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Interface cracking is one of the most prominent failure modes in fibre reinforced polymer (FRP) composites.
Recent trends in high‐tech applications of FRP composites exploit the limits of the load bearing capacity, gen-
erally encompassing the development of notable nonlinear effects from geometrical and material signatures. In
this investigation, we present a comprehensive assessment of the new Linear Elastic Brittle Interface Model
(LEBIM) in geometrically nonlinear applications undergoing mixed‐mode fracture conditions. This interface
model for triggering fracture events is formulated through the advocation of continuum‐like assumptions
(for initial non‐zero interface thickness) and allows the incorporation of the potential role of in‐plane deforma-
tion effects. The performance of the present interface model is demonstrated through the simulation of spec-
imens with mixed‐mode delamination, with special attention to its application in samples equipped with
structured interfaces. Predictions exhibit an excellent agreement with experimental data, validating the
proposed methodology.
1. Introduction

The recurrent requirements for the achievement of high strength‐
to‐weight ratios in different engineering applications have led to the
continuous improvement of production techniques and methodologies
of analysis. In this direction, fibre reinforced polymers (FRP) compos-
ite materials have become particularly popular relative to conven-
tional materials (especially in contrast to metals) due to their
appealing strength and stiffness, widening the current ranges of appli-
cability within the aerospace, automotive or renewable industries,
among other sectors.

However, the inherent heterogeneous character of FRP composites
at several scales of observation entails characteristic failure phenom-
ena between the composing entities and the constituents. This is the
case, for instance, of delamination events at the macro‐scale [1–3]
and fibre‐matrix debonding [4,5] at the micro‐scale, among many
other debonding‐like failures in FRP composites. Such cracking events
can be principally caused either by external loading actions or induced
by manufacturing and joining processes [6]. Motivated by these failure
phenomena, significant research efforts have been conducted in recent
years towards the efficient incorporation of alternative joining proce-
dures; such as adhesive bonding, a compelling technique that provides
additional advantages in terms of the mechanical responses in
conjunction with the enhancement of fatigue and environmental
performances [7].

The understanding of failure mechanisms in solids, with special
interest on joints/interfaces, has been of high interest in both indus-
trial and research contexts, striving for the development of different
prediction methodologies. Thus, on the one hand, the Linear Elastic
Fracture Mechanics (LEFM) approach, relying on its energetic version,
makes use of an energy criterion to predict failure either in the adher-
ents, the adhesive or the interface between them. The energy‐based
LEFM was originally proposed by Griffith [8] and posteriorly revisited
by Irwin [9]. One of the most popular LEFM‐based methodologies is
the so‐called Virtual Crack Closure Technique (VCCT), where the crack
advance is triggered as long as the energy release rate exceeds a cer-
tain threshold or critical value under pure or mixed‐mode fracture con-
ditions [10]. In this regard, studies of the stress intensity factors for
homogeneous and multi‐material specimens have been comprehen-
sively addressed in [11–14] in order to determine proper conditions
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for fracture progression, whereas the extension on the application of
Fracture Mechanics to nonlinear materials was conducted by Rice
and co‐authors through the so‐called J‐Integral method [15].

Alternatively to fracture mechanics‐based methods, a different per-
spective for predicting the fracture response in solids can be advocated
by means of Cohesive Zone Model (CZM) techniques, which have been
extensively used for triggering interface fracture phenomena [16].
Originally proposed by Barenblatt [17] and Dugdale [18], CZMs are
generally formulated within the context of Damage Mechanics of irre-
versible processes [19,20]. Thus, in the particular case of interface
fracture, the scalar‐based damage variable within the CZ formulation
accounts for the stiffness degradation within the so‐called fracture pro-
cess zone (FPZ) obeying the particular form of the traction‐separation
law (TSL). This TSL relates the displacement jumps across the interface
with the respective traction components [21]. The flexibility of CZMs
in terms of the TSL definition (featuring bilinear [22], trapezoidal
[23], exponential [24] laws, among many others) permits the charac-
terization of different adhesives or interfaces, whilst the proper param-
eters of the cohesive zone can be extracted from experimental data as
proposed in [25,26].

An interesting approach in interface fracture mechanics is endowed
through the consideration of the interface/joint as a continuous distri-
bution of linear springs. This interface formulation, usually denomi-
nated as Linear Elastic‐Brittle Interface Model (LEBIM), encompasses
a linear elastic relationship between the displacement jumps and the
corresponding tractions across the interface up to abrupt failure, which
is tracked once a particular fracture criterion is violated. This method-
ology was proposed by Prandtl [27] and Mott [28], and it is mainly
suitable for scenarios where the overall stiffness is ruled by the adher-
ents, and the gradual stiffness loss due to the interface degradation can
be neglected. Thus, this interface conception has been efficiently used
to represent the behaviour of brittle‐like interfaces, such as epoxy‐
based adhesives [3,7,29,30].

Another key aspect for accurate predictions within the context of
interface/joint fracture concerns the rigorous selection of the kine-
matic hypotheses in accordance with the experimental conditions.
That is, whether material and geometrical nonlinearities concomi-
tantly evolve throughout the numerical analysis. This aspect has a
direct reflection on the way through which the stress and strain fields
are computed, and therefore determe the onset and propagation of fail-
ure. In many lightweight structures, such as those extensively used in
aerospace or renewable industry (e.g., stiffened panels and turbine
blades, among many other), high‐performance materials permit the
evolution of large displacements during the loading applications prior
to reaching the corresponding collapsing points. A principal after‐
effect is the non‐negligible difference between original and current
configurations, that leads to inaccurate calculations if the analysis is
restricted to small‐displacement theory. These considerations were
comprehensively analysed for cohesive‐like interfaces in
[16,19,31,32]. In this regard, Ortiz and Pandolfi [24] proposed a
surface‐like finite elements in which the normal and tangential direc-
tions to the surface are monitored, and every geometrical operation is
carried out on the middle surface of the element. This procedure
allows superimposed rigid motions to be overcome. Alternatively,
Qiu. et al. [33] applied a simple corotational formulation to one‐
dimensional interface elements, whereas Reinoso and Paggi developed
2D [19] and 3D [34] interface elements for large deformation analysis
dealing with geometrical and material nonlinearities using a consistent
derivation of the corresponding operators.

Differing from precedent methodologies for triggering interface
cracking that incorporate geometrically nonlinear effects, the authors
proposed an alternative formulation [35], that is denominated a “con-
sistent finite displacement and rotation formulation of the Linear Elas-
tic Brittle Interface Model”. This interface model can be easily
integrated within standard continuum finite elements as a user‐
defined material subroutine and accounts for the potential effects of
2

in‐plane or longitudinal normal deformations (variations along the
bondline direction). Complying with such modelling technique, the
separation between top and bottom surfaces with respect to the inter-
face midplane can be determined through the deformation gradient F
under large displacement conditions. This standpoint presents some
advantages over other methods, such as its simplicity (the coding of
a new element formulation is not required) and the computation of
a complete displacement field including transverse normal gap δn, tan-
gential shear gap δss and longitudinal shear or in‐plane gap δls, as shown
in Fig. 1. Thus, recalling the predictions presented in Ref. [35], the
new geometrically nonlinear LEBIM formulation does offer very
promising results and notably simplifies the implementation require-
ments. Within this context, the principal objective of the current inves-
tigation is the comprehensive validation of the geometrically
nonlinear LEBIM [35] for mixed‐mode loading conditions and for its
usage in structured interfaces as in Refs. [36,37].

