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Abstract

We argue that robust dense SLAM systems can make
valuable use of the layers of features coming from a stan-
dard CNN as a pyramid of ‘semantic texture’ which is suit-
able for dense alignment while being much more robust to
nuisance factors such as lighting than raw RGB values. We
use a straightforward Lucas-Kanade formulation of image
alignment, with a schedule of iterations over the coarse-to-
fine levels of a pyramid, and simply replace the usual im-
age pyramid by the hierarchy of convolutional feature maps
from a pre-trained CNN. The resulting dense alignment per-
formance is much more robust to lighting and other varia-
tions, as we show by camera rotation tracking experiments
on time-lapse sequences captured over many hours. Look-
ing towards the future of scene representation for real-time
visual SLAM, we further demonstrate that a selection using
simple criteria of a small number of the total set of features
output by a CNN gives just as accurate but much more effi-
cient tracking performance.

1. Introduction
Dense visual SLAM [15] involves incrementally recon-

structing the whole appearance of a scene rather reducing
it to sparse features, and this approach is fundamental if
we want scene models with general, generative represen-
tations. Tracking is achieved via whole image alignment
of live images with the reprojected dense texture of the re-
construction. However, using raw RGB values in persistent
dense scene representations over long time periods is prob-
lematic because of their strong dependence on lighting and
other imaging factors, causing image to model alignment to
fail. While one thread of research to mitigate this involves
getting closer to the real physics of the world by modelling
lighting and surface reflectance in detail, this is very compu-
tationally challenging in real-time. The alternative, which
we pursue here, is to give up on representing light intensity

directly in scene representations, and instead to use transfor-
mations which capture the information important for track-
ing but are invariant to nuisance factors such as lighting.

A long term goal in SLAM is to replace the raw geome-
try and appearance information in a 3D scene map by high
level semantic entities such as walls, furniture, and objects.
This is an approach being followed by many groups who
are working on semantic labelling and object recognition
within SLAM [7, 22, 14], driving towards systems capable
of scene mapping at the level of nameable entities (a direc-
tion pointed to by the SLAM++ system [17]).

What we argue here, and make the first experimental
steps to demonstrate, is that there is a range of very use-
ful levels of representation for mapping and tracking in be-
tween raw pixel values and object level semantics. The
explosion of success in computer vision by Convolutional
Neural Networks, and work on investigating and visualis-
ing the levels of features they generate in a variety of vision
tasks (e.g. [20]), has revealed a straightforward way to get
at these representations as the outputs of successive levels
of convolutional feature banks in a CNN.

In this paper we demonstrate that dense alignment, the
most fundamental component of dense SLAM, can be for-
mulated simply to make use not of a standard image pyra-
mid, but the responses of the layers of a standard CNN
trained for classification; and that this leads to much more
robust tracking in the presence of difficult conditions such
as extreme lighting changes. We demonstrate our results
in a pure rotation SLAM system, where long term track-
ing against keyframes is achieved over the lighting varia-
tions during a whole day. We perform detailed experiments
on the convergence basins of alignment at all pyramid lev-
els, comparing CNN pyramids against raw RGB and dense
SIFT. We also show that we achieve just as good perfor-
mance with small percentages of CNN features chosen us-
ing simple criteria of persistence and texturedness, pointing
to highly efficient real-time solutions in the near future.
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2. Background
The canonical approach to dense image alignment is due

to Lucas and Kanade [12], and is laid out in more detail in
the review papers by Baker and Matthews [3]. In the LK
algorithm, given an initial hypothesis for the transforma-
tion, the current ‘error’ between the images is calculated by
adding the squared difference in greyscale or RGB values
between all pairs of pixels from the two images which are
brought into correspondence by this transformation. The
derivative of this error with respect to the transformation
parameters is determined, and a Newton step is taken to re-
duce the error. It has been widely demonstrated that the
correct transformation is found at the minimum of the error
function after a number of iterations.

