
Contents lists available at ScienceDirect

European Journal of Mechanics / A Solids

journal homepage: www.elsevier.com/locate/ejmsol

Mode I crack tip fields: Strain gradient plasticity theory versus J2 flow
theory
Emilio Martínez-Pañeda∗, Norman A. Fleck
Department of Engineering, Cambridge University, CB2 1PZ, Cambridge, UK

A R T I C L E I N F O

This article was presented at the IUTAM
Symposium on Size-Effects in Microstructure
and Damage Evolution at Technical University
of Denmark, 2018

Keywords:
Strain gradient plasticity
Length scales
Asymptotic analysis
Finite element analysis
Fracture

A B S T R A C T

The mode I crack tip asymptotic response of a solid characterised by strain gradient plasticity is investigated. It is
found that elastic strains dominate plastic strains near the crack tip, and thus the Cauchy stress and the strain
state are given asymptotically by the elastic K-field. This crack tip elastic zone is embedded within an annular
elasto-plastic zone. This feature is predicted by both a crack tip asymptotic analysis and a finite element com-
putation. When small scale yielding applies, three distinct regimes exist: an outer elastic K field, an intermediate
elasto-plastic field, and an inner elastic K field. The inner elastic core significantly influences the crack opening
profile. Crack tip plasticity is suppressed when the material length scale of the gradient theory is on the order
of the plastic zone size estimation, as dictated by the remote stress intensity factor. A generalized J-integral for
strain gradient plasticity is stated and used to characterise the asymptotic response ahead of a short crack. Finite
element analysis of a cracked three point bend specimen reveals that the crack tip elastic zone persists in the
presence of bulk plasticity and an outer J-field.

1. Introduction

Strain gradient plasticity is increasingly used in fracture analyses to
predict the stress elevation that accompanies gradients of plastic strain,
see, for example (Wei and Hutchinson, 1997; Jiang et al., 2001;
Komaragiri et al., 2008; Nielsen et al., 2012; Martínez-Pañeda et al.,
2017b), and references therein. Gradients of plastic strain are asso-
ciated with lattice curvature and geometrically necessary dislocations
(Ashby, 1970), and the increased dislocation density promotes
strengthening. Flow stress elevation in the presence of plastic strain
gradients has been observed in a wide range of mechanical tests on
micro-sized specimens. Representative examples are indentation (Poole
et al., 1996; Nix and Gao, 1998), torsion (Fleck et al., 1994), and
bending (Stölken and Evans, 1998). These experiments typically predict
a 3-fold increase in the effective flow stress by reducing the size of the
specimen (smaller is stronger). Isotropic, strain gradient plasticity the-
ories have been developed to capture this size effect. The pivotal step in
constructing these phenomenological models is to write the plastic
work increment in terms of both the plastic strain and plastic strain
gradient, thereby introducing a length scale in the material description
(Aifantis, 1984; Gao et al., 1999; Fleck and Hutchinson, 2001; Gurtin
and Anand, 2005). Work-conjugate stress quantities for plastic strain
and plastic strain gradient follow immediately.

The crack tip stress elevation, as predicted by strain gradient plas-
ticity theory relative to conventional plasticity theory, plays a funda-
mental role in the modelling of numerous damage mechanisms
(Martínez-Pañeda and Betegón, 2015; Martínez-Pañeda and Niordson,
2016). Examples include fatigue (Brinckmann and Siegmund, 2008;
Pribe et al., 2019), notch mechanics (Martínez-Pañeda et al., 2017a),
microvoid cracking (Tvergaard and Niordson, 2008), and hydrogen
embrittlement (Martínez-Pañeda et al., 2016a, b).

In the present study, we examine the mode I crack tip field ac-
cording to strain gradient plasticity theory (Gudmundson, 2004; Fleck
and Willis, 2009). Previous crack tip asymptotic studies considered
earlier gradient plasticity classes, such as couple-stress theories without
stretch gradients (Xia and Hutchinson, 1996; Huang et al., 1997) or
models involving the gradients of elastic strains (Chen et al., 1999). For
such theories, plastic strains dominate elastic strains near the crack tip
and the asymptotic nature of the crack tip field can be obtained by
neglecting elasticity. This is analogous to the HRR (Hutchinson, 1968;
Rice and Rosengren, 1968) analysis for a conventional elasto-plastic
solid.

