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A B S T R A C T

There is a need for computational models capable of predicting meltwater-assisted crevasse
growth in glacial ice. Mass loss from glaciers and ice sheets is the largest contributor to sea-
level rise and iceberg calving due to hydrofracture is one of the most prominent yet less
understood glacial mass loss processes. To overcome the limitations of empirical and analytical
approaches, we here propose a new phase field-based computational framework to simulate
crevasse growth in both grounded ice sheets and floating ice shelves. The model incorporates the
three elements needed to mechanistically simulate hydrofracture of surface and basal crevasses:
(i) a constitutive description incorporating the non-linear viscous rheology of ice, (ii) a phase
field formulation capable of capturing cracking phenomena of arbitrary complexity, such as 3D
crevasse interaction, and (iii) a poro-damage representation to account for the role of meltwater
pressure on crevasse growth. A stress-based phase field model is adopted to reduce the length-
scale sensitivity, as needed to tackle the large scales of iceberg calving, and to adequately
predict crevasse growth in tensile stress regions of incompressible solids. The potential of
the computational framework presented is demonstrated by addressing a number of 2D and
3D case studies, involving single and multiple crevasses, and considering both grounded and
floating conditions. The model results show a good agreement with analytical approaches
when particularised to the idealised scenarios where these are relevant. More importantly,
we demonstrate how the model can be used to provide the first computational predictions
of crevasse interactions in floating ice shelves and 3D ice sheets, shedding new light into
these phenomena. Also, the creep-assisted nucleation and growth of crevasses is simulated
in a realistic geometry, corresponding to the Helheim glacier. The computational framework
presented opens new horizons in the modelling of iceberg calving and, due to its ability to
incorporate incompressible behaviour, can be readily incorporated into numerical ice sheet
models for projecting sea-level rise.

. Introduction

Ice sheets are large masses of glacial ice that inundate the surrounding landscape in Greenland and Antarctica today, and many
ther regions during ice ages [1]. These act as enormous stores of freshwater – containing approximately 70% of the planet’s
upply [2] – that assist in regulating a stable global climate, through maintaining global ocean-water levels and controlling surface

∗ Corresponding author.
E-mail address: e.martinez-paneda@imperial.ac.uk (E. Martínez-Pañeda).
vailable online 4 August 2022
013-7944/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

ttps://doi.org/10.1016/j.engfracmech.2022.108693
eceived 13 May 2022; Received in revised form 21 July 2022; Accepted 31 July 2022

http://www.elsevier.com/locate/engfracmech
http://www.elsevier.com/locate/engfracmech
mailto:e.martinez-paneda@imperial.ac.uk
https://doi.org/10.1016/j.engfracmech.2022.108693
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engfracmech.2022.108693&domain=pdf
https://doi.org/10.1016/j.engfracmech.2022.108693
http://creativecommons.org/licenses/by/4.0/


Engineering Fracture Mechanics 272 (2022) 108693T. Clayton et al.
Fig. 1. Illustration of a grounded ice sheet and a floating ice shelf, containing both surface and basal crevasses, and with calving events occurring at the
terminus.

temperatures by reflecting solar radiation due to its high albedo properties [3]. Ice sheets thin toward their margins, and if these
are located in marine settings, they will form floating extensions known as ice shelves, which act to provide resistive buttressing to
downslope flow and reduce the flux of grounded ice to the ocean. However, increasing global temperatures as a result of carbon
emissions has lead to higher rates of ablation than accumulation, resulting in ice shelf and ice sheet thinning in some key areas
where ice-sheet instability may follow [4]. Surface and basal crevasses can form within ice sheets as a consequence of ongoing
deformations within the ice. These are deep crack-like defects that can propagate in an unstable manner and lead to large-scale
iceberg calving events, and in extreme cases the catastrophic break up of ice shelves. The frequency of these events has grown in
recent decades, beginning with the disintegration of Larsen A (1995) [5] and Larsen B (2002) [6] ice shelves, and more recently
significant surface melting and iceberg calving on Larsen C (2017) [7], Pine Island and Thwaites (2018–2020) [8], and Conger
(2022) ice shelves. Fracture within ice shelves can result in a loss of resistance to down slope glacial flow, leading to ice-sheet
thinning, additional flotation of grounded ice and, thus, potentially irreversible grounding line retreats [9].

Deposition of grounded glacial ice into the ocean is one of the leading contributors to sea level rise [10], having direct
implications within this Century on low-lying coastal regions through flooding, increased extreme environmental events, degradation
of farmland and loss of habitat, among others. A key driving factor for their stability is the production of surface meltwater as a
result of elevated surface temperatures [11]. When ice shelves and glaciers melt, meltwater flows down-slope into surface crevasses,
causing additional tensile stresses to form within the crevasse. This leads to crevasse instability, and with sufficient meltwater, the
crevasse can propagate through the full thickness of the ice column. This process is generally referred to in the glaciological literature
as hydrofracture [12]. A recent study by Lai et al. [13] found that approximately 60 ± 10% of Antarctic ice shelves provide significant
buttressing to downslope flow and are vulnerable to meltwater driven hydrofracture, highlighting the significance of studying the
formation and propagation of crevasses in glaciers. An illustration of a grounded ice sheet, transitioning to a crevassed floating ice
shelf is shown in Fig. 1.

Ice sheet fracture and crevasse propagation have been mainly modelled previously using analytical methods. The estimation
of crevasse penetration depths in an idealised glacier was first described by Nye in 1955 [14] based on the so-called ’zero stress’
model. Nye assumed that ice has no tensile resistance to fracture and that a crevasse will stabilise at a depth where the longitudinal
tensile stress is balanced by the lithostatic compressive stress [15]. This was later extended by Benn et al. to include the presence of
meltwater within crevasses [16]. Linear elastic fracture mechanics models were introduced to provide a more accurate prediction of
the depth of an isolated crevasse [17,18]. By exploiting the principle of superposition, stress intensity factors can be calculated by
2
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integrating over the crevasse depth for the normal tensile stress, the lithostatic compressive stress, and the meltwater pressure. In
order for crevasses to stabilise, the net stress intensity factor 𝐾net must be equal to the material’s fracture toughness 𝐾𝑐 . However,
these analytical approaches have well-known limitations, such as (i) idealised scenarios and boundary conditions are assumed; (ii)
creep effects, resulting from the continual movement of glaciers under their own weight, are neglected; and (iii) crevasse interaction
cannot be captured.

Recently, computational methods have been used to predict crevasse growth and iceberg calving events. Local and non-local
continuum damage mechanics formulations have been presented to predict ice sheet fracture [19–22]. These works have overcome
some of the limitations intrinsic to analytical approaches, but often at the cost of using empirical parameters. Variational phase field
fracture models offer an alternative approach, enabling the simulation of realistic conditions (3D geometries, multiple interacting
crevasses, etc.) and providing a connection to fracture mechanics theory. Phase field fracture models have gained remarkable
popularity in recent years due to their ability to predict complex cracking phenomena including crack bifurcation, coalescence
and nucleation from arbitrary sites [23–25]. New phase field-based formulations have been presented for dynamic fracture [26,27],
ductile damage [28,29], environmentally assisted cracking [30,31], fatigue crack growth [32,33], hydraulic fracture [34,35], and
battery degradation [36,37]; among other (see Refs. [38,39] for an overview). In this work, we aim at extending the success of phase
field fracture models to the area of glacier crevassing and iceberg calving. To this end, a new phase field formulation is presented
capable of capturing the creep behaviour of glacial ice and the role of fluid pressure in driving crevasse growth. Also, for the first
time, crevasse interaction is predicted in both 2D and 3D. Very recently, Sun et al. [40] used a phase field approach to predict
hydrofracture in 2D linear elastic glaciers, assuming compressible behaviour and disregarding creep effects. Unlike them, we base
our framework on a stress-based phase field fracture formulation, which offers several advantages in the context of hydrofracturing
of glacier crevasses. First, strain energy-based approaches are unsuited for incompressible rheologies. This is not only important
due to the incompressible nature of glacial ice, but also because it hinders its integration into large-scale computational models for
ice sheet evolution and sea level rise, which assume incompressible flow (see, e.g., the Community Ice Sheet Model (CISM) [41]).
Second, ice-sheet fracture is driven by tensile stresses and not strains, with crevasses propagating solely in regions where the net
longitudinal stress is positive [42]. This is naturally accounted for in a stress-based phase field model, while requiring a particular
ad hoc split in strain energy-based formulations [40,43]. Third, a phase field length-scale insensitive driving force can be defined,
enabling the use of coarser meshes, a key enabler given the large scales involved. These advantages provide further motivation for
this work, presenting the first stress-based phase field computational framework for hydrofracturing of creeping glaciers and ice
shelves.

