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ABSTRACT 
 

In biological study it is common to take observations over time and thus there is strong 

need in developing tools to analyse time series data. Variations of dynamics over time 

are often modelled for estimation and forecasting. The random walk process in 

particular is one of the most commonly used models and serves as the null hypothesis in 

many theories. As a result, this paper adopts the Q-statistic and Variance-Ratio (VR) 

Test to test the random walk hypothesis and assesses their testing power against AR(1) 

model. It is shown that both the Q-statistic and VR Test are valid tests in testing against 

AR(1) and VR has a higher testing power. Testing power decreases when ϕ approaches 

unity as the AR(1) process becomes less distinguishable from random walks. In 

population genetics allele frequencies fluctuate along generations, known as genetic 

drift. If there exist external forces such as selection, the drift will then have a trend and 

drive the allele to extinction or fixation. This motivates the second test for a trend in 

random walk. Both Likelihood Ratio Test and modified Variance-Ratio can test for 

trends within random walk models. It is shown that the power of the two tests increases 

with the trend-to-standard deviation 
 

 
 ratio. In general the Likelihood Ratio Test 

provides a better power in testing for a trend. In a more realistic scenario, measurement 

error is assumed in the observations and some newer tests are developed. In this paper 

the √  ̂( ) statistic and 3-point Variance-Ratio are introduced. The overall testing 

power of √  ̂( ) statistic is higher in both high and low signal-to-noise ratio.  
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ZERO: OVERVIEW 
 

In many biological experiments data is recorded across a time interval as biologists 

want to study the dynamics of a situation, in particular, the change in dynamics over 

time. As a result, the modelling and analysis of time series data becomes important to 

biological study.  

 

The random walk serves the null model in many biological hypothesises. In the Neutral 

Theory of molecular evolution, the change in allele frequency can be by chance alone 

without any predetermined way and this process is known as genetic drift (Hartl & 

Clark, 1997). Wright-Fisher model (Fisher, 1930; Wright, 1931) states that the 

transition probability follows binomial distribution and the proportions can be 

approximated by diffusion process, which is a continuous random walk process. In 

morphological evolution, many variations fall on continuous scale, and random walk 

models are used to model quantitative traits. Neutral Theory of Ecology (Hubbell, 2001) 

assumes that biodiversity arises at random and the equivalence between individuals. 

This result in species within a community follows a random walk in composition. In 

mathematical ecology, random walks can be used to model population dynamics and 

animals or cells movement (Codling, Plank & Benhamou, 2008). Furthermore, 

population viability analysis and extinction risk can be assessed under the assumption 

of diffusion process (Lande & Orzack, 1988). Apart from biological applications, random 

walk plays an important role in physical sciences and economics, for instance, in 

econometrics, geometric Brownian motion is used to model share price movements and 

lead to the development of derivatives pricing model (Black & Scholes 1973). Many 

alternative models are raised, such as the niche theory in ecology, density-dependence 

model (Ricker, 1954) in population dynamics and mean-reverting models.  

 

The random walk model may not be the most suitable model but many results are 

derived from random walks. Its mathematical simplicity and elegance make it popular 

and random walks are often the key assumption of the theories above. Hence, before 

applying these theories to the real data, it is interesting to ask whether the data follows 

a random walk. If the data satisfies the random walk hypothesis, the results and 

predictions from the theories are applicable to the real situation. It would otherwise 
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violate the assumption and the conclusions drawn by these theories would be 

unrealistic.  

 

Some tests have been developed for testing the random walk hypothesis. Cowles-Jones 

statistic (Cowles & Jones, 1937) and run test are some of the earliest non-parametric 

tests for random walks. Some tests are based on autocorrelation function such as the 

Q-statistic (Box & Pierce, 1970). Fuller (1976) provides asymptotic distributions for 

autocorrelation coefficients and allows the development of random walk testing in later 

ages. More recently, Lo and MacKinlay (1988) develop the Variance-Ratio test to test for 

various forms of random walks.  

 

This paper aims to (1) evaluate the performance of existing tests for random walk 

hypothesis, in terms of statistical power of the tests against a specific alternative 

hypothesis, (2) develop and evaluate tests to discriminate trended random walk and 

non-trended random walk, and finally (3) discuss problems faced by the tests due to the 

existence of measurement errors and provide alternative testing methods.  

 

The organization of this paper is as follows: Section 1 gives formal definition to time 

series and random walk process. Some important characters about random walk are 

derived and these facts are useful in building testing methods for later sections. Section 

2 introduces two testing methods for random walk hypothesis, namely the Q-statistic 

and Variance-Ratio Test, and their null distribution and testing power are compared 

and analysed. Section 3 is a continuum of the previous section. If random walk pattern is 

once confirmed, then the next question will be whether a trend exists in such a random 

walk. This section provides testing methods for trends in random walk and evaluation 

of the performance of the tests. Section 4 discusses the case when measurement error is 

added into random walk hypothesis. Traditional tests for random walk are ineffective 

under this condition and thus new testing methods are introduced based on some 

features about random walk with measurement error, such as autocorrelation and 

variance structure. Section 5 is to provide a method to test for a trend in random walk 

with measurement error. Finally, section 6 recapitulates and discusses the limitation of 

this study.  
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ONE: DEFINITIONS 

1.1 Introduction 

Time series data is often viewed as a collection of values,                in which 

the subscript t is the time at which the datum    is observed. In more common 

terminology, time series is a sequence of observations on a subject at different time 

points. Traditional statistical tools that are based on independent samples are not ideal 

because of the correlated structure of time series data. As a result a branch of statistical 

methods are built under this scenario to analyse data across time. Many statistical 

models have been used to fit in time series data, or ultimately, to predict the future. In 

particular, random walk model is one of these types. 

 

This study begins with a formal definition to random walk process. According to 

Campbell, Lo & MacKinlay (1997), there are more than one definition for random walk, 

depending on the nature of increments, and the dependence that exists between 

increments in different distinct time intervals.  

1.2 Random walk 1: Independent and identically distributed increments 

The simplest version of the random walk hypothesis is the independent and identically 

distributed (IID) increments. It assumes that all increments are independently drawn 

from the same distribution with the same mean and variance. The simplest form of the 

dynamics is the following:  

                    (    )       [equation 1.1] 

and the increment is defined as:  

           

               (    )         [equation 1.2] 

where      is the process,      is distributed with mean 0 and variance   , and      

is the increment sequence. The assumption of IID increments is often too strong and 

theoretical, but it provides good insight about the behaviour of random walk in general. 