We shall show in the present study that the crack tip field for
Gudmundson-type strain gradient theories is of a different nature, such
that the asymptotic crack tip field comprises both elastic and plastic
straining, and it is not possible to simplify the crack tip asymptotic state
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by neglecting elastic strains. Instead, the elastic strain ij
e scales as r 1/2

with distance r from the crack tip, whereas the plastic strain tensor
x

˜
(
¯

)p is of the form

= + +x x
˜

(¯ )
˜

(0) ˜ (¯ )p p p
(1)

The leading order term
˜

(0)p has a finite value independent of x
¯ .The next term in the series, x˜ (¯ )p , scales as r3/2 where =r x| | is the polar

coordinate from the crack tip, and x˜ (¯ )p also depends upon the polar
coordinate θ. Thus, we can write ij

p in polar coordinates as,

= = + +A r fcos(2 ) ( )rr
p p 3/2 (2)

= + +A r gsin(2 ) ( )r
p 3/2 (3)

Later, in the paper, we shall obtain explicit expressions for the an-
gular functions f ( ) and g ( ). Thus, the elastic strain is more singular
than the plastic strain and the Cauchy stress r( , )ij is given by the
usual elastic K-field in the vicinity of the crack tip.

The following simple argument supports the finding that the crack
tip is surrounded by an elastic K-field in an elastic-plastic strain gra-
dient solid. Introduce a generalized effective plastic strain Ẽ p such that

= +E( ˜ ) 2
3

p
ij
p

ij
p

ij k
p

ij k
p2 2

, , (4)

in terms of a material length scale ; the comma subscript () k, denotes
spatial differentiation with respect to the coordinate xk in the usual
manner. Consider the case of a deformation theory solid, and assume
that the plastic strain energy density wp scales as +Ẽ p N( 1) in terms of a
strain hardening exponent N (where N0 1). We proceed to show
that the elastic strain must dominate the plastic strain. To do so, we
shall explore the consequences of assuming that the plastic strain
dominates the elastic strain near the crack tip. Then, wp must scale as
J r/ in order for the energy release rate for crack advance to be finite at
the crack tip. Consequently, Ẽ p and ij k

p
, scale as +r N1/( 1) and ij

p scales
as +r N N/( 1). We conclude that ij

p tends to zero as the crack tip is ap-
proached. If the elastic strain is dominated by the plastic strain then this
implies that ij

e tends to zero at a faster rate than +r N N/( 1), and the crack
tip will have a strain and a stress concentration of zero. This is im-
plausible on physical grounds. We conclude that the elastic strain field
must dominate the plastic strain field at the crack tip, and the Cauchy
stress and elastic strain are given by the usual elastic K-field.

2. Strain gradient plasticity

We idealise strain gradient effects by means of the Gudmundson
(2004) higher order gradient plasticity model, see also Fleck and Willis
(2009). A brief summary of the constitutive and field equations for a
flow theory version of strain gradient plasticity is now presented.

2.1. Variational principles and balance equations

The primal kinematic variables are the velocity ui and the plastic
strain rate ij

p. Upon adopting a small strain formulation, the total strain
rate reads

= +u u1
2

( )ij i j j i, , (5)

and is decomposed additively into elastic and plastic parts,

= +ij ij
e

ij
p

(6)

Write the internal work within a volume V as

= + +W q dV( )
V

ij ij
e

ij ij
p

ijk ij k
p
,

(7)

where ij denotes the Cauchy stress, qij the so-called micro-stress tensor
(work-conjugate to the plastic strain ij

p) and ijk is the higher order
stress tensor (work-conjugate to the plastic strain gradient ij k

p
, ). The

volume V is contained within a surface S of unit outward normal ni.
Now make use of Gauss' divergence theorem to re-express W as the
external work on the surface S,

= +W n u n dS( )
S

ij j i ijk k ij
p

(8)

to obtain the following equilibrium equations within V:

=
=s q

0ij j

ij ij ijk k

,

, (9)

Here, sij is the deviatoric part of the Cauchy stress such that
=s /3ij ij ij kk . Equations (7) and (8) constitute the Principle of

Virtual Work,

+ + = +q dV T u t dS( ) ( )
V

ij ij
e

ij ij
p

ijk ij k
p

S
i i ij ij

p
,

(10)

where =T ni ij j and =t nij ijk k denote the conventional and higher order
tractions, respectively.