The rest of the paper is outlined as follows. The theoretical and computational framework presented is described in Section 2.
The model is then used in Section 3 to predict hydrofracturing in case studies of particular interest. First, the propagation of single
crevasses in grounded ice considering both linear and non-linear rheologies is investigated. A parametric study is conducted to assess
the role of relevant material parameters, seawater level and meltwater depth. Second, we simulate the growth of a field of densely
spaced crevasses in a grounded glacier, comparing against the predictions of Nye’s zero stress model. Third, the growth of basal and
surface crevasses (and their interaction) is for the first time simulated for a floating ice shelf, using appropriate Robin boundary
conditions. Fourth, the combined creep-phase field fracture model is used to predict the nucleation and growth of crevasses in a
realistic geometry, corresponding to the Helheim glacier. Finally, we provide the first 3D analysis of crevasse propagation in ice
sheets. Concluding remarks end the manuscript in Section 4.

2. Numerical framework

In this section, we present our computational framework, which encompasses the three elements that are needed to resolve
the hydrofracture process taking place in ice sheets; namely, the viscoplastic behaviour of ice, the propagation of meltwater-filled
crevasses, and the role of meltwater pressure on crevasse propagation. These are modelled by means of Glen’s flow law [44], a
stress-based phase field description of fracture [45], and a meltwater-ice poro-damage model [21], respectively. Fig. 2 illustrates
upon a single crevasse the mechanistic and modelling assumptions of our framework. In the following, we present the kinematics of
the problem (Section 2.1), formulate the energy functionals (Section 2.2), particularise the model upon suitable constitutive choices
(Section 2.3), and briefly describe the finite element implementation (Section 2.4). Throughout, the formulation refers to a body
occupying an arbitrary domain 𝛺 ⊂ R𝑛 (𝑛 ∈ [1, 2, 3]), with an external boundary 𝜕𝛺 ⊂ R𝑛−1 with outwards unit normal 𝐧.

2.1. Kinematics and general considerations

The primary variables are the displacement field vector 𝐮 and the damage phase field 𝜙. Restricting our attention to small strains
and isothermal conditions, the strain tensor 𝜺 reads

𝜺 = 1
2
(

∇𝐮𝑇 + ∇𝐮
)

, (1)

with the strain field itself being additively decomposed into its elastic and viscous parts, such that

𝜺 = 𝜺𝑒 + 𝜺𝑣 . (2)

The growth of meltwater-filled crevasses is described by means of a smooth continuous scalar phase field, which takes a value
of 𝜙 = 0 in intact ice and of 𝜙 = 1 in fully damaged regions (see Fig. 2). The aim is to overcome the need to track discrete crack
3
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Fig. 2. Schematic diagram of a meltwater filled crevasse in glacial ice, illustrating the intact phase (𝜙 = 0), fully cracked phase (𝜙 = 1) and transition phase
(0 < 𝜙 < 1). In the damaged and transition phases, there is a hydrostatic pressure contribution to damage arising from the meltwater. Relevant to the poro-damage
part of the model, ℎ𝑠 denotes the meltwater depth, and 𝑧𝑠 is the distance between the glacier base and the bottom of the crevasse, with 𝑧 being the vertical
height.

domain, replacing interfacial boundary conditions by a differential equation that describes the evolution of the phase field 𝜙. The
smearing of the interface is controlled by a phase field length scale 𝓁. Accordingly, a discontinuous surface 𝛤 is regularised through
the following crack surface functional [46]:

𝛤𝓁 (𝜙) = ∫𝛺
𝛾𝓁 (𝜙,∇𝜙) d𝑉 , (3)

where 𝛾𝓁 is the so-called crack surface density functional.

2.2. Energy functionals

A total potential energy can be defined by incorporating the contributions from the bulk strain energy density 𝜓𝑠, which itself
accounts for both viscous (𝜓𝑣𝑠 ) and elastic (𝜓𝑒𝑠 ) contributions, and the regularised fracture energy 𝜓𝑓 . Thus, considering the work
done by external tractions 𝐓 and body forces 𝐛, the total potential energy of the solid can be expressed as,

𝛹𝑝𝑜𝑡 (𝐮, 𝜙) = ∫𝛺

[

𝜓𝑠 (𝐮, 𝜙) + 𝜓𝑓 (𝜙,∇𝜙)
]

d𝑉 − ∫𝛺
𝐛 ⋅ 𝐮d𝑉 − ∫𝜕𝛺

𝐓 ⋅ 𝐮d𝑆 . (4)

As discussed below, it is important to consider as well the kinetic energy of the body, which is given by

𝛹𝑘𝑖𝑛 (𝐮̇) =
1
2 ∫𝛺

𝜌𝐮̇ ⋅ 𝐮̇d𝑉 , (5)

where 𝜌 is the mass density of the material and 𝐮̇ = 𝜕𝐮∕𝜕𝑡. The Lagrangian for the coupled deformation-fracture problem can then
be formulated by combining the kinetic and total potential energies, such that

𝐿 (𝐮, 𝐮̇, 𝜙) = 𝛹𝑘𝑖𝑛 (𝐮̇) − 𝛹𝑝𝑜𝑡 (𝐮, 𝜙) = ∫𝛺

[1
2
𝜌𝒖̇ ⋅ 𝒖̇ − 𝜓𝑠 (𝒖, 𝜙) − 𝜓𝑓 (𝜙,∇𝜙) + 𝐛 ⋅ 𝐮 + 𝐓 ⋅ 𝐮

]

d𝑉 . (6)

We shall now make constitutive assumptions and, building upon these, proceed to formulate the local force balances.

2.3. Constitutive theory

We proceed to particularise our choices with the aim of providing a suitable framework for predicting ice-sheet hydrofracture.
To this end, the bulk strain energy density of the solid is given in terms of its elastic and viscous counterparts as,

𝜓𝑠 = 𝑔 (𝜙)𝜓𝑒𝑠 (𝜺
𝑒) + 𝜓𝑣𝑠 (𝜺

𝑣) = 𝑔 (𝜙)
{ 1
2
𝜆
[

tr (𝜺𝑒)
]2 + 𝜇tr (𝜺𝑒 ⋅ 𝜺𝑒)

}

+ ∫

𝑡

0

(

𝝈0 ∶ 𝜺̇𝑣
)

d𝑉 , (7)

where 𝝈0 is the undamaged Cauchy stress tensor, 𝜆 and 𝜇 are the Lamé parameters, and 𝑔 (𝜙) is a phase field degradation function,
to be defined. Then, the homogenised (damaged) stress tensor can be estimated as 𝝈 = 𝜕𝜺𝑒𝜓𝑠. As described below, the viscous
4
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2.3.1. Creep behaviour of ice: Glen’s flow law
Glacial ice is a polycrystalline material undergoing a state of constant stress and operating close to its melting point. It is therefore

rone to creep. Creep deformation is a well documented process within glaciers and was first studied by Glen in 1955 [44]. Glen
roposed a steady state creep law based on the Bingham–Norton/Maxwell model, by which the viscous strain rates are given as

𝜺̇𝑣 = 𝐴
(

𝜎𝑒
)𝑛−1 𝝈′

0 , (8)

where 𝐴 is the creep coefficient, 𝝈′
0 = 𝝈0 − tr(𝝈0)𝑰∕3 is the undamaged deviatoric stress tensor, 𝑛 is the creep exponent, and 𝜎𝑒 is

an equivalent stress measure defined as 𝜎𝑒 =
√

1
2𝝈

′
0 ∶ 𝝈′

0. The creep coefficient 𝐴 and the creep exponent 𝑛 are typically calibrated
ith experiments, with the former exhibiting the following Arrhenius dependency with temperature,

𝐴 = 𝐴0 exp
𝑄
𝑅𝑇

, (9)

where 𝑇 is the absolute temperature, 𝑄 is the activation energy, 𝑅 is the universal gas constant, and 𝐴0 is the creep coefficient at
reference temperature 𝑇0.

.3.2. A stress-based phase field fracture model
The evolution of damage is driven by the phase field variable 𝜙. A length-scale insensitive, stress-based approach is adopted,

inspired by the work by Miehe et al. [45]. This choice enables us to capture purely stress-driven fractures in incompressible solids
using relatively coarse meshes; as required to model hydrofractures in creeping glaciers. Accordingly, the fracture energy density is
formulated as,

𝜓𝑓 (𝜙, ∇𝜙) = 2𝜓𝑐

(

𝜙 + 𝓁2

2
|∇𝜙|2

)

. (10)

Unlike conventional phase field fracture models, Eq. (10) shows that the present formulation introduces the phase field through a
linear term. This naturally results in a damage threshold, below which 𝜙 = 0, preserving the elastic properties of uncracked regions.
In (10), 𝜓𝑐 is a fracture energy density, which in a stress-based approach is defined as a function of a critical fracture stress or
material strength 𝜎𝑐 , such that [45]:

𝜓𝑐 =
𝜎2𝑐
2𝐸

. (11)

Here, 𝐸 denotes the material’s Young’s modulus. It remains to define the degradation function 𝑔(𝜙), which reduces the elastic
tiffness of the solid — see Eq. (7). The choice of 𝑔(𝜙) must fulfil the following conditions,

𝑔 (0) = 1, 𝑔 (1) = 0, 𝑔′ (𝜙) ≤ 0 for 0 ≤ 𝜙 ≤ 1 . (12)

