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Abstract

Joint representation of geometry, colour and seman-
tics using a 3D neural field enables accurate dense la-
belling from ultra-sparse interactions as a user reconstructs
a scene in real-time using a handheld RGB-D sensor. Our
iLabel system requires no training data, yet can densely la-
bel scenes more accurately than standard methods trained
on large, expensively labelled image datasets. Furthermore,
it works in an ‘open set’ manner, with semantic classes de-
fined on the fly by the user.

iLabel’s underlying model is a multilayer perceptron
(MLP) trained from scratch in real-time to learn a joint
neural scene representation. The scene model is updated
and visualised in real-time, allowing the user to focus in-
teractions to achieve efficient labelling. A room or similar
scene can be accurately labelled into 10+ semantic cate-
gories with only a few tens of clicks. Quantitative labelling
accuracy scales powerfully with the number of clicks, and
rapidly surpasses standard pre-trained semantic segmenta-
tion methods. We also demonstrate a hierarchical labelling
variant.

1. Introduction

An intelligent agent must build an internal representation
of its environment which goes beyond geometry and colour
to include a semantic understanding of the scene. Research
on neural field representations has shown that an MLP net-
work can be trained from scratch in a single scene via au-
tomatic self-supervision to accurately and flexibly represent
geometry and appearance [22,38]. In this paper we demon-
strate that the internal scene structure learned by the net-
work allows for efficient user-guided scene segmentation.

We introduce iLabel, the first online and interactive 3D
scene capturing system with a unified neural field rep-
resentation, which allows a user to achieve high-quality,
dense scene reconstruction and multi-class semantic la-
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Figure 1. Whole-room semantic mesh labelled in real-time from
only 140 interactive clicks and no prior training data. See ht tps:
//youtu.be/bL7RZaMhRbk for a video demonstration.

belling from scratch with only minutes of scanning and a
few tens of semantic click annotations. A real-time neural
field SLAM forms the basis of our system. The user simul-
taneously scans a scene and provides sparse semantic an-
notations on selected keyframe images. By supervising the
network on the sparse annotations, semantics are automat-
ically propagated. The ability to render full predictions in
real-time allows a user-in-the-loop to place annotations ef-
ficiently, fixing incorrect predictions or adding new classes.

Our approach requires no prior training on semantic
datasets, and can therefore be applied in novel contexts,
with categories defined on-the-fly by the user in an open-set
manner. Standard methods for semantic scene segmentation
use deep networks trained on datasets of thousands of im-
ages with dense, high-quality human annotations; even then
they often have poor performance when the test scene is not
a good match for the training set. We show that the quan-
titative labelling accuracy of iLabel scales powerfully with
the number of clicks, and rapidly surpasses the accuracy of
standard pre-trained semantic segmentation methods.
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Alongside our core iLabel system for multi-class scene
labelling via clicks, we present two variations. First, we
show that hierarchical semantic labelling can be achieved
by interpreting outputs as branches in a binary tree. Second,
we demonstrate a ‘hands free’ labelling mode where an au-
tomatic uncertainty-guided framework selects a sequence of
pixels for which to ask the user for label names without the
need for clicks.

The only comparable interactive scene understanding
system is SemanticPaint [41], which trains a classifier on
top of a separate dense SLAM system. It requires alter-
nating between training and prediction modes, making la-
belling cumbersome. We argue that the unified scene rep-
resentation in iLabel is simpler and more user friendly, and
also show qualitatively that iLabel obtains much more pre-
cise and complete segmentations.

We demonstrate iLabel in a wide variety of environ-
ments, from tabletop scenes to entire rooms and even out-
doors. We believe iLabel to be a powerful and user-friendly
tool, with much potential for interactive scene labelling for
augmented reality or robotics, as well as providing intuitive
insights into the ability of neural fields to jointly represent
correlated quantities.