The organization of the manuscript is as follows. Section 2
describes the interface modeling. The validation of the current inter-
face model through its assessment for Double Cantilever Beam
(DCB), Mixed Mode Bending (MMB) and End Notch Flexure (ENF)
tests is detailed in Section 3, whereas its application to structured
interfaces is presented in Section 4. Finally, the main conclusions of
this investigation are summarized in Section 5.

2. Interface modelling: General aspects and formulation

2.1. Geometrically nonlinear interface model

This Section presents the main aspects of the new LEBIM formula-
tion for geometrically nonlinear applications. The current formulation
is compatible with general‐purpose solid elements and it is subse-
quently particularized for 2D analysis. Complying with a finite thick-
ness interface model that can be integrated into standard continuum
finite elements, the required displacements for the evaluation of the
LEBIM traction‐separation law, i.e. the relative transverse normal dis-
placement δn, the tangential shear displacement δss and the longitudinal
shear or in‐plane displacement δls, are referred to the element midline.
Thus, the tracking of this midline can be performed using a material
user‐subroutine UMAT supported by the commercial software ABA-

QUS® [38]. See a comprehensive description of the computations at
the material point level in Ref. [35].

Assuming the finite displacement theory [39], the deformation gra-
dient F is a two‐point tensor that relates current x and initial X config-
urations, considering deformations as well as rigid body motions. In
this modelling framework, two different standpoints can be adopted:
Lagrangian or material description, in which the variables are referred
to the initial configuration, or Eulerian or spatial description, in which
the variables are referred to the current configuration according to

F ¼ @x
@X

¼ F11 F12

F21 F22

� �
: ð1Þ

The computation of the polar decomposition allows the deforma-
tion gradient F to be split into the stretch and rotation tensors. As
recalled in Ref. [35], this operation can be executed in two ways: (i)
the application of the deformation is applied first, and then rotation
(material description, Eq. (2)), or conversely (ii) the application of
the rotation is followed by the insertion of the deformation at the
material point level (spatial description, Eq. (3)), as

F ¼ RU; ð2Þ
F ¼ VR; ð3Þ

where R is the rotation tensor, U is the stretch tensor according to a
material description and V is the stretch tensor following a spatial



Fig. 1. Displacement field within a 2D element in the interface model under uniform and variable strain field: transverse normal δn, longitudinal shear or in-plane
δls and tangential shear δss.
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description. A graphical representation of the motion considering finite
strain theory is depicted in Fig. 2.

For the sake of simplicity, the former expression is used within this
study, adopting a Lagrangian standpoint. The computation of the ele-
ment midline rotation can be obtained through the following
expression

tan αcð Þ ¼ F21

F11
; ð4Þ

where the significance of the angle αc is shown in Fig. 2. Accordingly,
the rotation and stretch tensors, R and U, can be easily calculated as

R ¼ cos αcð Þ � sin αcð Þ
sin αcð Þ cos αcð Þ

� �
; ð5Þ

U ¼ RTF ¼ U11 U12

0 U22

� �
: ð6Þ

Thus, the deformation tensor can be obtained in a straightforward
manner by taking into account the rotation of the midline element.
Further details about the procedure to obtain αc, components of the
U tensor and differences with respect to regular continuum elements
can be found in Ref. [35]. The next ingredient for the evaluation of
the TSL is the computation of the displacement jumps across the inter-
face: δn; δss and δls. The computation of the displacement vector can be
Fig. 2. Initial and current configurations of an element and its relation
through the deformation gradient tensor F.
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recalled via the definition of the displacement field variation. This
expression shows the relation between the deformation gradient ten-
sor F and the undeformed vector dX as

dx ¼ dXþ du ) du ¼ dx� dX ¼ F� Ið ÞdX: ð7Þ
In absence of a rigid body rotation, the tensor R is equal to the

identity matrix and the relative displacements can be expressed as

du ¼ U� Ið ÞdX: ð8Þ
From a different perspective, in terms of a generalised material

strain tensor of order n, the corresponding strain tensors can be com-
puted as

En ¼ 1
n

Un � Ið Þ; ð9Þ

E1 ¼ U� Ið Þ: ð10Þ
The operator U� Ið Þ can be seen as the material strain tensor of

order n ¼ 1 (Eq. (10)) or the so‐called Biot strain tensor. Restricting
our attention to the definition of the first order strain tensor, one
obtains

E1 ¼ U11 � 1 U12

0 U22 � 1

� �
¼

@δls
@X1

@δss
@X2

0 @δn
@X2

" #
: ð11Þ

Through the proper selection of the undeformed element dimen-
sions, L and h, as the initial vectors dX1 and dX2, respectively, the dis-
placement jumps can be computed as follows

δls ¼ U11 � 1ð ÞdX1 ¼ U11 � 1ð ÞL; ð12Þ

δn ¼ U22 � 1ð ÞdX2 ¼ U22 � 1ð Þh; ð13Þ

δss ¼ U12dX2 ¼ U12h: ð14Þ
In applications experiencing rigid body rotations, the motion can

be described as follows: firstly, the element is deformed (material
description) through the material stretch tensor U and the gap dis-
placements or separations δn; δss and δls are determined; secondly, the
element is rotated via the tensor R in order to get the current position.

The extension of this procedure to 3D applications would require
the calculation of three angles in order to track the motion of the
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element’s middle plane during the analysis. That is, the position of the
current axis (placed on the element’s midplane) with respect to the ref-
erence configuration is described by three rotations. This fact increases
the complexity of the procedure in comparison to 2D analyses, where
only a single angle is needed to characterise the midline behaviour.
Nevertheless, the application of analogue procedures to the 2D analy-
sis to the different directions will lead to the rotation matrix and the
displacement field in 3D scenarios. Regarding LEBIM, 3D proposals
for small displacement scenarios have been recently used for some
problems including composite laminates [3,7].

2.2. Constitutive interface equations: Linear Elastic Brittle Interface Model

Once the separation gaps at an interface are computed, the next
phase requires the determination of the traction vector for the evalua-
tion of the TSL that characterizes the interface failure. As stated above,
in the related literature there are a wide variety of traction‐separation
laws (bilinear, exponential, trapezoidal, etc) enabling the characteriza-
tion of different interface behaviours (ductile, brittle, etc). In this
investigation the Linear Elastic Brittle Interface Model (LEBIM) is
employed, in which the traction and energy standpoints merge in a
unique criterion. Nevertheless, it is worth mentioning that the current
methodology can be applicable to any different profile of TSL without
limitations.

