35 

and 7.0
a

 . 
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    Figure 13a: E=0.35, 6.0
a

 , V=50g .                          Figure 13b: E=0.35, 6.0
a

 , V=1000g. 

 

 

    Figure 14a   E=0.35, 7.0
a

 , V=50g.                            Figure 14b: E=0.35, 7.0
a

 , V=1000g. 
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Figure 14c: The chaotic attractor of the system when E=0.35 and 7.0
a

  

 

In figure 15 the red circles came from model 4 using the same practice, 20 replicates 

each lasting for 60 weeks and each initiated from a point of the attractor by model (3) 

with E=0.35, 95.0
a

 and gV
t

1000  , but the rest of the parameters for each the 20 

replicates were randomly chosen from the 2000 bootstrapped parameter estimate sets. 

The black points are 20000 points simulated with model 3 for the same parameter 

values.  
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Figure 15: In black: points of the attractor by model 3. The red circles are points from 20 simulations 

of 30 time steps using model 4 with points of the attractor (black points) as initial conditions  (E=0.35 

95.0
a

  and gV
t

1000 ). 

 

An experimental implementation of the above which would give a similar result as the 

predicted one (red circles in figure 15 “match” with the attractor) would provide good 

evidence of the chaotic (or underlying chaotic) behaviour of the system (when E=0.35, 

95.0
a

 ) .  

One thing to notice is that in large volumes there might be substantial spatial structure 

that could make the model’s predictions inaccurate.  Although after every two weeks the 

insects would have to be counted so the spatial structure (for example inside the bottles 

where the insect are cultured) would be destroyed, it might be better to artificially 

destroy it more frequently. 
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Discussion 

In this work a discrete time model (difference equations) was presented for the 

population dynamics of the flour beetle Tribolium freemani. The model was fitted to 

experimental data in order to obtain estimations for the parameters of the model. 

Confidence intervals of the parameters were attained by using a bootstrapping method. 

The model’s fitness was evaluated using as main criterion the generalised 2
R  values to 

see how much of the variation in the data is explained by the model. The results show 

that the model explains more than 96% of the variation in the non control replicates 

(where habitat volume was fluctuating). For the control replicates the results were also 

satisfactory for equations 1 and 2. Only the 2
R  values for equation 3 in the control 

replicates were very low but the reason for that is that there was no substantial variation 

in the pupae-stage data from their mean which the model could have explained. Most of 

the one step predictions of equation 3 were very close to the real data.  

The above suggest that the model is indeed doing well in describing the dynamics of the 

population under the experimental conditions. This not only means that the biological 

mechanisms of cannibalism and inhibition of pupation are driving the intrinsic 

dynamics of the species but it also reveals the way the inhibition mechanism works (see 

also appendix). That is, the pupation of ordinary larvae is affected only by crowding of 

ordinary larvae and respectively the pupation of the delayed larvae only by crowding of 

the same kind. Also the inhibition function for both larvae types not only has the same 

form but also the same parameter values. 

The model presented here can be used in combination with the model for T. castaneum 

for a theoretical study of the competitive exclusion principle as in [34]. It can also be 

used for the study of the influence of different kinds of noise on the dynamics as it was 

done in [35]. As Reuman et al. mention in [35] the influence of noise/stochasticity is of 

major interest in ecology since it can have a considerable effect on the population 

dynamics. 

The second aim of this work was to identify for what parameter manipulations the 

model predicts chaotic behaviour in the dynamics of the population. An experimental 

scheme is suggested on how the predicted “chaotic” dynamics could be observed in real 
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data, considering the presence of noise. The predicted chaotic dynamics were 

accompanied by a very high frequency of adequately positive maximum Lyapunov 

exponents in the 2000 bootstrapped parameter estimates (>99%). A discrete state 

version of the model (population can take only integer values) and subsequently its 

stochastic version were considered. A connection was made between the chaotic 

dynamics of the continuous state model and the discrete state model. We refer to the 

corresponding dynamics of the discrete state model as underlying chaos as in [17].  

If the above were to be validated experimentally, although it would be induced chaos, it 

would still provide a case of an ecological system where what in first sight might seem 

as randomness in the dynamics, it can actually be explained by a deterministic model as 

Robert May’s hypothesis suggest. It is possible though, that in natural habitats 

environmental noise can affect the parameters of the system causing the dynamics to 

constantly shift from one kind of behaviour (stable) to another (chaotic) and back again. 

Most importantly, the validation of the above will prove, once again, how successful a 

mechanistic model can be in explaining population dynamics and demonstrate the value 

of nonlinear dynamics in ecology. 