Here, we choose to adopt the following quadratic degradation function

𝑔 (𝜙) = (1 − 𝜙)2 . (13)

Finally, the phase field evolution law is given by [45],

𝜙 − 𝓁2∇2𝜙 = 2 (1 − 𝜙)𝐷𝑑 . (14)

where the left hand side is the geometric resistance and the right hand side corresponds to the driving force. Here, 𝐷𝑑 is the crack
driving force state function, which is here defined based on the principal tensile stress criterion, such that

𝐷𝑑 = 𝜁

⟨ 3
∑

𝑎=1

(

⟨𝜎̃𝑎⟩
𝜎𝑐

)2
− 1

⟩

(15)

Such a crack driving force state function is adequate for fractures resulting from the decohesion of surfaces perpendicular to
he maximum principal stress and provides a quadratically increasing stress threshold for stress levels above a failure surface in
he principal stress space, as determined by the material strength 𝜎𝑐 . Also, Eq. (15) provides a criterion independent of the phase
ield length scale 𝓁, which minimises the sensitivity of the results to this parameter. Given that the finite element mesh has to be
ufficiently fine to resolve 𝓁, typically requiring an element size seven times smaller [47], this facilitates tackling the large scales
nherent to iceberg calving. For completeness, a non-dimensional parameter 𝜁 has been introduced that, for 𝜁 ≠ 1 values, influences
he slope of the stress–strain curve in the post-critical range. This is shown below by exploring the one-dimensional predictions of
14) and (15). Hence, the evolution of the phase field in a one-dimensional setting (∇𝜙 = 0) is given by,

𝜙 =
2𝐷𝑑

1 + 2𝐷𝑑
, (16)

and accordingly the damaged (homogenised) uniaxial stress is found by making use of the following relationship,

𝜎 = (1 − 𝜙)2 𝜎0 =
(

1 −
2𝐷𝑑

1 + 2𝐷𝑑

)2
𝐸𝜀 (17)

where 𝜀 is the uniaxial strain. The responses obtained are shown in Fig. 3, for selected choices of the parameter 𝜁 . A linear response
is predicted until the critical fracture stress is reached, with the post-critical regime being sensitive to the value of 𝜁 ; higher values
translate into a less dissipative damage process, with the response appearing to converge for 𝜁 > 5. For simplicity, we will assume
𝜁 = 1 but will also consider its influence in a parametric study.
5
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Fig. 3. Uniaxial stress–strain response, as predicted by the stress-based phase field model adopted, showcasing the role of the post peak parameter 𝜁 on the
material’s post failure behaviour.

2.3.3. A porodamage description of meltwater-driven crevasse growth
Meltwater plays a key role in crevasse propagation, introducing local tensile stresses that can become equal or larger than the

lithostatic compressive stress. It is thus pivotal to incorporate the role of the water pressure 𝑝𝑤 in the damaged (𝜙 = 1) and transition
(0 < 𝜙 < 1) regions, as meltwater can accumulate in damaged zones and in the localised pore structure that arises in the transition
region due to the nucleation, growth and coalescence of microvoids and microcracks. To this end, we follow Terzaghi’s concept of
an effective stress [48] and Biot’s theory of poroelasticity [49]. Hence, the resulting stress tensor is defined as,

𝝈̃ = (1 − 𝜙)2𝝈0 −
[

1 − (1 − 𝜙)2
]

𝑝𝑤𝛼𝑰 , (18)

where 𝛼 is Biot’s coefficient. In this work, 𝛼 = 1. The use of degradation functions in Eq. (18) constrains the water pressure to
damaged regions and removes the load carrying capacity of ice in fractured domains. Here, the water pressure 𝑝𝑤 is a hydrostatic
term that is depth dependent. For surface crevasses it is defined as,

𝑝𝑤 = 𝜌𝑤𝑔
⟨

ℎ𝑠 −
(

𝑧 − 𝑧𝑠
)⟩

, (19)

where 𝜌𝑤 is the density of freshwater, ℎ𝑠 is the meltwater depth, 𝑧 is the vertical height and 𝑧𝑠 is the distance between the glacier
base and the bottom of the crevasse (see Fig. 2). The presence of the Macaulay brackets in Eq. (19) implies that the pressure is zero
above the water surface. Also, it is important to note that 𝑧𝑠 is updated for every time increment, as defined by the minimum depth
at which 𝜙 = 1. Consequently, the role of meltwater pressure extends beyond the initial damage zone and appropriately evolves with
the propagating crevasse. On the other hand, for basal crevasses it is assumed that the crevasse is fully saturated with ocean-water
at depths below the ocean-water level ℎ𝑤. The water pressure within basal crevasses is then given by

𝑝𝑤 = −𝜌𝑠𝑔 ⟨ℎ𝑤 − 𝑧⟩ (20)

In this context, the material density is interpolated as a function of the damage state, and the freshwater (𝜌𝑤) and glacial ice
(𝜌𝑖) densities, reading

𝜌 = (1 − 𝜙)2 𝜌𝑖 +
[

1 − (1 − 𝜙)2
]

𝜌𝑤 . (21)

2.4. Finite element implementation

Finally, we proceed to formulate the particularised coupled balance equations and briefly describe the finite element implemen-
tation. Considering the constitutive choices described in Section 2.3, the local force balances are given by,

{ 2 𝑣 [ 2] }

̈

6

∇ ⋅ (1 − 𝜙) 𝑪0 (𝜺 − 𝜺 ) − 1 − (1 − 𝜙) 𝑝𝑤𝑰 + 𝐛 = 𝜌𝐮 in 𝛺 (22)
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Table 1
Material properties assumed in this work (unless otherwise stated). The values are chosen
to characterise the behaviour of glacial ice, with the subscript number denoting the relevant
reference.
Material parameter Magnitude

Young’s modulus, 𝐸 [MPa] 9500 [51]
Poisson’s ratio, 𝜈 [–] 0.35 [51]
Density of glacial ice, 𝜌𝑖 [kg∕m3] 917 [52]
Density of meltwater, 𝜌𝑤 [kg∕m3] 1000 [52]
Density of seawater, 𝜌𝑠 [kg∕m3] 1020 [52]
Fracture toughness, 𝐾𝑐 [MPa

√

m] 0.10 [53]
Critical fracture stress, 𝜎𝑐 [MPa] 0.1185 [54]
Creep exponent, 𝑛 [–] 3 [22]
Creep coefficient 𝐴 [MPa−n s−1] 7.156 ×10−7 [55]

𝜙 − 𝓁2∇2𝜙 = 2 (1 − 𝜙) max
𝜏∈[0,𝑡]

𝜁

⟨ 3
∑

𝑎=1

(

⟨𝜎̃𝑎⟩
𝜎𝑐

)2
− 1

⟩

in 𝛺 (23)

with the natural boundary conditions

𝝈̃ ⋅ 𝐧 = 𝐓 in 𝜕𝛺 (24)

∇𝜙 ⋅ 𝐧 = 0 in 𝜕𝛺 (25)

Here, 𝑪0 is the elastic stiffness tensor and the ansatz in the right hand side of Eq. (23) is introduced to ensure damage irreversibility.
The discretised system resulting from the weak form of (22)–(23) is solved using a so-called multi-pass (alternate minimisation)
staggered scheme [50]. An implicit BDF time-stepping scheme is employed to solve, in a Backward Euler fashion, each set of
equations. The commercial finite element package COMSOL is used.

3. Results

In this section, we present a series of 2D and 3D numerical examples, aimed at capturing the propagation of surface and basal
crevasses within grounded glaciers and floating ice shelves. For 2D examples, we consider an idealised rectangular glacier of length
𝐿 = 500 m and height 𝐻 = 125 m, under the assumption of plane strain conditions. For simplicity, we neglect lateral shear and
restrict the domain to a flow line near the terminus with 𝑥 and 𝑧 representing the along-flow and vertical coordinates. Gravitational
load due to self-weight is applied as a uniform body force in the 𝑧-direction with a magnitude of −𝜌𝑖𝑔. We also consider the surface
meltwater pressure 𝑝𝑤 within a crevasse using the poro-damage approach presented in Eq. (19). A Neumann-type traction is applied
normal to the ice–ocean interface at the terminus, with the hydrostatic ocean-water pressure varying linearly with depth and a
magnitude of −𝜌𝑠𝑔 ⟨ℎ𝑤 − 𝑧⟩. Boundary conditions that are specific to the grounded glacier and floating ice shelf cases are discussed
in Sections 3.1 and 3.3, respectively. Our simulations deal with glacial ice, whose material properties are given in Table 1, along
with the densities of seawater and meltwater.

