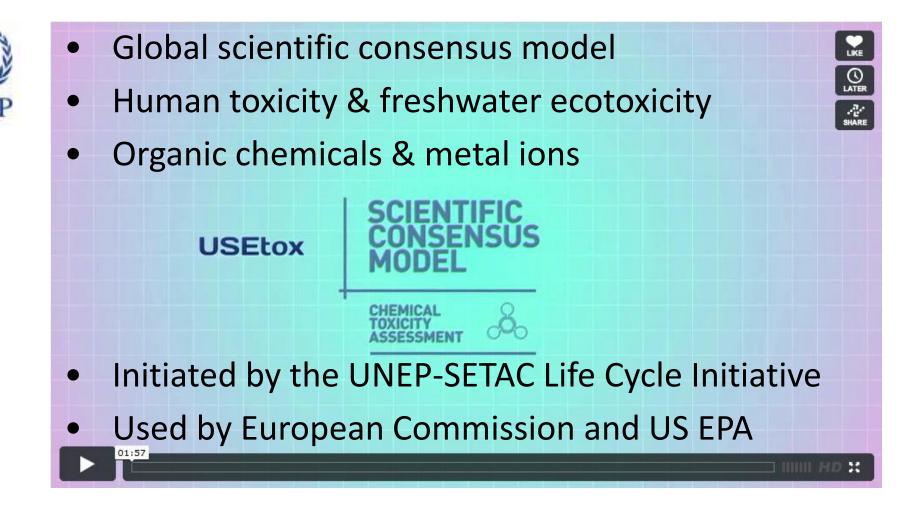
USEtox – characterizing human and ecotoxicological impacts of chemicals in LCA

Prof. Peter Fantke Technical University of Denmark

Imperial Life Cycle Network Seminar Series 26-October-2021

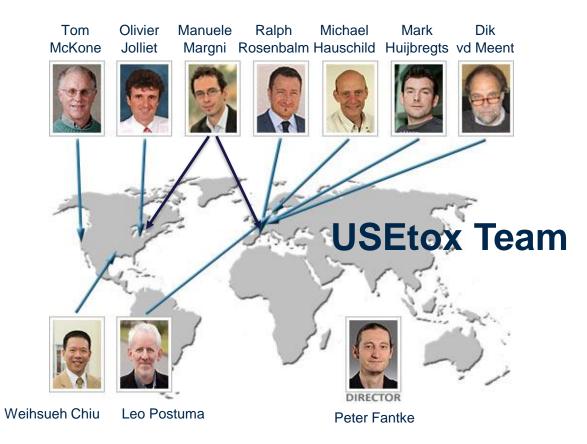
http://doi.org/10.1039/D0GC01544J


Main Application Areas of USEtox

Near-field/far-field USEtox framework is suitable for **comparative evaluation of chemicals** emitted along product life cycles and chemicals in various product applications. Primary application areas are (model already tested):

Application area	Product types already covered in our framework (emissions already directly or indirectly included)
Product life cycle assessment (LCA)	Food contact materials
High-throughput exposure screening	Personal care products; food contact materials
High-throughput risk screening	Children toys; building materials; paints
Chemical exposure and risk prioritization	Household products (cleaning, personal care, and home maintenance products)
Chemical alternatives assessment (CAA) / chemical substitution	Building materials; personal care products; agricultural pesticides

http://doi.org/10.1007/s11367-021-01889-y


What is USEtox?

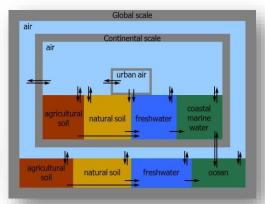
http://vimeo.com/usetox/video

USEtox: the UNEP-SETAC toxicity model

USEtox: A parsimonious model to assess toxic impacts of chemicals on humans and ecosystems. Now extended to chemicals in products

- Parsimonious as simple as possible, as complex as necessary
- **Mimetic** not differing more from the original models than these differ among themselves
- Evaluated providing a repository of knowledge through evaluation against a broad set of existing models
- **Transparent** being well documented, including the reasoning for model choices

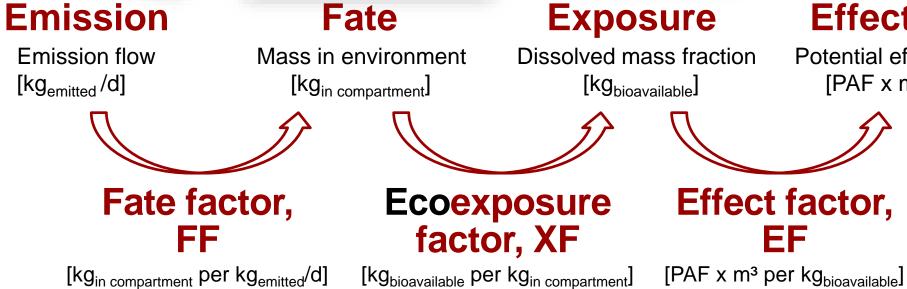

USEtox characterization factors


- Quantitatively determine the impact score per impact category, in Comparative Toxic Unit (CTU): CTU_{h midpoint} = cases or incidences
- CTU_{h damage} = DALY Disability Adjusted Life Years

$$IS = \sum_{i} \sum_{x} CF_{x,i} \times m_{x,i}$$

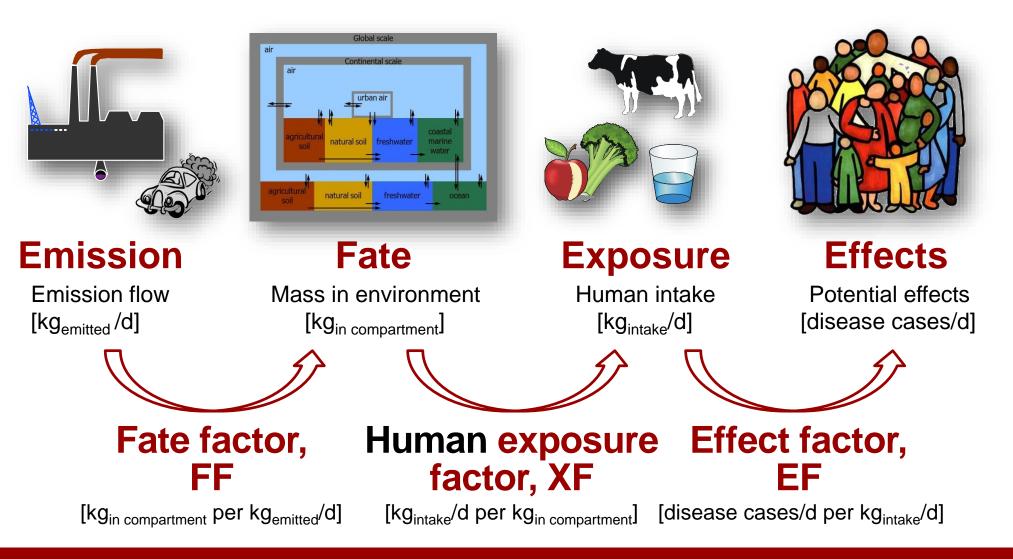
- *IS* : impact score [CTU/functional unit]=[cases/functional unit]
- CF: characterization factor [CTU/kg]
- *m* : life cycle emission [kg/functional unit]
- x : index for substance
 - : index for compartment
- A characterization factor is ...
- A quantitative representation of the (relative) hazard potential of a specific emission per kg emitted,
- Expressed as absolute metric or relative to a reference substance.
- Example: Human toxicity characterization factor of benzene: 5.5E-07 CTU_h/kg (cases per kg emitted to urban air (comparative toxic units = disease cases)