The clear formulation and definition is useful for simulation purposes as well.  
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The most common distributional assumption of the increments       is normality. The 

process is given by the following equation:  

               
   

  (    )        [equation 1.3] 

It is equivalent to the discrete version of Brownian motion, sampled at equal-spaced 

intervals. Simulation of 10 paths of random walk of this type can be seen in figure 1.1.  

 

Figure 1.1. 10 simulated random walk trajectories of length 1000 with normally distributed 

increments.  

1.3 Random walk 2: Independent increments 

The second type of random walk is independent increments. It assumes all increments 

are independent but can be drawn from different distributions. It is a more general case 
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than independent and identically distributed increments as it allows unconditional 

heteroskedasticity in the increments. In other words, time-variation fluctuation is 

allowed in any of the form as long as the increments are independent. Independent is a 

strong assumption that not only disjoint increments are uncorrelated, but it also implies 

any of the non-linear functions of increments are uncorrelated:  

   ( (  )  (  ))                                   [equation 1.4] 

1.4 Random walk 3: Uncorrelated increments 

Further relaxing the assumption of independence yields the third definition of random 

walk. This is an even more general version of random walk hypothesis which only 

requires uncorrelated increments. In this case, for every pair of distinct increments, 

   (     )   , but where the functions of these increments may not be 0. For instance, 

   (  
    

  )   . This is the weakest form of random walk hypothesis among the three 

definitions.  

 

Despite the differences in their definition, all three types of random walk share some of 

the common properties. In particular, the conditional mean and variance of random 

walk are:  

   [     ]                [equation 1.5] 

   [     ]               [equation 1.6] 

 

Conditional on the initial value   , the conditional mean and variance are both linear 

with time. This implies random walk processes are non-stationary because of 

unbounded and increasing variance.   

1.5 Section summary 

There are three definitions of random walk hypothesis. IID increment is of the strictest 

sense, while uncorrelated increment is the most relaxed form. This paper adopts the 

simulation-based approach to evaluate the testing methods and therefore IID normally 

distributed increments are usually assumed under H0.   
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TWO: TESTING THE RANDOM WALK HYPOTHESIS 

2.1 Introduction 

From the three definitions of random walk, it can be seen that even for the weakest 

form of random walk, the uncorrelated increments, they imply that all autocorrelations 

of the increments are zero.  This is one of the important features of random walk 

model and several tests had been derived based this consequence. In particular, this 

section focuses on the Q-statistic and Variance-Ratio (VR) Test.  

 

Sample h-lag autocovariance of increments can be calculated using the formula below:  

 ̂( )  
 

 
∑ (      ̅)(    ̅)   

              [equation 2.1] 

Where            is the increment and  ̅ is the sample mean of all the increments. 

Sample autocorrelation coefficients can be obtained directly:  

 ̂( )  
 ̂( )

 ̂( )
            [equation 2.2] 

2.2 Q-statistic 

Box and Pierce (1970) develop an intuitive quantity Q using sample autocorrelations. 

The Q-statistic is the sum of squared autocorrelations up to a desired lag:  

   ∑  ̂ ( )
 

   
          [equation 2.3] 

As the sample autocorrelation coefficients are asymptotically independent and normally 

distributed, under H0, the Q-statistic is the sum of independent squared normal random 

variables and thus asymptotically distributed as chi-square with q degrees of freedom. 

Ljung and Box (1978) modify the Q-statistic for finite-sample correction:  

    (   )∑
 ̂ ( )

   

 

   
         [equation 2.4] 

It can be seen that in the Q’-statistic the sample autocorrelations are not equally 

weighted for small sample-size correction. The Q’-statistic is also chi-squared 

distributed with q degrees of freedom.  
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2.3 Variance-Ratio Test 

Another property of random walk hypothesis is that the variance of increments is 

directly proportional to the length of time interval, as stated in equation 1.6. For 

example, if weekly increments are considered, their variance should be 7 times the daily 

increments. The plot of variances against different lengths of time interval from 10 

simulated random walks is shown in figure 2.1. The Variance-Ratio Test makes use of 

this property by comparing the variances of the increments from different lengths of 

time interval. Ideally under H0, the random walk hypothesis with IID normal errors, 

variance from q-period increment should be q times larger than that of one-period 

increment. Lo & MacKinlay (1988) suggest the Variance-Ratio test statistic, denoted as 

  ̅̅ ̅̅ ( ), is the ratio between two variances from different time intervals:  

  ̅̅ ̅̅ ( )  
 ̅ 

 

 ̅ 
             [equation 2.5] 

with other estimates:  

 ̂  
 

  
(      )          [equation 2.6] 

 ̅ 
  

 

    
∑ (         ̂) 

  

   
       [equation 2.7] 

 ̅ 
  

 

 
∑ (          ̂)

   

   
        [equation 2.8] 

   (      ) (  
 

  
)        [equation 2.9] 

 ̅ 
  and  ̅ 

  are the   and  -period unbiased variance estimators for overlapping 

increments.      is the total length of the sequence. For large sample, the 

distribution of the test statistic is asymptotically normal:  

√  (  ̅̅ ̅̅ ( )   )  
 
  (  

 (    )(   )

  
)      [equation 2.10] 

For convenience, the test statistic is scaled standard normal:  

√  (  ̅̅ ̅̅ ( )   )(
 (    )(   )

  
)      

 
  (   )     [equation 2.11] 

 

The relationship between Variance-Ratio Test and autocorrelation coefficients may not 

be explicit, but through some mathematical derivations it can be proved that the   ( ) 

statistic is the weighted sum of the first (q-1) autocorrelation coefficients with declining 

weights:  
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  ( )     ∑ (  
 

 
)  ( )

   

   
       [equation 2.12] 

Figure 2.1. The plot of variance of increment against time interval from 10 simulated 

random walks. A linear relationship is expected.  

2.4 Empirical distributions of test statistics under H0 

Although it has been shown that both test statistics (asymptotically) follow some 

theoretical distributions, it is more desirable to use empirical distributions under H0 

through simulation to enhance accuracy in the case of finite sample size. The null 

distributions of the two test statistics are generated from 20000 simulated random 
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walks with length 100.  Both test statistics are then computed with      for 

Q’-statistic, while      for Variance-Ratio Test. The q in Variance-Ratio Test is one 

bigger than that in the Q’-statistic because from equation 2.12 VR test statistic is the 

weighted sum of first (q-1) autocorrelations. As a result, both statistics are now 

composed of the first 10 sample autocorrelation coefficients. Therefore a fair 

comparison can be made using the same amount of information.  