2. Related Work
2.1. iLabel System Overview

Scene Representation for Visual SLAM Scene repre-
sentation in visual SLAM has gradually progressed from
sparse feature point sets [9, 10, 23] to dense geometric 3D
maps (e.g. surfels, meshes and voxels) [8, 26, 28, 42] and
more recently, to neural representations [3], increasingly in-
volving semantics [20, 25, 32, 38,40, 44, 45]. While clas-
sical dense scene representations (e.g. volumetric maps)
have several advantages, a trade-off exists between com-
putational cost and topological complexity. Several papers
[3,6,39,44] have shown that view-based code representa-
tions are able to learn rich prior information from off-line
training, enabling joint optimisation of geometry, poses and
semantics, to refine network predictions during inference.
3D neural field scene representations have recently gained
popularity, owing to their ability to represent complex scene
structures with a small memory footprint by exploiting 3D
awareness and spatial continuity [22,29, 34, 38]. More re-
cently, iMAP [38] has been proposed as a real-time SLAM
system built upon an efficient neural field representation
and has demonstrated the ability to reconstruct high-quality,
water-tight 3D meshes.

Online Scene Understanding and Labelling Existing
real-time, dense semantic mapping systems typically con-
tain two parallel modules: 1) an RGB-D based geometric
SLAM system, maintaining a dense 3D map of the scene,
and 2) a semantic segmentation module that predicts dense

semantic labels of the scene [12, 19,24, 37]. Multi-view se-
mantic predictions are incrementally fused into the geomet-
ric model, yielding densely-labelled, coherent 3D scenes.
While semantic segmentation has been performed using
a variety of techniques [4, 14, 16, 27], it is an inherently
user-dependent and subjective problem [18]. User-in-the-
loop systems are therefore crucial in enabling full flexibil-
ity when defining semantic relations between entities in a
scene. In this context, the works most closely related to
ours are SemanticPaint [4 1] and Semantic Paintbrush [21].

SemanticPaint [41] is an online, user-in-the-loop system
that allows the user to label a scene during capture. To this
end, the user interacts with a 3D volumetric map, built from
an RGB-D SLAM system, via voice and hand gestures [28].
A streaming random forest classifier, using hand-crafted
features, learns continuously from the user gestures in 3D
space. The forest predictions are used as unary terms in a
conditional random field (CRF) to propagate the user an-
notations to unseen regions. As the CRFs are built upon
the reconstructed data, there is an underlying assumption
that this data is good enough to support label propagation.
SemanticPaint is therefore restricted to comparably simple
scenes and its efficacy in complex real-word scenarios is
limited. A significant distinguishing factor between iLabel
and SemanticPaint is ease-of-use. SemanticPaint has sev-
eral distinct modes, requiring the user to switch between
modes repeatedly and at well-time intervals to obtain opti-
mal results. In contrast, iLabel offers a much simpler and
intuitive user experience, such that high-quality segmenta-
tions are obtained with far fewer interactions and no expert
knowledge/intuition.

Semantic Paintbrush [21] extends SemanticPaint to op-
erate in outdoor scenes. Using a purely passive stereo setup
for extended range and outdoor depth estimation, users vi-
sualise the reconstruction through a pair of optical see-
through glasses and can draw directly onto it using a laser
pointer to annotate the objects in the scene. The system
learns in an online manner from the these annotations and
is thus able to segment other regions in the 3D map.

In contrast to [21, 41], iLabel does not rely on hand-
crafted features, benefiting instead from a powerful joint
internal representation of shape and appearance.

Hierarchical Semantic Segmentation Finding the hier-
archical structure of complex scenes is a long-standing
problem. Early attempts [1, 2] used image statistics to ex-
tract an ultrametric contour map (UCM), leading to fur-
ther work on using convolutional neural networks (CNNs)
for hierarchical image segmentation in a supervised man-
ner [13, 17,43]. We show that iLabel can build a user-
defined hierarchical scene segmentation interactively and
store it within the weights of an MLP.
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Figure 2. Overview of the iLabel system pipeline.

3. iLabel: Online, Interactive Open-Set La-
belling and Learning

The core real-time SLAM elements of iLabel are similar
to iMAP [38], which represents 3D scenes using a neural
field MLP which maps a 3D coordinate to a colour and vol-
ume density. It jointly optimises the MLP and the poses of
keyframes through differential volume rendering with ac-
tively sampled sparse pixels, while tracking the position of
a moving RGB-D camera against the neural representation.

iLabel adds a semantic head to the MLP that predicts ei-
ther a flat class distribution or a binary hierarchical tree (see
Section 3.1). While SLAM continues, a user provides anno-
tations via clicks in the keyframes. Scene semantics are then
optimised through semantic rendering of these user-selected
pixels. The smoothness and compactness priors present in
the MLP mean that the user-supplied labels are automat-
ically and densely propagated throughout the scene. iL-
abel is thus able to produce accurate, dense predictions from
very sparse annotations and to often even auto-segment ob-
jects and other regions not labelled by the user. The ability
to simultaneously reconstruct and label a scene in real-time
allows for ultra-efficient labelling of new regions and for
easy correction of errors in the current semantic predictions.
Figure 2 gives an overview of the iLabel system.