Impact Pathway: Ecotoxicity Impacts

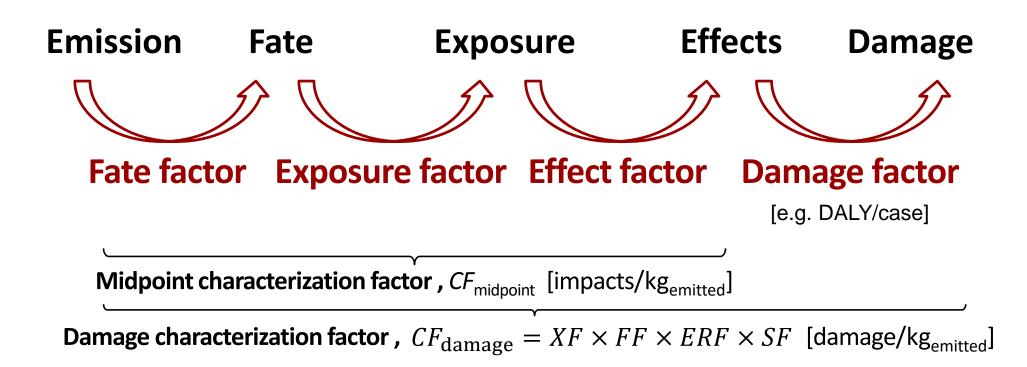


Exposure

Effects

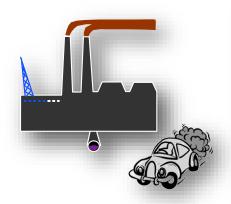


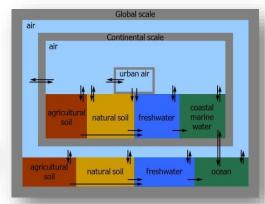
[PAF x m³]



[kg_{emitted}/d]

Impact Pathway: Human Toxicity Impacts




Impact Pathway: Characterization Factors in USEtox

USEtox far-field environmental fate assessment

Impact Pathway: Environmental Fate

Emission

Emission flow [kg_{emitted}/d]

Mass in environment [kg_{in compartment}]

Fate

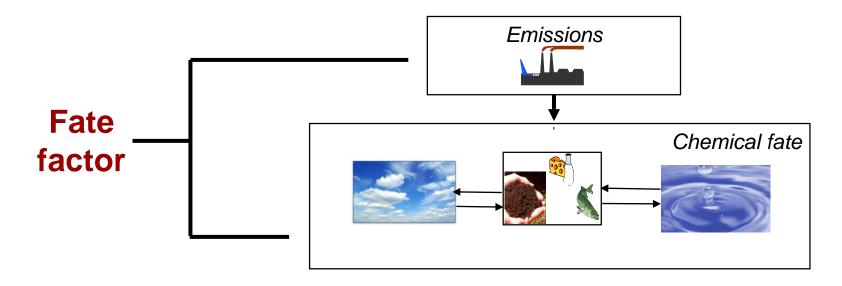
Exposure Dissolved mass fraction

[kg_{bioavailable}]

Effects

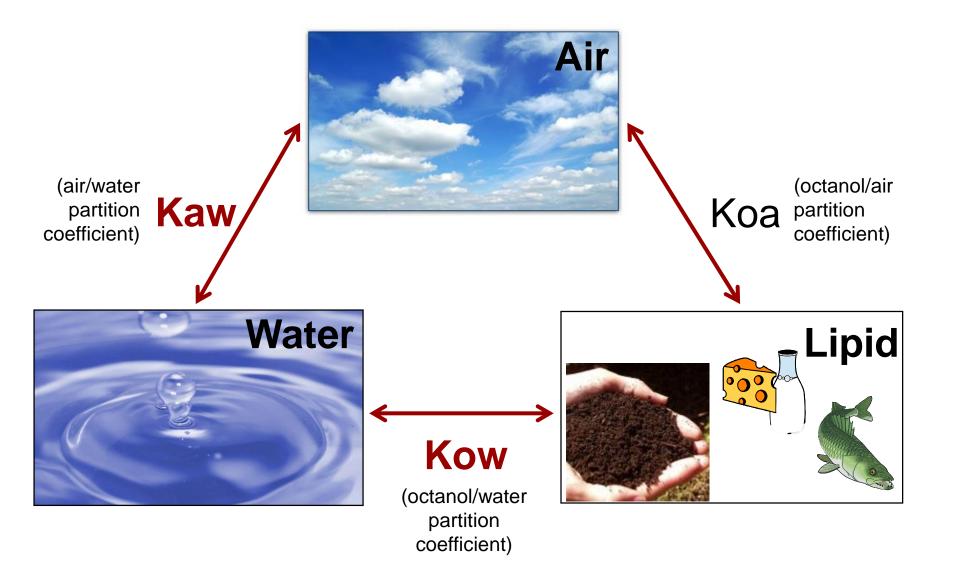
Potential effects [PAF x m³]

[kg_{in compartment} per kg_{emitted}/d]

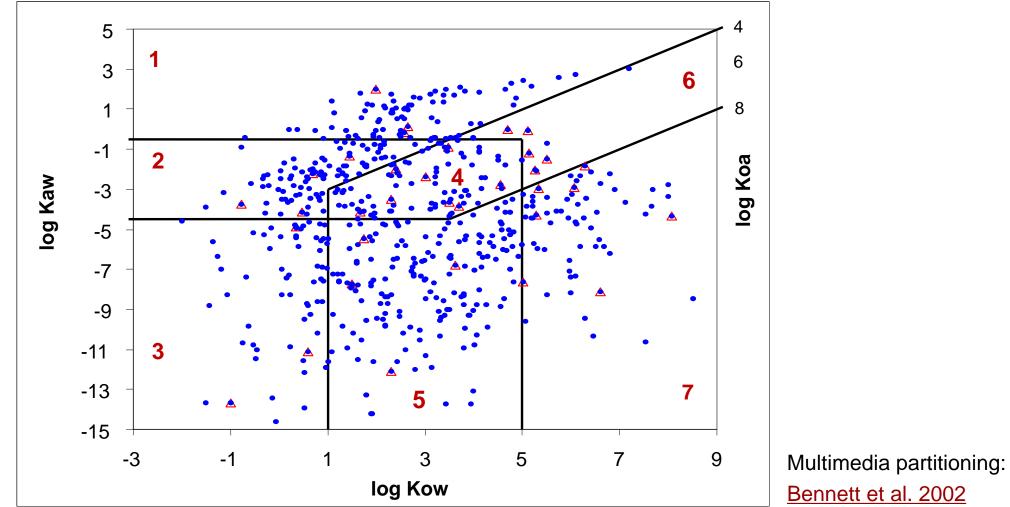

Fate factor,

FF

Environmental Fate Definitions

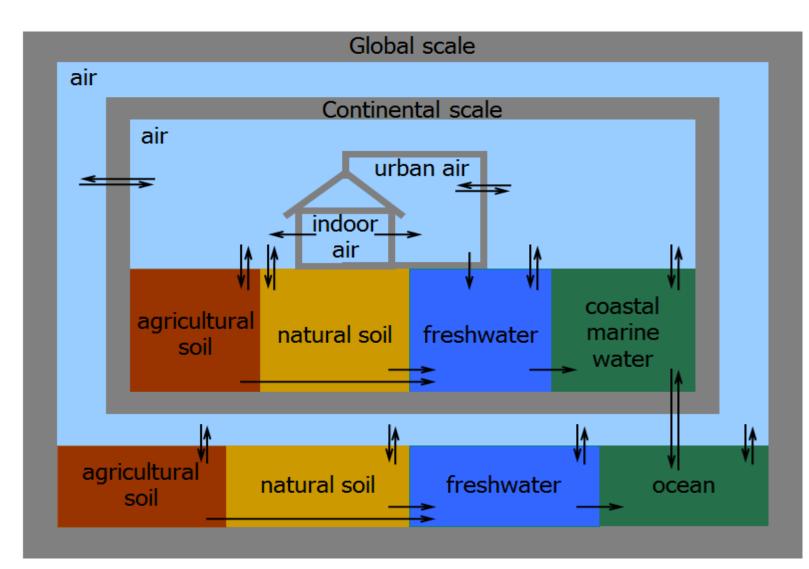

Defining the «Fate Factor»

- → Links the chemical mass in a given compartment to the quantity released into any compartment
- → Accounts for multimedia & spatial transport between environmental media (e.g. air, water, soil, etc.)
- → Can be interpreted as the «increase of chemical mass in compartment *i* [kg] due to an emission into compartment *j* [kg/day]».