2.2. Constitutive laws

The elastic strain ij
e gives rise to an elastic strain energy density,

=w C1
2

e
ij
e

ijkl kl
e

(11)

where =C Cijkl klij is the isotropic elastic stiffness tensor, given in terms
of Young's modulus E and Poisson's ratio ν. We identify the elastic work
increment ij ij

e with we such that

= =w Cij
e

ij
e ijkl kl

e

(12)

The stresses q( , )ij ijk are taken to be dissipative in nature and we
assume that the plastic work rate w p reads,

+ =q wij ij
p

ijk ij k
p p
, (13)

where w E( )p p is given in terms of a combined effective plastic strain
rate,

= +E 2
3

p
ij
p

ij
p

ij k
p

ij k
p2

, ,

1/2

(14)

thereby introducing a material length scale . The use of (13) implies
immediately that

= =q w w
E

E
ij

p

ij
p

p

p

p

ij
p

(15)

and

= =w w
E

E
ijk

p

ij k
p

p

p

p

ij k
p

, , (16)

Upon introducing an overall effective stress = w E/p p, these ex-
pressions reduce to

= =q
E E

2
3

andij p ij
p

ijk p ij k
p2
, (17)

Note that is work conjugate to E p, such that it satisfies

= +E qp
ij ij

p
ijk ij k

p
, (18)

and, upon making use of (14) and (17) we obtain the relation

= +q q3
2 ij ij ijk ijk

2
1/2

(19)
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3. Asymptotic analysis of crack tip fields

3.1. Deformation theory solid

We begin our study by conducting an asymptotic analysis of the
stress and strain state at the crack tip. As already discussed in the in-
troduction, consider a deformation theory solid such that the strain
energy density w ( , , )ij

e
ij
p

ij k
p
, is decomposed into an elastic part we and

a plastic part wp,

= +w w w( , , ) ( ) ( , )ij
e

ij
p

ij k
p e

ij
e p

ij
p

ij k
p

, , (20)

The elastic contribution is stated explicitly by (11). For the de-
formation theory solid the effective strain quantity Ẽ p has already been
introduced by (4). The dissipation potential wp is taken to be a power
law function of Ẽ p

=
+

+
w E

N
E( ˜ )

1
˜

p p Y Y
p

Y

N 1

(21)

in terms of a reference value of strength Y , yield strain = E/Y Y and
hardening index N (where N0 1). Upon writing the dissipation
increment w p as

= +w qp
ij ij

p
ijk ij k

p
, (22)

and upon introducing the notation = w E/ ˜p p, we have

= = =q w E
E

˜ 2
3 ˜ij

p

ij
p

p

ij
p p ij

p

(23)

= = =w E
E

˜
˜ijk

p

ij k
p

p

ij k
p p ij k

p

, ,

2
,

(24)

We note in passing that substitution of (23)–(24) into (4) recovers
(19), and the relation between and Ẽ p is of power law type, such that

= =w
E

E
˜

˜p

p Y

p

Y

N

(25)

via (22).

3.2. Energy boundness analysis

We proceed to obtain the asymptotic nature of r( , )ij
p . The finite

element solutions presented later in the study consistently reveal that
the deviatoric Cauchy stress sij scales as r 1/2. We shall adopt this
scaling law for sij and explore its ramifications. First, note from (23) and
(24) that ijk, and consequently ijk k, , are more singular in r than qij, as
the crack tip is approached. Then, the equilibrium relation (9)b de-
mands that
sij ijk k, (26)

to leading order in r, and consequently ijk is of order r1/2. This imposes
a severe restriction on the form of r( , )ij

p . Assume the separation of
variables form for ij

p in terms of its Cartesian components

= + +A r B ( )ij
p

ij ij (27)

where Aij is taken to be independent of θ and the index > 0 remains to
be found. First we show that this form satisfies the field equations, and
second we justify this choice. Accordingly, the plastic strain gradient
reads