3.1. Semantics Representation and Optimisation
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Figure 3. We employ a 4-layer MLP with feature size of 256.

At the heart of iLabel is continuous optimisation of the
underlying implicit scene representation, which follows the
network design of iMAP with an additional semantic head
(Figure 3):

FG(p) = (C,s,p), (D

where Fy is an MLP parameterised by 6; ¢, s and p are the
radiance, semantic logits and volume density at the 3D po-
sition p = (z, y, z), respectively. The scene representation
is optimised with respect to volumetric renderings of depth,
colour and semantics, computed by compositing the queried
network values along the back-projected ray of pixel [u, v]:

N
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where w; = 0; H;;ll(l — o) is the ray-termination prob-
ability of sample 7 at depth d; along the ray; o, = 1 —
exp(—p;0;) is the occupancy activation function; 0; =
d;+1 — d; is inter-sample distance.

As in [38], geometry and keyframe camera poses
{Twc} are optimised by minimising the discrepancy be-
tween the captured and rendered RGB-D images from
sparsely sampled pixels. Semantics are optimised with
respect to the user-labelled pixels, with two different ac-
tivations and losses, corresponding to the two semantic
modes described below. The right side of Figure 2 gives
an overview of the semantic rendering process and the acti-
vation functions applied to the rendered logits.

Flat Semantics As in [45], the network outputs s; are
multi-class semantic logits which are converted into image
space by differential volume rendering (Equation 2) fol-
lowed by a softmax activation S[u, v] = softmax(S[u, v]).
Semantics are then optimised using the image cross-entropy
loss between the provided class ID and the rendered predic-
tions.



Hierarchical Semantics We propose a novel hierarchical
semantic representation through a binary tree, which allows
for labelling and predicting semantics at different hierarchi-
cal levels. While the network output, s;, is still represented
by an n-dimensional flat vector, n now corresponds to the
depth of the binary tree as opposed to the number of seman-
tic classes. The semantic logits are rendered in the same
manner, but the image activation and loss functions differ.

A sigmoid activation function is applied to the rendered
logits, producing values in the range [0, 1]. The ;" rendered
output value, S;[u,v] = sigmoid(S;[u,v]), corresponds to
the branching factor at tree level j. To obtain a hierarchical
semantic prediction, each value Sj [u,v] is set to O or 1 by
thresholding S;[u, v] at 0.5. In the hierarchical setting, the
user-supplied label corresponds to selecting a specific node
in the binary tree. This label is transformed into a binary
branching representation, and a binary cross-entropy loss is
computed for each rendered value. A label selecting a tree
node at level L only conditions the loss on the output values
up to and including level L: Sj [u,v],j € {1,...,L}.

With reference to the top half of Figure 8, the network
outputs three values corresponding to the three levels in the
tree. First, the user separates the scene into foreground and
background classes. A background label corresponds to the
vector [0, *, ] where * indicates that no loss is calculated
for the second and third rendered values. The user then
divides the background class further into wall and floor,
where the wall label corresponds to vector [0, 1,%]. The
binary hierarchical representation allows the user to sepa-
rate objects in stages. For example the user first separates
a whole bookshelf from the rest of the scene, and later sep-
arates the books from the shelf without contradicting the
initial labels, meaning that no labelling effort is wasted.

3.2. Semantic User Interaction Modes

Our system allows for two modes of interaction: 1) man-
ual interaction, the usual interactive mode of iLabel, where
users provide semantic labels in image space via clicks, and
2) automatic query generation, where the system gen-
erates automatic queries for the labels of informative pix-
els, driven by semantic prediction uncertainty (Figure 4).
The latter mode eases the burden of manual annotation, and
users could provide labels via text or voice.