Time-integrated concentration

Chemical Partitioning: Main Phases



Chemical Partitioning: Why Multimedia?

Bennett et al. 2002

USEtox: Environmental Fate System

USEtox: UNEP-SETAC scientific consensus model for characterizing human toxicity and ecotoxicity in LCA and comparative risk screening

Boxes = compartments Arrows = processes

USEtox documentation

Main Environmental Fate Processes

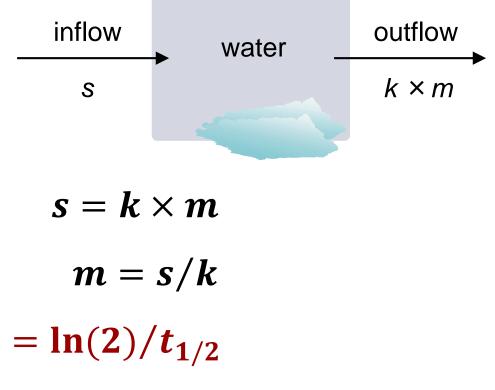
Degradation processes

- →Chemical decomposition (photochemical decomposition, photolysis, hydrolysis)
- →Biodegradation/bio-transformation (metabolism)

Rate constants: $k_{w,tot} = k_{deg} + k_{sed} + k_{w-sa} + \dots$

Transport removal processes

- \rightarrow Sorption
- \rightarrow Sedimentation


Transport to other media (diffusion and advection)

- \rightarrow Deposition
- → Evaporation
- \rightarrow Air flow
- → Volatilization
- \rightarrow Re-suspension

Mass Balance Modeling: Residence Time (Fate Factor)

Steady state: inflow = outflow $\rightarrow dm/dt = 0$

Mass in compartment:m [kg]m = s/kRemoval rate coefficient:k [1/d] $k = \ln(2)/t_{1/2}$ (mass eliminated per day; $t_{1/2}$: half-life [d])

s [kg/d]

Residence time: τ [d] $\tau \triangleq m/(k \times m) = 1/k$

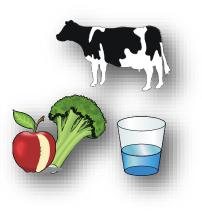
Emission source rate:

K matrix of rate constants [1/day]

Expresses how many times per day is the chemical removed from the media and /or direrectly transferred to another media or to humans The diagonal is equal to minus the total removal rate:

 $k_{ia,tot} = k_{ia,deg} + k_{ia,sorption} + k_{oa \leftarrow ia} + k_{inh \leftarrow ia} + k_{derm \leftarrow ia}$

From: indoor air outdoor air freshwater respirat. tract GI tract+skin **To:**


 $\begin{array}{c} \text{indoor air} \\ \text{outdoor air} \\ \text{freshwater} \\ \text{respirat. tract} \\ \text{GI tract+skin} \end{array} \begin{pmatrix} -k_{ia,tot} & k_{ia\leftarrow oa} & 0 & k_{ia\leftarrow inh} & 0 \\ k_{oa\leftarrow ia} & -k_{oa,tot} & k_{oa\leftarrow w} & k_{oa\leftarrow inh} & 0 \\ 0 & k_{w\leftarrow oa} & -k_{w,tot} & 0 & k_{w\leftarrow ing\&derm} \\ k_{inh\leftarrow ia} & k_{inh\leftarrow oa} & 0 & -k_{inh,tot} & 0 \\ k_{derm\leftarrow ia} & k_{derm\leftarrow oa} & k_{ing\leftarrow w} & 0 & -k_{ing\&derm,tot} \end{pmatrix}$

USEtox far-field human exposure and intake

Impact Pathway: Human Exposure

Effects

Potential effects [disease cases/d]

Emission

Emission flow [kg_{emitted} /d]

Mass in environment [kg_{in compartment}]

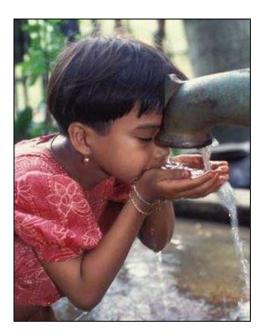
Fate

Exposure Human intake

[kg_{intake}/d]

Exposure factor, XF

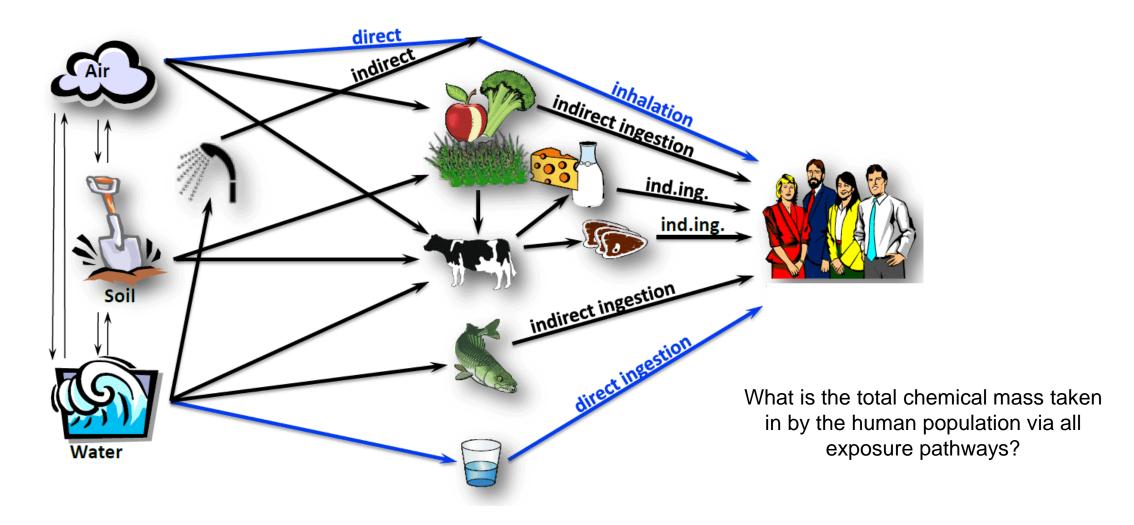
[kg_{intake}/d per kg_{in compartment}]


Exposure

Defining Exposure:

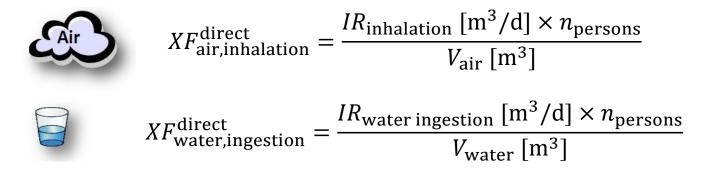
«Contact between stressors and receptors, and the associated sources, pathways and processes.» (Fantke et al. 2020)

Contact takes place at an exposure surface (mouth, skin, eyes) over an exposure period.