= +r B̄ ( )ij k
p

ijk,
1 (28)

where B̄ijk can be expressed in terms of B ( )ij and its derivatives with
respect to θ. Substitution of (27) and (28) into (4) gives

= +E A A( ˜ ) 4
3

p
ij ij

2
(29)

along with

=
E

A A2
3

( )
p

Y
Y

N

ij ij
N

1
1

2
(30)

Consequently, (26), (24) and (28) give

=s A A r B2
3

( ) ( ¯ ( ))ij Y
Y

N

pq pq
N

ijk k
2

1
1

2 1
, (31)

Upon recalling that sij scales as r 1/2 the above equation implies that
= 3/2 for consistency. The above solution reveals that the elastic

strain energy density wE scales as r 1 while the plastic strain energy
density scales as r0, upon recalling (21) and (29). Now recall that we
require w J r/ in order for = +w w we p to give a finite energy release
rate J at the crack tip. This is achieved by the elastic field whereas the
plastic field is not sufficiently singular in r to give any contribution to
the energy release rate. Alternative assumptions can be made for the
series expansion of ij

p in preference to (27). However, these do not give
rise to an equilibrium solution (i.e., Eq. (26) is not satisfied) or they give
solutions that are less singular than that of (27). For example, if we
assume that the Cartesian components Aij are a function of θ we find
that ij k

p
, scales as r 1 and ijk k, scales as +r N( 1), and the equilibrium

relation (26) for sij is violated. Alternatively, if we take =A 0ij then an
equilibrium solution for sij is obtained provided we take = +N N/( 1).
This leads to a higher order term in the series expansion of ij

p than that
given by the first two terms of (29). Finally, what is the implication of
assuming that < 0 in our asymptotic expression (27)? If we were to
assume < 0, then the leading order term becomes r B ( )ij . Asymptotic
matching of both sides of the equilibrium relation (26) again results in

= +N N/( 1), which is inconsistent with the initial assumption that
< 0.
In summary, the plastic strain field r( , )ij

p is of the asymptotic form
(27) with = 3/2, and the crack tip field for Cauchy stress r( , )ij and
elastic strain r( , )ij

e is given by the usual K-field for a mode I crack.

3.3. Asymptotic crack tip fields

Assume that the leading order terms in ij
p, in polar coordinates, are

of the form (2)–(3). This choice is consistent with the nature of the
symmetry of the solution of a mode I crack tip problem; p and rr

p are
even in θ and give rise to = =Ayy

p
xx
p , = 0xy

p in Cartesian co-
ordinates. The components of the plastic strain gradient and the La-
placian of the plastic strain read

= =
r

r f3
2

( )rr r
p rr

p

,
1/2

(32)

= =
r

r f g1 2 [3 ( ) 2 ( )]rr
p rr

p

r
p

,
1/2

(33)

= =
r

r g3
2

( )r r
p r

p

,
1/2

(34)

= + =
r

r g f1 2 [ ( ) ( )]r
p r

p

rr
p

,
1/2

(35)

and,

= + + +

= +r f f g

2

( ) ( ) 4 ( )

rr kk
p

r r r r r rr
p p

,
1 1 2

1/2 7
4

rr
p

rr
p

rr
p

r
p2

2 2
2

2 2

(36)

= + + +

= +r g g f

2

( ) ( ) 4 ( )

r kk
p

r r r r r r
p

,
1 1 2

1/2 7
4

r
p

r
p

r
p

rr
p p2

2 2

2

2 2

(37)

Now make use of the higher order equilibrium equation (9)b, which
asymptotically implies sij ijk k, . Note that, as r 0, Ẽ p is of leading
order A2 / 3 and can therefore be treated as a constant. As argued
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above and demonstrated numerically below, the Cauchy stress is
characterised by an inner elastic K-field. Consequently, we make use of
the Williams (1957) solution to write