 

The empirical distributions of the Q’-statistic and VR statistic under H0 are shown in 

figure 2.2. From the same distributions, empirical critical values of the two tests at 5% 

significance level ( ) are shown in table 2.1. It is noteworthy that VR statistic is a 

two-sided test and its 2.5- and 97.5-percentile are reported.  

  

Figure 2.2. Empirical null distributions of Q’-statistic with q=10 (left), and Variance-Ratio 
statistic with q=11 (right).  

 

Table 2.1. Empirical critical values at 5% significance level 

Test statistic Critical value(s) at      

Q’-statistic (    ) 19.044 

Variance-Ratio (    ) (-1.593, 2.480) 

 

Hence rejection rule of H0 can be seen easily. For using Q’-statistic, if the test statistic 

exceeds 19.044 then H0 is rejected. Similarly, if the Variance-Ratio test statistic is 
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smaller than -1.593, or greater than 2.480, the random walk hypothesis is rejected at 

5% significance level. These rejection rules shown in table 2.1 will be used in power 

analysis below.  

2.5 Power analysis 

To further understand the Q’-statistic and Variance-Ratio Test, their testing power is 

examined. The power of a test is defined as the probability of rejecting H0 at a certain 

significance level   given H1 is true. In this study, an empirical method is adopted and 

power can be viewed as the fraction of trials which the test is able to reject the null 

hypothesis given the data is knowingly drawn under H1.  

 

To evaluate the power of the two tests, a specific alternative hypothesis of the first 

order Autoregressive model (i.e. AR(1) model) is used. The AR(1) model is expressed in 

the following form:  

                      [equation 2.13] 

  is the autoregressive coefficient ranging from -1 to 1 for stationarity. Clearly when   

reaches one it becomes a random walk model same as the one shown in equation 1.3. 

The choice of AR(1) model as the alternative hypothesis because it is the discretized 

version of Ornstein-Uhlenbeck (OU) process. It has mean-reverting property and 

declining autocorrelations which behaves differently from random walks. Its 

autocorrelation structure is:  

 ( )                  [equation 2.14] 

 

In this simulation, the alternative hypothesis is AR(1) process with   set to be 0.7, 0.8 

and 0.9. 20000 simulated sequences with length 100 are generated for each value of  , 

and power can be viewed as the proportion of successfully rejecting H0 at the 5% 

significance level, using the empirical critical values shown in table 2.1. Results from the 

above simulation are listed in table 2.2.  
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Table 2.2. The empirical power of the Q’-statistic (q=10) and Variance-Ratio Test (q=11) 

against AR(1) model with   equals 0.7, 0.8 and 0.9, based on 20000 replications. 

 Q’ statistic (q   ) VR (q=11) 

 

  

0.7 0.2095 0.85675 

0.8 0.12790 0.48475 

0.9 0.07025 0.12950 

 

Table 2.2 shows that the power of both the Variance-Ratio Test and the Q’-statistic 

decreases when   approaches 1. This is because when   gets closer to unity, the time 

series behaves more like a random walk, and the separation between H0 and H1 

becomes less distinct. It can be seen that a random walk is a special case when   is 

exactly 1. As a result it is more difficult to discriminate the two processes and thus a 

decrease in testing power is expected.  

 

By comparing the two tests, Variance-Ratio Test has a larger power than the Q’-statistic 

for all values of  . It has been shown that both test statistics make use of the same 

information from the data but with different formulations. From equation 2.3 the 

Q-statistic is the sum of first q squared autocorrelations with equal weights. Q’-statistic, 

which is modified from the Q-statistic, is also composed of the first q squared 

autocorrelations with slightly unequal weights. It is observed from equation 2.4 that the 

weights are increasing with the lag. Higher-order autocorrelations tend to be 

insignificant as long-term effect is smaller. Instead, the Variance-Ratio Test takes into 

account the fading higher-other autocorrelations, and puts more weight on the closer 

autocorrelations. The Variance-Ratio makes better use of the existing information in 

constructing the test statistic and therefore it deserves a higher power. Furthermore the 

Q’-statistic is a portmanteau statistic in nature which is not specific enough. In 

conclusion, Variance-Ratio Test is a better option than the Q’-statistic in testing random 

walk hypothesis.  
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2.6 Section summary 

Both Q-statistic (and Q’-statistic) and Variance-Ratio Test have random walk as the null 

hypothesis. Both tests are formulated from sample autocorrelations from the increment 

sequence. The results from power analysis shown in table 2.2 suggest that the testing 

power against AR(1) process decreases when   approaches unity, and Variance-Ratio 

Test has higher power than Q’-statistic in general.  
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THREE: TESTING FOR TREND IN RANDOM WALK 

3.1 Introduction 

After testing for random walk hypothesis as shown in section 2, it is interesting to ask 

whether a trend (or drift) exists in the time series. For trended random walk there 

exists a direction on the increments, while the expectation of increments is zero for 

non-trended random walk. For instance, population biologists worry about whether a 

trend is driving a population towards fixation or extinction. Figure 3.1 shows some 

trajectories of random walk under different values of  . The form of trended random 

walk is:  

                      (    )      [equation 3.1] 

and the increment becomes:  

            

                 (    )        [equation 3.2] 

The term   is the trend and shows the general direction of increments. Two testing 

methods are provided to test for   in this section: Likelihood Ratio Test and modified 

Variance-Ratio Test.  
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Figure 3.1. Plots of trajectory with different drift  . Top left:    . Top right:      . 
Bottom left:       .  

3.2 Likelihood Ratio Test 

If IID increments are assumed and the distribution of error terms is known, the 

Likelihood Ratio Test (LRT) provides a parametric test for  . Particularly, for the case of 

discretized Brownian motion, in which the increments are normally distributed, the null 

and alternative hypothesis are:  

                              
   

  (    )  

                        
   

  (    )      [equation 3.3] 
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Thus the Likelihood Ratio test statistic is:  

        ( (  ))     ( (  ))      [equation 3.4] 

 (  ) and  (  ) are the maximized likelihoods under H0 and H1 respectively. The 

Likelihood Ratio Test compares the ratio of the two likelihood values (or the difference 

of the log-likelihoods). If   is not significant than the likelihoods under both cases 

should be roughly the same. Theoretically the test statistic is distributed as chi-square 

with one degree of freedom owning to the difference in the number of parameters 

between H0 and H1.  

 

It is also noticed that under the assumption of random walk with IID increment, LRT is 

equivalent to t-test for         for sufficient large sample size. The equivalent 

t-statistic is:  

            
∑   

 
 

 √ 
          [equation 3.5] 

The t-statistic is the sample mean of all increment terms divided by its standard error. 