In a general sense, the LEBIM is herewith used to characterize the
interface between two solids or a thin adhesive layer, whose stress pro-
file along the thickness is uniform. This technique can be conceived as
an elastic spring foundation with a cut‐off traction response, that fea-
tures abrupt failure [3,29]. Accordingly, energy dissipation before
crack propagation is considered as negligible and, therefore, no soften-
ing area ahead of the crack tip should be appreciated in the problem.
Additionally, as was observed in Refs. [3,7], if the stiffness of the sys-
tem is mostly governed by the adherents, the shape of the TSL has a
minor influence on the corresponding overall results, i.e. classical
cohesive zone models (with a large softening zone) will lead to similar
results as those obtained by LEBIM.

Specifically, tractions t and energy stored G in this “spring distribu-
tion” are used to compute the mixed mode ratio B ¼ GII=GT , where
GT ¼ GI þ GIIð Þ, the critical fracture energy Gc and the failure instant.
Following [29], let tractions be described in terms of displacement
jumps across the interface by means of a linear elastic law as

tn ¼
knδn; if δn ⩽ δcn
0; otherwise

�
; ð15Þ

ts ¼ ksδss þ ksδls ¼ ksδs; if δss
�� �� ⩽ δcn

�� ��
0; otherwise

(
; ð16Þ
Fig. 3. Linear Elastic Brittle Interface Model: traction-separat
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where tn and ts are normal and shear tractions, δn; δss and δls are relative
transverse normal, tangential shear and in‐plane displacements and kn
and ks are normal and shear stiffnesses, respectively. Note that the
shear jump δs admits two contributions δs ¼ δss þ δls and that kn and ks
are expressed in MPa

mm . Fig. 3 depicts the behaviour of LEBIM constitutive
law.

Notwithstanding, tractions drop to zero when tc is reached or, in
energy terms, if the energy stored G fulfills the fracture toughness cri-
terion: G ¼ Gc. Hence, the definition of the energy release rate stored
G and fracture toughness Gc is fundamental in the failure description.
In this way, the energy contributions can be split into those associated
with fracture Mode I and Mode II counterparts (GI and GII respec-
tively) for mixity purposes, which respectively correspond to normal
and shear behaviour according to the expressions

G ¼ GI þ GII ; ð17Þ

GI ¼ htniþhδniþ
2

¼ htni2þ
2kn

; ð18Þ

GII ¼ tsδs
2

¼ t2s
2ks

; ð19Þ

where GI and GII are the energy release rates for fracture Mode I and
Mode II, respectively. In the previous expressions, the symbol hi stands
for the Macaulay brackets, and therefore only positive values of normal
tractions and relative displacements are used for the GI calculation.

Finally, a critical fracture energy criterion involving any mixed
mode condition Gc Bð Þ establishes the limit condition. Without any loss
of generality, we advocate in the present investigation the use of the
phenomenological Benzeggah‐Kenane (BK) criterion [40], whose
mathematical expression renders

Gc ¼ GIc þ GIIc � GIcð Þ GII

GI þ GII

� �η

; ð20Þ

where η is a material coefficient as described in Ref. [41].

2.3. Snap-back control algorithm

From a numerical point of view, in simulations involving damage
progression, nonlinear effects play an important role in achieving equi-
librium solutions, i.e. dictating convergence. Usually, in the majority
of tests or applications, the boundary conditions are conceived with
the aim of either reproducing the experimental gripping conditions
in the tests or reflecting the loading conditions of theoretical analysis.
These external solicitations are generally imposed by monotonically
increasing/decreasing loads/displacements in specific positions of
the specimen with the purpose of obtaining a particular stress, strain
ion law in normal (tn � δn) and shear (ts � δs) directions.
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or displacement field. However, due to the onset of failure processes
and fracture propagation, the linearity of the solution is compromised
and the redistribution of the stress field may lead to simultaneous
reduction in load and displacement, snap‐back behaviours. These
snap‐backs jeopardize the convergence of the simulation employing
load or displacement controlled boundary conditions. Although there
are methods that consider changes in the direction of the load–dis-
placement curves, for instance the Riks method [42], other techniques
have been developed in order to overcome these instabilities in an effi-
cient manner.

In this setting, Tvergaard [43] proposed an alternative to capture
fluctuations in the load–displacement curves by finding a variable that
increases monotonically during the simulation. In this way, the control
is applied in such variable and the loads and displacements at the
boundary are computed as output variables of the finite element anal-
ysis. This approach allows the Newton–Raphson algorithm to be used
without any further modifications, and has been tested in simulations
including sphere fracture in composites made up of random distribu-
tion of elastic spheres within an elasto‐plastic matrix [44], or the
investigation of gradient‐enhanced dislocation hardening on the
mechanics of notch‐induced failure [45]. Mainly, the control is
applied: (i) to the sum of the opening displacements of some nodes
ahead of the crack tip, in presence of a unique interface, or (ii) the rel-
ative opening within the interfaces along the loading direction, if more
than one interface is involved. In this study, we are focused on the for-
mer approach, which is concisely described in the following para-
graphs with focus on MMB specimens.

To commence the description of this control algorithm, let N1 and
N2 be the nodes belonging to upper and bottom surfaces of the inter-
face, respectively, and NC a dummy node that can be placed at any
point, as depicted in Fig. 4. Likewise, NC will be the control node
and NL the node in which the load or displacement conditions at the
boundary are applied. The relative displacement at the interface, cor-
responding to the global basis X1;X2f g, can be related to the control
node NC by making use of the AUXILIARY ELEMENTs of a FEM code
(ABAQUS being used in the present investigation) as follows

0 0 0
0 0 0
1 �1 0

2
64

3
75

uN1
X1

uN2
X1

uNC
X1

2
664

3
775 ¼

f N1
X1

f N2
X1

f NC
X1

2
664

3
775; ð21Þ

0 0 0
0 0 0
1 �1 0

2
64

3
75

uN1
X2

uN2
X2

uNC
X2

2
664

3
775 ¼

f N1
X2

f N2
X2

f NC
X2

2
664

3
775; ð22Þ

where uX1 and uX2 are nodal displacement in global directions and f X1

and f X2
are the corresponding nodal forces. In the FE analysis the rela-

tive displacement at the interface, uN1
X1

� uN2
X1

� 	
or uN1

X2
� uN2

X2

� 	
, is set by

prescribing the nodal force of the control node f NC
X1

or f NC
X2
. Next, Eq. (21)

is employed to prescribed the opening displacement along the X1 global
direction, whereas Eq. (22) is used to set nodal relative displacements
along the X2 global direction. A flowchart of the current procedure is
given in Fig. 4 for the sake of clarity. A general implementation in a
FE package would require the description and adaptation of the method
based on the particular characteristics of the FE‐code. In any case, a
more detailed description can be found in Ref. [46].

Finally, the nodal force at the boundary f NL
X1

or f NL
X2

is equal to the

displacement of the control node uNC
X1

or uNC
X2
. This relation can be

defined through the definition of a new AUXILIARY ELEMENT

following

0 1
0 0

� � uNL
X2

uNC
X2

" #
¼ f NL

X2

f NC
X2

" #
; ð23Þ
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0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

2
6664

3
7775

uNL
X1

uNL
X2

uNC
X1

uNC
X2

2
66664

3
77775 ¼

f NL
X1

f NL
X2

f NC
X1

f NC
X2

2
666664

3
777775; ð24Þ

where Eq. (23) relates the reaction of the normal opening displacement
at the interface uNC

X2
to the nodal force in X2 direction f NL

X2
and Eq. (24)

associates the reaction of the shear displacement at the interface uNC
X1

to

the nodal force in X2 direction f NL
X2
.