=s K
r4 2

cos
2

cos 3
2rr

I

(38)

= +s K
r4 2

sin
2

sin 3
2r

I

(39)

where KI is the mode I stress intensity factor. The higher order equili-
brium follows by suitable substitution of (36)–(39) into (24) and (9)b,
to give

= + +K E f f g˜
4 2

cos
2

cos 3
2

7
4

( ) ( ) 4 ( )I
p 2

2 (40)

+ = +K E g g f˜
4 2

sin
2

sin 3
2

7
4

( ) ( ) 4 ( )I
p 2

2 (41)

In addition, the symmetry condition ahead of a mode I crack tip
demands that f ( ) is an even function of θ. Thus, the solution to the
system of differential equations is given by

= + + +f K E a a( )
˜

16 2
2cos 3

2
cos

2
cos

2
cos 7

2
I

p

1 3

(42)

= + +g K E a a( )
˜

16 2
2sin 3

2
sin

2
sin

2
sin 7

2
I

p

1 3

(43)

Now make use of the traction-free boundary conditions = =t t 0rr
along the crack flanks ( = ) to obtain a relation between the con-
stants a1 and a3. Free boundary conditions on the higher order traction

= 0 on = implies that

+ = =f g( ) 2 ( ) 0 at (44)

rendering =a a7/31 3. Imposition of vanishing higher order traction
= 0r on = is identically satisfied and provides no useful addi-

tional information on a a( , )1 3 . It follows that numerical analysis is
needed to calibrate a1 and a3 and obtain a full field solution.

4. Finite element analysis

4.1. Numerical implementation

We make use of the finite element implementation of Martínez-
Pañeda et al. (2019) and employ the viscoplastic potential presented by
Panteghini and Bardella (2016). The effective stress is related to the
gradient-enhanced effective plastic flow rate through a viscoplastic
function,

= E V E( ) ( )F
p p (45)

where the current flow stress F depends on the initial yield stress Y
and on Ep via a hardening law. We adopt the following isotropic
hardening law,

= + E1F Y
p

Y

N

(46)

and assume that the yield strain is = =E/ 0.003Y Y . The viscoplastic
function V E( )p is defined as

=
>

V E
E E

E E
( )

/(2 ) if / 1
1 /(2 ) if / 1

p
p p

p p
0 0

0 0 (47)

and the rate-independent limit is achieved by choosing a sufficiently
small value of the material parameter 0. The numerical experiments
conducted show that the ratio E /p

0 is sufficiently high that V E( ) 1p

in the vicinity of the crack for all remote K values considered.
A mixed finite element scheme is adopted, such that displacements

and plastic strains are treated as primary variables, in accordance with
the theoretical framework. The non-linear system of equations for a
time +t t is solved iteratively by using the Newton-Raphson method,

=
+

u u K K
K K

R
Rp p

t t t

u u u

u
t

u

t

, ,

, ,

1
p

p p p p

(48)

where the residuals comprise the out-of-balance forces,

=R B dV T N dSu
n

V
ij ij

n

S
i i

n

(49)

= +R q s M M dV t M dS[( ) ]n

V
ij ij ij

n
ijk ij k

n

S
ij ij k

n
, ,p

(50)

Here, Bij denotes the strain-displacement matrix, and Ni and are the
shape functions for the nodal values of displacement and plastic strain
components. The components of the consistent stiffness matrix are
obtained by differentiating the residuals with respect to the incremental
nodal variables. The reader is referred to Martínez-Pañeda et al. (2019)
for full details.

4.2. The small scale yielding solution

We make use of the so-called boundary layer formulation to pre-
scribe an outer K-field. Consider a crack with tip at the origin and with
the crack plane along the negative axis of the Cartesian reference frame
x y( , ). A remote K field is imposed by prescribing the nodal displace-
ments in the outer periphery of the mesh as,

=u K
E

r f ( , )i i
1/2

(51)

where ν is Poisson's ratio and the functions f ( , )i are given by

= +f 1
2

(3 4 cos ) cos
2x (52)

and

= +f 1
2

(3 4 cos ) sin
2y (53)

Upon exploiting the symmetry about the crack plane, only half of
the finite element model is analysed. A mesh sensitivity study reveals
that it is adequate to discretise the domain by approximately 5200
plane strain, quadratic, quadrilateral elements.