This t-statistic converges to standard normal when sample size T is large.  

3.3 Modified Variance-Ratio Test 

Another approach adopts the method in Variance-Ratio (VR) Test with   set to zero. In 

traditional VR test, trend is allowed and   is estimated from observed data as shown in 

equation 2.6. Instead if   is pre-defined to zero, equation 2.6 is replaced by equation 

3.6:  

 ̂                [equation 3.6] 

and variances are estimated with  ̂    using equation 2.7 and 2.8, then all trended 

random walks will have shifted variance estimates, and result in a distorted test statistic. 

As a result, a test is developed by comparing the observed test statistic to the critical 

values under H0.  

3.4 Empirical distributions of test statistics under H0 

Empirical distributions are used for more accurate comparison. To obtain the empirical 

distributions of LRT statistic under H0, 20000 simulated random walks of length 100 
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without trend are sampled. Then for each of the randomly drawn time series, the 

maximized likelihoods are calculated under both H0 and H1 and thus the null 

distributions and critical values of the test statistic can be drawn. Similarly, the null 

distribution and percentiles of modified VR statistic can be drawn using the same set of 

simulated sequence, with q = 11. Significance level is 5% for all comparisons. The 

empirical distributions of the two statistics under H0 are shown in figure 3.2. The 

empirical critical values at 5% significance level are also displayed in table 3.1.  

 

Figure 3.2. Empirical null distribution of LRT statistic (left), and modified Variance-Ratio 
statistic with q=11 (right).  

Table 3.1. Empirical critical values at 5% significance level 

Test statistic Critical value(s) at      

Likelihood Ratio 3.929 

Modified Variance-Ratio (-1.431, 2.995) 

 

A simple rejection rule for H0 for both tests can be directly obtained from table 3.1 

above.  

3.5 Power analysis 

The performance of the two tests is evaluated by their power. To find out the power 

against some specific H1, the alternative hypothesis is a trended random walk with   
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set to be 0.05, 0.5 and 5 respectively and for each   20000 simulated sequences with 

length 100 are generated. It is also suggested that the magnitude of process error   

will affect the power; therefore the whole simulation is repeated three times with   

equals 0.1, 1, and 10.   and   are set in these values because several 
 

 
 ratios can be 

compared. The power of both tests is then calculated by the fraction of trails rejecting 

H0 using the empirical critical values listed in table 3.1.  

 

The empirical power of the two tests under different   and   combinations are listed 

in table 3.2.  

Table 3.2. The empirical power analysis of Likelihood Ratio Test (LRT) and 
Variance-Ratios (VR). 

 

LRT VR (q=11) 

    

0.05 0.5 5 0.05 0.5 5 

  

0.1 0.99830 1.00000 1.00000 0.93060 1.00000 1.00000 

1 0.07690 0.99890 1.00000 0.05775 0.93140 1.00000 

10 0.04910 0.07550 0.99880 0.05050 0.05610 0.93770 

 

It can be seen from Table 3.2 that the power of both tests is higher when   is larger. 

This result is expected, because the separation between null and alternative hypothesis 

is larger, and thus it is easier to distinguish their difference. From the same table it 

appears that power decreases with increasing  . Large   indicates there are large 

fluctuations in the sequence, and a small trend becomes undetectable. The confidence 

interval for   is wider and a more obvious trend is needed to reject H0. By combination 

these two observations, it can be seen that the 
 

 
 ratio is the parameter determining the 

power of the test. When 
 

 
 ratio is 0.5, the power of the test is 99.8% for LRT, and about 

93% for modified VR. The power of both tests approaches one when 
 

 
 ratio increases 

to 5 and above. For smaller 
 

 
 ratio, such as 0.05, the power of the two tests decreases 

dramatically. When the 
 

 
      , the two tests have virtually no testing power as 

power of about 5% is just random occurrence. It is also observed that under the same 
 

 
 

ratio, power of the test remains constant.  
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By comparing the two tests, Likelihood Ratio Test has a larger power than 

Variance-Ratio in most of the cases. It is because the primary objective of Variance-Ratio 

Test is to test for random walk hypothesis, rather than trends in random walk. Although 

the test statistic is responsive to trend after setting  ̂   , it is not its main goal and 

thus the power against trended random walk is low. On the contrary, the Likelihood 

Ratio Test is specifically designed to test the existence of  . Through this direct testing 

on  , it is equivalent to do a t-test for mean on all the increments. Thus Likelihood Ratio 

Test should be more powerful than Variance-Ratio Test.  

3.6 Section summary 

A trend gives a direction to a random walk. Both the Likelihood Ratio and modified 

Variance-Ratio Test can be used to test for the existence of trend. It is shown that when 

the actual trend in a random walk is more significant, the tests can detect the trend 

more easily and thus the power increases. However, large variation within the sequence 

hinders the trend and makes it less observable. Therefore the 
 

 
 ratio is the primary 

parameter determining testing power. By comparing the two tests, The likelihood Ratio 

test is a more specific and powerful test to test for   under the random walk 

hypothesis.  
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FOUR: RANDOM WALK WITH MEASUREMENT ERROR AND TESTING 

4.1 Introduction 

In many real world applications the underlying process cannot be observed directly. 

Especially in biological studies, data, often recorded by humans, may unavoidably 

contain errors other than controlled factors. The true value is unknown and can only be 

observed through experiments. These realizations contain both the original process 

signal as well as the measurement error. As a result, the whole process becomes a 

composite of two stages, the state process and the observation process, and is 

represented by the diagram below (figure 4.1):  

 

              

   
          

 

Figure 4.1. State-space model representation.  

 

In this representation      is the underlying state (unobserved, latent) process and 

     is the observed process. This is a class of state-space model and, in particular, 

under the random walk hypothesis with measurement error, as well as normality of the 

errors, the whole process is expressed by two equations:  

{
        𝑤    𝑤     (   𝑤

 )

                        (   𝑣
 )

       [equation 4.1] 

 

Direct inference on the true process      is not possible; one can only infer the true 

underlying process through the observed process     .  

 

Ten sample trajectories of random walk with measurement error are simulated and 

shown in figure 4.2  Apparently they look “random” but they do not satisfy the 

definitions of random walk stated in the previous section. The autocorrelation structure 

of the observed process is different from that of a pure random walk process without 

measurement error. Consequently, traditional tests mentioned in section 2 will reject 

the random walk hypothesis even when the underlying process is truly a random walk. 

As a result, the existing tests cannot distinguish random walks with the existence of 
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measurement error from truly non-random walks, and the use of these tests becomes 

ineffective and unreliable. The following example illustrates how these tests behave 

when data contains measurement errors.  