The strength 𝜎𝑐 magnitude is chosen to be an intermediate magnitude within the experimentally reported values of the critical
fracture stress in glacial ice, which are in the range 0.08–0.14 MPa [53,56,57]. An estimate of the phase field length scale, which
plays a negligible role in this model, can be obtained through the Hillerborg et al. [58] relation, which for plane strain reads:
𝓁 = (1− 𝜈2)𝐾2

𝑐 ∕𝜎
2
𝑐 . Considering the toughness of glacial ice (𝐾𝑐 = 0.1 MPa

√

m), this gives a magnitude of 𝓁 = 0.625 m, which is the
value adopted here (unless otherwise stated). To attain mesh-independent results, the characteristic element size along the crevasse
propagation region is always chosen to be at least 5 times smaller than the phase field length scale 𝓁.

3.1. Propagation of a single crevasse on a grounded glacier

We begin our numerical experiments by gaining insight into the behaviour of crevasses in grounded glaciers. Mimicking the
conditions relevant to grounded glaciers, a free slip condition is applied to the bottom surface, restraining the displacement in the
vertical direction. The normal component of the displacement field at the far left edge is restrained to prevent rigid body motion
in the horizontal direction. The top surface, representing the atmosphere–ice interface, is defined as a free boundary. A visual
representation of the geometry and boundary conditions for the grounded glacier can be found in Fig. 4(a). In each of the following
simulations, we refine the mesh beneath the initial notch, seen in Fig. 4(b). The entire domain is discretised using approximately
200,000 quadrilateral quadratic elements.
7
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Fig. 4. Crevasse growth in a grounded glacier: (a) diagram showing the boundary conditions of a grounded glacier containing a single surface crevasse, and (b)
finite element mesh employed, with the mesh refined along the expected crevasse propagation path.

Fig. 5. Pristine grounded glacier. Contours of the longitudinal stress 𝜎𝑥𝑥, (a) and (b), and the crack diving force state function 𝐷𝑑 , (c) and (d), for a land
terminating glacier (ℎ𝑤 = 0) and an ocean terminating glacier (ℎ𝑤 = 0.5𝐻).

3.1.1. Stress state within a pristine grounded glacier
Prior to introducing damage, we determine the stress states within pristine glaciers that are land terminating (ℎ𝑤 = 0) and ocean

terminating (ℎ𝑤 = 0.5𝐻). For simplicity, a linear elastic rheology is assumed. Important variables are the stresses in the longitudinal
𝑥-direction 𝜎𝑥𝑥, and the crack driving force 𝐷𝑑 , given by Eq. (15). The results obtained are reported in Fig. 5, in terms of contours of
𝜎𝑥𝑥 and 𝐷𝑑 . An edge effect on 𝜎𝑥𝑥 is observed at the far right terminus as a result of the traction free condition. However, away from
the glacier terminus, the longitudinal stress field is invariant with the 𝑥-coordinate, owing to the idealised rectangular geometry.
The maximum tensile stress occurs at the top surface and varies linearly with depth to a compressive region at the base, for both
land and ocean terminating glaciers. For a land terminating glacier, the distribution of longitudinal stress is symmetric along the
centre-line 𝑧 = 𝐻∕2, similar to the stress profile resulting from pure bending of a cantilevered beam [52]. The effect of including
the ocean-water pressure at the glacier terminus on the far field longitudinal stress can be observed by comparing Fig. 5a and b.
Here, the ocean-water pressure provides a compressive stress that is constant with depth (in the far field region) and that decreases
the extent of the tensile stress region near the top surface. If the ocean-water height is sufficiently large (≈ 90% of ice thickness),
8
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Fig. 6. Crevasse growth in a grounded glacier. Normalised crevasse depth predictions for a single isolated crevasse in a linear elastic ice sheet: (a) phase field
redictions of normalised crevasse depth versus time; and (b) phase field and analytical LEFM predictions of normalised crevasse depth versus meltwater depth
atio as a function of the ocean-water height.

his can cause the glacier to become buoyant and form a floating ice shelf/tongue, resulting in an increased compressive stress
egime. Vertical stress predictions (not shown) exhibit a behaviour that is also invariant with 𝑥-coordinate and that is compressive

throughout the entire geometry, with the vertical stress being zero at the top surface and increasing linearly with depth.
Consider now the crack driving force state function 𝐷𝑑 contours, Fig. 5c and d. Because only principal tensile stresses above

the material strength contribute to damage, see Eq. (15), 𝐷𝑑 is only non-zero in the upper region. This agrees with the expected
distribution for the damage driving force; non-zero in the tensile regions, with the maximum value located at the upper surface,
and zero in regions of compressive stress. Since the vertical stresses are compressive throughout the entire profile, any crevasse
propagation should be a mode I fracture, driven by the longitudinal stress 𝜎𝑥𝑥. Unlike strain energy based approaches [40], the
present formulation appropriately captures a damage driving force that is only positive in tensile stress regions, consistent with
linear elastic fracture mechanics (LEFM) predictions.

3.1.2. Crevasse propagation
We next consider a grounded glacier with an isolated surface crevasse, represented by an initial rectangular notch of height

𝑑𝑠 = 2.5 m and width 𝑏 = 10 m, which is located at mid-length of the top surface. This facilitates comparisons with LEFM. Following
ef. [40], we also consider a damage threshold 𝐹 th, below which 𝐷𝑑 = 0. As discussed in Ref. [40] and shown below, this threshold
as no influence on the final crevasse depth predicted but assists in localising damage. The magnitude of 𝐹 th is chosen to be the
aximum value of 𝐷𝑑 predicted in the pristine (unnotched) glacier simulation. In this way, one can ensure that damage only
ucleates ahead of the crevasse, in agreement with the conditions relevant to the LEFM analysis (where crack nucleation does not
ccur). A similar effect can be achieved by increasing the value of the critical fracture stress 𝜎𝑐 . However, more research is needed

before a quantitative link can be established between a material property and the damage threshold required to localise cracking
ahead of the initial crevasse, as the latter appears to be dependent on the boundary value problem under consideration. We start
the finite element analysis by initialising the stress state, in the absence of damage, and then conduct a subsequent time-dependent
step to predict crevasse growth. The contributions from kinetic energy are found to play an important role in regularising the
problem as, in the absence of inertia, equilibrium requires balancing an internal load carrying capacity that is being degraded
by the damage with a prescribed gravity load. This suggests a deeper investigation into the role of inertia in ice-sheet fracture,
which will be the objective of future work. In each simulation, the meltwater depth ratio ℎ𝑠∕𝑑𝑠 is kept at a constant value (i.e. the

eltwater depth increases proportionally with the crevasse depth). A parametric study is carried out for selected values of ocean-
ater level ℎ𝑤 = (0, 0.5𝐻, 0.9𝐻) and meltwater depth ratios, to determine their influence on final crevasse depths. The results from

he computational model are then compared with the stabilised crevasse depths predicted by LEFM using the ‘double edge cracks’
eighting functions presented in Appendix B. This study was performed for both linear elastic and non-linear viscous rheologies.

.1.3. Linear elastic rheology
We first consider a linear elastic rheology for the grounded glacier, so as to validate model predictions with those obtained using

nalytical LEFM methods. The computational predictions of normalised crevasse depth versus time are shown in Fig. 6(a) for an
cean-water height of ℎ𝑤 = 0.5𝐻 and selected values of the meltwater depth. It can be seen that the crevasses propagate rapidly
nd stabilise at a constant depth. In agreement with expectations, larger meltwater depths lead to higher crevasse depths, with the
9

revasse propagating all the way to the base of the glacier for ℎ𝑠∕𝑑𝑠 > 0.5. A plot of the normalised stable crevasse depths for both
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Fig. 7. Crevasse growth in a grounded glacier. Phase field damage evolution as a function of time: (a) t = 0.00 s, (b) t = 0.02 s, and (c) t = 0.40 s. The results
correspond to the case of a meltwater depth ratio of ℎ𝑠∕𝑑𝑠 = 0.2 and an ocean-water height of ℎ𝑤 = 0.5𝐻 , assuming a linear elastic compressible rheology.

the analytical LEFM and phase field models is given in Fig. 6(b) as a function of the meltwater and ocean-water depth ratios. The
stabilised crevasse depths estimated with the phase field model show a very good agreement with those predicted using LEFM for
all values of meltwater depth ratio and ocean-water height. It can be seen that land terminating glaciers (ℎ𝑤 = 0) are susceptible
to deeper fractures, even without the presence of meltwater, as there is no ocean-water compressive pressure at the terminus. The
crevasse depth reduces significantly when ocean-water is present. For example, a dry crevasse is predicted to propagate to 37.8%
of the glacier height for an ocean-water depth of ℎ𝑤 = 0.5𝐻 . Crevasse depth gradually increases with meltwater depth ratio for
ratios less than 0.5, whereas the crevasse penetrates the full glacier thickness for meltwater depth ratios greater than 0.5. For the
near floating glacier cases (ℎ𝑤 = 0.9𝐻) the compressive stresses due to the ocean-water are significantly large enough to completely
offset the tensile regions in the upper surface of glacier, and thus there is no meltwater depth ratio at which the crevasse can extend
beyond the initial notch length.