A representative small scale yielding solution is now presented in
Figs. 1 and 2, for the choice =K 20 Y , =N 0.1, = 0.003Y , and

= 0.3. Conventional J2 flow theory implies a plastic zone size R0 of
magnitude

=R K1
3 Y

0

2

(54)

and so the choice =K 20 Y implies =R 420 . Consequently, the
plastic zone size is much larger than for the strain gradient solid also.
The plastic zone is plotted in Fig. 1 by showing contours of von Mises
plastic strain,

= 2
3p ij

p
ij
p

1/2

(55)

In broad terms, the outer boundary of the plastic zone is given by
the contour =/ 0.1p Y . Additional contours for =/ 1p Y and 3 are in-
cluded. It is found that /p Y attains a plateau value slightly greater than
3 within the contour =/ 3p Y . Consequently, the stress state within this
crack tip zone is elastic in nature. This finding is supported by a plot of
tensile stress yy as a function of r directly ahead of the crack tip ( =y 0),
see Fig. 2a. The stress component yy scales as r 1/2 for sufficiently small
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r. Likewise, the elastic strain component yy
e scales as r 1/2 for <r/ 1,

see Fig. 2b. Farther from the crack tip ( < <r1 / 10) the stress profile
yy varies with r in the manner of the HRR field, +r N N/( 1). Beyond
the plastic zone ( >r/ 10) the stress state again converges to the elastic

K-field and yy scales as r 1/2. Thus, both an outer and an inner K field
exist. The distributions of r( )yy

e and r( )yy
p are shown in Fig. 2b. Within

the elastic zone at the crack tip, and in the outer elastic zone, we have
yy
e

yy
p . In contrast, within the annual region of the crack tip plastic

zone, the plastic strains dominate and >yy
p

yy
e .

The following J-integral argument can be used to show that the
magnitude of K for the crack tip elastic zone is identical to that in the
outer field. Write the potential energy P of the cracked solid as

= +P a w V T u t S( ) d ( ) d
V S i i ij ij

p
T (56)

where T t( , )i ij are the prescribed tractions on a partial boundary ST ,
with outward normal ni. Define J as the energy release rate per unit
crack extension, such that

=J P
a (57)

for a body of unit thickness in the z direction. Note that

wn n u n S( )d 0x ij j i x ijk k ij x
p

, , (58)

for any closed contour in the solid that excludes the crack tip. Also note
that =n 0ij j and =n 0ijk k on the faces of a traction-free crack. Then,
an evaluation of J for a contour which encloses the crack tip, starts on
the lower crack flank and ends on the upper flank, gives

=J wn n u n S( ) dx ij j i x ijk k ij x
p

, , (59)

where the crack lies along the negative x-axis. The proof is straight-
forward and follows that outlined by (Eshelby, 1956; Rice, 1968) for
the conventional deformation theory solid, absent strain gradient ef-
fects.

Now evaluate the contour integral J assuming that the stress state
(and associated strain energy density w) is given by an elastic K-field.
Direct evaluation gives the Irwin relation =EJ K/(1 )2 2. Upon per-
forming this integration within the crack tip elastic zone of the strain
gradient solid, and repeating the evaluation in the outer K-field remote
from the crack tip, path independence of J immediately implies that the
magnitude of K is the same in the two zones.

4.3. Sensitivity of crack tip fields to strain hardening and material length
scale

We proceed to examine the influence of the strain hardening ex-
ponent N upon the crack tip stress state, see Fig. 3a. Consistent with the
analytical asymptotic analysis of Section 3, the near-tip asymptotic
response is independent of the value of N and the three regimes (outer
K, elastic-plastic field and inner K) can be readily identified for the
three values of N considered. The strain state near the crack tip is shown
in the form of the components yy

p and yy versus r/ in Fig. 3b. The
asymptotic value of r( 0)yy

p increases slightly with decreasing N. The
zone of almost constant yy

p near the crack tip is of similar size for
=N 0.1, 0.2 and 0.3: the size of the elastic core scales with and is