 

 

Figure 4.2. Trajectories of 10 simulated random walks with measurement errors, assuming 
normal errors.  

4.2 Behaviour of existing tests under random walk with measurement error 

To begin with, one of the trajectories in figure 4.2 is chosen as an example. Values of the 

selected sequence are listed below in table 4.1:  
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Table 4.1. List of values of the sample trajectory. 

[01] -1.81655 -0.30133 -2.76778 -0.7029 3.380842 -1.66207 

[07] -0.16852 5.039456 -9.67842 -9.57742 -5.18699 -5.71473 

[13] 0.585821 3.139541 -3.59503 -27.8596 -2.25952 10.23557 

[19] -0.86211 12.80279 -15.253 -15.0609 -0.31863 -1.0598 

[25] -5.14825 7.003242 7.094107 -1.67617 -3.8548 -15.6257 

[31] -3.80385 -9.49214 -21.633 -14.4179 -14.4163 -27.0201 

[37] -6.51582 3.125526 -20.2519 -13.9449 -10.7426 -11.5044 

[43] -10.4998 -15.7534 -6.10289 -6.84369 0.18829 10.23492 

[49] -9.16149 2.638747 26.03019 11.99228 16.29775 -23.1206 

[55] 10.85808 -3.72252 27.82792 23.65392 23.43384 36.60498 

[61] 15.5756 17.81813 27.85755 51.20211 26.62963 26.91942 

[67] 19.38787 -3.59969 20.76472 2.166269 15.5617 27.16592 

[73] 3.412395 10.90992 -0.6915 4.651 -20.1487 -14.6836 

[79] -27.6904 0.550463 -4.16697 -2.3711 3.396161 14.51513 

[85] 3.760468 6.084593 -9.49301 11.85654 -3.16182 19.64315 

[91] -3.67911 -6.93572 15.94753 6.366132 7.206813 -2.35697 

[97] 10.1617 5.252345 3.72218 -5.53919 33.133 
 

 

The sample autocorrelation of increments from this selected example is plotted in figure 

4.3 and it can be seen that the sample autocorrelation of lag one is not zero. The dotted 

line on figure 4.3 shows the 5% critical values for testing H0:     . Clearly it violates 

the property of random walk that all autocorrelation coefficients are zero.  
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Figure 4.3. Autocorrelation function plot up to lag 10 of the increments from the selected 
sequence.  

 

The Q’-statistic is then applied to the data to test the random walk hypothesis. By 

equation 2.4, the test statistic of this example is 29.827 when     . Under H0 the 

empirical critical value is 19.044 for 5% significance level (Table 2.1). The data has a 

test statistic larger than the critical value mainly because of the non-zero value of  ̂( ). 

The Q’-statistic rejects the null hypothesis despite the fact that the underlying process is 

a random walk. Similar result can be found for Variance-Ratio Test. The VR statistic 

using formulae 2.5-2.9 is -2.267 with     . Using the empirical critical values as 

shown in table 2.1 before, the lower bound is -1.593 and the null hypothesis is rejected 

at the 5% level.  
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Similar conclusions can be drawn for other trajectories. In short, the usual testing 

methods, in particular the Q’-statistic and Variance-Ratio Test, are no longer applicable 

in recognizing random walk with measurement error and development of alternative 

tests under such conditions is thus required.  

4.3 Autocorrelation and variance structure 

If the process errors and measurement errors are normally distributed, serially and 

mutually independent, the whole process can be represented in a state-space model 

with two equations:  

{
        𝑤    𝑤     (   𝑤

 )

                        (   𝑣
 )

       [equation 4.2] 

𝑤  and    are the process error and measurement error respectively. Their magnitude 

is determined by two parameters,  𝑤
  and  𝑣

 . The first order differencing (or the 

increment) of the observed process, denoted as    , is:  

                

    (     )  (         )   

    (       )            

    𝑤                   [equation 4.3] 

To understand the characteristics of this model, the autocovariance function is 

considered:  

      (        )   𝑤
   𝑣

   𝑣
   

    𝑤
    𝑣

            [equation 4.4] 

 

      (          )    

      (𝑤           𝑤             )     (           )  

     𝑣
             [equation 4.5] 

 

      (          )     

      (𝑤           𝑤             )  

            

 

                      [equation 4.6] 
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It is clear that autocovariance is zero for     because there is no overlapping terms 

between     and       anymore. The autocorrelation function can also be derived 

easily:  

 ( )  
 0

 0
             [equation 4.7] 

 ( )  
  

 0
 

  𝑣
 

 𝑤
    𝑣

           [equation 4.8] 

 ( )                     [equation 4.9] 

To further understand the behaviour of random walk with measurement error, the 

graph of variance against time interval of increments is plotted and shown in figure 4.4. 

Compare to the similar plot (figure 2.1) without measurement error, it is noted that the 

straight line relationship still holds, except that the graph does not pass through the 

origin. Owning to the existence of measurement error, the whole curve is shifted 

upwards. The vertical intercept reflects the magnitude of measurement error  𝑣
 , while 

the slope of the line is the process error  𝑤
 .  
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Figure 4.4. The plot of variances of increments against time interval from 10 simulated 
random walk with measurement error. A straight line relationship is obtained with non-zero 
vertical intercept.  

 

Section 4.5 and 4.6 make use of these properties of random walk with measurement 

error to develop some valid testing methods.  

4.4 Signal to noise ratio 

The observed process is expressed in a signal plus noise equation. The signal is 

unobservable with process variance  𝑤
  and the noise comes from the measurement 

error with variance  𝑣
 . The signal-to-noise ratio is defined as:  
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 𝑤

 

 𝑣
             [equation 4.10] 

The SNR is an important factor in state-space models and characterizes the feature of 

the models. If the SNR is large, more information is contained about the underlying 

process from the observation, but when SNR is too small the observation reduces to a 

trivial constant mean white noise model. It follows that testing methods (or test 

statistics) behave differently under various SNR. Hence, some tests perform better 

under certain range of SNR.  

4.5 √  ̂( ) statistic 

Referring to equation 4.9, it is known that  ( ) is zero for a random walk with 

measurement error. A test can be constructed directly from this consequence by testing 

H0:  ( )     through sample autocorrelation coefficient. The sample autocorrelation 

coefficient of lag 2, denoted by  ̂( ), can be calculated from the data by equation 2.1-2.2 

in section 2. This can be a useful test statistic and the next step is to find out the 

distribution of  ̂( ) under H0. Fuller (1976) states that under some typical conditions 

sample correlations are normally distributed, with mean the actual  ( ), which is zero 

in this case. Mathematically speaking:  

√ ( ̂( )   ( ))    (     )        [equation 4.11] 

T is the number of increments.    is the variance of √  ̂( ) and Fuller also gives the 

formula for calculating   :  

   ∑ [
 ( ) ( )   (   ) (   )    ( ) ( ) (   )

   ( ) ( ) (   )    ( ) ( )  ( )
]  

       

              [equation 4.12] 

The calculation of    involves the sum of other autocorrelation coefficients. 