→ Contact with air, water, soil, food, or consumer products containing potentially harmful substances

Exposure Assessment

The process of estimating or measuring the magnitude, frequency and duration of exposure to an agent, along with the number and characteristics of the population exposed. Ideally, it describes the sources, pathways, routes, and the uncertainties in the assessment.


Human Exposure Pathways

Human Exposure Factors (XF)

Direct exposure: $XF_{k,i}^{\text{direct}}$

The exposure factor for direct exposure is the rate coefficient for transfer of contaminants in compartment *k*, through consumption of drinking water or inhalation of air to humans. Here, $TF_{k,i} = C_i/C_k = 1$, since i = k, meaning that we interpret the compartment *k* is directly taken in:

Residence time

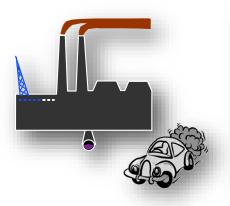
The inverse of the direct exposure factor is the **residence time**, reflecting the average time required for the population in compartment *k* to take in the volume of the respective compartment (inhale the volume of air or drink the volume of water.

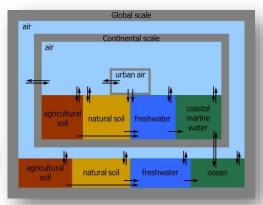
Human Exposure Factors (XF)

Indirect exposure: $XF_{k,i}^{\text{indirect}}$

The exposure factor for direct exposure is the rate coefficient for transfer of contaminants in compartment k, through consumption of an exposure medium j that was contaminated from compartment k – additional fraction of V_k taken in every day:

$$XF_{k,j}^{\text{indirect}} = \frac{TF_{k,j}[\text{kg/kg}] \times IR_j[\text{kg/d}] \times n_{\text{persons}}}{\rho_k[\text{kg/m}^3] \times V_k[\text{m}^3]}$$


 $TF_{k,j}$ quantifies the **transfer efficiency** for a contaminant from an environmental compartment *k* to an exposure medium *j*. Various definitions and measures are used to model it, which can be found in literature. Examples:


Bioconcentration factor at steady-state, $BCF_{k,j} = \frac{C_j \text{ (conc. in exposure medium } j)}{C_k \text{ (conc. in compartment } k)}$

Bioaccumulation factor at steady-state, $BAF_{k,j} = BCF_{k,j} \times f_{\text{uptake from diet}}$

Impact Pathway: Human Intake Fraction

Emission

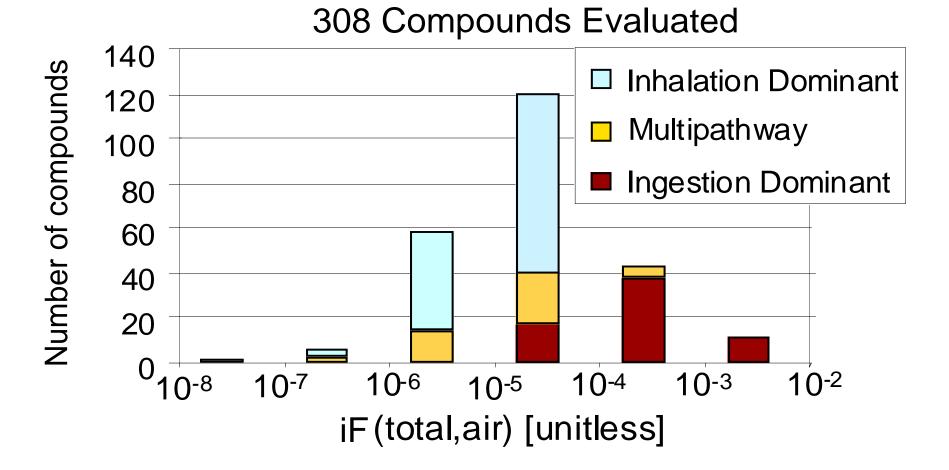
Emission flow [kg_{emitted}/d]

Intake fraction, iF

Exposure factor


Exposure

Human intake [kg_{intake}/d]

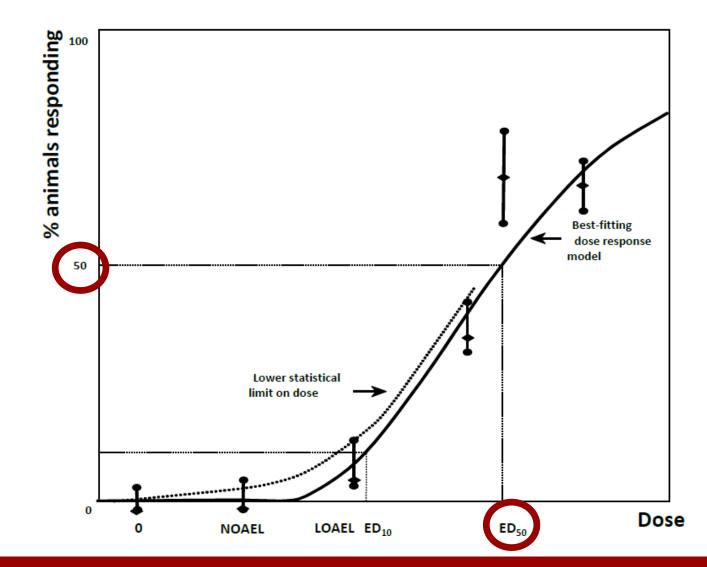

Effects

Potential effects [disease cases/d]

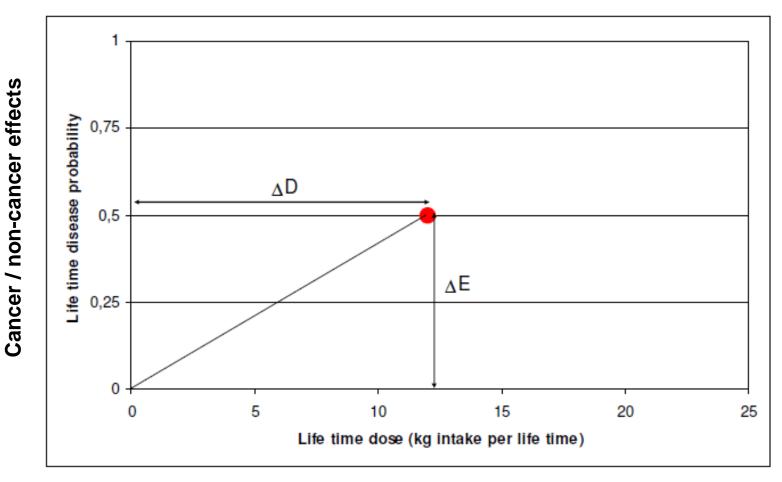
Fate factor

Human Intake Fraction (iF)

USEtox human toxicity and ecotoxicity effects

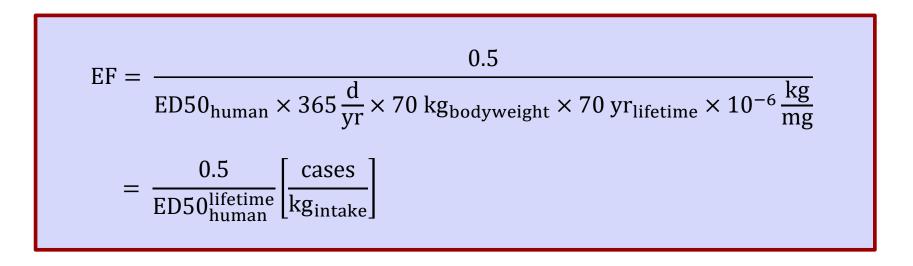

Dose Response Models

Effect dose: ED_x (lifetime) dose generating an additional risk of x% over background


e.g 50% over background for ED_{50}

Dose-response Assessment:

Defines the quantitative relationship between the **dose** of a chemical **received** and the **incidence** of adverse health **effects** in the exposed population.