independent of N.
The dependence of r( 0)yy

p upon K/( )Y is plotted in Fig. 4 for
selected values of N. At small K/( )Y , negligible plasticity exists near
the crack tip - the plastic zone vanishes. At larger K/( )Y a plastic
zone exists and r( 0)yy

p increases.
The tensile stress component yy is shown as a function of r in Fig. 5

for several values of R/ 0. The reference size of the plastic zone R0 is
given by Irwin's approximation (54). For the strain gradient solid the
plastic zone is approximately of size R0 since / 1yy Y at =r R/ 10 for
all R/ 0 values considered. Also, the inner elastic zone is of extent to a
good approximation. Consequently, an active plastic zone exists be-
tween r and r R0.

Fig. 1. Finite element predictions of the different domains surrounding the
crack tip in an strain gradient solid at =K 20 Y . Three regions are identified
as a function of the effective von Mises plastic strain p: the outer elastic do-
main, the plastic zone and the inner elastic core. A scale bar of length 5 is
included. Material properties: =N 0.1, = 0.003Y , and = 0.3.

Fig. 2. Tensile (a) stress and (b) strain ahead of the crack tip for a strain gra-
dient solid at =K 20 Y . Material properties: =N 0.1, = 0.003Y , and = 0.3.
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4.4. Influence on the crack profile and in inhibiting plasticity

Strain gradient plasticity influences the crack tip profile r( ) behind
the crack tip. Fig. 6 shows the crack opening profile for conventional
( = 0) and strain gradient plasticity ( = R0.05 0), along with the so-
lutions from the HRR field and from linear elasticity. The HRR field
crack opening profile is given by

= +E
K

r E
K

Y Y
N

N
2 2

1

(60)

while the elastic solution reads

=E
K

r E
K

Y Y
2 2

1
2

(61)

with = 0.18 and = 0.48. The finite element results show large dif-
ferences between conventional and gradient-enhanced plasticity solu-
tions. Strain gradient plasticity sharpens the crack profile to resemble
that of an elastic solid.

Fig. 3. Tensile (a) stress and (b) strain ahead of the crack tip for a strain gra-
dient solid with different values of the strain hardening exponent N at

=K 20 Y . Material properties: =N 0.1, = 0.003Y , and = 0.3.

Fig. 4. Crack tip plastic strain component yy
p as a function of the remote load

for different strain hardening exponents. Material properties: = 0.003Y , and
= 0.3.

Fig. 5. Tensile stress ahead of the crack tip for a strain gradient solid with
different values of the length scale parameter at =K 20 Y . Material prop-
erties: =N 0.1, = 0.003Y , and = 0.3.

Fig. 6. Crack opening profile for strain gradient plasticity and conventional
plasticity. Material properties: =N 0.1, = 0.003Y , and = 0.3.
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Now consider the sensitivity of the plastic zone size rp to the mag-
nitude of K/( )Y . We have already noted that, when K/( )Y is
significantly large, the plastic zone size scales with Irwin's approxima-
tion R0 as given by (54). In contrast, when K/( )Y is small, we an-
ticipate that the inner elastic core of dimension dominates the plastic
zone; this is shown in Fig. 7. In order to define the size of the plastic
zone rp, a criterion is needed for active yielding. Here, we assume that
the plastic zone extends to either the location where =/ 0.1p Y or 1, see
Fig. 7. It is clear from the figure that the plastic zone size rp scales with
K / Y

2 2 in the same manner as the conventional elastic-plastic solid for
sufficiently large K/( )Y . However, at small K/( )Y , on the order
of 5–10, the plastic zone vanishes. At an intermediate value of
K/( )Y the active plastic zone for the strain gradient solid is some-
what larger than that predicted for the conventional solid.