Automatic Query Generation Uncertainty-based sam-
pling is used in this work to actively propose pixel posi-
tions for label acquisition because it can integrate seam-
lessly with deep neural networks with little computational
overhead [30, 33]. Several uncertainty measures are ex-
plored: softmax entropy, least confidence and margin sam-

pling [33]. For example, the softmax entropy is defined as:

C
Uentropy = — Z sc[ua 'U]lOg(SC[’LL, 'U]), 3
c=1

where C' is the number of semantic categories.

At system run-time, semantic labels and corresponding
uncertainty maps of all registered keyframes are rendered.
To decide which keyframe to allocate queries, we first com-
pute frame-level entropy by accumulating pixel-wise en-
tropy within frames and assign a higher probability to sam-
pling the keyframe with higher frame-level entropy. Given
a selected keyframe, we then randomly select the queried
pixel coordinate from a pool of pixel positions with top-K
highest entropy values. The frame-level and pixel-level un-
certainty are updated every certainty mapping steps. K is
set to 1% or 5% of pixel numbers to avoid repeated queries
at nearby positions.

Figure 4. In hands-free mode with automatic query generation, se-
mantic class uncertainty is used to actively select a pixel for which
to request a label; in this case an unlabelled stool with ambiguous
class prediction and high uncertainty is selected.

3.3. Implementation Details

iLabel operates in a multiprocessing, single or multi-
GPU framework, running three concurrent processes: 1)
tracking, 2) mapping, and 3) labelling (see Figure 2).

The mapping process encompasses optimising the MLP
parameters with respect to a growing set of W keyframes
and associated RGB-D observations: {(I;, D;, T;)}/V,. As
per [38], the photometric loss L, and geometric loss L,
are minimised on sparse, information-guided pixels. iLabel
performs an additional optimisation on K user-selected pix-
els (&;) in each keyframe and introduces a semantic loss L,
minimising the following objective function:

1
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Figure 5. Segmentation results for challenging skeletal objects;
left: pre-trained CNN on ScanNet (see Section 4.2), right: iLabel.

Figure 6. Catalog of object mesh assets separated with iLabel.

where:
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and in the hierarchical setting:

L

ef[u,v] = 87 [u, v] log(8; [u, v]) — (1= [u, v]) log (187 [u, v]).
The labelling process coordinates user interactions (clicks
and labels) and controls the rendering of semantic images
and meshes (via marching cubes on a dense voxel grid
queried from the MLP). The ADAM optimiser is used with
poses and map learning rates of 0.003 and 0.001. o, and a
are 5 and 8.

iLabel does not have an explicit/specific refinement pro-
cess, and all user clicks are involved in the joint optimi-
sation (Equation 4). The optimisation keeps working and
growing with changing sparse samples for colour and ge-
ometry reconstruction, and increasing annotated pixels for
semantics, colour and depth as well.

4. Experiments and Applications

iLabel is an interactive tool intended for real-time use
and we therefore emphasise that its strengths are best il-
lustrated qualitatively. We provide extensive examples to
demonstrate iLabel in a variety of interesting scenes, and
highly recommend that reviewers watch our attached video
(Figure 1) which shows the full interactive labelling pro-
cess. We show qualitative comparisons with the only com-
parable system SemanticPaint and clearly demonstrate bet-
ter segmentation quality. Additionally we perform a quan-
titative evaluation to show how segmentation quality scales

Figure 7. Precise segmentations can be obtained from just 1 or 2
interactive clicks per object. (Left: clicks; middle: dense labels
rendered into a keyframe; right: full 3D mesh with labels.)

with additional click labels, using a state-of-the-art, fully-
supervised RGB-D segmentation baseline [5].

4.1. Qualitative Evaluation

As the geometry, colour and semantic heads share a sin-
gle MLP backbone, user annotations are naturally propa-
gated to untouched regions of the scene without specify-
ing an explicit propagation mechanism (e.g. the pairwise
terms of a CRF used in [41]). This, together with a user-in-
the-loop, enables ultra-efficient scene labelling with only a
small number of well-placed clicks.

We have observed that the resulting embeddings are
highly correlated for coherent 3D entities in the scene (e.g.
objects, surfaces, etc.). Consequently, iLabel is able to seg-
ment these entities very efficiently, even with a single click.
This is illustrated in Figures 7 and 9, where only a few
clicks generate complete and precise segmentations for a
wide range of objects and entities, ranging from small, co-
herent objects (e.g. fruit) to deformable and intricate enti-
ties (clothing and furniture). In Figure 10 we disable colour
optimisation to further highlight that in iLabel geometry
provides a strong signal for separating objects.