It should be mentioned that previous operators usually represent a
stiffness matrix that relates nodal displacements to nodal forces, so
that the components of such matrix should have [Force/displacement]
dimensions. Differing from this, the capabilities of the AUXILIARY

ELEMENTs are employed in the present analysis in a different way:

• The AUXILIARY ELEMENTs, presented in Eqs. (21) and (22), relate
the relative nodal displacement at the interface to the displace-
ments of the control node, so that the components of the matrix
associated with this AUXILIARY ELEMENT are dimensionless. Nev-
ertheless, the conventional finite element nomenclature remains
for the sake of the consistency. That is, the variable f NC is calculated
as a force unknown in the global system of the Finite Element
model, but this variable actually stands for the nodal displacement
of the node NC. On the contrary, uNC represents the reaction force of
such node.

• The AUXILIARY ELEMENTs, displayed in Eqs. (23) and (24), relate
the nodal force of the control node NC to the nodal forces at the
boundary, specifically to the node NL in the current case. Hence,
the components of the matrix associated with these AUXILIARY

ELEMENTs are dimensionless. In this way, the reaction force of
the control node, named as uNC , is related to the nodal force at
the boundary, represented by the variable f NL . The specific compo-
nents of the AUXILIARY ELEMENT will determine the relationship
between the degrees of freedom and the direction of the nodal
forces corresponding to NC and NL nodes.

Note however that in situations where more than one pair of nodes
are implied in the process, that is, the AUXILIARY ELEMENTs (Eqs.
(21) and (22)) are applied to additional pairs of nodes, the nodal force
of the control node f NC represents the sum of the opening displacement
of each paired nodes. This scheme may be useful to track the global
tendency at the interface instead of focusing in a particular pair of
nodes.

These equations are added to the global stiffness matrix of the sys-
tem in order to compute the unknown variables, in this case the dis-
placement in the control node uNC and the displacement of the
boundary node uNL . It is worth to emphasize that uNC , through the
AUXILIARY ELEMENT materialised in the Eqs. (21) and (22), corre-
sponds to the reaction force of the boundary node: uNC ¼ f NL . There-
fore, both displacement and force at the boundary, uNL and f NL ,
respectively, are calculated as any degree of freedom of the system
and they may present non‐monotonic behaviour.

As a summary, the control algorithm is outlined in the following
scheme:

1. Define a control node NC anywhere.
2. Prescribe the opening displacement along the interface by means of

the control node f NC and the AUXILIARY ELEMENT 1.
uN1 � uN2 ¼ f NC

3. Relate the displacement of the control node to the nodal force at
the boundary through the AUXILIARY ELEMENT 2.
uNC ¼ f NL

4. Include these equations or constraints to the global stiffness matrix.
5. Obtain uNL and f NL as part of the system solution.



Fig. 4. Scheme of the control algorithm: N1–N6 are interface nodes, NC is the control node and NL is the node where the boundary conditions are established. u
and f stand for nodal displacements and nodal forces at the corresponding nodes.
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3. Application of the geometrically nonlinear LEBIM to general
mixed mode fracture tests: DCB, MMB and ENF

This Section outlines the validation of the proposed geometrically
nonlinear LEBIM for its application to general mixed‐mode fracture
tests. In particular, we specialize this procedure to numerical‐
experimental correlation of well established tests: (i) DCB test for frac-
ture Mode I conditions, (ii) MMB test for mixed‐mode fracture condi-
tions and (iii) ENF test for fracture Mode II characterization. With the
purpose of testing the accuracy of the interface approach presented
above, predictions of such tests, involving delamination events under
different loading conditions, are compared with the experimental data
extracted from Ref. [47]. Note also that other authors [1,2] have pre-
viously assessed their corresponding interface decohesion elements
with respect to these experiments. It is worth mentioning that, in the
6

following simulations, the in‐plane stiffness of the current LEBIM is
set equal to zero, neglecting the in‐plane deformation effects, with
the aim of comparing the performance of the present formulation with
respect to alternative cohesive elements [1,2,16].

Simulations are carried out using specimens with the following
geometrical dimensions: 50 mm in length of half‐span Lbeam, 25 mm
in width and 1.55 mm half‐thickness t. This set up is defined according
to the test configuration specified in Fig. 5, and it is usually denomi-
nated as the MMB method, which allows asessing different mixed‐
mode fracture ratios using the same specimen configuration. This
can be achieved via the definition of a parametric length c, whose
value can be set accordingly to range from pure fracture Mode I to pure
fracture Mode II, covering a wide range of mode‐mixity ratios. Based
on this configuration and recalling standard Bernoulli beam theory,
the ratio between the middle and end forces, denoted by PM and PE,



Table 1
Initial crack length a0, length of the lever c and middle-end load ratio PM=PE,
according to Fig. 5, for different mixed-mode ratios GII=GT .

GII=GT 0.0 (DCB) 0.2 0.5 0.8 1.0 (ENF)

a0 [mm] 32.9 33.7 34.1 31.4 39.3
c [mm] — 97.4 42.2 27.6 –

PM=PE [–] 0.0 1.46 2.14 2.79 1

Fig. 5. Mixed Mode Bending test: boundary conditions and specimen dimension. PE and PM represent the loads applied at the left end and the middle of the
specimen. Lbeam and t stand for the semi-length and one-arm thick of the coupon, whereas a0 indicates the length of the initial delamination.
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respectively, can be related to specific mixed‐mode ratios GII=GT (see
[2] for further details).

Additionally to the previous characteristics, an initial crack length
a0 is defined between 30 mm and 40 mm in order to achieve a stable
crack propagation, Fig. 5. The corresponding pre‐crack lengths a0, the
length of the lever c and the relation between the end and the middle
load PM=PE for each of the configurations analysed herein are detailed
in Table 1, emphasizing the mixed‐mode fracture ratios. The material
properties of the laminates (AS4/PEEK composite) are reported in
Table 2. The specimens are composed of 24 unidirectional plies,
employing a Kapton film to induce the initial crack length.

Regarding the characteristics of the numerical models, the adher-
ents are simulated complying with a linear elastic composite material
law, whereas the proposed LEBIM is employed to describe the inter-
face behaviour between the two arms. The baseline numerical model
is generated using approximately 5800 2D plane strain elements for
the discretization of the entire model, where about 300 of those ele-
ments correspond to interface elements that were equipped with
LEBIM. The undeformed mesh size at the region of interest is around
0.25 mm in width and 0.05 mm in height. Table 3 shows the input
properties for the interface elements [2].

The control algorithm described in Section 2.3 is also applied in the
current simulations in order to preclude numerical difficulties for the
achievement of converged equilibrium solutions. Such procedure is
correspondingly adapted to each configuration (DCB, MMB and ENF)
according to the mode mixity of the tests and the relative displacement
at the crack tip. Additionally, a new AUXILIARY ELEMENT is defined
in order to establish the relationship between the forces at the end and
at the middle of the specimen, f NE

X2
and f NM

X2
respectively (Section 2.3).