The performance of dense alignment can be measured
along several axes. Two are the accuracy of the final align-
ment and the speed of convergence, but generally more im-
portant are the size of the basin of convergence and the
robustness to unmodelled effects such as lighing changes.
Both the speed and basin of convergence of LK alignment
are improved by the use of image pyramids. Before align-
ment, both images are successively downsampled to pro-
duce a stack of images with decreasing resolution. Align-
ment then proceeds by performing a number of iterations
at each level, starting with the lowest resolution versions
which retain only low frequency detail but allow fast com-
putation, and ending back at the original versions where
only a few of the most expensive iterations are needed.

Here we replace this downsampling pyramid in LK by
the output of the convolutional layers of an off-the-shelf
VGG Convolutional Neural Network trained for classifi-
cation. The early layers of a CNN are well known to be
generic, regardless of the final task it was trained for, as
shown in [1]. The later layers respond to features which are
increasingly complex and semantically meaningful, with
more invariance to transformations including illumination.
Now that the convolutional layers of a CNN can comfort-
ably be run in real-time on video input on desktop or mo-
bile GPUs, the simplicity of using them to build pyramids
for alignment and scene representation is very appealing.

Even though CNNs turn raw images into feature maps,
we argue that aligning their hierarchical responses is still
a ‘dense’ method, which is much more akin to standard
Lucas-Kanade alignment than image matching using sparse
features. The convolutions produce a response at every im-
age location. As we move towards powerful real-time scene
understanding systems which can deal with complex scenes
whose appearance and shape changes over short and long
timescales, we will need dense and fully generative repre-
sentations, and the ability to fuse and test live data against
these at every time-step. We believe that there are many in-
teresting levels of representation to find between raw pixel
values and human annotated ‘object-level’ models, and that

these representations should be learned and optimised de-
pending on what task needs to be achieved, such as detect-
ing whether something has changed in a scene.

Other non-CNN transformations of RGB have been at-
tempted to improve the performance of correspondence al-
gorithms. There are many advantages to generating a scale-
space pyramid using non-linear diffusion [16], where edges
are preserved while local noise is smoothed away, although
it is not clear how much this would help Lucas-Kanade
alignment. In stereo matching, there has been work such as
that by Hirschmüller et al. [8] which compared three rep-
resentations: Laplacian of Gaussian (LoG), rank filter and
mean filter. All of these approaches help with viewpoint and
lighting changes. In face fitting using Lucas-Kanade align-
ment, Antonakos et al. [2] evaluated nine different dense
hand-designed feature transformations and found SIFT and
HOG to be the most powerful.

There is a growing body of literature that uses convolu-
tional networks to compare image patches, register camera
pose and compute optical flow between images [5, 18, 13,
9]. Such methods use networks trained end-to-end, and can
output robust estimates in challenging conditions but fail to
deliver the accuracy of model-based approaches. The train-
ing set is trusted to encompass all possible variations, a hard
condition to meet in the real world. Instead of perform-
ing iterative refinement those methods produce a one-shot
estimate. In FlowNet, in particular, the optical flow result
must still be optimised with a standard variational scheme
(TV-L1). Our approach bridges the gap between these two
paradigms, delivering both the accuracy of online optimisa-
tion and the robustness of learned features.

3. Dense Image Alignment
3.1. Direct Per-Pixel Cost Function

Image alignment (registration) requires of moving and
deforming a constant template image to find the best match
with a reference image. At the heart of image alignment lies
a generative warp model, which is parameterised to repre-
sent the degrees of freedom of relative camera–scene mo-
tion. Alignment proceeds by iteratively finding better sets
of parameters to warp the images into correspondence.

To assess correspondence we must define a measure
of image similarity. In the standard form of LK, sum of
squared differences (SSD) is used. This gives the following
objective function:

arg min
p

∑
x

||Ir(W(x;p))− It(x)||2 , (1)

where Ir is the reference image, It is the template image,
x is an image pixel location and W(x;p) : R2 → R2 is the
generative warp model. The vector of warp parameters we
aim to solve for is p.
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Figure 1. Example 2DoF image alignment cost function for pan-
tilt camera rotation, with a clear minimum and smooth bowl.