The process of crevasse growth is shown in Fig. 7, through plots of phase field 𝜙 contours at selected time intervals. The results
correspond to the case of a meltwater depth ratio of ℎ𝑠∕𝑑𝑠 = 0.2 and an ocean-water height of ℎ𝑤 = 0.5𝐻 , but the qualitative
behaviour is the same in all cases. A sharp mode I crack propagates directly below the initial crevasse until reaching the region
where the compressive stresses are sufficiently large to arrest the crack.

3.1.4. Parametric analysis
We shall now conduct sensitivity studies on relevant material, fracture and numerical parameters. The base model considered

here is an isolated dry surface crevasse with an ocean-water level ℎ𝑤 = 0.5𝐻 . We consider the individual effect on the stabilised
crevasse depth of the mode I critical fracture stress or cohesive strength 𝜎 , the crack driving force threshold 𝐹 th, the post peak
10
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Fig. 8. Crevasse growth in a grounded glacier. Normalised surface crevasse depth versus time predictions for a dry isolated crevasse with an ocean-water ratio
of ℎ𝑤 = 0.5𝐻 . Parametric study varying (a) critical fracture stress 𝜎𝑐 , (b) crack driving force threshold 𝐹 th, (c) post peak slope parameter 𝜁 , and (d) phase field
length scale 𝓁.

slope parameter 𝜁 , and the phase field length scale 𝓁, whilst keeping all other parameters constant. The results obtained are shown
in Fig. 8.

Consider first the sensitivity to the material strength 𝜎𝑐 , Fig. 8(a), which is varied within the range 0.1185–0.4740 MPa. In
agreement with expectations, the predicted crevasse depth decreases with increasing 𝜎𝑐 . The results obtained for different values of
the crack driving force threshold can be found in Fig. 8(b). We find that there is little variation in predicted final crevasse depth when
increasing the threshold to up to seven times, with a maximum percentage difference of 2.4% between values of stabilised crevasse
depth. The results obtained for various values of the post-peak parameter 𝜁 are given in Fig. 8(c). A small influence is observed,
with higher 𝜁 values leading to larger crevasse depths, as they result in a higher 𝐷𝑑 magnitude for the same stress level. This is also
consistent with the sharper drop in the uniaxial stress–strain curve with increasing 𝜁 shown in Fig. 3. Finally, the sensitivity to the
phase field length scale 𝓁 is explored in Fig. 8(d). The results confirm the rather negligible sensitivity of the phase field formulation
employed to the magnitude of 𝓁.

3.1.5. Non-linear viscous rheology
We next investigate the influence of the rheology upon the final crevasse depth by considering the non-linear viscous Glen’s

flow law (Section 2.3.1). Here, we run a time-dependent creep simulation without phase field damage to allow for a steady-state
stress profile to develop within the glacier. The results of the creep simulation are then used to initialise the phase field model, so
as to study the propagation of a crevasse based on an incompressible stress state. Results showing the normalised crevasse depth
versus time for the non-linear viscous rheology are found in Fig. 9(a) with increasing values of meltwater depth ratio ℎ𝑠∕𝑑𝑠 and for
an ocean-water height of ℎ𝑤 = 0.5𝐻 . A comparison between the stabilised crevasse depths from the phase field model and LEFM
11

can be found in Fig. 9(b). The influence of meltwater within the crevasse is qualitatively similar to the linear elastic case, with
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Fig. 9. Crevasse growth in a grounded glacier. Normalised crevasse depth predictions for a single isolated crevasse assuming a non-linear viscous rheology:
a) phase field predictions of normalised crevasse depth versus time; and (b) phase field and analytical LEFM predictions of normalised crevasse depth versus
eltwater depth ratio as a function of the ocean-water height. The LEFM predictions are shown for both compressible (𝜈 = 0.35) and incompressible (𝜈 = 0.5)

onstitutive behaviour.

Fig. 10. Multiple crevasse growth in a grounded marine-terminating glacier. Diagram showing the boundary conditions of a grounded glacier with a field of
densely spaced crevasses (spaced 50 m apart from each other).

stabilised crevasse depths becoming progressively larger with increased meltwater. Full fracture is predicted at a meltwater depth
ratio ℎ𝑠∕𝑑𝑠 = 0.5 or larger.

Consider now Fig. 9(b); two key observations emerge. First, neglecting the non-linear viscous rheology of ice implies underpre-
icting the extent of crevasse propagation. A dry glacier crevasse extends to 65.6% of the glacier height when incorporating creep
eformation, compared to only 37.8% when considering a linear elastic compressive rheology. Second, the normalised crevasse
epths from the phase field model (using 𝜈 = 0.35) are comparable to those from the LEFM model assuming incompressible behaviour
𝜈 = 0.5). Despite the compressible elastic deformation, the longitudinal stress profile is dictated by the incompressible viscous
eformation according to the Glen’s law. Thus, we find that first-order estimates obtained from analytical LEFM approaches should
onsider a Poisson’s ratio of 𝜈 = 0.5 to avoid underpredicting the impact of meltwater on ice-sheet stability. Our findings are

consistent with the calculations by Plate et al. [59], where Poisson’s ratio was found to have a notable influence on the fracture
driving force for elastic ice sheets.

3.2. Propagation of multiple surface crevasses in a grounded marine-terminating glacier

We next determine the penetration depths for a uniform field of densely spaced surface crevasses. The same glacier geometry
from the previous example is used, but we consider seven surface crevasses, each spaced at 50 m apart and located sufficiently
far away from the glacier terminus, so that the edge effects do not influence crevasse growth (see Fig. 10). Here, we aim to study
the effect of neighbouring crevasses, which are expected to provide crack shielding that reduces the final crevasse depth, and to
compare the phase field model results with those predicted by the Nye zero stress model [14]. The results from the Nye zero stress
model are found by computing the depth at which the far field longitudinal stress becomes zero, represented by the dashed purple
line in Fig. 10. The model uses approximately 1.6 million linear triangular elements, with the mesh being refined ahead of each
crevasse.
12
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Fig. 11. Multiple crevasse growth in a grounded glacier. Phase field damage evolution as a function of time: (a) t = 0.00 s, (b) t = 0.01 s, and (c) t = 0.40
s. The results correspond to the case of a meltwater depth ratio of ℎ𝑠∕𝑑𝑠 = 0.1 and an ocean-water height of ℎ𝑤 = 0.5𝐻 , assuming a linear elastic compressible
rheology.

Plots of the phase field damage variable can be found in Fig. 11, for an ocean-water height of ℎ𝑤 = 0.5𝐻 and a meltwater depth
ratio of ℎ𝑠∕𝑑𝑠 = 0.1. Qualitatively, the behaviour resembles that of the single crevasse model — crevasses propagate rapidly and
subsequently arrest upon reaching the compressive region at the bottom. Each crevasse stabilises to a similar depth, although the
outer crevasses penetrate slightly deeper because they experience shielding only from one side.

To shed light on the effect of crack shielding, we take measurements from the fourth crevasse at mid-length and compare with
the predictions from the zero stress model; the results are shown in Fig. 12. The agreement is overall very good; as also observed
in the LEFM comparisons, the model provides a good agreement with analytical predictions when particularised to the conditions
where these analytical estimates are relevant. For the specific case of ocean-water height of ℎ𝑤 = 0.5𝐻 , the phase field model
predicts a slightly deeper crevasse penetration compared to the zero stress model for smaller values of meltwater depth ratio. For
the near floating condition (ℎ𝑤 = 0.9𝐻), the ocean-water height is sufficiently large to completely offset the tensile region in the
upper surface of the glacier. Thus the longitudinal stress profile is compressive throughout the entire height of the glacier (except
near the terminus) and no amount of meltwater in the crevasse can extend it beyond its initial geometry.

3.3. Propagation of surface and basal crevasses on a floating ice shelf

Ice shelves form along coastal regions of Antarctica as a result of ongoing glacial flow and associated thinning to the point at
which grounded ice becomes afloat (i.e. the grounding line). Here there are two possibilities: (1) the mass loss terms at the grounding
line (calving and melting) are greater than or equal to the flux of ice across the grounding line, and so the ice sheet will terminate
13
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Fig. 12. Multiple crevasse growth in a grounded glacier. Normalised crevasse depth versus meltwater depth ratio predictions as a function of the ocean-water
height. Comparisons between the present phase field model and analytical predictions from Nye’s zero-stress model [14], for a linear elastic ice sheet.

Fig. 13. Growth of surface and basal crevasses in a floating ice shelf. Diagram showing the geometry and boundary conditions.

here; and (2) the flux of ice exceeds mass loss terms, and ice flows across the grounding line to form a floating slab of ice. In this
section, we assume plane strain conditions and consider a floating ice shelf of length 𝐿 = 5000 m and height 𝐻 = 125 m. The
geometry and boundary conditions are shown in Fig. 13. To enforce the floating boundary condition at the base of the ice shelf,
we prescribe a Robin type boundary condition, where the buoyancy pressure is a function of the vertical displacement 𝑢𝑧 given
by 𝜌𝑠𝑔

(

ℎ𝑤 − 𝑢𝑧
)

. A free slip boundary condition is applied to the far left terminus to restrain horizontal displacement, and allow
vertical displacement that might arise due to deformation. The ocean-water pressure is applied in the direction normal to the far
right terminus, increasing linearly with depth. The elevation of the ocean surface from the undeformed basal surface of the glacier
is calculated using the ratio between the density of ice and ocean water ℎ𝑤 = 𝜌𝑖∕𝜌𝑠 ≈ 90%. The geometry is discretised by means of
approximately 450,000 triangular plane strain linear elements.