Nevertheless, by using the properties in equations 4.7-4.9 the calculation can be much 

simplified because all autocorrelations are zero except  (  ),  ( ) and  ( ), hence:  

   ∑ [ ( ) ( )   (   ) (   )]  
        

   ∑   ( )     
      

   ∑   ( )  
      

     (  )    ( )    ( )  

        ( )          [equation 4.13] 
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The results from equations 4.11 and 4.13 show that √  ̂( ) is normally distributed 

with mean 0 and variance      ( ). Hence the rejection rule for H0 is:  

|√  ̂( )|        √     ( )       [equation 4.14] 

where        is the (  
 

 
)-percentile of standard normal,  (   ). For example, the 

significance level   is usually 5% and thus        is 1.96. However,  ( ) is not a 

fixed quantity and varies between data. Hence, an upper and lower bound of  ( ) 

under H0, as illustrated by the two cases below, are used to generalize the test. Recall 

the formula of  ( ) (from equation 4.8):  

 ( )  
  𝑣

 

 𝑤
    𝑣

   

Case 1: When  𝑤
  is much greater than  𝑣

  (i.e. SNR ratio is high), the process 

converges to a pure random walk (because of extremely small measurement error) and 

thus  ( ) becomes 0:  

 𝑤   𝑣          

 ( )  
  𝑣

 

 𝑤
    𝑣

  
 

 𝑣
 

 𝑤
 

 𝑤
 

 𝑤
   

 𝑣
 

 𝑤
 

 
 

   
         [equation 4.15] 

Case 2: Consider the reverse case when  𝑣
  is much bigger than  𝑤

 :   

 𝑣   𝑤        

 ( )  
  𝑣

 

 𝑤
    𝑣

  
 

 𝑣
 

 𝑣
 

 𝑤
 

 𝑣
   

 𝑣
 

 𝑣
 

 
  

   
  

 

 
      [equation 4.16] 

 ( )  converges to  
 

 
 but it cannot be smaller than that under random walk 

hypothesis with measurement error.  

 

By combining the two cases,  
 

 
 and 0 are the lower and upper bound of  ( ) under 

H0 and therefore the boundaries of    are:  

 
 

 
  ( )        ( )  

 

 
  

        ( )  
 

 
         [equation 4.17] 

Equation 4.17 shows that    can only range between 1 and 
 

 
 under H0. Figure 4.5 

plots the relationship between the theoretical variance of √  ̂( ) statistic and a range 
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of SNR. Furthermore the theoretical critical values of the √  ̂( )  statistic using 

equation 4.14 for different SNR values at 95% confidence level are shown in figure 4.6:  

 

Figure 4.5. Plot of variance of √  ̂( ) statistic with different  𝑤
   𝑣

  (SNR).  
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Figure 4.6. Relationship between theoretical critical values of √  ̂( ) statistic and  𝑤
   𝑣

  
(SNR) at 95% confidence level.  

 

It is noticed that from figure 4.5, that the variance of the test statistic increases with 

decreasing SNR with the upper bound 
 

 
. If there is prior knowledge on the range of 

 𝑤
   𝑣

 , for instance, a researcher is confident that in one particular experiment the 

measurement error will not exceed a certain fraction of the process error, a proper    

can be chosen from the above relationship shown in figure 4.5, and hence a theoretical 

rejection region can be determined by equation 4.14 and figure 4.6. Instead, the use of 

   
 

 
 is the most conservative choice in order not to falsely reject the null hypothesis. 

It is because when    is set to be 
 

 
, the type I error of the test is guaranteed to be less 
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than the chosen level   under all circumstances, no matter what the real SNR the data 

has. As a result, the most conservative rejection rule is:  

|√  ̂( )|        √            [equation 4.18] 

where        is the (  
 

 
) -percentile from  (   ) . In particular, the most 

conservative 5% critical values are -2.400 and 2.400.  

4.6: 3-point Variance-Ratio Test 

This test makes use of the straight line relationship between the variance and the time 

interval of increments, as shown in figure 4.4 earlier. Under the random walk model 

with measurement error, if variances are sampled with at several lengths of time 

interval, these variances should form a straight line on the variance-time interval plane. 

Therefore if the sample variances substantially deviate from a straight line, the null 

hypothesis of random walk with measurement error is likely to be rejected.  

 

A straight line can always be drawn by joining any two points on the plane. As a result, 

using two time intervals, as the traditional Variance-Ratio Test uses, is not sufficient to 

test for straight line. Hence, a third point is needed.  

 

Similar to the procedure in Variance-Ratio Test, the 3-point Variance-Ratio considers 

the variance estimates of 1-period increments and q-period increments, denoted by  ̅ 
  

and  ̅ 
  respectively (Top left, Figure 4.7). A line is drawn by joining the two variances 

(Top right, Figure 4.7), and the mid-point of the line is 
 ̅ 

   ̅ 
 

 
 at length of increment 

   

 
 

(Bottom left, Figure 4.7). After that the true estimate of variance, called  ̅   
  with 

interval length  
   

 
 is obtained (assume q is an odd number to ensure 

   

 
 is a whole 

number).  
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Figure 4.7. Diagram showing the construction of 3-point Variance Ratio test statistic.  

 

Under H0, the three variance estimates,  ̅ 
 ,  ̅   

 , and  ̅ 
 , should form a straight line. It 

implies that  ̅   
  should be very close to the mid-point of the linear interpolation of 

 ̅ 
  and  ̅ 

  (Bottom right, Figure 4.7). The distance of  ̅   
  from the mid-point, 

 ̅ 
   ̅ 

 

 
, 

can be viewed as the deviation from the straight line hypothesis. This paper suggests 

the following test statistic:  

                 (
  ̅   

 

 ̅ 
   ̅ 

 )        [equation 4.19] 
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If the straight line assumption holds, this quantity should be close to zero. The value of q 

in this test is set to 15 for this study and hence the variances of 1, 8, and 15-period 

increment are considered.  

4.7 Empirical percentiles of test statistics under H0 

It is noticed that for both tests the null distributions and percentiles vary with SNR. 