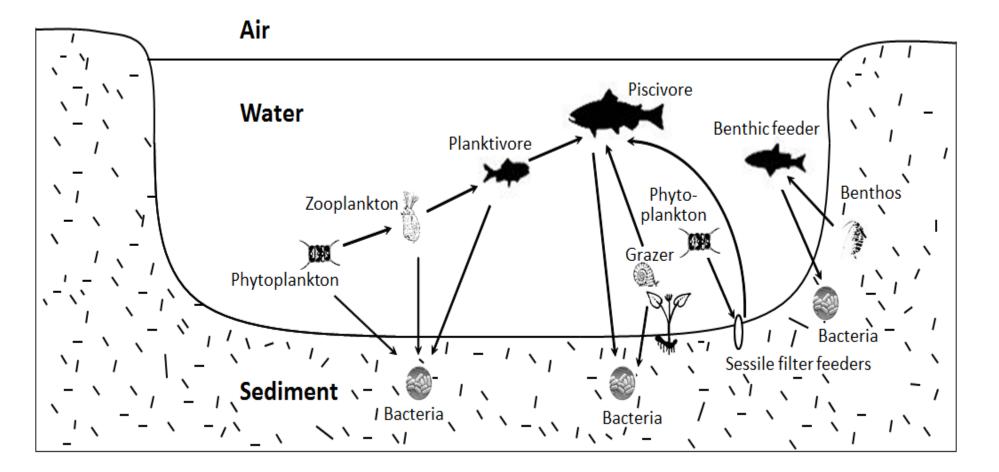

Dose Response in LCIA: Curve

Via inhalation / ingestion exposure

Human Toxicity Effect Factor (EF)

Incremental risk = Intake dose $\times \frac{0.5}{\text{Life time dose generating 50\% of additional risk}}$

EF : Substance-specific human toxicity effect factor [incidence risk / kg intake]


ED50_{human} : Effect dose inducing a response over background of 50% for humans [mg/kg/d]

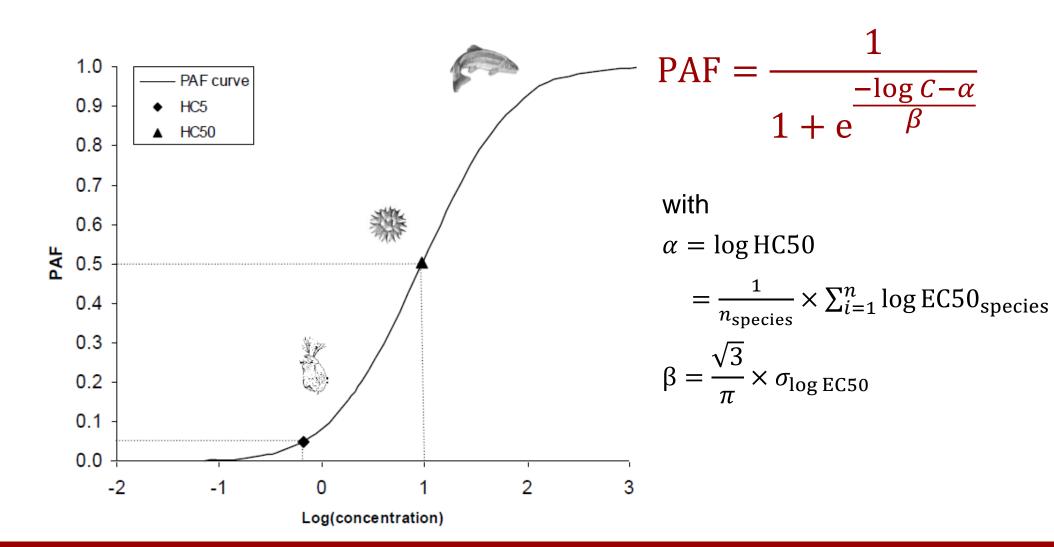
ED50^{lifetime} : Effect dose inducing a response over background of 50% in humans over lifetime [kg intake over lifetime]

: Response level corresponding to the ED50 [lifetime incidence risk] 0.5

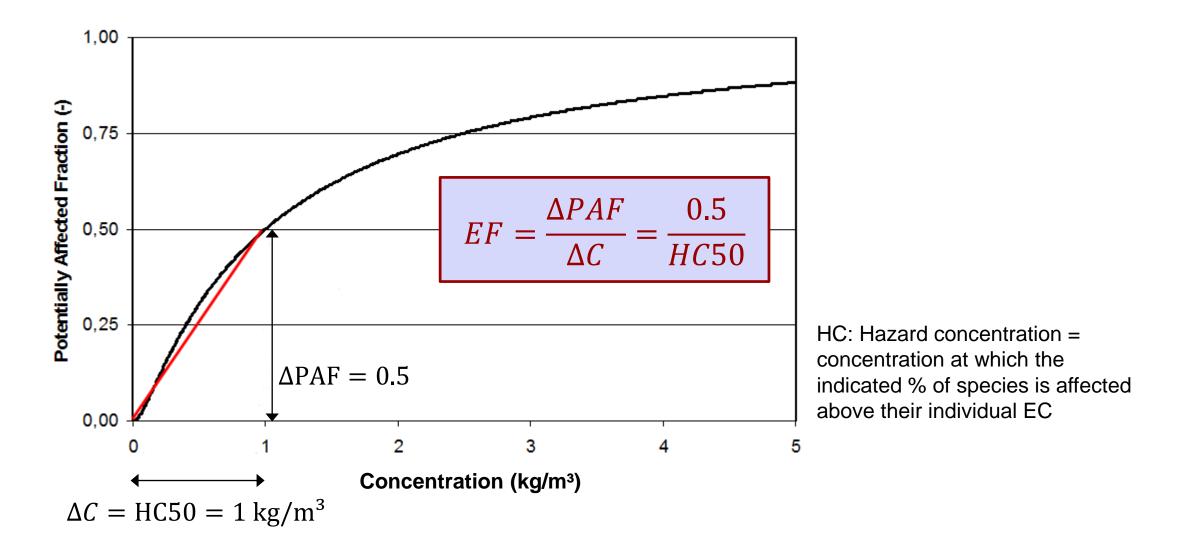
Aquatic Ecosystem Species Network

Who is exposed e.g. in an aquatic ecosystem? Species with different sensitivities!

