# Ground state cooling and coherent control of ions in a Penning trap

Richard Thompson QOLS Group Imperial College London

www.imperial.ac.uk/ion-trapping



Richard Thompson TCP 2018

### **People involved in this work**



- *PhD students:* Ollie Corfield, Jake Lishman (theory), Manoj Joshi (now at Innsbruck), Vincent Jarlaud, Pavel Hrmo (now at Innsbruck)
- Masters student: Will Schiela
- Staff: Richard Thompson, Florian Mintert (theory), Danny Segal (1960-2015)

Richard Thompson TCP 2018

# **Outline of the talk**

- Laser cooling in the Penning trap
  - Effect of a large Lamb-Dicke parameter
- Sideband cooling of a single ion
  - Coherent superpositions of motional states
  - Coherent control with a bichromatic beam
  - Coherent manipulation of the motion in high-n states
- Sideband cooling of two-ion 'crystals'
- Sideband cooling of the radial motion
- Summary



Richard Thompson TCP 2018

# **Doppler cooling of calcium in a Penning trap**



Richard Thompson TCP 2018

# **Optical Sideband cooling: "trapped" motional states**

 The Lamb-Dicke parameter η determines the strength of the motional sidebands

 $\eta = x_0(2\pi/\lambda) \sim 0.2$  for our trap [ $x_0$  is size of g.s. wavefunction]

- The strength of each motional sideband depends on  $\eta$ 
  - Quantum equivalent to the sidebands seen in classical frequency modulation
- For our low trap frequencies we expect the first red sideband to have zero strength around *n*=80
- Cooling on the first red sideband (R1) will only be efficient for n<80</li>
- Around 20% of the population is at n>80 at the Doppler limit ( $\langle n \rangle=47$ )



### **Spectrum showing population in trapped state**





- After sideband cooling on the first red sideband (R1):
  - most of the population is in n=0
    - » this gives the strong asymmetry between R1 and B1
  - but some is trapped around *n*=80
    - » This gives the higher order sidebands in the spectrum

Richard Thompson TCP 2018

### **Clearing out the "trapped" motional states**

- Cooling on the first red sideband (R1) will only be effective for n<80</li>
- To pump the trapped population we need to drive the 2<sup>nd</sup> red sideband (R2) first
  - R2 is strong right up to n=140 but does not give effective cooling at low n
- The procedure is then
  - R1 (10 ms)
  - R2 (5 ms)
  - R1 (5 ms) at reduced power



### **Axial sideband cooling with multiple stages**



Cooling sequence is R1 (10ms), R2 (5ms), R1 (5ms, reduced power)  $\langle n \rangle \sim$  (R1 amplitude) / (B1 amplitude)

Motional ground state occupation is >98%; heating rate <1 phonon/s  $_8$ 

# **Superpositions of motional states**

- $\pi/2$  pulse on the carrier (C)
- π pulse on 1<sup>st</sup> red sideband (R1)
- Wait time T
- $\pi$  pulse on 1<sup>st</sup> red sideband (R1)
- $\pi/2$  pulse on the carrier (C)





# **"Triple slit" using motional states**

- "2/3  $\pi$ " pulse on the carrier (C)
- $\pi/2$  pulse on 1<sup>st</sup> red sideband (R1)
- π pulse on 2nd red sideband (R2)
- Wait time T
- Reverse the pulse sequence

Motional interference fringes after wait

Measure gound state population





This is analogous to an optical triple slit and can be used to study higher order coherence

# **Optimal control techniques for "triple slit"**



- We can use optimal control techniques to design efficient protocols using carrier and first order sidebands only:
  - + 4 pulses to prepare the motional state  $|\psi\rangle$  =  $|0\rangle$ + $|1\rangle$ + $|2\rangle$
  - + 5 pulses to map  $|\psi\rangle$  to the ground electronic state  $|g\rangle$
- This will allow us to unambiguously demonstrate 3-coherence effects