Furthermore, although the asymptotic distribution of √  ̂( ) statistic is known, the 

exact distribution of 3-point VR under H0 is too complex and has yet to be found. As a 

result, empirical 5% critical values are found by simulation over a wide range of SNR 

from 10-3 to 103, with 100 the length of sequence. The plots of empirical 5% critical 

values against SNR, similar to the one shown in figure 4.6 but using simulated data, are 

generated for both tests. The two plots can be shown in figure 4.8 below.  

 

Figure 4.8. the relationship between critical values at 5% significance level and SNR, (left) 

√  ̂( ) statistic, and (right) 3-point Variance-Ratio.  

 

In particular, the 5% empirical critical values of both test statistics at SNR = 0.01 and 

SNR = 100 are reported and displayed in table 4.2.  
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Table 4.2. Critical values at SNR=0.01 and SNR=100 at 5% significance level. 

 Critical Values at      

SNR=0.01 SNR=100 

√  ̂( ) (-2.317, 2.310) (-2.009, 1.805) 

3-point Variance-Ratio (q=15) (-0.275, 0.234) (-0.329, 0.522) 

 

From the results in table 4.2 and figure 4.8, 5% rejection rules of H0 can be obtained 

directly for both tests under the desired SNR.  

4.8 Power analysis 

After obtaining the empirical 5% critical values, the power of the tests can be analysed 

through simulation. An AR(1) with measurement error is chosen as the specific 

alternative and is expressed in the following state-space model:  

{
         𝑤    𝑤     (   𝑤

 )

                          (   𝑣
 )

       [equation 4.20] 

  is fixed at 0.5 in this analysis, with SNR is chosen to be 0.01 and 100. For each value 

of SNR, 20000 samples of AR(1) with measurement error with length 100 are generated. 

By using the 5% critical values from table 4.2, power can be calculated as the fraction of 

trials being rejected using respective critical values under each SNR. Also, the use of the 

most conservative 5% critical values for √  ̂( ) statistic (equation 4.18) is included in 

the power analysis for comparison. The empirical power of the tests can be shown in 

table 4.3.  

 

Table 4.3. Empirical power of √  ̂( ) and 3-point VR at 5% significance level with 
SNR = 0.01 and 100. 

 SNR = 0.01 SNR = 100 

√  ̂( ) 0.0512 0.2482 

3-point Variance-Ratio (q = 15) 0.0488 0.05135 

√  ̂( ) with most conserve bound 0.0437 0.1317 

 

Table 4.3 shows that power of the two tests at SNR = 100 is higher than that of SNR = 

0.01. This result agrees with the knowledge about SNR, that the higher the 
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signal-to-noise ratio is, the more information is retained from the underlying process. 

The resulting test statistics, which is calculated from the observed process, can provide 

better judgement at higher SNR.  

 

By comparing the two tests, √  ̂( ) statistic has a higher testing power than 3-point 

Variance-Ratio in both high and low SNR. At low SNR, the power of both tests is around 

5%. However, at high SNR, √  ̂( ) has a much higher power of about 25%, while 

3-point VR does not have a sharp increase in testing power.  

 

In the √  ̂( ) statistic, the use of empirical critical values always gives a higher power. 

At low SNR, the empirical 5% boundary is close to the most conservative one and 

therefore the power of the test using both critical values is similar. With high SNR, the 

most conservative boundary is too wide compared to the empirical one and thus a 

significant drop in testing power is anticipated. However, the use of the most 

conservative critical values guarantees the type I error is no more than the desired level 

(5% in this case).  

4.9 Section summary 

This section explains how existing tests fail with the presence of measurement error 

and provides two testing methods based on the autocorrelation and variance structure 

of random walk model with measurement error. It has been shown that the SNR is a key 

parameter in state-space model and thus plays an important role in power analysis. 

Both √  ̂( ) and 3-point Variance-Ratio can be used to test for random walk with 

measurement error and the former test provides a larger power on testing against an 

AR(1) model.  
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FIVE: TREND IN RANDOM WALK WITH MEASUREMENT ERROR 

5.1 Introduction 

Under the scenario with measurement error, it is sensible to ask whether a trend exists 

after accepting the random walk hypothesis, similar to the procedure in section 3. It 

should be noticed that increments are correlated with their preceding terms due to the 

existence of measurement error, as explained in equation 4.5. Consequently, the direct 

use of all the increment terms in the Likelihood Ratio Test, suggested in section 3.2, is 

not valid with the existence of measurement error. The likelihood function used in 

section 3.2 is based on independent increments, and thus the joint likelihood is the 

product of all independent likelihoods (or density). For correlated increments, 

conditional likelihoods should be considered and the construction of such a test 

becomes unavoidably cumbersome.  

5.2 Likelihood Ratio test 

Assuming independent and normal errors, the state-space form of a trended random 

walk with measurement error is:  

{
          𝑤    𝑤     (   𝑤

 )

                                (   𝑣
 )

      [equation 5.1] 

where   is the trend. The increment of the observed process, denoted by    , is:  

             

    (     )  (         )   

    (       )            

      𝑤                  [equation 5.2] 

Instead of using all the increments, every other increment (say, all the odd number 

terms) is selected. The covariance structure of every other increment is as follows:  

   (          )  

    (  𝑤             𝑤             )  

               [equation 5.3] 

Note that adding a constant   has no effect to the covariance structure and therefore it 

has the same form as shown in equation 4.6. Zero correlation (and also covariance) 
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usually does not imply independence, but under the assumption of H0 stated at the top 

of this section, that  𝑤   and      are serially independent, and mutually independent 

to each other, it can be deduced that the sequence of every second increment is 

independent. Also, from equation 5.2,     is the sum of 3 independent and normally 

distributed variables. Thus     is also normally distributed, with mean   and variance 

 𝑤
    𝑣

 :  

       (    𝑤
    𝑣

 )         [equation 5.4] 

By combining the two consequences, independence and normality of every other 

increment, the same Likelihood Ratio Test in section 3.2 can be applied. Although it is 

not desirable to discard half of the information by considering only every other element, 

this guarantees independence and fulfils the assumptions in Likelihood Ratio Test.  

 

As the test is the same Likelihood Ratio Test as the one shown in section 3.2, the null 

distribution of test statistic can be referred to figure 3.2.  

5.3 Power analysis 

It has been shown in section 3.2 that the Likelihood Ratio Test in this specific case is 

equivalent to a t-test with        . As a result, the equivalent test statistic is:  

            
  ̅ 

  √   
         [equation 5.5] 

where   ̅  is the sample mean of every other increments, and   √ 𝑤
    𝑣

 . This 

test statistic follows standard normal when T is sufficiently large.  