3.3.1. Propagation of surface crevasses
We first consider the finite element predictions of the longitudinal stress profile within a pristine ice shelf at different horizontal

locations. Specifically, we obtain stress distributions at positions 𝑥 = [0, 2500, 4500, 4950] m, measured from the left edge of the
glacier. The numerical predictions are then compared with the analytical solution, derived from the theory of elasticity, which is
given in Appendix A. The results are shown in Fig. 14, where it can be seen that the stress profiles at far field horizontal locations
such as 𝑥 = 0.5L (2500 m) are in good agreement with the predictions obtained from Eq. (A.22), whereas there is a deviation from the
14
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Fig. 14. Surface crevasse in a floating ice shelf. Distribution of longitudinal stress 𝜎𝑥𝑥 versus depth at different horizontal positions. The numerical predictions
are compared to the analytical solution, given in Appendix A.

Fig. 15. Growth of a surface crevasse in a floating ice shelf. Analytical (LEFM-based) and computational phase field predictions of stabilised crevasse depths as
a function of the meltwater depth ratio (ℎ𝑠∕𝑑𝑠). The results are provided at horizontal locations 𝑥 = 2500 m and 𝑥 = 4950 m.

analytical solution at locations 𝑥 = 0.95L (4500 m) and 𝑥 = 0.99L (4950 m), near the far right terminus. This edge effect is apparent
over a greater horizontal distance when compared with the grounded glacier scenario, and is a consequence of the bending moment
at the terminus due to the triangularly distributed seawater pressure. Hereafter, we only investigate the propagation of surface
crevasses at horizontal locations far away from the terminus for increasing values of meltwater depth ratios and compare them with
LEFM predictions based on the analytical stress solution.
15
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Fig. 16. Growth of surface and basal crevasses in a floating ice shelf. Phase field damage contours after reaching the arrest of the crevasses, considering four
selected values for the horizontal separation (𝑆) between the basal and surface crevasse. For the surface crevasse, the meltwater depth ratio equals ℎ𝑠∕𝑑𝑠 = 0.8.

The change in basal boundary condition from the free slip grounded condition to the Robin-type floating condition means that
the double edge crack formulation is no longer appropriate for floating ice shelves. To determine the appropriate weight function
for the stress intensity factor in floating ice shelves, Jiménez et al. [52] compared various formulations for calculating 𝐾𝑛𝑒𝑡

𝐼 with
numerically computed stress intensity factors using the displacement correlation method. It was found that the single edge crack
weighting function was the most appropriate for a floating ice shelf, as given by Krug et al. [54]. For the different horizontal
locations, we determine the appropriate relation for the longitudinal stress distribution as function of the vertical coordinate 𝑧 from
finite element simulations and use it to evaluate stress intensity factors with Eq. (B.6).

The analytical and computational predictions of stabilised surface crevasse depths within floating ice shelves are plotted in
Fig. 15. For locations within the far field region (i.e. 𝑥 = 2500 m), the longitudinal stress profile is compressive throughout the
entire depth and there is no meltwater depth that will cause the crevasse to propagate beyond its initial depth of 10 m. However,
surface crevasses that are close to the terminus are vulnerable to full penetration at higher meltwater depth ratios. The phase field
model gives good agreement with the LEFM model for floating ice shelves when using the longitudinal stress distribution obtained
from the finite element simulation and the weight function given in Eq. (B.6).

3.3.2. Interaction between surface and basal crevasses
In a floating ice shelf, iceberg calving can occur when the combined depth of surface and basal crevasses at a location reaches

the full ice thickness [60]. Therefore, we consider the propagation of a surface and a basal crevasse within close proximity of each
other and near the calving front. The surface crevasse is introduced at the horizontal position 𝑥 = 4950 m and a meltwater depth
ratio of ℎ𝑠∕𝑑𝑠 = 0.8 is assumed, whereas the basal crevasse, located at a horizontal distance 𝑆 to the surface crevasse, is assumed to
be fully water-filled. We consider different values of horizontal spacing 𝑆 = {0, 5, 10, 15} m between the surface and basal crevasses,
to investigate if they will coalesce to form a full depth crevasse. The results obtained are shown in Figs. 16 and 17. The phase field
contours shown in Fig. 16 reveal three qualitative findings: (i) the final depth of the surface crevasse appears to be insensitive to
the presence of the basal crevasse; (ii) the depth of the basal crevasse increases with 𝑆, the separation to the surface crevasse; and
(iii) the basal and surface crevasse do not coalescence with each other. This last effect is attributed to the mixed mode conditions
that arise in the vicinity of two mode I cracks whose tips are in close proximity [61].

The quantitative output of the calculations is shown in Fig. 17. Consider first Fig. 17a, where the predictions of crevasse depth
are shown for the surface crevasse, as well as for the basal crevasse in isolation and at selected separation distances from the surface
crevasse. First, a comparison with Fig. 15 (for ℎ𝑠∕𝑑𝑠 = 0.8) shows that the extent of surface crevasse penetration is the same with
and without the presence of a basal crevasse. This is unlike the basal crevasse, which exhibits a stabilised crevasse depth that it is
very sensitive to the proximity of a surface crevasse. As shown in Fig. 17a, the stabilised crevasse depth increases with the distance
16
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Fig. 17. Growth of surface and basal crevasses in a floating ice shelf. The basal and surface crevasses are separated by a horizontal distance 𝑆. (a) Predictions
of crevasse depth versus time for surface and basal crevasses with varying horizontal spacing 𝑆; and (b) evolution of the combined basal and surface crevasse
depth versus time for selected choices of the horizontal spacing 𝑆.

Fig. 18. Nucleation and growth of crevasses in the Helheim glacier. Initial geometry, as taken from observational data by Nick et al. [62].

o the surface crevasse, with the limit case being given by the result obtained in the absence of a surface crevasse. The combined
asal and surface crevasse depth is shown in Fig. 17b. It is interesting to note that the growth of the basal crevasse is hindered by
he presence of the surface crevasse when they are aligned, and consequently calving is not observed. Also, since basal and surface
revasses do not coalescence, their combined depth exceeds the glacier height for sufficiently large separations. For basal crevasses
irectly beneath the surface crevasse, the crevasse propagates to 37.7% of the ice shelf depth, compared with 80.6% for the isolated
asal crevasse.

.4. Nucleation and growth of crevasses: application to the Helheim glacier

In this section, we simulate the initiation and propagation of crevasses from arbitrary sites in the Helheim glacier, one of the
argest outlet glaciers in southeast Greenland. The aim is to show how the creep analysis can be used to determine the nucleation
f crevasses, which are then predicted to grow in a coupled deformation-fracture simulation. To generate the glacier geometry, we
ake the surface elevation and basal topography data from field observations (see Refs. [54,62]). The resulting geometry is given in
ig. 18. A free slip boundary condition is applied normal to the base and the inlet flow velocity is restrained to zero at the left edge.
lso, we apply an oceanwater pressure at the glacier terminus and assume an ocean water height of ℎ𝑤 = 0.85𝐻 . The geometry is

discretised using approximately 140,000 triangular quadratic plane strain elements.
The first step involves running a time-dependent creep simulation to determine the regions in which damage initiates. A crevasse

nucleation criterion is defined by which crevasses are assumed to nucleate in regions where the product of the damage driving
force state function 𝐷𝑑 and the equivalent creep strain 𝜀𝑐 =

√

(2∕3)𝜺𝑐 ∶ 𝜺𝑐 is above a certain threshold. This is denoted by red
olour contours in Fig. 19. As it can be observed, this crack nucleation criterion is fulfilled at shallow regions within the upper
urface, notably in areas with increased surface gradient and regions close to the calving front. This distribution is supported by
he results by Krug et al. [54], wherein a similar pattern to initiation sites was reported from a time-dependent creep analysis. Ice
17
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Fig. 19. Nucleation and growth of crevasses in the Helheim glacier. Distribution of the nucleation variable 𝐷𝑑𝜀𝑐 , with red colour contours denoting the areas
where the nucleation threshold has been exceeded.

Fig. 20. Nucleation and growth of crevasses in the Helheim glacier. Phase field damage evolution of the Helheim glacier assuming a non-linear viscous rheology
at times (a) 𝑡 = 0 s, (b) 𝑡 = 0.30 s, and (c) 𝑡 = 0.80 s.

is then removed from the regions where the nucleation criterion has been met, to act as initiation points for crevasse growth in the

subsequent phase field step.
18
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Fig. 21. Crevasse interactions in 3D marine-terminating ice sheets. Diagram showing the boundary conditions and geometry of the three dimensional boundary
value problem.