#### Richard Thompson TCP 2018

## Sideband heating on the blue sideband

- Sideband cooling on R1 drives us towards n=0
- After cooling to the ground state, we can also drive the ion on B1 back towards *higher n* states
- This prepares an incoherent spread of population around the first minimum with  $\Delta n \sim 10$
- After sideband heating the spectrum shows a distinctive minimum for first order sidebands



See Joshi et al https://arxiv.org/abs/1809.02848

Richard Thompson TCP 2018

### **Spectrum of ions in the trapped state**



Detuning from transition (kHz)

 Here we have driven the ion on B1 after sideband cooling in order to drive the population into the first minimum around n=80

#### Richard Thompson TCP 2018

## **Coherence in highly excited motional states**

- After sideband heating the population is centred in a narrow range of *n* around a minimum
- The strengths of other sidebands are fairly constant across the distribution
- Therefore we can see coherent behaviour
- We can study the optical and motional coherence for high *n* states by using π/2 pulses to create coherent superpositions of motional states



 $\label{eq:Pulse_length} \begin{array}{l} \text{Pulse_length} \left( \mu s \right) \\ \text{Rabi oscillations on $4^{th}$ red $SB$ at minimum of $R2$} \end{array}$ 



## Preparation of superposition of high-*n* states



- A π/2 carrier pulse creates a coherent superposition of  $|g,n\rangle$  and  $|e,n\rangle$ 

Richard Thompson TCP 2018

## Preparation of superposition of high-*n* states



- A  $\pi/2$  carrier pulse creates a coherent superposition of  $|g,n\rangle$  and  $|e,n\rangle$
- A  $\pi/2$  B3 pulse then creates a coherent superposition of  $|g,n\rangle$ ,  $|g,n-3\rangle$ ,  $|e,n\rangle$  and  $|e,n+3\rangle$
- Period of free evolution T
- Probe the coherence with a second pair of pulses on B3 and carrier (with variable phases)
- Measured interference is (nearly) independent of *n*

Richard Thompson TCP 2018

### **Coherence measurements**



Richard Thompson TCP 2018

# Sideband cooling of 2-ion crystals

- Two ions can arrange themselves along the axis or in the radial plane
- In each case there are two axial oscillation modes
- Axial crystal:
  - Centre of Mass at  $\omega_z$
  - Breathing Mode at  $\sqrt{3} \omega_z$
- Radial crystal:
  - Centre of Mass at  $\omega_z$
  - Tilt mode slightly lower than  $\omega_z$



Axial crystal Radial crystal

Note that the ions are imaged from the side and the radial crystal is rotating due to the magnetic field

# **Trapped motional states in 2D**

- There are two independent axial modes
  - Each motion has its own Lamb-Dicke parameter
  - The strength of each sideband depends on *both* quantum numbers
- We have to use a combination of several different sidebands of each motion
- But there are still regions that are never pumped by pure centre of mass sidebands or pure breathing mode sidebands
  - We have to use "sidebands of sidebands" in the cooling sequence



#### Strength of 1<sup>st</sup> Red sideband of COM

# Sideband cooling of two ions in axial crystal



- We have cooled both modes of the two-ion axial crystal
  - COM at  $\omega_z$  and breathing mode at  $\sqrt{3}~\omega_z$
- The final mean quantum numbers are  $n_{\rm COM}$ =0.3 and  $n_{\rm B}$ =0.07
  - Heating rates are also low

Imperial College

London

• Similar results for a radial crystal

see Stutter et al. JMO 65 549 (2017)

**Richard Thompson** 

TCP 2018



Laser Detuning From Carrier (kHz)

Phys. Rev. A 89, 032502

# **Problems for radial cooling**

- Need to cool two modes at the same time
  - We have gained experience of this with ion crystals
- The magnetron sidebands are unresolved
  - Increase trap voltage to raise magnetron frequency
- The magnetron energy is negative
  - Cool on the *blue* sidebands of magnetron motion, not *red*
- The initial quantum number of magnetron motion is very large (*n* up to 1000 in some cases after Doppler cooling)
  - Use the axialisation technique to couple to cyclotron motion