4.5. Regime of J-dominance

The small scale yielding (SSY) approach is valid provided the crack
length is much greater than the plastic zone size R0 at the onset of
fracture, >a R7.5 0. Thus, on a map with axes a R/ 0 and R/ 0 the small
scale yielding regime exists for >a R/ 7.50 ; this is shown explicitly in
Fig. 8. If a R/ 0 is in the range < <a R75 / 7.5Y 0 , then a J-field exists
near the crack tip and the valid loading parameter becomes J instead of
K. This regime of J-dominance is also sketched in Fig. 8. We proceed to
explore the stress state near the crack tip for the case of J-dominance.
To do so we consider a deeply notched beam in three point bending and
calculate the tensile stress state ahead of the crack tip.

We follow the ASTM E 1820-01 Standard1 and model a three point
single edge bend specimen, as outlined in Fig. 9. We take advantage of
symmetry and model only half of the specimen, with a total of 24000
quadratic quadrilateral plane strain elements. The J-integral is com-
puted following the ASTM E 1820 Standard,

= +J J Je p (62)

with Je being computed from the remote load and the specimen di-
mensions and J p being calculated from the area below the force versus
displacement curve. A reference length scale R0 can be defined from the
estimated value of J as

=R EJ1
3 (1 ) Y

0 2 2 (63)

Crack tip stresses for =a R/ 0.80 and =W R/ 1.60 are shown in
Fig. 10 for strain gradient plasticity ( =R/ 0.10 ) and conventional

plasticity theory. Finite element results reveal that the elastic core is
still present for the case of J-dominance; the strain gradient plasticity
prediction exhibits the elastic r1/ singularity as r 0. Thus short
cracks, where small scale yielding does not apply, also exhibit an elastic
stress state near the crack tip.

5. Conclusions

We examine, numerically and analytically, the crack tip asymptotic
response in metallic materials. The solid is characterised by strain
gradient plasticity theory, aiming to phenomenologically link scales in
fracture mechanics by incorporating the stress elevation due to dis-
location hardening. Results reveal that an elastic zone is present in the
immediate vicinity of the crack tip. The stresses follow the linear elastic
r 1/2 singularity and the plastic strains reach a plateau at a distance to

Fig. 7. Plastic zone size as a function of the remote load for conventional and
strain gradient plasticity. Material properties: =N 0.1, = 0.003Y , and = 0.3. Fig. 8. Schematic diagram of the regimes and competing length scales involved

in the response ahead of a stationary crack.

Fig. 9. Configuration and dimensions of the three point single edge bend spe-
cimen.

Fig. 10. Tensile stresses ahead of the crack tip for conventional and strain
gradient ( =R/ 0.10 ) plasticity under J-dominance conditions. Material prop-
erties: =N 0.1, = 0.003Y , = 0.3, and =a R/ 0.80 .

1 Standard No. ASTM E 1820-01 “Standard Test Method for Measurement of
Fracture Toughness,” American Society for Testing and Materials, Philadelphia,
PA.

E. Martínez-Pañeda and N.A. Fleck European Journal of Mechanics / A Solids 75 (2019) 381–388

387



the crack tip that scales with the length scale of strain gradient plasti-
city . The dominant role of elastic strains in the vicinity of the crack
invalidates asymptotic analyses that neglect their contribution to the
total strains. The existence of an elastic core is reminiscent of a dis-
location free zone, as introduced by Suo et al. (1993).

The emergence of an elastic core has important implications on the
onset of plasticity and the crack opening profile. Numerical predictions
show that strain gradient plasticity sharpens the crack opening profile
to that of an elastic solid. Differences with conventional plasticity are
substantial and results suggest that an experimental characterisation of
the crack opening profile could be used to infer the value of the length
scale parameter. On the other hand, plasticity is precluded if the remote
load is not sufficiently large, such that the plastic zone size (as given by,
e.g., Irwin's approximation) falls within the elastic core domain.

In addition, we show that the inner elastic regime is also present
when the crack is small and an outer elastic K field does not exist. A
generalized J-integral is presented for strain gradient solids and the
stress fields are computed under J-dominance conditions in a three
point single edge bend specimen.

Finally, we note that the material length scale is on the order of a
few microns for most metals. This is roughly the smallest scale at which
void nucleation and growth occur, suggesting that the transition to an
inner zone dominated by elasticity will have important implications in
quasi-cleavage but play a secondary role in ductile fracture.
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