The coordinate-based representation avoids quantisation
and allows the network to be queried at arbitrary resolu-
tions. This property allows reconstruction of detailed geom-
etry and skeletal shapes that, when semantically labelled,
render very precise segmentations. Figure 5 illustrates high-
fidelity segmentations of objects which are challenging for
a standard CNN.

iLabel can be used as an efficient tool for generating la-
belled scene datasets. For example, a scene of a complete
room with 13 classes, can be fully segmented with high pre-
cision with only 140 user clicks (Figure 1). Alternatively,
iLabel can be used to tag individual objects for generating
object-asset catalogues (Figure 6) to aid robotic manipula-
tion tasks, for example.

While iLabel is particularly powerful at segmenting co-
herent entities, Figure 11 also demonstrates its ability to
propagate user-supplied labels to disjoint objects exhibit-
ing similar properties. Each example shows label transfer
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Figure 9. Ultra-efficient label propagation: iLabel produces high-
quality segmentations of coherent 3D entities with very few user
clicks, approximately 20-30 per scene.

between similar objects where only one has been labelled
(e.g. (a) boxes on the bed, (b) food boxes and plastic cups
and (c) toy dinosaurs). The table and chairs scene in Figure
11 (d) is especially interesting. Only four clicks are sup-
plied: the label for the chair leg (blue) propagates to the leg
of the table and the legs of the other chairs, while the table-
top label (yellow) propagates to the seats of the chairs.

Hierarchical scene segmentation Figure 8 demonstrates
iLabel’s hierarchical mode. The colour-coded hierarchy
(defined on-the-fly) is shown together with segmentations
and scene reconstructions from each level. The results show
the capacity of this representation to group objects at differ-
ent levels, which has potential in applications where differ-
ent tasks demand different groupings.

Figure 10. In removing the use of colour optimisation for scene
reconstruction, only a few extra clicks are required to achieve a
comparable quality of segmentation to that shown in Figure 7.

Figure 11. Generalisation: iLabel is able to transfer user labels to
objects exhibiting similar properties. It is worth highlighting that
the segmentation in (d) was achieved with only 4 clicks.

Comparison to SemanticPaint SemanticPaint (SPaint)
[41] is currently the only comparable online interactive
scene understanding system. With several distinct modes
(labelling, propagation, training, predicting, correcting,
smoothing), which do not operate simultaneously, users



(a) Input annotations

(b) SPaint: Initial strokes  (c) SPaint: Additional strokes

(d) iLabel: Initial strokes

Figure 12. Comparison results between iLabel and SemanticPaint for user annotations in (a). (b) SPaint results for initial strokes; (c) SPaint
results after corrections; (d) iLabel segmentations obtained using only the input strokes in (a).

have to switch between modes repeatedly (with careful con-
sideration given to the duration spent in each mode) to ob-
tain optimal results. In contrast, iLabel presents a unified
interface for scene reconstruction, whereby user interac-
tion, label propagation, learning and prediction occur si-
multaneously. The more intuitive and simpler interface pre-
sented by iLabel means that high-quality segmentations are
obtained with far fewer interactions and no expert knowl-
edge/intuition.

Qualitative comparisons between iLabel and SPaint are
given in Figures 12 and 13. Scenes with varying degrees of
complexity were chosen to demonstrate the superiority of
iLabel even in scenes well-suited to SPaint (e.g. final row
Figure 12). For each scene in Figure 12, users annotated
objects/regions with the strokes shown in (a). From these
initial annotations only, iLabel was able to generate high-
quality segmentations (Figure 12 (d)). In contrast, SPaint
produced comparatively noisy and incomplete initial seg-
mentations (Figure 12 (b)). Multiple mode switches and
additional corrective strokes were required to generate the
final SPaint results (Figure 12 (c)). We argue that the results
produced by iLabel with only the initial user inputs (< 10
strokes), surpass those of SPaint after the additional user in-
teractions. Figure 13 additionally illustrates the quality of

the 3D meshes generated by each technique, further high-
lighting the superiority of iLabel.