Aquatic Ecosystem Exposure Assessment

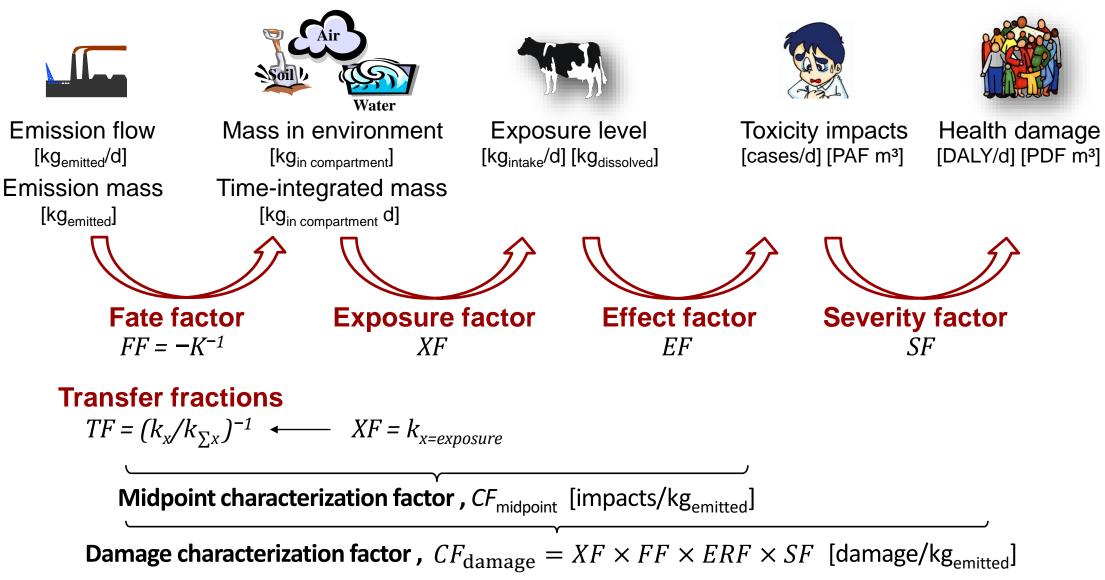

Exposure factors for aquatic ecotoxicity represent the fractions of a chemical dissolved in contaminated aquatic compartment, calculated by:

 $XF_{\text{aquatic}} = \frac{m_{\text{dissolved}}}{m_{\text{total}}} = \frac{1}{1 + (K_P \times \text{SUSP} + K_{\text{doc}} \times \text{DOC} + BCF_{\text{fish}} \times \text{BIO})}$

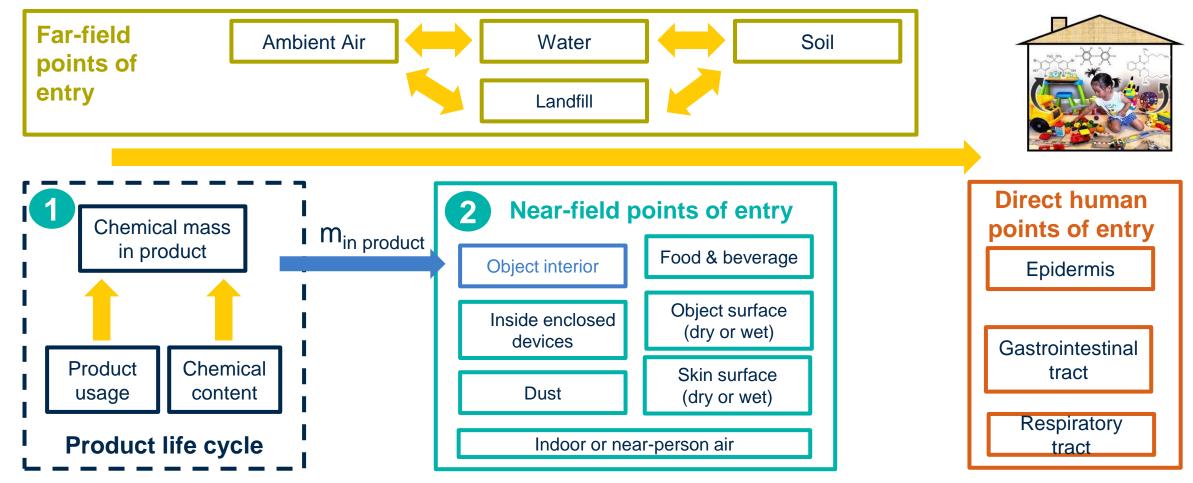

where

- *K_P* : partition coefficient between water and suspended solids [l/kg]
- SUSP : suspended matter concentration in freshwater [kg/l]
- K_{doc} : partitioning coefficient between dissolved organic carbon and water [l/kg]
- DOC : dissolved organic carbon concentration in freshwater [kg/l]
- *BCF*_{fish} : bioconcentration factor in fish [l/kg]
- BIO : concentration of biota in water [kg/l]

Potentially Affected Fraction (PAF) of Species

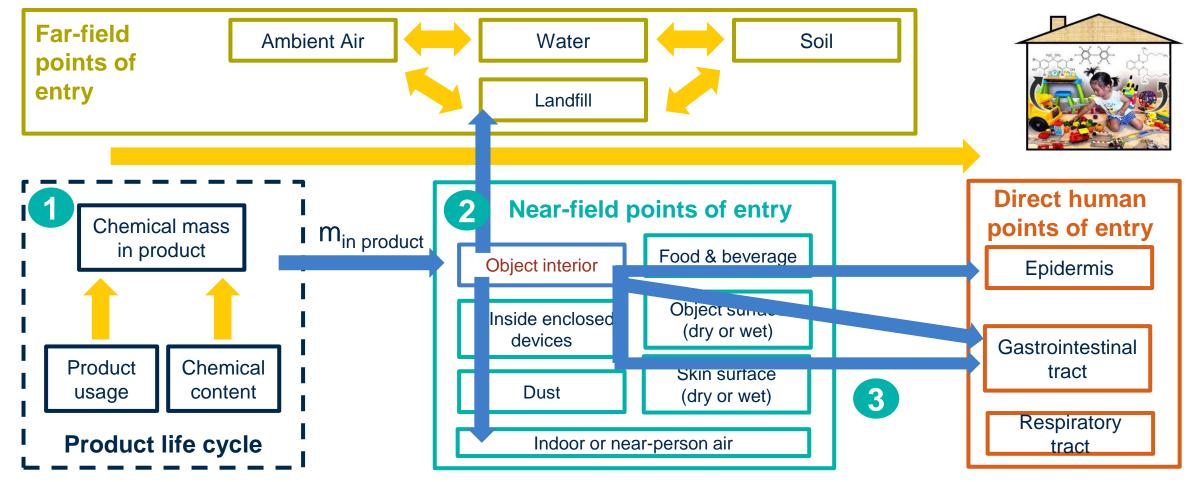


Ecotoxicity Effect Factor (EF)



Integration of USEtox far-field and near-field environments

Integration of far-field and near-field in USEtox



Near-Field Consumer Exposure to Chemicals in Toys

Fantke et al. 2018. Environ Health Perspect 126: 125001

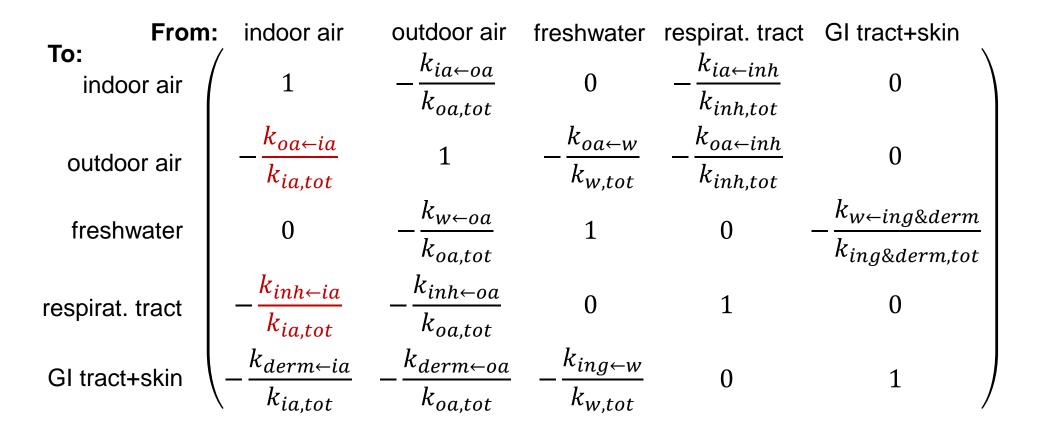
Near-Field Consumer Exposure to Chemicals in Toys

