Imperial College London

Ground state cooling and coherent control of ions in a Penning trap

Richard Thompson
QOLS Group
Imperial College London
www.imperial.ac.uk/ion-trapping

Imperial College
London

Richard Thompson TCP 2018

People involved in this work

- PhD students: Ollie Corfield, Jake Lishman (theory), Manoj Joshi (now at Innsbruck), Vincent Jarlaud, Pavel Hrmo (now at Innsbruck)
- Masters student: Will Schiela
- Staff: Richard Thompson, Florian Mintert (theory), Danny Segal (1960-2015)

Outline of the talk

- Laser cooling in the Penning trap
- Effect of a large Lamb-Dicke parameter
- Sideband cooling of a single ion
- Coherent superpositions of motional states
- Coherent control with a bichromatic beam
- Coherent manipulation of the motion in high- n states
- Sideband cooling of two-ion 'crystals'
- Sideband cooling of the radial motion
- Summary

Doppler cooling of calcium in a Penning trap

- In the magnetic field of the Penning trap we obtain large Zeeman splittings
$98 \mathrm{GHz} \underset{=}{\underline{P_{3 / 2}}}=$
- We require 10 laser frequencies (4 lasers) for Doppler cooling
- Need special techniques for radial cooling
- We can create and control 1, 2, and 3-D Coulomb crystals

49 GHz I
Ca^{+}

Optical Sidehand cooling: "trapped" motional states

- The Lamb-Dicke parameter η determines the strength of the motional sidebands

$$
\eta=x_{0}(2 \pi / \lambda) \sim 0.2 \text { for our trap }
$$ [x_{0} is size of g .s. wavefunction]

- The strength of each motional sideband depends on η
- Quantum equivalent to the sidebands seen in classical frequency modulation
- For our low trap frequencies we expect the first red sideband to have zero strength around $n=80$
- Cooling on the first red sideband (R1) will only be efficient for $n<80$
- Around 20% of the population is at $n>80$ at the Doppler limit $(\langle n\rangle=47)$

Spectrum showing population in trapped state

- After sideband cooling on the first red sideband (R1):
- most of the population is in $n=0$
» this gives the strong asymmetry between R1 and B1
- but some is trapped around $n=80$
» This gives the higher order sidebands in the spectrum

Imperial College

London

Clearing out the "trapped" motional states

- Cooling on the first red sideband (R1) will only be effective for $n<80$
- To pump the trapped population we need to drive the $2^{\text {nd }}$ red sideband (R2) first
- R2 is strong right up to $n=140$ but does not give effective cooling at low n
- The procedure is then
- R1 (10 ms)
- R2 (5 ms)
- R1 (5 ms) at reduced power

Axial sidehand cooling with multiple stayes

Cooling sequence is R1 (10ms), R2 (5ms), R1 (5ms, reduced power) $\langle n\rangle \sim($ R1 amplitude) / (B1 amplitude)
Motional ground state occupation is $>98 \%$; heating rate <1 phonon/s 8

London

Superpositions of motional states

- $\pi / 2$ pulse on the carrier (C)
- m pulse on $1^{\text {st }}$ red sideband (R1)
- Wait time T
- m pulse on $1^{\text {st }}$ red sideband (R1)
- $\pi / 2$ pulse on the carrier (C)
- Measure gound state population

Imperial College

London

"Triple slit" using motional states

- " $2 / 3 \pi$ " pulse on the carrier (C)
- $\pi / 2$ pulse on $1^{\text {st }}$ red sideband (R1)
- $\quad \pi$ pulse on 2nd red sideband (R2)
- Wait time T
- Reverse the pulse sequence
- Measure gound state population

Motional interference fringes after wait times $T=0$ (blue) and $T=30 \mathrm{~ms}$ (gold)

This is analogous to an optical triple slit and can be used to study higher order coherence

Optimal control techniques for "triple slit"

- We can use optimal control techniques to design efficient protocols using carrier and first order sidebands only:
- 4 pulses to prepare the motional state $|\psi\rangle=|0\rangle+|1\rangle+|2\rangle$
- 5 pulses to map $|\psi\rangle$ to the ground electronic state $|\mathrm{g}\rangle$
- This will allow us to unambiguously demonstrate 3-coherence effects