Note the distinction between beam‐theory values PM and PE and the
finite element values f NE

X2
and f NM

X2
to denote the nodal boundary forces.

In this way, the relation PM=PE is constant during the test according to
the length of the lever c [2], as shown in Table 1, and such relation is
Table 2
AS4/PEEK properties.

E11 E22 = E33 G12 = G13 G23 ν12 = ν13 ν23

129 GPa 10.1 GPa 5.5 GPa 3.7 GPa 0.25 0.45

7

imposed in the FE simulation. Fig. 6 comprehensively details the pro-
cedure to apply normal or shear separations at the crack tip, and the
way through which the link between the nodal forces at the boundary
(f NE

X2
and f NM

X2
) and the control node is constructed in order to obtain the

desired relation.
The normal displacement depicted in Fig. 6 is applied in the DCB

and MMB tests. In this regard, with respect to the MMB simulations,
we set the ratios GII=GT ¼ 0:2 and GII=GT ¼ 0:5 using this normal dis-
placement. Moreover, in additional computations, the shear displace-
ment approach in Fig. 6 is employed for the simulation of MMB
configurations with GII=GT ¼ 0:8 and for the ENF test.

Fig. 7 shows the correlation between experimental and numerical
results concerning load–displacement curves. In this graph, noticeable
snap‐back effects throughout the crack propagation in numerical sim-
ulations can be identified. This is associated with the boundary condi-
tions imposed in the analysis, in this case an increasing separation
(normal or shear) between the crack flanks. Note also that despite
the fact that current boundary conditions do not exactly replicate
the experimental gripping conditions, numerical predictions are in
very close agreement with respect to the tests data, in both the linear
elastic and crack progression regions of the evolutions.

Moreover, the evaluation of the mixed mode ratio GII=GT can be
performed in a straightforward manner using LEBIM, since only the
tractions at the crack tip are required as

GII=GT ¼ t2s = 2ksð Þ
htni2þ= 2knð Þ þ t2s = 2ksð Þ ¼

1
htniþ
ts


 �2
ks
kn
þ 1

: ð25Þ

Fig. 8 depicts the evolution of the mixed mode GII=GT for each con-
figuration according to the expression given in Eq. (25) as a function of
the crack length. Such curves present a constant value during the crack
growth in conjunction with some fluctuations lower than the 10% with
respect to their mean values. Table 4 reports the qualitative compar-
ison between the experimental and numerical results, where the max-
imum force Fmax and the mixed mode ratio GII=GT are detailed. In the
numerical column, the mean value of the curves in Fig. 8 is provided.

Based on the current results, it is possible to state that the current
formulation combining continuum elements and Traction Separation
Laws relying on the LEBIM enables capturing the initiation and evolu-
tion of delamination events under Mode I, Mode II and mixed mode
fracture conditions. Furthermore, from a computational perspective,
as shown in Fig. 7, the control algorithm captures the characteristic
snap‐back curves during crack propagation. Snap‐back instabilities
are a mathematical artifact resulting from assuming quasi static
Table 3
Linear Elastic Brittle Interface Model properties [2].

tcn [MPa] tcs [MPa] GIc [kJ/m2] GIIc [kJ/m2] η [–]

80 100 0.969 1.719 2.284



Fig. 6. Scheme of the control algorithm for Mixed Mode Bending test: N1–N6 are interface nodes, NC is the control node and NL is the node where the boundary
conditions are established. u and f stand for nodal displacements and nodal forces in the corresponding nodes. NE and NM correspond to the nodes located at the
left end and at the middle, respectively, at the top surface of the upper adherent.
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conditions and are therefore not present in experiments, where unsta-
ble crack growth is a local dynamic effect. Regarding the mixity of the
MMB tests, the mixed mode value derived from LEBIM formulation
(Eq. (25)) slightly differs from the predicted value of GII=GT using
8

the classical Bernoulli beam theory. This small deviation could be
attributed to the fact that the current form of such classical theory does
not account for geometrically nonlinear effects that are especially rel-
evant for the MMB configurations.



Fig. 7. Correlation between experimental [47] and simulated tests corre-
sponding to DCB, MMB and ENF experiments, including mixed mode ratios
GII=GT ¼ 0:00:20:50:81:0½ �.

Table 4
Experimental [47] versus numerical results. Fmax is the maximum load in the
test, experimental GII=GT is that reported in Ref. [47] (based on beam theory)
and Eq. (25) at the crack tip is employed in numerical GII=GT .

Experimental Numerical

GII=GT Fmax [N] GII=GT Fmax [N]

0.00 147.5 0.00 154.6
0.20 108.7 0.25 106.0
0.50 275.8 0.57 283.1
0.80 518.7 0.84 492.8
1.00 748.0 1.00 734.0
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4. Application of the geometrically nonlinear LEBIM for DCB
specimens with hierarchical trapezoidal interfaces

4.1. LEBIM validation by means of experimental–numerical correlation of
structured interfaces in DCB tests

This Section addresses the applicability of the proposed geometri-
cally nonlinear LEBIM for the analysis of novel interface profile using
structured patterns. This is within the scope of the research activities
previously carried out by the authors in Refs. [36,37] in which addi-
tive layer manufacturing (ALM) capabilities for composite materials
have been exploited.

In particular, we specialize the manufacturing of trapezoidal inter-
face DCB specimens using Glass Fiber Composite (GFC) and nylon. For
validation purposes, the flat specimen and one of the patterned config-
urations experimentally tested in Ref. [37] were analysed using the
interface framework in Section 2. The overall dimensions of the cou-
pons employed in the FE simulations are:

• Flat interface: hGFC ¼ 2:5 mm, hnylon ¼ 1:5; hint ¼ 0:05 mm,
Lstr ¼ 169 mm, according to the scheme of Fig. 9.
Fig. 8. Mixed mode evolution GII=GT at the crack tip (Eq. (25)) corresponding
to computational models of DCB, MMB and ENF, including beam-theory
mixed mode ratios GII=GT ¼ 0:00:20:50:81:0½ � [2].
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• Trapezoidal interface: hGFC ¼ 2:5 mm, hnylon ¼ 0:5; hint ¼ 0:05 mm,
Lstr ¼ 169 mm, A ¼ 1:7 and λ ¼ 8 mm, according to the scheme of
Fig. 9.

As the previous case analysed in Section 3, adherents are simulated
using a linear elastic behaviour, no damage emerging then in this part
of the specimen, and the adhesive layer is represented by a linear elas-
tic brittle law. Current LEBIM properties along the interface are listed
in Table 5 and the GFC and nylon properties are specified in Table 6. In
the LEBIM, the stiffness relationship is set to ks=kn ¼ 1. The methodol-
ogy presented in Section 2.1 was employed to model the interface in
the DCB simulations so as to examine the role of the in‐plane deforma-
tions within the adhesive/interface.

Regarding the FE model, 4‐node plane‐strain elements (type CPE4
in ABAQUS® library) are employed in the adherents as well as in the
interface. In the flat case, around 22k elements constitute the adher-
ents and 576 elements (0.25 mm in length) form the interface region.
Conversely, around 140k elements made up the adherents and around
150 elements (0.06 mm in length) form each trapezium.