 

The power of the test follows the result from section 3.4 and depends on the ratio 
 

 
 as 

described. The variance of the test is the sum of process error and twice the 

measurement error. Hence a smaller trend can be detected with small variance, while a 

more significant trend is needed for large   to reject H0.  
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5.4 Section summary 

It is shown that the Likelihood Ratio Test suggested in section 3.2 can be directly 

applied to random walk with measurement error when only every other increment is 

considered. It is proved by its correlation structure that most the consequences from 

section 3 about Likelihood Ratio Test still hold in this condition.  
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SIX: DISCUSSIONS AND LIMITATIONS OF THIS STUDY 
 

This paper evaluates existing testing procedures for the random walk hypothesis and 

provides alternative methods with the presence of measurement error. However, there 

are some limitations about these testing methods that users have to be aware of, or take 

them as a general guidance to these tests.  

 

First, many of the test statistics in this paper, such as Variance-Ratio Test in section 2.3 

(and also the modified VR in section 3.3), Likelihood Ratio Test in section 3.2, and the 

√  ̂( ) statistic in section 4.5, increments are assumed to be IID in the null hypothesis. 

Some may even specify the distribution of the process or measurement error. As 

mentioned at the beginning of this paper, there are more than one definition of random 

walk, and IID or normality of increments is the strictest among the three cases. Test 

statistics are generated by simulation in which IID normal increments are assumed. 

Therefore, null distributions and rejection criteria are based on such a restricted 

condition. However in reality, data rarely follows IID assumption and the actual 

dependency between increments is unknown. The null distributions under the weaker 

forms of random walk, for instance, independent (but not identically distributed) 

increments and uncorrelated increments, are usually undetermined and can only be 

approximated with the IID case. A discrepancy in the null distributions between the 

stronger and weaker form of random walk leads to testing error and misjudgement. It is 

known that Variance-Ratio Test can be used to test and derive the null distribution for 

the weaker form of random walk by heteroskedasticity-consistent methods (White, 

1980; White & Domowitz ,1984). Lo & MacKinlay (1988) can be referred for further 

details.  

 

Under the presence of measurement error, a random walk can be represented in a 

state-space model. The persistency of such an extra source of randomness in the 

observed sequence hinders the effect of the underlying process, and thus testing 

methods for random walk fail. The Kalman Filter (Kalman, 1960) is an algorithm to 

produce an optimal estimate of the underlying state process by sequence of predictions 

and updating processes. This method assumes linear models while the Extended 

Kalman Filter (EKF) can handle non-linear models. These methods are useful but often 
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considered as abstruse and too computational-intensive to be implemented for 

hypothesis testing. As this paper aims to provide some intuitive testing methods that 

relies on simple estimations and rejection rules and can be readily applied by every 

biologist, the √  ̂( )  statistic and 3-point Variance-Ratio in section 4 are thus 

introduced. However √  ̂( ) considers only one autocorrelation coefficient but not 

higher-order autocorrelations. There may be some time series with zero  ( ) but are 

not a random walk in nature. A more comprehensive test should be constructed in the 

future to capture higher-order autocorrelation. The exact or asymptotic null 

distribution of the 3-point Variance-Ratio Test is unknown and can only be generated 

empirically. Hence, it is difficult to understand and analyse the characteristics of the test 

rigorously.  

 

Another limitation under measurement error is the estimation of signal-to-noise ratio 

(SNR). In the Kalman Filter environment, the SNR can be estimated simultaneously with 

a linear model, for instance, by the Newton-Raphson algorithm. However, a model is 

assumed before estimation and a more robust model-invariant estimate of SNR is 

needed. Furthermore, in the 3-point Variance-Ratio test critical values depend on SNR 

and a prior knowledge of SNR is required. Unlike √  ̂( ) statistic, in which the most 

conservative boundary can be used without estimating SNR, 3-point Variance-Ratio 

behaves very differently in high and low SNR and type I error cannot be well controlled. 

Ideally, a robust testing method should be developed that works well in a wide range of 

SNR.  

 

Apart from SNR estimation, the tests for random walk with measurement error have a 

rather low power when the length of sequence (T) is about 100. It is expected that 

power will increase with the length sequence. By simulation, it can be shown that 

√  ̂( ) statistic can achieve a power of 96% when T = 1000 in testing against AR(1) 

model with   = 0.5. However, having over a thousand data points in a biological 

dataset is usually too optimistic. As a result, testing power in general remains low for 

small sample size.  

 

Finally, many of the biological data, that would be interesting to tell for deviations from 

random walks, are multidimensional or compositional data. Especially in genetics data, 
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allele frequencies are reported in proportional form which ranges from 0 to 1. Even 

after proper transformations (logit or probit transform), the increments may not be 

normally distributed. With three or more categories, the compositional data forms a 

multivariate random walk. There is not much context on testing random walk 

hypothesis for multivariate or compositional data and more investigation have to be 

done in the near future.  
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SEVEN: CONCLUSION 
 

The Q-statistic (and also Q’-statistic) and Variance Ratio Test are introduced to test for 

random walk hypothesis in section 2. The power of two tests against AR(1) process is 

analysed and it is shown that overall the Variance-Ratio Test has higher testing power 

than the Q’-statistic.  

 

This paper also shows that the Likelihood Ratio Test and modified Variance-Ratio are 

valid tests for trends in random walks under IID assumption. In particular, the 

Likelihood Ratio Test is a direct test on   and equivalent to a t-test for the mean. 

Therefore it has a higher testing power. The ratio 
 

 
 plays an important role in 

determining the power of the tests; the testing power is higher when 
 

 
 is large. This 

result is particularly useful when testing genetic drift.  

 

Because of the autocorrelation structure, the Q’-statistic and Variance Ratio test are no 

longer reliable in identifying random walk process with presence of measurement error. 

Consequently, the √  ̂( ) statistic and 3-point Variance-Ratio are introduced and 

served as alternatives to existing methods. The √  ̂( ) statistic asymptotically follows 

the normal distribution, while the distributional form of the 3-point Variance-Ratio can 

only be estimated through simulation. Furthermore, the signal-to-noise (SNR) ratio 

affects the power and critical values of the tests; higher SNR values retain more 

information about the underlying sequence thus has a higher testing power.  

 

By taking every other element from the increments, Likelihood Ratio Test suggested in 

section 3.2 can be applied to test for trends in random walk with measurement error. 

Furthermore, under the assumption of IID increments, the Likelihood Ratio Test is 

equivalent to a t-test for mean with sufficient large sample size.  
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