Richard Thompson TCP 2018

### **Axialisation**

- This technique is used in the mass spectrometry field to couple the magnetron motion to the cyclotron motion for cooling
- We have adapted it for use with optical sideband cooling
- The ion is driven by an oscillating radial quadrupole field at  $\omega_c = eB/M$

### **Classically:**

The field creates a coupled oscillator system so there is a continuous transfer of energy between the two modes. Damping of both comes from the strong cyclotron cooling. Eventually  $r_m \approx r_c$ 

### **Quantum mechanically:**

The field drives transitions where  $\Delta n_{\rm m}$ =-1 and  $\Delta n_{\rm c}$ =+1. The Doppler cooling continuously drives  $n_{\rm c}$  to lower values. Eventually  $n_m \approx n_c$ 

# **Sideband cooled radial spectrum**



Detuning from transition (kHz)

- The carrier is very strong to bring out the other sidebands
- The asymmetry in cyclotron sidebands indicates  $n_c$ =0.07±0.03
- The (reversed) asymmetry in the magnetron sidebands indicates n<sub>m</sub>=0.40±0.06
- Weak second-order sidebands can also be seen

#### Richard Thompson TCP 2018

### **Summary**

- We have cooled the axial motion of single ions and small Coulomb crystals to the ground state in a Penning trap
- Coherent processes can be observed at high motional quantum numbers for single ions
- We have performed the first sideband cooling of the radial motion of an ion
- These results demonstrate excellent quantum control of ions in a Penning trap





# Thank you for your attention!

### **Bichromatic drive**

- Simultaneous driving on the first Red and Blue sidebands (R1 and B1) is equivalent to the position operator x ~ a + a<sup>+</sup>
- After time *t* this generates the displacement operator:  $D(\alpha) = \exp(\alpha a - \alpha^* a^+)$  with  $|\alpha| = \eta \Omega t / z_0$
- So we can generate a coherent state using a bichromatic drive



Rabi oscillations on B1 after a 150µs bichromatic pulse. The fitted value of  $\alpha$  is 1.737

Richard Thompson TCP 2018

### **Heating rate comparison**



Richard Thompson TCP 2018

### **Rabi oscillations**



- We can see Rabi oscillations for ground-state cooled ions
  - The carrier Rabi frequency is up to 60 kHz and the coherence time is  $\sim$ 0.8 ms
- Spin-echo techniques can be used to increase coherence time to a few ms

Richard Thompson TCP 2018

### **Ramsey interference with two-ion crystal**

Ramsey interference pattern after 140 $\mu$ s delay between two  $\pi/2$  pulses



• The observation of Ramsey fringes confirms coherent behaviour of the system

Richard Thompson TCP 2018

### **Heating rate results**



- The heating rate averages at around 0.4 phonons/second and is roughly independent of frequency
  - Probably limited by technical noise
- The heating rate is expected to be low because
  - The trap is very large (radius 10 mm)
  - The trapping fields are static and there is no micromotion

Goodwin *et al. PRL* 2016

### **Two-ion axial crystal after Doppler cooling**

Imperial College

London



Detuning from transition (kHz)

- The spectrum is complicated because each sideband of one motion has a complete set of sidebands due to the other motion
- The overall width corresponds to the Doppler limit of ~ 0.5 mK

**Richard Thompson** 

TCP 2018

### Axial sideband cooling of two-ion radial crystal



- The ions are both in the radial plane
- We see artifacts due to the rotational motion in the radial plane
- The two axial modes frequencies cannot be resolved in this plot
  - This makes the cooling process more straightforward as both cool together
- We also have cooling results for up to 10-ion radial crystals

#### Richard Thompson TCP 2018

## **Cooling effect of the sequence of sidebands**

- This shows the combined effect of a sequence of 5 different sidebands including one "sideband of a sideband"
- Every region of the plane is now addressed by at least one of the sidebands effectively
- We cycle through this sequence of sidebands many times to complete the cooling process



Breathing mode quantum number

### **Proportion of population above mimimum**



Figure 6.4: Plot showing fraction of population at the Doppler limit that lies above the the lowest coupling minima of the first two red sidebands as a function of the trapping frequency.

Richard Thompson TCP 2018

### **Ramsey fringes**