Two different methods were used to evaluate the fracture energy in
the patterned interfaces:

• First, the critical energy release rate Gc, based on the standards out-
lined in Ref. [48] and employed previously in Ref. [37], is deter-
mined as the area under the load–displacement curve with
respect to the effective or apparent cracked surface (crack length
aX in a 2D analysis) between two different crack lengths, as
depicted in Figs. 12 and 17. aX1 and aX2 included in the same plot
were employed in the fracture characterisation according to the
expression
GLD
c ¼ ALD

aX2 � aX1
: ð26Þ
• Second, the effective J‐Integral developed in Ref. [36], defined as
the variation of the potential energy with respect to the horizontal
projection of the crack advance (X1 global axis)
JX ¼ � dΠ
daX

¼ �
Z
@Γ

ω X1;X2ð Þ
cos αð Þ dX2 � ti

cos αð Þ
@ui
@X1

ds
� �

: ð27Þ

Decomposing the last expression into symmetrical and anti‐
symmetrical counterparts, the fracture energy developed in Mode
I and Mode II can be obtained by means of the tractions and dis-
placements within the interface as

JXI ¼ ∑
n

k¼1
JI;ΓkþΓk0 aXð Þ ¼ ∑

n

k¼1

Z
Γk

tn
cos α

@δn
@X1

dX1; ð28Þ

JXII ¼ ∑
n

k¼1
JII;ΓkþΓk0 aXð Þ ¼ ∑

n

k¼1

Z
Γk

ts
cos α

@δss
@X1

dX1; ð29Þ

where α is the angle respect to the horizontal plane (see Fig. 9),
which depends on the position along the crack path: α ¼ α X1ð Þ. Γk

represents the different sections along the profile. The path selected
to perform the J‐Integral calculations involved the upper and lower



Fig. 9. Double Cantilever Beam specimen with flat and trapezoidal interface. Materials: glass-fibre composite (GFC), nylon and adhesive. Dimensions: length Lstr,
height of glass-fibre composite hGFC, height of nylon in the bulk part hnylon, amplitude A and wavelength λ of the trapezoidal interface.

Table 5
Properties of the adhesive modelled as a LEBIM in the experimental–numerical
correlation.

Material tcn [MPa] tcs [MPa] GIc [J/m2] GIIc [J/m2]

Adhesive 4.0 16.0 136.3 2180
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surfaces of the interface, from the crack tip to the point where the
normal stress becomes null. Figs. 13 and 18 shows the evolution
of the JX ¼ JXI þ JXII respect to the effective crack length aX . Addi-
tionally, for comparing purposes, a mean value of the J‐Integral is
provided by means of

JXc ¼ 1
aX2 � aX1

Z aX2

aX1

JX daX : ð30Þ

This last expression allows a direct comparison with Gc to be per-
formed due to the fact that for elastic materials J ¼ G.

Nonetheless, in order to properly exploit the large‐displacement
procedure pinpointed in Section 2.1 for non‐flat interfaces, a pre‐
process for the interface zone and a slight modification of the UMAT

are required. Specifically, an initial rotation of the deformation matrix
F is performed to obtain the strain field expressed in a coordinate sys-
tem in accordance with the initial midplane of the interface. It is worth
emphasising that in the presence of structured interfaces, the direction
of the path αi with respect to the global coordinate system (X1;X2) is a
function of the position. In this way, Eq. (32) points out the operator
that is required in order to get the appropriate reference system as

Fi ¼ RT
i FRi; ð31Þ

where

Ri ¼
cos αið Þ � sin αið Þ
sin αið Þ cos αið Þ

� �
: ð32Þ

This operation should be performed at each integration point with
its corresponding αi value. A PYTHON script was developed to obtain
the initial slope for each integration point and it was transferred to
the UMAT as a dummy initial state variable by means of the SDVINI

user subroutine.
Finally, as the variables of the interface elements were expressed in

global coordinates, an additional rotation of the stress tensor and Jaco-
bian matrix is performed. It is worth mentioning that the output vari-
Table 6
Properties of the glass-fibre composite (GFC) and nylon.

Material E11 [MPa] E22 [MPa] E33 [MPa]

GFC 25863 1221 1221
Nylon 384 384 384
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ables of the UMAT should be expressed in the global Cartesian basis.
Hence, a rotation of � αþ αið Þ radians is carried out for achieving equi-
librium and getting convergence. Fig. 10 shows the pseudo‐code used
to calculate the tractions and the Jacobian matrix in curved profiles.

The previous algorithm allows for the displacement field along the
interface to be computed and, consequently, for comparison between
normal, shear and in‐plane displacements. Fig. 11 displays a drawing
of the deformed DCB specimen and the displacement components
(δn; δss; δls) along the interface length in an intermediate increment
of the simulation. It can be observed that δn represents the highest val-
ues in the displacement field, followed by the shear displacement δss.
The in‐plane deformations can be considered negligible with respect
to δn or δss. In fact, the in‐plane displacements δls do not exceed
1� 10�3 mm during the test, that is, the maximum in‐plane displace-
ment represent the 0.5% of the maximum relative shear displacement
and the 0.07% of the maximum relative normal displacement. Hence,
neglecting the in‐plane deformation in this scenario is an adequate
hypothesis (that can be incorporated by setting kl ¼ 0).

Fig. 12 shows the experimental–numerical correlation of the load
displacement curves corresponding to the DCB tests in the flat and
trapezoidal interfaces. Fig. 13 displays the mixed mode JXII=J

X
T , where

JXT ¼ JXI þ JXII , and the JX evolution with respect to the effective crack
length aX obtained from the FE models.

A good agreement between the curves can be observed in both flat
and patterned interfaces. The initial linear‐elastic behaviour is cap-
tured appropriately as well as the propagation phase, including the
unstable crack advance in the trapezoidal case. Furthermore, the pre-
diction of the crack length is in accordance with the experiments.
Notwithstanding, the larger discrepancies involving crack length and
load–displacement curve occur at the fracture initiation stage. Regard-
ing the mixity of the FE models, the flat configuration led to B ¼ 0, as
expected, whereas the trapezoidal case presents sharp fluctuations
along the virtual test whose maximum values are established around
B ¼ 0:2. The J‐Integral evolution shares the features of the mixed
mode distribution and the average effective energy release rate JXc is
almost twice higher in the patterned scenario than in the flat interface
(JXc ¼ 243:3 kJ/m2 in the trapezoidal interface and JXc ¼ 130:3 kJ/m2

in the reference scenario). A summary of the results in the experimen-
tal and numerical analysis are included in Table 7.

In view of the results, it is remarkable that the energy release rate
obtained from the area of the load–displacement curve GLD

c in the flat
case is higher than the experimental one: GIc ¼ 136:3 kJ/m2. This dis-
crepancy may emerge from the difference between experimental and
υ12 [–] υ13 [–] υ23 [–] G12 [MPa]

0.45 0.45 0.45 778
0.39 0.39 0.39 –



Fig. 10. Simplified algorithm for displacement-stress estimation in a Traction Separation Law presenting a curved crack path in interface continuum elements
under finite displacement and rotation assumptions.