Fig. 22. Crevasse interactions in 3D ice sheets: 𝜙 = 1 contours showing the evolution of the two dry surface crevasses at times (a) 𝑡 = 0 s, (b) 𝑡 = 0.05 s, and
(c) 𝑡 = 0.4 s.

Damage evolution is subsequently predicted using the phase field model with the updated geometry, assuming non-linear viscous
ice rheology. As shown in Fig. 20(c), we find that a field of densely spaced surface crevasses can initiate at sites both close to and
away from the calving front. However, the depth at which they propagate to is shallow in comparison to the glacier geometry
(approximately 40 m deep). This is in agreement with the field observations of Mottram and Benn [63], who measured crevasse
depths close to the calving front of Breiðamerkurjökull in Iceland, finding that crevasses only penetrated tens of metres in depth.
At the calving front, we also observe that damage can propagate to the full depth of the glacier, illustrating the possibility of ice
cliff failure and retreat of the grounding line. This case study showcases the ability of the computational framework developed
to combine creep and damage modelling to predict both the nucleation of crevasses and the subsequent propagation, for realistic
geometries and conditions.

3.5. Crevasse interactions in 3D marine-terminating ice sheets

The final numerical example intends to demonstrate the ability of the modelling framework presented to simulate damage
propagation in three dimensions, including complex cracking phenomena such as crevasse interaction. We consider an idealised
grounded glacier of height 𝐻 = 125 m, length 𝐻 = 500 m, and width 𝑊 = 750 m. Two dry surface crevasses are initially defined,
each positioned at opposite ends of the glacier. Each crevasse is offset 25 metres either side of the centre-line in the 𝑥-direction, as
shown in Fig. 21. Similar to the 2D plane strain case, we restrain the displacement normal to the surface at the far left edge and
at the base. The displacement in the 𝑦-direction is also restrained at both lateral faces of the 𝑥− 𝑧 plane. The ocean-water pressure
is applied at the far right terminus, assuming an ocean-water height of ℎ𝑤 = 0.5𝐻 . In this numerical experiment, the phase field
length scale is chosen to be equal to 𝓁 = 10 m; as discussed in Section 2 and demonstrated in Section 3.1.4, the present phase field
formulation shows a negligible sensitivity to the choice of 𝓁. This enables simulating large-scale phenomena and present the first
3D ice sheet fracture simulations. The characteristic element size along the potential crevasse propagation region is chosen to be at
least 5 times smaller than 𝓁 and the model is discretised using 1.5M linear tetrahedral elements.

The results obtained are shown in Fig. 22, through contours of the phase field variable in the fully damaged regime (𝜙 = 1).
Initially, the two crevasses propagate vertically (along the 𝑧-direction) and horizontally (along the 𝑦-direction). Subsequently, as
19
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the two crevasses approach each other, the crack tip stress state becomes mixed mode and this results in the two crevasses curving
away from each other. This is followed by the development of a hook-shaped geometry before their coalescence. Similar fracture
patterns have been observed in geological faults, with remote sections of the fault growing as purely tensile fractures, whilst in
close proximity to each other the faults grow as mixed mode fractures [64,65]. This behaviour has also been observed in laboratory
experiments [61].

4. Conclusions

We have presented a new stress-based poro-damage phase field model for predicting hydrofractures in creeping glaciers and ice
helves. The proposed framework enables resolving the underlying physical processes behind crevasse growth and iceberg calving,
ithout the limitations and uncertainties intrinsic to widely-used empirical and analytical approaches. The model combines: (i)
len’s flow law, to adequately capture the non-linear viscous rheology of glacier ice; (ii) a poro-damage scheme that incorporates

he role of meltwater pressure in assisting crevasse propagation; and (iii) a stress-based phase field description of the intact ice-
rack interface. This last element is of particular importance when modelling propagating crevasses as strain energy-based phase
ield formulations are limited when dealing with incompressible solids and cracks driven solely by tensile stresses. The coupled
ramework is numerically implemented using the finite element method and used to simulate five boundary value problems of
articular interest. First, the influence of the choice of material rheology and relevant parameters are investigated by simulating the
ropagation of a single crevasse in grounded glaciers. Second, crevasse interaction is assessed by predicting the growth of a field of
ensely spaced crevasses in a grounded glacier. The third case study addresses the interaction between surface and basal crevasses
n a floating ice shelf, appropriately simulated using Robin boundary conditions. Nucleation and growth of crevasses in a realistic
eometry, that of the Helheim glacier, is predicted in the fourth case study, combining a sequential creep-damage analysis. Finally,
he last case study provides the first simulation of interacting crevasses in 3D ice sheets. Several conclusions can be obtained from
he model’s insight into these case studies:

• The model adequately predicts the propagation of crevasses in regions where the net longitudinal stress is tensile, without the
need for ad hoc fracture driving force decompositions and exhibiting very little sensitivity to the choice of phase field length
scale 𝓁.

• Model predictions provide a good agreement with LEFM and Nye’s zero stress model when particularised to the idealised
conditions where these analytical approaches are relevant.

• Increasing amounts of meltwater, as a result of climate change, can significantly enhance crevasse propagation, with iceberg
calving being predicted for meltwater depth ratios of 50% or larger.

• Predicted crevasse depths are greater when considering the incompressible stress state intrinsic to a non-linear viscous
rheology. Thus, first-order estimates obtained from analytical LEFM approaches should consider a Poisson’s ratio of 𝜈 = 0.5 to
avoid underpredicting the impact of meltwater on ice-sheet stability.

• The model captures how the presence of neighbouring surface crevasses provides a shielding effect on the stress concentration
and reduces the predicted crevasse depth.

• The model accurately predicts the growth of surface crevasses within floating ice shelves near the shelf front for large meltwater
depth ratios. Also, if a surface crevasse is in close proximity to a basal crevasse then a reduction in basal crevasse penetration
depth is observed.

• Crevasses are predicted to nucleate in areas with high surface gradients, highlighting the need for an adequate characterisation
of the glacier’s geometry.

• The large-scale 3D analyses conducted demonstrate the capabilities of the model of opening new horizons in the modelling of
crevasse growth phenomena under the computationally-demanding conditions relevant to iceberg calving.

Potential future extensions of the present computational framework include incorporating basal melting, lateral and basal friction
ffects, and ice refreezing. We offer this novel approach as a means to capture the process of crevassing and calving within ice sheets
nd ice shelves, to better capture these processes in efforts to prognostically assess ice-sheet vulnerability to ice shelf stability and
he resulting accelerated ice sheet flow to the ocean and sea level rise, and/or grounding line retreat (potentially driven by calving
t a marine-terminating margin).
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ppendix A. Derivation of the far field longitudinal stress

In this appendix the derivation of the far field longitudinal stress 𝜎𝑥𝑥 is presented for the grounded glacier through the equilibrium
equations and Hooke’s law of linear elasticity in three dimensions. The equilibrium equations for each of the three directions are
as follows:

𝜕𝜎𝑥𝑥
𝜕𝑥

+
𝜕𝜎𝑥𝑦
𝜕𝑦

+
𝜕𝜎𝑥𝑧
𝜕𝑧

= 0 (A.1)

𝜕𝜎𝑥𝑦
𝜕𝑥

+
𝜕𝜎𝑦𝑦
𝜕𝑦

+
𝜕𝜎𝑦𝑧
𝜕𝑧

= 0 (A.2)

𝜕𝜎𝑥𝑧
𝜕𝑥

+
𝜕𝜎𝑦𝑧
𝜕𝑦

+
𝜕𝜎𝑧𝑧
𝜕𝑧

+ 𝜌𝑖𝑔 = 0 (A.3)

With the assumptions of plane strain, the stresses being invariant with the x-coordinate and out of plane stresses being zero,
hese equations are reduced to:

𝜕𝜎𝑥𝑦
𝜕𝑦

= 0 (A.4)

𝜕𝜎𝑦𝑦
𝜕𝑦

= 0 (A.5)

𝜕𝜎𝑧𝑧
𝜕𝑧

+ 𝜌𝑖𝑔 = 0 (A.6)

Rearranging the equilibrium equation in the 𝑧-direction and integrating with respect to the vertical coordinate 𝑧 the vertical
stress due to the lithostatic force is given by

𝜎𝑧𝑧 = ∫ −𝜌𝑖𝑔𝛿𝑧 (A.7)

Substituting in the following boundary conditions

𝜎𝑧𝑧 = −𝜌𝑖𝑔𝐻 at 𝑧 = 0

𝜎𝑧𝑧 = 0 at 𝑧 = 𝐻

eads to the hydrostatic assumption of vertical stress

𝜎𝑧𝑧 = −𝜌𝑖𝑔(𝐻 − 𝑧) (A.8)

The equations of linear elasticity are then used (along with the plane strain assumption) to find the out of plane normal stress
𝑦𝑦 in relation to the in-plane normal stresses 𝜎𝑥𝑥 and 𝜎𝑧𝑧:

𝜀𝑥𝑥 = 1
𝐸
[𝜎𝑥𝑥 − 𝜈(𝜎𝑦𝑦 + 𝜎𝑧𝑧)] (A.9)

𝜀𝑦𝑦 =
1
𝐸
[𝜎𝑦𝑦 − 𝜈(𝜎𝑥𝑥 + 𝜎𝑧𝑧)] (A.10)

𝜀𝑧𝑧 =
1
𝐸
[𝜎𝑥𝑥 − 𝜈(𝜎𝑥𝑥 + 𝜎𝑦𝑦)] (A.11)

Setting 𝜀𝑦𝑦 = 0 and rearranging to find 𝜎𝑦𝑦 gives:

𝜎𝑦𝑦 = 𝜈(𝜎𝑥𝑥 + 𝜎𝑧𝑧) (A.12)

Substituting this into the longitudinal strain equation gives:

𝜀 = 1 [

(1 − 𝜈2)𝜎 − 𝜈(1 + 𝜈)𝜎
]

(A.13)
21
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The membrane stress assumption is then adopted due to the thickness of glaciers being several orders of magnitude smaller than
he length. The horizontal displacement is therefore invariant with depth, leading to the following derivative:

𝜕𝜀𝑥𝑥
𝜕𝑧

= 0 (A.14)

Applying this constraint to Eq. (A.13) and rearranging in terms of the derivative of horizontal stress gives:
𝜕𝜎𝑥𝑥
𝜕𝑧

= 𝜈
1 − 𝜈

𝜕𝜎𝑧𝑧
𝜕𝑧

(A.15)

Substituting the above equation in Eq. (A.6) yields
𝜕𝜎𝑥𝑥
𝜕𝑧

= − 𝜈
1 − 𝜈

𝜌𝑖𝑔 (A.16)

Since the longitudinal stress is invariant with 𝑥-coordinate and with the plane strain assumption, the longitudinal stress is only
variant on the 𝑧-coordinate.

𝜎𝑥𝑥 = − 𝜈
1 − 𝜈

𝜌𝑖𝑔𝑧 + 𝐶1 (A.17)

where 𝐶1 is the indefinite integration constant that can be determined by considering the force equilibrium in the longitudinal
direction for the lithostatic force of ice and the hydrostatic force of the ocean water 𝐹𝑤 = 1

2𝜌𝑠𝑔ℎ
2
𝑤 as

∑

𝐹𝑥 = ∫

𝐻

0
𝜎𝑥𝑥𝑑𝑧 + 𝐹𝑤 = 0 (A.18)

Evaluating the definite integral in Eq. (A.18) allows for the constant 𝐶1 to be determined as follows:
[

− 𝜈
1 − 𝜈

𝜌𝑖𝑔𝑧2

2
+ 𝐶1𝑧

]𝐻

0
= − 𝜈

1 − 𝜈
𝜌𝑖𝑔𝐻2

2
+ 𝐶1𝐻 (A.19)

− 𝜈
1 − 𝜈

𝜌𝑖𝑔𝐻2

2
+ 𝐶1𝐻 = −𝜌𝑠𝑔

ℎ2𝑤
2

(A.20)

𝐶1 =
𝜈

2(1 − 𝜈)
𝜌𝑖𝑔𝐻 − 1

2
𝜌𝑠𝑔

ℎ2𝑤
𝐻

(A.21)

The longitudinal stress 𝜎𝑥𝑥 is thus given by

𝜎𝑥𝑥 = 𝜈
1 − 𝜈

[

𝜌𝑖𝑔
(

𝑧 − 𝐻
2

)]

− 1
2
𝜌𝑠𝑔

ℎ2𝑤
𝐻

(A.22)

Note that the above expression does not include the effects of the meltwater pressure acting within the crevasse, which creates
n additional tensile stress. The meltwater pressure 𝑝𝑤 is added to 𝜎𝑥𝑥 to give the net longitudinal stress used in LEFM and Nye zero

stress models as follows:

𝑝𝑤 = 𝜌𝑤𝑔
⟨

ℎ𝑠 −
(

𝑧 − 𝑧𝑠
)⟩

(A.23)

𝜎net(𝑧) = 𝜎𝑥𝑥(𝑧) + 𝑝𝑤(𝑧) (A.24)

Appendix B. Discussion of appropriate LEFM model for calculation of crevasse depths

The linear elastic fracture mechanics model considers the effect of local stress singularity by evaluating the net stress intensity
factor 𝐾net

𝐼 at the crack tip. This is compared to the fracture toughness 𝐾𝐼𝐶 , which is a measure of the material’s resistance to fracture.
hilst the stress intensity factor is equal to the fracture toughness, the crack will propagate in an unstable manner; however, as

he crack penetrates to greater depths (where the longitudinal stress reduces) the stress intensity factor decreases and the crack
ill arrest when 𝐾net

𝐼 becomes less than 𝐾𝐼𝐶 . The stress intensity factor is calculated using Eq. (B.1) and is integrated over the
ntire crevasse depth due to the driving stress (far field longitudinal stress) varying linearly with depth. The use of 𝜎net allows us
o incorporate the contributions of the ice self weight, the ocean-water pressure and the meltwater pressure into the stress intensity
actor.

𝐾𝑛𝑒𝑡
1 = ∫

𝑑

0
𝑀𝐷 (𝜒,𝐻, 𝑑) 𝜎𝑛𝑒𝑡 (𝜒) 𝑑𝜒. (B.1)

We evaluate the stress intensity factor using an iterative code in MATLAB by gradually increasing the crevasse depth to find the
ertical coordinate where the arrest condition is met. Typical values of 𝐾𝐼𝐶 for glacial ice have been determined from experimental
ata and are in the range of 𝐾𝐼𝐶 = 0.1 − 0.4 MPa

√

m [53,56,66]. For this study a value of 𝐾𝐼𝐶 = 0.1 MPa
√

m was chosen.
In Eq. (B.1), 𝑀𝐷 is a weight function that is dependent upon the boundary conditions and specimen geometry. Owing to the

oundary condition differences, the appropriate weight functions for the grounded glacier and the floating condition cases are
ifferent. For the grounded glacier condition, the ’double edge cracks’ formulation gives good agreement with the stress intensity
22
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factors calculated using the displacement correlation method within FEM [52]. The weight function for the double edge cracks
model is given by [67]

𝑀𝐷 = 2
√

2𝐻

[

1 + 𝑓1
(𝜒
𝑑

)

𝑓2
( 𝑑
𝐻

)]

𝜃
( 𝑑
𝐻
,
𝜒
𝐻

)

, (B.2)

where 𝜒 = 𝐻 − 𝑑, 𝑑 is the trial crevasse depth, and the functions 𝑓1, 𝑓2 and 𝜃 are defined as:

𝑓1 = 0.3

[

1 −
(𝜒
𝑑

)
5
4

]

, (B.3)

𝑓2 =
1
2

[

1 − sin
( 𝜋𝑑
2𝐻

)] [

2 + sin
( 𝜋𝑑
2𝐻

)]

, (B.4)

𝜃 =

√

tan( 𝜋𝑑2𝐻 )
√

1 −
[

cos( 𝜋𝑑2𝐻 )
cos( 𝜋𝜒2𝐻 )

]

. (B.5)

For the floating ice shelf condition, the stress intensity factors calculated using the weight function method in Krug et al. [54] and
an der Veen [18] give better agreement with the stress intensity factors calculated using the displacement correlation method [52].
he formulation for the weight function 𝛽 used by Krug et al. is given below:

𝐾𝑛𝑒𝑡
1 = ∫

𝑑

0
𝛽 (𝑧,𝐻, 𝑑)

(

𝜎𝑥𝑥 + 𝑝𝑤(𝑧)
)

(𝜒) 𝑑𝜒 (B.6)

here

𝛽 (𝑧,𝐻, 𝑑) = 2
√

2𝜋 (𝑑 − 𝑧)

[

1 +𝑀1

(

1 − 𝑧
𝑑

)0.5
+𝑀2

(

1 − 𝑧
𝑑

)

+𝑀3

(

1 − 𝑧
𝑑

)1.5
]

, (B.7)

𝑀1 = 0.0719768 − 1.513476𝜆 − 61.1001𝜆2 + 1554.95𝜆3 − 14583.8𝜆4 + 71590.7𝜆5

−205384𝜆6 + 356469𝜆7 − 368270𝜆8 + 208233𝜆9 − 49544𝜆10, (B.8)

𝑀2 = 0.246984 + 6.47583𝜆 + 176.456𝜆2 − 4058.76𝜆3 + 37303.8𝜆4 − 181755𝜆5

+520551𝜆6 − 904370𝜆7 + 936863𝜆8 − 531940𝜆9 + 12729𝜆10, (B.9)

𝑀3 = 0.529659 − 22.3235𝜆 + 532.074𝜆2 − 5479.53𝜆3 + 28592.2𝜆4

−81388.6𝜆5 + 128746𝜆6 − 106246𝜆7 + 35780.7𝜆8, (B.10)

and 𝜆 = 𝑑∕𝐻 .
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