Fantke et al. 2018. Environ Health Perspect 126: 125001

K matrix of rate constants [1/day]

Expresses how many times per day is the chemical removed from the media and /or direrectly transferred to another media or to humans The diagonal is equal to minus the total removal rate:

 $k_{ia,tot} = k_{ia,deg} + k_{ia,sorption} + k_{oa \leftarrow ia} + k_{inh \leftarrow ia} + k_{derm \leftarrow ia}$


From: indoor air outdoor air freshwater respirat. tract GI tract+skin **To:**

 $\begin{array}{c} \text{indoor air} \\ \text{outdoor air} \\ \text{freshwater} \\ \text{respirat. tract} \\ \text{GI tract+skin} \end{array} \begin{pmatrix} -k_{ia,tot} & k_{ia\leftarrow oa} & 0 & k_{ia\leftarrow inh} & 0 \\ k_{oa\leftarrow ia} & -k_{oa,tot} & k_{oa\leftarrow w} & k_{oa\leftarrow inh} & 0 \\ 0 & k_{w\leftarrow oa} & -k_{w,tot} & 0 & k_{w\leftarrow ing\&derm} \\ k_{inh\leftarrow ia} & k_{inh\leftarrow oa} & 0 & -k_{inh,tot} & 0 \\ k_{derm\leftarrow ia} & k_{derm\leftarrow oa} & k_{ing\leftarrow w} & 0 & -k_{ing\&derm,tot} \end{pmatrix}$

How can we determine the chemical fraction transferred from e.g. indoor to outdoor air?

Direct Transfer Fractions matrix T [--]


Diagonals: 100% entry in compartments , non-diagonals: transfers to other compartments $t_{oa \leftarrow ia} = k_{oa \leftarrow ia} / -k_{ia,tot}$

Near-field sub-models in USEtox

USEtox base model + 6 sub-models for 10000 chemicals in ~500 products

→ customized to particular applications + developed necessary QSARS for high throughput determination

Direct environmental emission

Skin surface

Article interior (with indoor sorption)

Food contact materials

Object surface

Pesticide residue

Article Interior Sub-Model (emission from solid products)

Diffusion-limited:

Partition-limited:

$$TF_{\text{product}\to\text{air}}^{\text{diffusion-limited}} = \alpha \times \left(1 - e^{-\beta_1^2 \times D_m \times t}\right) + (1 - \alpha) \times \left(1 - e^{-\beta_2^2 \times D_m \times t}\right)$$

Criteria for applying these two models:

q_=K_yTSP

V. TSP. O

y Sorption onto particles

Emission

$$\begin{cases} D - limited: K_{ma} < 0.4 \cdot D_m^{-0.61} \\ K - limited: K_{ma} > 0.4 \cdot D_m^{-0.61} \end{cases}$$

Key parameters: solid-phase diffusion coefficient D_m (m²/s), solid material-air partition coefficient K_{ma}

Transfer via dermal contact:
$$TF_{\text{product} \rightarrow \text{skin}}^{\text{direct dermal}} = \frac{1}{m_0} \times N_{\text{persons}} \times FQ_{\text{contact}} \times f_{\text{home}} \times A_{\text{contact}} \times \frac{K_{\text{p-aq}}}{K_{ma} \times K_{aw}} \times \int_{t_1}^{t_2} C_m(d_m, t) dt$$
 (Assumes equilibrium between skin surface and material surface)

Transfer via dust ingestion:
$$TF_{\text{product} \to \text{GI tract}}^{\text{dust ingestion}} = \frac{1}{m_0} \times f_{\text{home}} \times f_{\text{dust,ingested}} \times \frac{IR_{\text{ing}}}{K_{md} \times \rho_{\text{dust}}} \times \int_{t_1}^{t_2} C_m(d_m, t) dt$$

 $TF_{\text{product}\to\text{air}}^{\text{partition-limited}} = 1 - \left(v_1 \times e^{\lambda_1 \times t} + v_2 \times e^{\lambda_2 \times t}\right)$

(Assumes dust ingested is related to hand contact frequency)

http://doi.org/10.1016/j.jhazmat.2021.127574

TSP, Q

.....

USEtox overall framework and interpretation

USEtox Impact Pathway Framework: Ecotoxicity

	39 40	Fate factors - FF [d]						n a vitra a mit				
	40			home.airl	occ.airl	airU	Emission com airC	fr.waterC	sea.waterC	nat.soilC	agr.so	
	41		home.airl	5.27E-02	0	0	0	0	0	0	agr.30 0	
	43		occ.airl	0	3.47E-03	0	0	0	0	0	0	
	44	20	airU	2.58E-02	4.13E-02	5.16E-02	1.43E-05	1.26E-05	2.54E-06	1.24E-05	1.24E-	
	45	Receiving compartment	airC	2.55E+00	2.52E+00	2.51E+00	2.58E+00	2.28E+00	4.60E-01	2.24E+00	2.24E+	
	46	це це	fr.waterC	3.30E-02	5.22E-02	6.51E-02	8.08E-04	4.79E+00	1.44E-04	9.84E-02	9.84E-	
	47	di di	sea.waterC	3.12E-02	3.62E-02	3.96E-02	2.29E-02	1.31E+00	3.87E+01	4.61E-02	4.61E-	
	48	8	nat.soilC	1.46E-03	1.45E-03	1.44E-03	1.48E-03	1.31E-03	2.64E-04	1.21E+01	1.28E-	
	49	bu,	agr.soilC	1.49E-03	1.49E-03	1.49E-03	1.48E-03	5.10E-03	2.64E-04	1.36E-03	1.21E+	
	50	eiv	airG	3.86E+00	3.83E+00	3.80E+00	3.91E+00	3.46E+00	7.70E-01	3.39E+00	3.39E+	
	51 52		fr.waterG	3.76E-04 3.08E-01	3.72E-04 3.06E-01	3.70E-04	3.81E-04 3.11E-01	3.37E-04 4.46E-01	7.50E-05 5.20E+00	3.30E-04 2.73E-01	3.30E- 2.73E-	
	53		oceanG	7.05E-04	6.99E-04	3.04E-01 6.95E-04	7.15E-04	6.32E-04	1.41E-04	6.19E-04	6.19E-	
	54		nat.soilG agr.soilG	7.07E-04	7.01E-04	6.96E-04	7.17E-04	6.34E-04	1.41E-04	6.20E-04	6.20E-	
	04		agr.solio	1.012 04	1.012.04	0.002 04	1.112.04	0.042 04	1.412 04	0.202 04	0.202	
	61	Available Fraction - XF _{eco} [-]	(expand using the '	"+" button at the be	ginning of the line to	see the matrix)					
	62			Emission compartment								
XF_{eco}	63			home.airl	occ.airl	airU	airC	fr.waterC	sea.waterC	nat.soilC	agr.soil	
	64		home.airl	1.00E+00	0	0	0	0	0	0	0	
	65		occ.airl	0	1.00E+00	0	0	0	0	0	0	
	66	~	airU	0	0	0.00E+00	0	0	0	0	0	
	67	ed .	airC	0	0	0	1.00E+00	0	0	0	0	
	68	n in dissolved. eous phase	fr.waterC	0	0	0	0	1.00E+00	0	0	0	
	69	<u>ss</u> i s	sea.waterC	0	Ő	0	0	0	1.00E+00	0	Ő	
	70	in d us l	nat.soilC	0 0	Ő	0	0	ő	0	7.04E-02	0	
	71	i i 10	agr.soilC	0 0	Ő	Ő	0	ő	õ	0	7.04E-0	
	72	ŝ.	airG	0 0	Ő	ő	0	ő	õ	Ő	0	
	73	g G	fr.waterG	0 0	Ő	ő	0	ő	õ	Ő	0	
	74	ũ.	oceanG	0 0	ő	ő	0	ő	õ	Ő	0	
	74		nat.soilG	0	õ	0	0	0	ů 0	0	0	
	76		agr.soilG	0	ő	0	0	0	õ	0	ő	
	70		agr.soliG	U	0	0	0	0	0	0	0	
EF _{eco}		Factovicales		factfac				a)///a].				
L Г есо		Ecotoxicolog	ical el	iect iac	cor ma	IIIX EF _{ec}	₀ [PAF II	n3/kg]:				
	147	Ecotoxicity Effect Factors - EF					Emission com	partment				
	148	[PAF.m ³ .kg ⁻¹]		home.airl	occ.airl	airU	airC	fr.waterC	sea.waterC	nat.soilC	agr.so	
	140	[FAF.III .Ng]	freshwater	nome.am	occ.um		diro	in water o	Sed. Water o	nac.sono	ugi.so	
	149		ecosystems	0	0	0	0	1.74E+01	0	0	0	
						-					_	
$\frown \Gamma$		Midpoint ecot	ox ch	aracteri	ization [·]	factor m	atrix CF	ΓΡΑΓ	- m3 d /	′ka	.]•	
				anaoton	Lation			eco L' / V	mo u /	•••9emitted	J1.	
•	152	Midpoint Ecotoxicity Potentials					Emissio	n compartment				
	153	expressed in Comparative Toxic Unit	s	home.airl	occ.airl	airU	airC	fr.waterC	sea.waterC	nat.soilC	agr.soil	
		[CTU _e = PAF.m ³ .day.kg _{emitter}	freshwater	5 705 04	0.405.04	4.445.00	0.005.00					
	154	[orog = ret in taljing emide	ecosystems	5.78E-01	9.13E-01	1.14E+00	2.06E-02	8.31E+01	3.79E-03	1.71E+00	1.71E+(
		Endnaint ag	stav a	oorooto	rizotion	factor	motrix C				1.	
	Endpoint ecotox characterization factor matrix CF _{eco} [PDF m3 d /kg _{emitted}]											
	457											
	157 158	Endpoint Ecotoxicity Potentials expressed in Comparative Damage Un	ite	homo airl	occ airl	airU	airC	•	con waterC	not coilC	our coild	
	100	expressed in comparative bailage on	1	home.airl	occ.airl	airu	and	fr.waterC	sea.waterC	nat.soilC	agr.soil0	