Fig. 11. Displacement profile (δn; δss; δls) along the interface at Δ ¼ 2:4 mm and P=W ¼ 2:43 N/mm in the load–displacement curve in Fig. 12b.

Fig. 12. Experimental–numerical correlation of the load–displacement curves. Square markers represent the points of the curves where the effective crack length
reaches aX1 ¼ 10 mm and aX2 ¼ 70 mm.
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Fig. 13. (a) Numerical evolution of the mixed mode JXII=J
X
T and (b) effective energy release rate JX with respect to the effective crack length aX in flat and

trapezoidal configurations. Dashed lines represent the average value according to the maximum values or peaks of the curves.

Table 7
Critical energy release rate GLD

c obtained from load–displacement curves (experimental and numerical), mean effective J-Integral JXc and mean mixed mode of the flat
and trapezoidal interfaces in the DCB tests.

Configuration GLD
c [J/m2] (Experimental) GLD

c [J/m2] (Numerical) JXc [J/m2] JII
JT
jmean [–]

Flat 136.3 148.7 130.3 0.0
Trapezoidal 274.0 257.6 243.3 0.231
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computational curves at the beginning of the test. Then, if the crack
length aX1 were to be selected so that the corresponding point in the
load–displacement curve was located at Δ ⩾ 4 mm, for example, the
discrepancy in the fracture toughness will be reduced. On the contrary,
the average value of JX is lower than GIc. This reduced value of the
pure Mode I energy is associated with the distribution of stresses along
the interface. The value of normal traction tn just before the crack
propagation is lower than the cut‐off traction tcn established in the
TSL, as depicted in Fig. 14. Hence, the critical energy release rate cal-
culated from the J‐Integral, JXc , would be equal to GIc when the incre-
ments of the simulations allow an accurate/perfect traction
distribution of the TSL along the interface.

Regarding the patterned configuration, the calculation of the effec-
tive fracture toughness is in close agreement: less than 7% of differ-
Fig. 14. Traction distribution along the interface corresponding to Δ ¼ 3:25
mm and P=W ¼ 1:50N/mm in the flat DCB test (Fig. 12).
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ence using the load–displacement curves (GLD
c ) and less than 12%

using the J‐Integral approach (JXc ). Moreover, the mixed mode based
on Benzeggah‐Kenane criterion is highly accurate for energy predic-
tions: Gc B ¼ 0:231ð Þ ¼ 245:4 kJ/m2, see Eq. (20).
4.2. Application: Hierarchical trapezoidal interfaces

Double Cantilever Beam tests including a non flat interface
between adherents is performed in this Section. This kind of analysis
allows the fracture energy to be studied in presence of mixed mode
conditions. Furthermore, authors in Ref. [37] have demonstrated the
significance of the failure modes in epoxy adhesives, which can be
modelled assuming brittle behaviour. In this way, LEBIM represents
an appropriate tool to describe the crack resistance in these experi-
ments. In addition, the performance of hierarchical crack paths,
involving uni‐trapezoidal, bi‐trapezoidal and tri‐trapezoidal patterns,
is herewith carried out for comparison purposes. The specimens,
depicted in Fig. 15, are 160 mm in length Lhier, 20 mm in width W
and a total height h of 4.9 mm, where nylon and glass fibre composite
(GFC) are used. The bulk part of the coupon consists of 1 mm of GFC
and 0.5 mm of nylon, while the layers that form the trapezoidal inter-
face (A = 1.9 mm, λ = 8 mm) are made of nylon exclusively.

Regarding the hierarchically‐based study, three orders of arrange-
ment are investigated in the sequel: uni‐trapezoidal, bi‐trapezoidal
and tri‐trapezoidal patterns. Fig. 16 depicts the geometry definition
and the differences between shapes. Pointedly, elemental features
remain constant: amplitude A, wavelength λ, angle α, horizontal length
lh and inclined length li. Generally speaking, the height A is reached
through one, two or three jumps or steps by travelling the same dis-
tance in the horizontal axis. Particular geometrical values of the hier-
archical profiles can be observed in Table 8.

For the FE analysis, 4‐node plane‐strain elements (type CPE4 in
ABAQUS® library) are used in the GFC, the nylon and the adhesive
2D modelling. Approximately 270k elements are employed to dis-
cretize the adherents and about 130 elements form every trapezium



Fig. 15. Double Cantilever Beam specimen with a trapezoidal interface. Materials: glass-fibre composite (GFC), nylon and adhesive. Dimensions: length Lhier ,
height of glass-fibre composite hGFC, height of nylon in the bulk part hnylon, amplitude A and wavelength λ of the trapezoidal interface.

Fig. 16. Uni-trapezoidal, bi-trapezoidal and tri-trapezoidal shapes contained
in the study. d1 and d2 represent the flat and inclined section length,
respectively. α shows the angle in the inclined sections and A and λ symbolise
the amplitude and the wavelength of each configuration.
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of the adhesive. Red arrows in Fig. 15 represent the normal direction
corresponding to each section of the motif.

The same boundary conditions than those used in previous Sec-
tion are applied to the current DCB‐like tests: a vertical displacement
at the upper left end of the specimen while the lower left end is
pinned. Likewise, the control algorithm of Section 2.3 is employed
in the simulations.

Considering previous aspects, numerical load–displacement curves
of the uni‐trapezoidal, bi‐trapezoidal and tri‐trapezoidal interface pat-
terns, as well as the flat baseline scenario, can be observed in Fig. 17.

The behaviours of the three structured configurations are similar to
each other being characterized by: a first linear‐elastic stage before
damage onset and a region characterised by pronounced instabilities
in the crack advance phase. Notwithstanding, a slight increase in the
maximum load of the peaks can be appreciated with the hierarchical
level. Additionally, the reference case presents unstable crack propaga-
tion despite of the flat interface, which leads to a saw‐tooth force–dis-
placement curve. It is worth mentioning that, if standard displacement
control boundary conditions are applied, stabilization mechanisms of
the solution would be required in order to achieved equilibrium solu-
tions throughout the simulations. Nonetheless, the control algorithm
discussed above allows the computational convergence of the problem
precluding the use of any artificial damping energy.
Table 8
Horizontal section length d1, total horizontal and inclined section length, lh and li resp
trapezoidal configurations. dx2 stands for the horizontal component of the length d2.

Configuration d1 mm½ � dx2 mm½ �

Trapezoidal λ�2dx2
4

A
tan α

Bi-trapezoidal λ�4dx2
6

A=2
tan α

Tri-trapezoidal λ�6dx2
8

A=3
tan α
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With reference to the qualitative response, the instabilities afore-
mentioned can be also appreciated in Fig. 18, where the effective J‐
Integral JX , according to Eq. (27), is represented as a function of the
effective crack length aX . In such graph, it is shown that the variability
of the energy release rate is noticeable and the increase of the average
fracture toughness (represented by the dashed lines and calculated by
means of the peaks values) with respect to the level of arrangement. In
this way, the tri‐trapezoidal configuration achieves around 20% of
improvement with respect to the uni‐trapezoidal interface and around
83% with respect to the flat scenario.