(b) SemanticPaint (c) iLabel

(a) Input annotations

Figure 13. Qualitative comparison between iLabel and Semantic-
Paint showing generated meshes.

4.2. Quantitative evaluation

We evaluate iLabel’s 2D semantic segmentation perfor-
mance in both user-interaction and automatic query gen-
eration modes, with varying numbers of clicks per scene,
on the public datasets Replica [36] and ScanNet [7]. Both
datasets are publicly available for research purposes under
their licence. We report the mean Intersection Over Union
(mIOU), averaged over ground truth labels remapped to
NYU-13 class definitions.

Baseline While pre-trained segmentation models serve a
different purpose than an interactive scene-specific system
(to generalise to unseen scenes) we use them as a baseline



to demonstrate the labelling efficiency of our system. iL-
abel scales rapidly with the number of clicks and rapidly
surpasses the pretrained model, even when this has been
trained on very similar scenes

Performance is evaluated against SA-Gate [5] with a
ResNet-101 DeepLabV3+ backbone [4], which is the cur-
rent state-of-the-art in RGB-D segmentation. For Replica,
we pre-train SA-Gate using the SUN-RGBD dataset [35]
and fine-tune on our generated Replica sequences to avoid
over-fitting. We adopt a leave-one-out strategy, whereby
fine-tuning is performed independently for each test scene
using the remaining Replica scenes. For ScanNet, we train
SA-Gate directly on the official training sets, achieving
63.98% mIOU on the validation sets of 13 classes. Ap-
proximately 11k (9860 and 475 images for our SUN-RGBD
training and validation splits, 900 images for Replica fine-
tuning) and 25k training images were used for baseline
CNN training on each Replica and ScanNet experiment,
respectively. The ResNet-101 backbone is initialised with
ImageNet pre-trained weights [31] through all the experi-
ments. As per [5], depth maps use HHA encoding [ 1],
before which fast depth completion [15] is used for hole-
filling in ScanNet.

Results Figure 14a shows the performance of iLabel com-
pared against the supervised RGB-D CNN baseline (dashed
horizontal line) on 5 Replica scenes and 6 ScanNet scenes
from the validation set. The Replica dataset is a low data
regime with only 7 scenes used for fine tuning, which makes
generalisation specially hard. iLabel is specially suited for
this settings, and surpasses the baseline with only 20 clicks
per scene. In the ScanNet dataset where much more data
is available, iLabel reaches similar accuracy to the baseline
with around 50 clicks, and continues to improve surpassing
the baseline by 20% at 120 clicks.

Figure 14b shows the effectiveness of automatic query
generation, which opens the possibility for hands-free scene
labelling, e.g., by voice command. As expected, this mode
is less efficient than manual clicks and takes around 240
clicks to reach similar performance. We show how random
uniform pixel sampling achieves a lower performance, spe-
cially when more labels have been added, highlighting the
importance of uncertainty guided pixel selection.

5. Potential Negative Societal Impacts

As a visual perception module, iLabel can enable intelli-
gent robots to label novel environments in an open-set man-
ner with only minimal human input. As with any system
designed to capture data, user privacy can be negatively im-
pacted. Privacy concerns may be particularly important for
iLabel as the scene representations it creates are compact
(= 1 MB) making the process both portable and scalable.
However, these same characteristics may also enable pos-
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Figure 14. Quantitative evaluation of 2D semantic segmentation
on the Replica and ScanNet datasets. Both interaction modes are
evaluated and outperform supervised baselines with a small anno-
tation budget.

itive technologies such as assistive robotics or inspection
platforms that require semantic scene understanding.

6. Conclusion

We have shown that online, scene-specific training of a
compact MLP model which encodes scene geometry, ap-
pearance and semantics allows ultra-sparse interactive la-
belling to produce accurate dense semantic segmentation,
far surpassing the performance of standard pre-trained ap-
proaches. Despite promising results, our system’s label
propagation mechanism works well mainly for proximal re-
gions and/or those sharing similar geometry or texture. A
deeper understanding of this mechanism is necessary to en-
able better control of this process and to improve generali-
sation performance. As architectures and methods for neu-
ral implicit representation of scenes continue to improve,
we expect these gains to be passed on to our labelling ap-
proach, and for tools like iLabel to become highly practical



for applications where users are able to teach Al systems
efficiently about useful scene properties.
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