More general, the search for chaos in the actual dynamics (not induced) of ecological 

systems does not only have importance under the concept of May’s hypothesis but it 

can also have important applications as in other disciplines. The dynamics of a chaotic 

system can be controlled and stabilized (see [36-40]) and in fact chaos might be of 

advantage since, as Ott et al. mention in [36], it might be possible to choose from an 

infinite number of unstable orbits to stabilize with small parameter perturbations which 

would not be possible if the system had stable dynamics. Therefore, the identification of 

chaos in ecological systems yields the possibility for easy control (relatively to case of 

stable dynamics) of the system, be it for conservation, industrial or medical purposes. 

The strength of noise though, would play substantial role in the controllability of the 

system. 
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Parameter Estimation 

The probability density function of a normally distributed random vector 
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Recall that from the statistical model (2) we have, 
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In order to find the maximum likelihood parameter values we want to find those values 

which maximize the sum   
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The Inhibition Function 

Plots of the inhibition function are shown below in figures 14 and 15 in order to 

demonstrate the difference when varying the h1 and h2 parameters of the function. 
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Figure 16a: Plots of the inhibition function for different values of the h1 parameter. 

 

Figure 16b: Plots of the inhibition function for different values of the h2 parameter. 
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Results from Statistical Tests on the Residuals 

 

 Residuals of eq. 1 Residuals of eq. 2 Residuals of eq. 3 

Replicate 1 0.15098286 0.7060138 0.9697744 

Replicate 2 0.15559597 0.1698264 0.5815052 

Replicate 4 0.05598482 3.052409e-03 0.01018813 

Replicate 5 0.65401285 4.750114e-07 0.01709180 

Replicate 7 0.58829388 0.04165070 7.645289e-06 

Replicate 8 0.95249445 0.01427521 1.932918e-05 

Replicate 10 0.01666762 0.1370599 2.713523e-09 

Replicate 11 0.32269019 7.730995e-04 3.148524e-04 

Table 3: P-values from the Shapiro-Wilk test for each replicate indicate there are some departures 

from normality. 

 

 Residuals of eq. 1 Residuals of eq. 2 Residuals of eq. 3 

Colour 1 0.04891516 0.2485079 0.5618178 

Colour 2 0.23820719 6.560779e-07 1.287303e-03 

Colour 3 0.70931294 1.268939e-03 4.152999e-09 

Colour 4 0.01804639 2.455742e-05 1.429843e-11 

Table 4: P-values from the Shapiro-Wilk test on each colour. More departures from normality. Colour 

1 means the control replicates 1-3. 

 

 Residuals of eq. 1 Residuals of eq. 2 Residuals of eq. 3 

Replicate 1 1.621840 2.123172 1.549604 

Replicate 2 1.837808 2.177252 1.905008 

Replicate 4 1.740294 2.066694 1.737756 

Replicate 5 1.306382 2.049121 1.947965 

Replicate 7 2.006876 1.678927 1.605171 
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Replicate 8 1.385906 2.176279 1.916320 

Replicate 10 2.302899 1.555693 1.783835 

Replicate 11 1.594676 2.158711 2.084978 

Table 5: Test statistic values from the Durbin-Watson test. The values indicate no autocorrelation 

problem in the residuals. 

 

 

 

 Replicates 1-2 Replicates 1-4 Replicates 1-5 Replicates 1-7 

Equation 1 0.09707484 0.0143015480 6.576891e-05 0.014301548 

Equation 2 0.91880522 0.5786001417 4.045874e-01 0.578600142 

Equation 3 0.16497270 0.0005039436 1.649727e-01 0.001270814 

 Replicates 1-8 Replicates 1-10 Replicates 1-11 Replicates 2-4 

Equation 1 0.003018184 0.01430155 0.1649726995 0.05414108 

Equation 2 0.265687140 0.26568714 0.0067607323 0.09707484 

Equation 3 0.014301548 0.01489316 0.0005039436 0.09707484 

 Replicates 2-5 Replicates 2-7 Replicates 2-8 Replicates 2-10 

Equation 1 0.0005039436 0.05414108 0.02860307 0.26568714 

Equation 2 0.0970748438 0.16497270 0.05414108 0.09707484 

Equation 3 0.4045874057 0.26568714 0.76593145 0.75909784 

 Replicates 2-11 Replicates 4-5 Replicates 4-7 Replicates 4-8  

Equation 1 0.1649726995 0.02860307 0.5786001 0.40458741 

Equation 2 0.0005039436 0.40458741 0.9999246 0.99992461 

Equation 3 0.0970748438 0.09707484 0.9188052 0.01430155 

 Replicates 4-10 Replicates 4-11 Replicates 5-7 Replicates 5-8 

Equation 1 0.7659315 0.4045874 0.05414108 0.1649727 

Equation 2 0.7659315 0.2656871 0.40458741 0.4045874 

Equation 3 0.4004737 0.9188052 0.16407920 0.4045874 
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 Replicates 5-10 Replicates 5-11 Replicates 7-8 Replicates 7-10 