One way to find the optimal parameters is simply ‘ex-
haustive search’, evaluating the cost function over a full
range of quantised parameter combinations and selecting
the minimum. Visualising the cost surface produced is in-
sightful; Figure 1 presents a 2 degree-of-freedom example
for images related by pan-tilt camera rotation. The clear
bowl shape of this surface shows that we can do something
much more efficient than exhaustive search as long as we
start from a set of parameters close enough to correct align-
ment by following the gradient to the minumum.

3.2. Lucas-Kanade Algorithm

In LK alignment [12], at each iteration we use the gra-
dient of the cost function in Equation 1 with respect to the
warp parameter vector p, and determine a parameter update
∆p which takes us closer to the minimum of the function.

A more efficient version of this algorithm, which allows
for pre-computation of the system Jacobian and Hessian
was proposed in [3]. The trick consists of swapping the
roles of the reference and template image and optimising
for an update warp composed with the current warp esti-
mate. The modified cost function has the form:

∆p = arg min
∆p

∑
x

‖It(W(x; ∆p))− Ir(W(x;p))‖2 , (2)

with the following update rule:

W(x;p)← W(x;p) ◦ W(x; ∆p)−1 (3)

Linearizing Equation 2 leads to a closed form solution:

∆p =

(∑
x

JT J

)−1∑
x

JT r , (4)

where:

J = −∇It
dW(x,p)

dp

∣∣∣∣
p=0

(5)

r = Ir(W(x,p))− It(x) (6)

The shape of the convergence basin heavily depends on the
image content: amount and type of texture and ambiguities
present in the image. Since the cost landscape is usually
locally convex in vincinity of the real translation, a good
initialization is required for the optimization to successfuly
converge to the correct solution.

3.3. Coarse-to-Fine Alignment

To increase the size of the convergence basin, the orig-
inal image can be smoothed using Gaussian blur, which
simplifies the cost surface through removing the details in
the image [11]. The Gaussian smoothed image is usually
downsampled since it does not cause loss of information
and reduces the number of pixels to be processed. Since
a pixel in the downsampled image corresponds to multpile
pixels in the original image, the distance between the two is
shortened, which increases the size of the basin of conver-
gence. For the same reason, the accuracy of the alignment
performed on smaller version of the images is also reduced.

The common approach is to start the optimization using
highly downsampled and blurred images to obtain an initial
estimate and refine it using progressively more detailed ver-
sions of the images. This can be perceived as a pyramid of
degraded versions of the image.

4. Replacing the Pyramid with CNN Feature
Maps

Outputs of the convolutions in standard classification
CNN’s form a pyramid similar to the ones used in RGB
based LK image alignment (Figure 2). Consecutive layers
of such pyramid encode increasingly more semantic infor-
mation, starting from simple geometrical filters in the first
layers, leading to more complex concepts.

Each level of the pyramid takes the form of a multi-
channel image (tensor), where each channel contains re-
sponses to a certain learned convolutional filter. We pro-
pose to align the volumes in a coarse-to-fine manner, start-
ing from the highest, low resolution layers and progressing
down to the lower, geometrical layers to refine alignment.

Section 4.1 presents the process of extracting the feature
pyramid out of an input RGB image. Following this, Sec-
tion (4.2) describes how standard Lucas-Kanade alignment
can be applied to the proposed representation.

4.1. Feature Extraction

The pyramid is created through applying successive
convolutions followed by a nonlinear activation function,
with occasional downsampling, very much like in standard
CNN’s. The weights for convolutions are trained for an
image classification task. Although we believe that any
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Figure 2. A comparison between a Gaussian pyramid (left) and
proposed conceptual pyramid (right).
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Figure 3. A pyramid is created using successive learned convolu-
tions, just as in a standard CNN classification network. We have
used VGG-16 for our experiments

classification CNN could be used in our method, we have
only tested weights from VGG-16 classification network
from [21]. The network consists of 13 layers of convolu-
tions. Figure 4.1 presents the architecture of this network.