Regarding the fracture mixed mode of the three configurations, we
can observe in Fig. 19 the characteristic variability of the patterned
interfaces, where the fluctuations become higher with the level of
arrangement. That is, the tri‐trapezoidal profile presents the highest
variation of JXII=J

X
T . Furthermore, a minor increasing tendency of the

mean value of the mixed mode during the test can be appreciated:
JXII
JXT
jUnimean ¼ 0:07; JXII

JXT
jBimean ¼ 0:10 and JXII

JXT
jTrimean ¼ 0:11.

Table 9 outlines the principal fracture energy values GLD
c ; JXc and

the mean mixed mode JXII
JXT
jmean during the DCB test. The use of LEBIM

to characterise the behaviour of the structured interfaces facilitates
the comparison of the results determined from load–displacement
and J‐Integral methods. Such values differ between 8.4% and 17.2%.
This difference arises from the energy calculation procedure: on the
one hand, the area method implicitly implies an average of every point
of the load–displacement curve (between the two crack lengths
selected aX1 and aX2); on the other hand, the J‐Integral average value
is performed involving the peaks of the curve in Fig. 18. The mean crit-
ical energy release rate (GLD

c or JXc ) increases with the level of arrange-
ment, although such increment is small in comparison with the
presence of the actual patterned interface. That is, with respect to
the reference scenario (DCB test with flat interface, GIc), the simplest
trapezoidal pattern implies an increment of the fracture toughness of
around 56%, whereas the trapezoidal profile with the highest level
of arrangement (tri‐trapezoidal), involves an increase of 84%. Despite
the impact of the hierarchical arrangement on the fracture properties
being lower than the overall dimensions of the pattern (amplitude
and wavelength), the trend suggests that increasing the arrangement
ectively, and angle of the sloped sections α in trapezoidal, bi-trapezoidal and tri-

α rad½ � lh mm½ � li mm½ �

arctan 4A
λ

λ=2 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2
� 	2 þ A2

q
arctan 4A

λ
λ=2 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2
� 	2 þ A=2ð Þ2

q
arctan 4A

λ
λ=2 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2
� 	2 þ A=3ð Þ2

q



Fig. 17. Load vs displacement curves of DCB tests with uni-trapezoidal, bi-
trapezoidal and tri-trapezoidal interface profiles. aX1 and aX2 symbolise the
initial and final lengths involved in the fracture characterisation and the
shaded area ALD represents the area under the load–displacement curve used
in Eq. (26).

Fig. 18. Effective J-Integral JX as a function of the effective crack length aX
corresponding to the Double Cantilever Beam test with uni-, bi- and tri-
trapezoidal crack paths.

Fig. 19. Effective mixed mode evolution JXII=J
X
T at the crack tip as a function of

the effective crack length aX corresponding to the Double Cantilever Beam test
with uni-, bi- and tri-trapezoidal crack paths.

Table 9
Energy release rate GLD

c obtained from load–displacement curves, mean effective
J-Integral JXc and mean mixed mode JXII

JXT
jmean of the hierarchical trapezoidal

interfaces in the DCB tests.

Configuration GLD
c [J/m2] JXc [J/m2] JXII

JXT
jmean [–]

Uni-trapezoidal 195.9 212.3 0.074
Bi-trapezoidal 205.1 238.1 0.105
Tri-trapezoidal 210.5 250.5 0.114
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level of the geometry may be an interesting strategy to enhance the
resistance of adhesively bonded joints.

5. Conclusions

A comprehensive framework of computational interface modelling
has been presented. The following three techniques have been sum-
marised with the aim of overcoming difficulties during the analysis
of interfaces with complex geometry: (i) an innovative versatile model
to calculate interface gaps under large displacement conditions, (ii) the
Linear Elastic Brittle Interface Model, able to describe the abrupt fail-
ure phenomena present in some joints, (iii) and a control algorithm to
deal with instabilities that result from the fracture mixed‐mode vari-
ability along non‐flat interface patterns. The first two methods have
been embedded in a material user‐subroutine UMAT of the software
package ABAQUS® whereas the latter one was performed by linking
the applied boundary conditions with the crack tip opening by employ-
ing auxiliary elements.
14
The aforementioned scheme was applied to delamination of com-
posite laminates in a large range of mixed‐mode fracture conditions:
Double Cantilever Beam (DCB), Mixed Mode Bending (MMB) and
End Notch Flexure (ENF) tests. Numerical results obtained from the
Finite Element analysis were compared with experimental tests avail-
able in the literature. The numerical‐experimental correlation exhibits
an excellent agreement and the employment of this interface mod-
elling in structures involving a large variety of mixed‐mode fracture
conditions is justified.

The strategy proposed was exploited in structured interface DCB
Finite Element tests with different orders of hierarchical organization.
In particular, uni‐trapezoidal, bi‐trapezoidal and tri‐trapezoidal pro-
files were examined in the simulations. The load–displacement curves
present analogous behaviours, developing a linear‐elastic phase before
the onset of damage and consecutive saw‐tooth responses during crack
propagation. It is worth mentioning that, the higher the order of the
arrangement in the pattern, the larger the fluctuations and maximum
peak values obtained. As load–displacement curves anticipate, energy
release rate does not rely strongly on the hierarchical order for the sce-
narios and the geometrical parameters used in this work. Then, a
higher level of hierarchical arrangement may be needed to achieve a
noticeable improvement in the interface fracture properties. Addition-
ally, the shape and overall dimensions of the pattern may have more
influence than the arrangement level.

The improvement of the present model can lead to interesting
future research lines:

• LEBIM can be used with several damage criteria as described in Ref.
[29]. Recently, Hutchinson and Suo and Quadratic criteria were
used in a LEBIM implementation together with the Coupled Crite-
rion of Finite Fracture Mechanics for the study of the fibre–matrix
interface behaviour in Ref. [49]. The results obtained were similar
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to each other for both criteria. The investigation of different dam-
age criterion of interfaces (Hutchinson‐Suo, power laws, etc) using
LEBIM may widen the applicability of this tool in distinct scenarios,
where differences on the mode mixity and the shape of the dam-
aged area along the interface will appear.

• The extension of this model to 3D applications in order to address
interlaminar damage in intricate geometries.

• LEBIM could be compatible with fatigue behaviour or other envi-
ronmental factors. Specifically, delamination of composite lami-
nates were previously studied using a continuous distribution of
linear elastic springs under cyclic loads [50,51], so that LEBIM
can be an appropriate tool to describe these type of events. More-
over, the standpoint developed herein for modelling the interface
behaviour under finite strains can be combined with progressive
damage theories so as to analyse fatigue loading under mixed mode
conditions [52], as those presented in Refs. [53,54]. Such investiga-
tions analyse the case of fatigue using elastic interfaces and/or
Cohesive Zone Models. Moreover, the implementation of the
LEBIM as user‐defined element would enable integration of addi-
tional features within the interface element, such as fatigue [55].

• The framework developed herein can be employed to model the
behaviour of short fiber reinforced composites (SFRCs) at different
scales of observation [56–59], being a matter that requires compre-
hensive investigation activities.
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