Equation 1 0.02860307 0.001270814 0.99001933 0.4045874 

Equation 2 0.76593145 0.054141077 0.99001933 0.7659315 

Equation 3 0.75909784 0.097104524 0.09707484 0.9134755 

 Replicates 7-11 Replicates 8-10 Replicates 8-11 Replicates 10-11 

Equation 1 0.2656871 0.5786001 0.09707484 0.05464633 

Equation 2 0.2656871 0.9188052 0.16497270 0.40047367 

Equation 3 0.5786001 0.4004737 0.16497270 0.75909784 

Table 6: P-values from Kolmogorov-Smirnov test for each pair of replicates. A few of these are below 

0.01, but generally it seems like a reasonable if not entirely perfect assumption to say the residuals 

were distributed in the same way across replicates. 

 

Time Series and Corresponding One-Step Predictions 

Below are time series plots along with the one step predictions of model (1), as those in 

figures 6a and 6b, for replicates 1, 4, 9 and 12. Again, remember that replicates 9 and 12 

were not used in the fitting. 

 

 

  Figure 17a: Times series of replicate 1 and the corresponding one step predictions. 
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  Figure 17b: Times series of replicate 4 and the corresponding one step predictions. 

 

 

  Figure 17c: Times series of replicate 9 and the corresponding one step predictions. 
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  Figure 17d: Times series of replicate 12 and the corresponding one step predictions. 

 

 

 

Other Model Trials 

As mentioned in the main text, different variants of the model were also fitted but none 

was better. In the table below are three of them, each one use the same inhibition 

function as the model presented but in a different way (Only the equations differing 

from the presented model are shown). Next to each model in the table the corresponding 

AIC values are shown. In the last model 
1

f  and 
2

f  have again the same form of the 

inhibition function but the corresponding 
1

h  and 
2

h  parameters are allowed to take 

different values for each function (i.e. there are two more parameters 
3

h and 
4

h ). The 

fact that the AIC value for the last model in the table is close to the model presented in 

the main text indicates that the addition of the two new parameters is not needed. The 

other model trials included models with different formulas for the inhibition function. 
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Model AIC Value 
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(Both types of larvae affect the pupation of both larvae types.) 
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(Both types of larvae affect the pupation of the L1-stage larvae but L2-

stage is affected only by the same type of larvae.) 
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-30.44 

Table 1 : Different model trials, considering different ways of how the inhibition mechanism might 

work.  
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Lyapunov Dimension 

(The following definition is taken from [30], where the reader can also find an 

explanation of the Lyapunov dimension p. 203-207) 

Let f be a map on m
 . Consider an orbit with Lyapunov exponents 

m
hh  ...

1
 and p 

denote the largest integer such that 




p

i

i
h

1

0 . Then the Lyapunov dimension,
L

D , of the 

orbit is defined as 

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p

i

p

p

L
h

h
pD

11
||

1
, if p<m. If no such p exists then 0

L
D   and 

if p=m then mD
L
 .  

Because the algorithm implemented for this project (following the instructions in the 

appendix of [21]) was for the calculation of only the maximum Lyapunov exponent and 

as seen from the above definition in order to calculate the Lyapunov dimension all the 

Lyapunov exponents of the orbit are needed (and because of lack of time) the LET 

(Lyapunov Exponent Toolbox. Author: Steve Wai Kam SIU) toolbox for matlab was 

used.  

The values of the Lyapunov exponents calculated by LET were 13007.0
1
h , 

066165.0
2
h , 030257.0

3
h  and 68581.0

4
h . 

By the above definition the Lyapunov dimension of the attractor with E=0.35, 

95.0
a

  is 3.3303.  

(The maximum Lyapunov exponent by LET was higher by  0.02 from the value by the 

algorithm written for this project) 

Also, an attractor with at least two positive Lyapunov exponents (in this case there were 

three) is called hyperchaotic. 

 


	Arxh1
	Thesis_final_printout1