4.2. Volume Alignment

For aligning volumes we use the inverse compositional
cost function formulation described in Section 3.2:

∑
x

‖ex(∆p;p)‖2 =
∑
x

‖Vt(W(x; ∆p))− Vr(W(x;p))‖2

(7)

Similar to normal images, we define a volume of depth
N as a function: V : R2 → RN . In order to solve for the pa-
rameter update ∆p, one first need to calculate the Jacobian
and Hessian of this nonlinear Least Squares System:

Jx =
∂ex
∂∆p

=


∂ex,1

∂∆p
...

∂ex,N

∂∆p

 =

Jx,1...
Jx,N

 (8)

Figure 4. An example spherical panorama produced by tracking
the camera rotation using CNN features

H :=
∑
x

JTxJx =
∑
x

[
JTx,1 . . . J

T
x,N

] Jx,1...
Jx,N

 =

=
∑
x

N∑
c=1

JTx,cJx,c

(9)

b :=
∑
x

JTxex =
∑
x

[
JTx,1 . . . J

T
x,N

] ex,1...
eTx,N

 =

=
∑
x

N∑
c=1

JTx,cex,c

(10)

The update is calculated using the normal equations:

∆p = H−1b (11)

In order to perform alignment in real-time over big vol-
umes we have implemented the optimization on GPU us-
ing NVIDIA CUDA. Each computational thread calculates
per-pixel values, which are later reduced to single matrices
using Equations 9 and 10.

5. Live Spherical Mosaicing
In order to test tracking using the proposed representa-

tion, we have developed a real-time spherical mosaicing
system similar to [10]. It tracks purely rotational camera
movement and produces a keyframe map, which is rendered
into a spherical panorama. For purely rotational camera mo-
tion, the homography between two camera frames with in-
trinsic matrix K, separated by rotation described by matrix
R is given by: KRK−1 [6]. Therefore, the generative warp
function from Section 3.1 has the form:

W(x;ω) = π(KR(ω)K−1ẋ) , (12)

where ẋ is the homogenized pixel location x, and π is the
projection function. We parametrize the incremental rota-
tion R(ω) with ω ∈ R3. The incremental rotation described



by vector ω is mapped to the so(3) group elements via [4]:

R(ω) = exp(ω×) . (13)

The final cost function to be optimized takes the form:∑
x

||Vt(π(KR(ω)K−1ẋ)− Vr(KRK−1)||2 . (14)

The keyframe map is projected onto a final compositioning
surface. We use spherical projection, which projects each
keyframe onto a unit sphere, which is later unrolled into a
2D surface for viewing. An example mosaic produced by
our system is presented in Figure 4. We use an image of
size 224× 224 to extract features and align all of the levels.

The system runs in real-time 15-20 frames per second
using the whole pyramid. Extraction of 13 layers of convo-
lutional features takes around 1 ms per frame. Copying the
data from GPU takes 10ms, which can be avoided by further
modifications to the software. Time spent on performing the
alignment depends on the number of iterations performed at
different levels and usually is around 40–60ms.

6. Results
We present experiments which compare the performance

of image alignment for our CNN pyramid with raw RGB
and dense SIFT pyramids. For all tests we use our 3D cam-
era rotation tracker described in Section 5. We consider that
robustness is the most important factor in camera tracking,
and therefore use the size of basin of convergence as our
performance measure in the main results in Section 6.1.

We also investigate the possibility of improving the re-
sults and reducing the computational overhead through se-
lecting the most valuable feature maps in Section 6.2.

6.1. Robust, long-term tracking

In order to test the robustness of the proposed repre-
sentation in long-term tracking scenarios, three time-lapse
sequences from a static camera have been captured show-
casing real-world changing lighting conditions. The videos
cover 8–10 hours of outdoor scenes, and have been sub-
sampled into 2 minute clips.