Sidehand heating on the blue sidehand

- Sideband cooling on R1 drives us towards $n=0$
- After cooling to the ground state, we can also drive the ion on B1 back towards higher n states
- This prepares an incoherent spread of population around the first minimum with $\Delta n \sim 10$
- After sideband heating the spectrum shows a distinctive minimum for first order sidebands

Spectrum of ions in the trapped state

- Here we have driven the ion on B1 after sideband cooling in order to drive the population into the first minimum around $n=80$

Coherence in highly excited motional states

- After sideband heating the population is centred in a narrow range of n around a minimum
- The strengths of other sidebands are fairly constant across the distribution
- Therefore we can see coherent behaviour
- We can study the optical and motional coherence for high n states by using $\pi / 2$ pulses to create coherent superpositions of motional states

Rabi oscillations on $4^{\text {th }}$ red SB at minimum of R2

Preparation of superposition of high-// states

|e)
|g>

- $\mathrm{A} \pi / 2$ carrier pulse creates a coherent superposition of $|\mathrm{g}, n\rangle$ and $|e, n\rangle$

Preparation of superposition of high-// states

$|e\rangle$
|g \rangle

- $\mathrm{A} \pi / 2$ carrier pulse creates a coherent superposition of $|\mathrm{g}, n\rangle$ and $|\mathrm{e}, n\rangle$
- $\mathrm{A} \pi / 2 \mathrm{~B} 3$ pulse then creates a coherent superposition of $|\mathrm{g}, n\rangle$, $|\mathrm{g}, n-3\rangle,|\mathrm{e}, n\rangle$ and $|\mathrm{e}, n+3\rangle$
- Period of free evolution T
- Probe the coherence with a second pair of pulses on B3 and carrier (with variable phases)
- Measured interference is (nearly) independent of n

Coherence measurements

- At small T we see fringe visibility ~ 1
- After 1 ms the optical coherence is lost and the visibility drops to ~ 0.5
- Motional coherence is preserved out to $\sim 100 \mathrm{~ms}$ for $\Delta n=3$

Sidehand cooling of 2-ion crystals

- Two ions can arrange themselves along the axis or in the radial plane
- In each case there are two axial oscillation modes
- Axial crystal:
- Centre of Mass at ω_{z}
- Breathing Mode at $\sqrt{ } 3 \omega_{z}$
- Radial crystal:
- Centre of Mass at ω_{z}
- Tilt mode slightly lower than ω_{z}

Trapped motional states in 20

- There are two independent axial modes
- Each motion has its own Lamb-Dicke parameter
- The strength of each sideband depends on both quantum numbers
- We have to use a combination of several different sidebands of each motion
- But there are still regions that are never pumped by pure centre of mass sidebands or pure breathing mode sidebands
- We have to use "sidebands of sidebands" in the cooling sequence

Strength of $1^{\text {st }}$ Red sideband of COM

Sideband cooling of two ions in axial crystal

- We have cooled both modes of the two-ion axial crystal
- COM at ω_{z} and breathing mode at $\sqrt{ } 3 \omega_{z}$
- The final mean quantum numbers are $n_{\text {Сом }}=0.3$ and $n_{\mathrm{B}}=0.07$
- Heating rates are also low
- Similar results for a radial crystal

Radial spectrum at low potential

- The radial motion in the Penning trap has two modes
- The fast cyclotron motion gives rise to sidebands at $\sim 700 \mathrm{kHz}$
- The $\sim 4 \mathrm{MHz}$ FWHM corresponds to a cyclotron temperature of $\sim 7 \mathrm{mK}$
- Each cyclotron sideband has structure due to the slower magnetron motion
- The width indicates a magnetron temperature of $\sim 40 \mu \mathrm{~K}$
- but individual sidebands are not resolved here

Radial motion in the Penning trap

Problems for radial cooling

- Need to cool two modes at the same time
- We have gained experience of this with ion crystals
- The magnetron sidebands are unresolved
- Increase trap voltage to raise magnetron frequency
- The magnetron energy is negative
- Cool on the blue sidebands of magnetron motion, not red
- The initial quantum number of magnetron motion is very large (n up to 1000 in some cases after Doppler cooling)
- Use the axialisation technique to couple to cyclotron motion

