Coherent control of ground-state cooled ions in a Penning trap

Richard Thompson QOLS Group Imperial College London

www.imperial.ac.uk/ion-trapping

Controlled Ouantum Dynamics

Richard Thompson EQLIPS July 2018

People involved in this work

- PhD students: Ollie Corfield, Jake Lishman (theory), Manoj Joshi (now at Innsbruck), Vincent Jarlaud, Pavel Hrmo (now at Innsbruck)
- Staff: Richard Thompson, Florian Mintert (theory), Danny Segal (1960-2015)

Richard Thompson EQLIPS July 2018

Outline of the talk

- Laser cooling in the Penning trap
- Effect of a large Lamb-Dicke parameter
- Sideband cooling of a single ion
 - Coherent superpositions of motional states
 - Coherent control with a bichromatic beam
 - Coherent manipulation of the motion in high-n states
- Sideband cooling of two-ion 'crystals'
- Sideband cooling of the radial motion
- Outlook

Strengths of motional sidebands as a function of *n* for Lamb-Dicke parameter $\eta \sim 0.2$

Richard Thompson EQLIPS July 2018

Laser cooling in the Penning trap

- Doppler cooling is basically the same in radiofrequency and Penning traps, but...
- Zeeman splitting of levels requires multiple laser frequencies for cooling
 - » Avoided in simple ions (Mg⁺ and Be⁺) by using optical pumping techniques
- Magnetron motion has negative energy and is hard to cool
 - » Needs laser beam offset from trap centre
 - » Or additional fields (rotating wall, axialisation)
- Oscillation frequencies are relatively low (<1MHz in our case)

Be⁺

Richard Thompson EQLIPS July 2018

Working with calcium in a Penning trap

- In the magnetic field of the Penning trap we obtain large Zeeman splittings
- We require 10 laser frequencies (4 lasers) for Doppler cooling
- We can create and control 1, 2, and 3-D Coulomb crystals

Richard Thompson EQLIPS July 2018

Sideband cooling: "trapped" motional states

 The Lamb-Dicke parameter η determines the amplitude of the motional sidebands

 $\eta = x_0(2\pi/\lambda) \sim 0.2$ for our trap [x_0 is size of g.s. wavefunction]

- The strength of each motional sideband depends on η
 - Quantum equivalent to sidebands in classical frequency modulation
- For our low trap frequencies we expect the first red sideband to have zero amplitude around *n*=80
- Cooling on the first red sideband (R1) will only be effective for n<80
- Around 20% of the population is at n>80 at the Doppler limit (<n>=47)

Richard Thompson EQLIPS July 2018

Spectrum showing population in trapped state

- After sideband cooling on the first red sideband (R1):
 - much of the population is in n=0
 - » this gives the strong asymmetry between R1 and B1
 - but some is trapped around n=80
 - » This gives the higher order sidebands in the spectrum

Richard Thompson EQLIPS July 2018

Clearing out the "trapped" motional states

- Cooling on the first red sideband (R1) will only be effective for n<80
- Around 20% of the population is at n>80 at the Doppler limit
- To pump this population we need to drive the 2nd red sideband (R2) first
 - R2 is strong right up to n=140 but does not give effective cooling at low n
- The procedure is then
 - R1 (10 ms)
 - R2 (5 ms)
 - R1 (5 ms) at reduced power

Axial sideband cooling with multiple stages

Detuning from carrier I&HzL

Cooling sequence is R1 (10ms), R2 (5ms), R1 (5ms, reduced power) $\langle n \rangle \sim$ (R1 amplitude) / (B1 amplitude)

Motional ground state occupation is >98%; heating rate <1 phonon/s

Richard Thompson EQLIPS July 2018

Superpositions of motional states

- $\pi/2$ pulse on the carrier (C)
- π pulse on 1st red sideband (R1)
- Wait time T
- π pulse on 1st red sideband (R1)
- $\pi/2$ pulse on the carrier (C)

Richard Thompson EQLIPS July 2018

"Triple slit" using motional states

- "2/3 π " pulse on the carrier (C)
- $\pi/2$ pulse on 1st red sideband (R1)
- π pulse on 2nd red sideband (R2)
- Wait time T
- Reverse the pulse sequence
- Measure gound state population

This is analogous to an optical triple slit and can be used to study higher order coherence (see Jake Lishman's poster)

Bichromatic drive

Simultaneous driving on the first Red and Blue sidebands (R1 and B1) is equivalent to the position operator x ~ a + a⁺, generating after time t the displacement operator:

 $D(\alpha) = \exp(\alpha a - \alpha^* a^+)$ with $|\alpha| = \eta \Omega t / z_0$

• So we can generate a coherent state using a bichromatic drive

Rabi oscillations on B1 after a 150µs bichromatic pulse. The fitted value of α is 1.73

Richard Thompson EQLIPS July 2018

Sideband heating on the blue sideband

- Sideband cooling on R1 drives us towards *n=*0
- After cooling to the ground state, we can also drive the ion on B1 back towards *higher n* states
- This prepares an incoherent spread of population around the first minimum with $\Delta n \sim 10$
- After sideband heating the spectrum shows a distinctive minimum for first order sidebands

Richard Thompson EQLIPS July 2018

Spectrum of ions in the trapped state

 Here we have driven the ion on B1 after sideband cooling in order to drive the population into the first minimum at n=80

Richard Thompson EQLIPS July 2018

Coherence in highly excited motional states

- After sideband heating the population is centred in a narrow range of n around a minimum
- The strengths of the other sidebands are often fairly constant across the distribution
- Therefore we see coherent behaviour
- We can study the optical and motional coherence for high *n* states by using π/2 pulses to create coherent superpositions of states
- The interference persists because the other sideband strengths are fairly constant across the range of *n* we populate

Pulse length (μ s) Rabi oscillations on 4th red sideband around *n*=280

Preparation of superposition of high-*n* states

- A $\pi/2$ carrier pulse creates a coherent superposition of $|g,n\rangle$ and $|e,n\rangle$

Richard Thompson EQLIPS July 2018

Preparation of superposition of high-*n* states

- A $\pi/2$ carrier pulse creates a coherent superposition of $|g,n\rangle$ and $|e,n\rangle$
- A $\pi/2$ B3 pulse then creates a coherent superposition of $|g,n\rangle$, $|g,n-3\rangle$, $|e,n\rangle$ and $|e,n+3\rangle$
- Period of free evolution T
- Probe the coherence with a second pair of pulses on B3 and carrier (with variable phases)
- Measured interference is (nearly) independent of *n*

Richard Thompson EQLIPS July 2018

Coherence measurements

- At small T we see fringe visibility ~1
- After 1 ms the optical coherence is lost and the visibility drops to ~0.5
- Motional coherence is preserved out to ~100 ms for Δ*n*=3

Richard Thompson EQLIPS July 2018

Sideband cooling of 2-ion crystals

- Two ions can arrange themselves along the axis or in the radial plane
- In each case there are two axial oscillation modes
- Axial crystal:
 - Centre of Mass at ω_z
 - Breathing Mode at $\sqrt{3} \omega_z$
- Radial crystal:
 - Centre of Mass at ω_z
 - Rocking between $\sqrt{(\omega_z^2 \omega_1^2)}$ and ω_z depending on ion separation (where $\omega_1 = \sqrt{(\omega_c^2/4 - \omega_z^2/2)}$ is the effective radial trapping frequency)

AxialRadialcrystalcrystal

Note that the ions are imaged from the side and the radial crystal is rotating due to the magnetic field

Two-ion axial crystal after Doppler cooling

Richard Thompson

EQLIPS July 2018

Imperial College

London

Detuning from transition (kHz)

- The spectrum is complicated because each sideband of one motion has a complete set of sidebands due to the other motion
- The overall width corresponds to the Doppler limit of ~ 0.5 mK

Richard Thompson EQLIPS July 2018

Trapped motional states in 2D

- There are two independent axial modes
 - The strength of each sideband depends on *both* quantum numbers
- We have to use a combination of several different sidebands of each motion
- But there are still regions that are never pumped by pure centre of mass sidebands or pure breathing mode sidebands
 - We have to use "sidebands of sidebands" in the cooling sequence

Amplitude of 1st Red sideband of COM

Richard Thompson EQLIPS July 2018

Sideband cooling of two ions in axial crystal

- We have cooled both modes of the two-ion axial crystal
 - COM at ω_z and breathing mode at $\sqrt{3}~\omega_z$
- The final mean quantum numbers are $n_{\rm COM}$ =0.3 and $n_{\rm B}$ =0.07
 - Heating rates are also low

https://arxiv.org/abs/1705.08518

Richard Thompson EQLIPS July 2018

Axial sideband cooling of two-ion radial crystal

- The ions are both in the radial plane
- We see artifacts due to the rotational motion in the radial plane
- The two axial modes frequencies cannot be resolved in this plot
 - This makes the cooling process more straightforward as both cool together
- We also have cooling results for up to 10-ion radial crystals