In our tests we focus on two of the captured sequences
– window and home. The first features a highly specular
scene which undergoes major and irregular lighting changes
throughout the day with no major outliers. The home se-
quence shows a relatively busy street with frequent outliers.
This sequence contains less specular surfaces, the observed
illumination changes have more a global character.

We have selected three snapshots from each of these se-
quences containing different lighting conditions, and evalu-
ated the area of the convergence basin while trying to align
each possible pair of frames. To serve as a baseline com-
parison, we also present the results of alignment using RGB
(RGB) and dense SIFT features (SIFT).

In order to measure the size of the convergence basin,
we segment the parameter space into a regular grid and ini-
tialize the Lucas-Kanade algorithm at each point. Next, we
perform the optimization for 1000 iterations and inspect the
final result. We find that when convergence is successful,
the final accuracy is generally good, and therefore define
that if the tracking result is within 0.07 radians of ground
truth, we mark the tested point as belonging to the conver-
gence basin. The marked points are next used to calculate
the total area of the convergence basin.

The results are presented in Figures 5 and 8. Five pyra-
mids levels of SIFT and RGB have been used in the tests to
compare with the proposed CNN pyramid. The missing val-
ues were duplicated in the plots so that it is possible to easily
compare the convergence basin areas of the corresponding
image resolutions (e.g. RGB/SIFT level 5 corresponds to
CONV levels 11–13). Note that the LK alignment results
are not symmetric with regard to which image is used as the
template and which as the reference, as only the gradient
of the template image is used, which might have impact on
performance under varying lighting conditions and blur.

For frames from the window dataset (Figure 5), all of
the methods have a sensible basin of convergence on the
diagonal, where the images used for alignment are identical.
For more challenging, off-diagonal pairs, such as A2, A3
or B3, the RGB cost function fails to provide a minimum
in the correct spot, while SIFT and CONV still have wide,
comparable convergence basins. One of the failure cases is
showcased in more detail in Figure 6. The proposed CONV
method seems to excel at higher levels, which are believed
to have more semantic meaning.

In the second, home sequence (Figure 8) RGB performs
better, possibly due to the global character of the illumina-
tion changes. It still fails when the lighting changes sig-
nificantly (pair C2,B3). Similar to the previous sequence,
the proposed method performs at least as well as SIFT and
better than RGB at the highest levels of pyramid.

To evaluate how the proposed solution handles image
blurring, we have tested it with an alignment problem of
an image with a heavily blurred version of itself. Figure 7
presents the reference and template images used in this test,
selected cost landscape plots of RGB, CONV and SIFT and
a comparison of basin sizes. We can see that all methods are
robust to blur, with our proposed method providing the best
results at the highest pyramid levels. It provides a steady,
wide basin of convergence at the top pyramid levels regard-
less of the lighting conditions and blur.

6.2. Reducing the Number of Features

The results presented so far are based on aligning all
of the CNN feature maps produced at each pyramid level
jointly. One clear disadvantage of this approach is compu-
tational cost: the amount of work which needs to be done
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Figure 5. Comparison of sizes of convergence basins for aligning pairs of images with different lighting conditions (sampled from the
window sequence). Each array cell presents convergence basins areas of RGB (red), SIFT (green) and CONV (blue) at different pyramid
levels. The left column and top row images are used in LK as template and reference, respectively.
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Figure 6. Cost landscape plots and convergence basin areas of different methods for aligning an image with a blurred version of itself.
From left: template image, reference image, RGB cost landscape, SIFT cost landscape, CONV cost landscape, comparison of convergence
basin areas (RGB: red, SIFT: green, CONV: blue).
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Figure 7. Cost landscape plots and calculated convergence basin areas of different methods for aligning an image with a blurred version
of itself. From left: template image, reference image, RGB cost landscape, SIFT cost landscape, CONV cost landscape, comparison of
convergence basin areas (RGB: red, SIFT: green, CONV: blue).
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Figure 8. Comparison of sizes of convergence basins for aligning pairs of images with different lighting conditions (sampled from the home
sequence). Each array cell presents convergence basins areas of RGB (red), SIFT (green) and CONV (blue) at different pyramid levels.
Left and top images are used in LK as template and reference, respectively.