Axialisation

- This technique is used in the mass spectrometry field to couple the magnetron motion to the cyclotron motion for cooling
- We have adapted it for use with optical sideband cooling
- The ion is driven by an oscillating radial quadrupole field at $\omega_{c}=e B / M$

Classically:

The field creates a coupled oscillator system so there is a continuous transfer of energy between the two modes.
Damping of both comes from the strong cyclotron cooling. Eventually $r_{\mathrm{m}} \approx r_{\mathrm{c}}$

Quantum mechanically:

The field drives transitions where $\Delta n_{\mathrm{m}}=-1$ and $\Delta n_{\mathrm{c}}=+1$.
The Doppler cooling continuously drives n_{c} to lower values. Eventually $n_{m} \approx n_{c}$

Imperial College
Londorl

Richard Thompson TCP 2018

Sidehand cooled radial spectrum

- The carrier is very strong to bring out the other sidebands
- The asymmetry in cyclotron sidebands indicates $n_{c}=0.07 \pm 0.03$
- The (reversed) asymmetry in the magnetron sidebands indicates $n_{\mathrm{m}}=0.40 \pm 0.06$
- Weak second-order sidebands can also be seen

Summary

- We have cooled the axial motion of single ions and small Coulomb crystals to the ground state in a Penning trap
- Coherent processes can be observed at high motional quantum numbers for single ions
- We have performed the first sideband cooling of the radial motion of an ion
- These results demonstrate excellent quantum control of ions in a Penning trap

Detuning from transition (kHz)

Bichromatic drive

- Simultaneous driving on the first Red and Blue sidebands (R1 and B 1) is equivalent to the position operator $x \sim a+a^{+}$
- After time t this generates the displacement operator:

$$
D(\alpha)=\exp \left(\alpha a-\alpha^{*} a^{+}\right) \text {with }|\alpha|=\eta \Omega t / z_{0}
$$

- So we can generate a coherent state using a bichromatic drive

Rabi oscillations on B1 after a 150μ s bichromatic pulse. The fitted value of α is 1.7^{7}

Heating rate comparison

Rabi oscillations

- We can see Rabi oscillations for ground-state cooled ions
- The carrier Rabi frequency is up to 60 kHz and the coherence time is $\sim 0.8 \mathrm{~ms}$
- Spin-echo techniques can be used to increase coherence time to a few ms

Imperial College
London

Ramsey interference with two-ion crystal

Ramsey interference pattern after 140μ s delay between two m/2 pulses

- The observation of Ramsey fringes confirms coherent behaviour of the system

Heating rate results

This heating rate was taken at an axial frequency of 200 kHz

- The heating rate averages at around 0.4 phonons/second and is roughly independent of frequency
- Probably limited by technical noise
- The heating rate is expected to be low because
- The trap is very large (radius 10 mm)
- The trapping fields are static and there is no micromotion

Two-ion axial crystal after Doppler cooling

- The spectrum is complicated because each sideband of one motion has a complete set of sidebands due to the other motion
- The overall width corresponds to the Doppler limit of $\sim 0.5 \mathrm{mK}$

Axial sidehand cooling of two-ion radial crystal

- The ions are both in the radial plane
- We see artifacts due to the rotational motion in the radial plane
- The two axial modes frequencies cannot be resolved in this plot
- This makes the cooling process more straightforward as both cool together
- We also have cooling results for up to 10-ion radial crystals

Cooling effect of the sequence of sidebands

- This shows the combined effect of a sequence of 5 different sidebands including one "sideband of a sideband"
- Every region of the plane is now addressed by at least one of the sidebands effectively
- We cycle through this sequence of sidebands many times to complete the cooling process

Breathing mode quantum number

Proportion of population ahove mimimum

Figure 6.4: Plot showing fraction of population at the Doppler limit that lies above the the lowest coupling minima of the first two red sidebands as a function of the trapping frequency.

Imperial College
London

Richard Thompson TCP 2018

Ramsey fringes