Richard Thompson EQLIPS July 2018

Radial motion of a single ion

- The radial motion in the Penning trap has two modes
 - Cyclotron motion (fast) [700kHz]
 - Magnetron motion (slow) [10s of kHz]
- The sideband spectrum will show structure due to both motions
- We use the spectrum to measure the temperatures of the two modes directly from the velocity distribution

Radial motion in the Penning trap

Richard Thompson EQLIPS July 2018

Radial spectrum at low potential

- The (fast) cyclotron motion gives rise to sidebands
- The ~4 MHz FWHM corresponds to a cyclotron temperature of ~7 mK
- Each cyclotron sideband has structure due to the magnetron motion
 - but individual sidebands are not resolved here

See Mavadia et al Phys. Rev. A **89**, 032502

The narrow width of the magnetron structure demonstrates that its "temperature" is very low (~40 μK)

Problems for radial cooling

- Need to cool two modes at the same time
 - We have gained experience of this with ion crystals
- The magnetron sidebands are unresolved
 - Increase trap voltage to raise magnetron frequency
- The magnetron energy is negative
 - Cool on the *blue* sidebands of magnetron motion, not *red*
- The initial quantum number of magnetron motion is very large (*n* up to 1000 in some cases after Doppler cooling)
 - Use the axialisation technique to couple to cyclotron motion

Axialisation

- This technique is used in the mass spectrometry field to couple the magnetron motion to the cyclotron motion for cooling
- We have adapted it for use with optical sideband cooling
- The ion is driven by an oscillating radial quadrupole field at $\omega_c{=}eB\!/M$

Classically:

The field creates a coupled oscillator system so there is a continuous transfer of energy between the two modes. Damping of both comes from the strong cyclotron cooling. Eventually $r_m \approx r_c$

Quantum mechanically:

The field drives transitions where $n_m = -1$ and $n_c = +1$. The Doppler cooling continuously drives n_c to lower values. Eventually $n_m \approx n_c$

Sideband cooled radial spectrum

Detuning from transition (kHz)

- The carrier is very strong to bring out the other sidebands
- The asymmetry in cyclotron sidebands indicates $n_c=0.07\pm0.03$
- The (reversed) asymmetry in the magnetron sidebands indicates $n_{\rm m}$ =0.40±0.06
- Weak second-order sidebands can also be seen

Summary

- We have cooled the axial motion of single ions and small Coulomb crystals to the ground state in a Penning trap
- Coherent processes can be observed even at high motional quantum numbers for single ions
- We have performed the first sideband cooling of the radial motion of an ion

Excitation probability

0.6

Richard Thompson EQLIPS July 2018

Richard Thompson EQLIPS July 2018

Richard Thompson EQLIPS July 2018

Heating rate comparison

Richard Thompson EQLIPS July 2018

Rabi oscillations

- We can see Rabi oscillations for ground-state cooled ions
 - The carrier Rabi frequency is up to 60 kHz and the coherence time is \sim 0.8 ms
- Spin-echo techniques can be used to increase coherence time to a few ms

Richard Thompson EQLIPS July 2018

Ramsey interference with two-ion crystal

Ramsey interference pattern after 140 μ s delay between two $\pi/2$ pulses

• The observation of Ramsey fringes confirms coherent behaviour of the system

Richard Thompson EQLIPS July 2018

Heating rate results

- The heating rate averages at around 0.4 phonons/second and is roughly independent of frequency
 - Probably limited by technical noise
- The heating rate is expected to be low because
 - The trap is very large (radius 10 mm)
 - The trapping fields are static and there is no micromotion

Goodwin et al. PRL 2016

Richard Thompson EQLIPS July 2018

Cooling effect of the sequence of sidebands

- This shows the combined effect of a sequence of 5 different sidebands including one "sideband of a sideband"
- Every region of the plane is now addressed by at least one of the sidebands effectively
- We cycle through this sequence of sidebands many times to complete the cooling process

Breathing mode quantum number

Richard Thompson EQLIPS July 2018

Proportion of population above mimimum

Figure 6.4: Plot showing fraction of population at the Doppler limit that lies above the the lowest coupling minima of the first two red sidebands as a function of the trapping frequency.

Richard Thompson EQLIPS July 2018

Ramsey fringes