at each alignment iteration to calculate a difference is pro-
portional to the number of features. It is apparent from any
inspection of the features generated by a CNN that there
is a lot of redundancy in feature maps, with many looking
very similar, and therefore it seemed likely that it is possi-
ble to achieve similar or better results through selection of
a percentage of features. Here we perform experiments to
compare a random selection with simple criteria based on
measures of texturedness and stability.

In standard Lucas-Kanade, the size of the convergence
basin depends highly on image content. For example, a ver-
tical stripe can only be used to detect horizontal translation;
the lack of vertical gradient makes it impossible to deter-
mine the movement in this direction. In order to correctly
regress the camera pose, a strong gradient in both feature di-
rections is required. As in Shi and Tomasi’s classic ‘Good
Features to Track’ paper [19], we measure the texturedness
of a feature based on its structure tensor:

Gf =
∑
x∈If

[
g2
x gxgy

gxgy g2
y

]
,

where If is the activation map of the feature in response to
a certain input image. We use the smallest eigenvalue of
matrix Gf as a comparable single score.

The other factor to consider is stability. Most valu-
able features provide stable activations that change only
due to changes in camera pose. Features that react to ob-
jects that are likely to change their location, or lighting
changes, are undesirable. We measure the instability of a
feature f by calculating the average sum of squared differ-
ences (SSD) between activations obtained from images of
the test sequence to the ones extracted from the first image
and warped to the current camera frame:

sf =
1

N − 1

N∑
i=2

∑
x

‖(I1
f (W(x;ω))− Iif (x)‖2.

Averages of these two scores have been calculated across
frames of three video sequences — two timelapses and one
hand tracking sequence. We have selected and evaluated
several subsets of features of varying size that have the
optimal texturedness and stability. To assess their robust-
ness, we again use the size of convergence basin as a mea-
sure. Twelve challenging (outliers, varying lighting con-
ditions) image pairs sampled from our recorded sequences
have been used in the evaluation.

Figure 9 compares the average convergence basin size
achieved with the features selected with our proposed ap-
proach with a baseline of using random selections. Random
tests were performed in a range of 5–100% subsampling,
with a step of 5%. Each sampled subset was tested 20 times
against all twelve image pairs. We see very strongly that
the features selected using our simple criteria give excellent
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Figure 9. Average convergence basin size obtained by using our
proposed selection process (blue) and random sampling (red),
for different sampling percentage. Results were evaluated using
twelve image pairs representing the most challenging conditions
(outliers, lighting variations).

tracking performance when they are much fewer than the
whole set; while the performance of the randomly chosen
features tails off much faster. This promises more sophisti-
cated ways of learning ideal feature sets in the future.

7. Conclusions

We have shown that substituting the image pyramid in
standard Lucas Kanade dense alignment with a hierarchy of
feature maps generated by a standard VGG trained for clas-
sification straightforwardly gives much improved tracking
robustness with respect to large lighting changes.

While this is immediately a neat and convenient method
for tracking, we hope that it opens the door to further re-
search on new representations for dense mapping and track-
ing which lie in between raw pixel values and object-level
models. What levels of representation are needed in dense
SLAM in order actually to achieve tasks such as detecting
a change in an environment? A clear next step would be
to investigate the performance of m-estimators on the CNN
features to gate out outliers. Might we expect to see that
whole semantic regions which had moved or changed could
be masked out from tracking?

We imagine that a dense 3D model will be painted with
smart learned feature texture for tracking and updating,
rather than the raw pixel values of systems like DTAM [15].
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