agr.soilC 0 0 1.24E-05 2.24E+00 9.84E-02 4.61E-02 1.28E-03 1.21E+01 3.39E+00 3.30E-04 2.73E-01 6.19E-04 6.20E-04

> agr.soilC 0

agr.soilC 1.71E+00

agr.soilC

8.56E-01

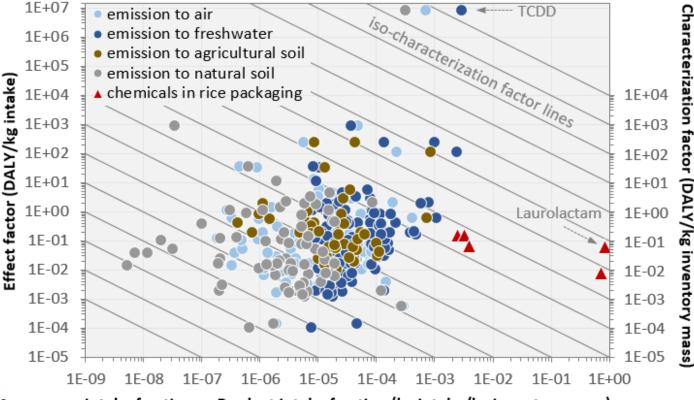
8.56E-01

1.90E-03

Uncertainty, variation, and discerning power

- Uncertainties are important for interpretation and typically capture only precision when quantified, not accuracy
- Comparing uncertainties of CFs from different impact categories? Consider how much of the impact pathway they capture
- Toxicity impacts can be caused by 1000's of substances
- Overall variation of CFs from most to least toxic substances ranges 11-20 orders of magnitude with uncertainties in the range of 2 to 4 orders of magnitude
- Discerning power of toxicity CFs still meaningful and comparable to other impact categories

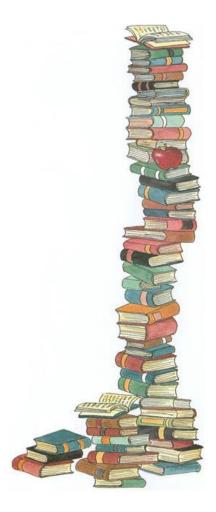
Key Information of USEtox


- Initial model differences were considerably reduced by harmonisation, as their sources were identified
- Relative accuracy of the new CFs is within a factor of
 - 100-1'000 for human health
 - 10-100 for freshwater ecotoxicity

- compared to 12 orders of magnitude variation between CFs
- USEtox falls within range of the other models, emulating their results, but avoiding their complexity and their pitfalls
- Characterisation factors are available for:
 - Human toxicity: ~1'000 recommended + ~100 indicative CFs (= ~1'100 substances covered)
 - Ecotoxicity: 1'184 recommended + 1'335 indicative CFs (= 2'519 substances covered)

How to interpret and apply USEtox CFs in LCA

- Always show and compare toxicity scores in log-scale
- Always include **ALL** available characterization factors including "indicative" consider higher uncertainty
- Identify 10-20 most contributing substances
- Ignore the ranking among them
- Identify most contributing processes
- Check sensitivity of conclusions to choice of LCIA model



http://doi.org/10.1007/s11367-021-01889-y

Intake fraction or Product intake fraction (kg intake/kg inventory mass)

USEtox Deliverables and publications: Further Reading

- <u>Rosenbaum et al. (2008)</u> → general model
- <u>Hauschild et al. (2008)</u> \rightarrow consensus process
- <u>Henderson et al. (2011)</u> \rightarrow ecotoxicity
- Rosenbaum et al. (2011) \rightarrow human toxicity
- <u>Special issue</u> 'LCIA of impacts on human health and ecosystems'
- Rosenbaum et al. (2015) → indoor settings
- Westh et al. (2015) \rightarrow user requirements survey
- Fantke et al. (2021) → near-field/far-field model
- USEtox is used by U.S. EPA for screening of chemicals
- USEtox is **recommended by the EC** for PEF and by **ILCD**
- USEtox is endorsed by the UNEP/SETAC Life Cycle Initiative

USEtox future development: UNEP GLAM

- 1992-1999 SETAC LCIA working groups (Society for environmental toxicology chemistry): Assessment framework → LCIA ISO recommendations
- 1999: contacted UNEP → 2 weeks in Paris
 2002 Launch of the UNEP-SETAC Life cycle Initiative!
- 2002 2012 LCIA programme of the Life Cycle Initiative: LCIA Midpoint-Damage Framework, USEtox, WULCA
- 2012-2019 GLAM Phase 1 & 2: Consensus finding for environmental assessment indicators and methods in multiple impact categories → Pellston workshopTM
 1 (January 2016) & 2 (June 2018, Valencia)
- 2019-2023 Phase 3: Dissemination and stewardship Creation of a Global LCIA method https://www.lifecycleinitiative.org/applying-lca/lcia-cf/

