
International Journal of Solids and Structures 59 (2015) 208–215
Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsolst r
Modeling damage and fracture within strain-gradient plasticity
http://dx.doi.org/10.1016/j.ijsolstr.2015.02.010
0020-7683/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +34 985 18 19 67; fax: +34 985 18 24 33.
E-mail address: martinezemilio@uniovi.es (E. Martínez-Pañeda).
E. Martínez-Pañeda ⇑, C. Betegón
Department of Construction and Manufacturing Engineering, University of Oviedo, Gijón 33203, Spain
a r t i c l e i n f o

Article history:
Received 4 June 2014
Received in revised form 4 February 2015
Available online 14 February 2015

Keywords:
Strain-gradient plasticity
Taylor dislocation model
Material length scale
Crack-tip fields
Finite element analysis
a b s t r a c t

In this work, the influence of the plastic size effect on the fracture process of metallic materials is
numerically analyzed using the strain-gradient plasticity (SGP) theory established from the Taylor
dislocation model. Since large deformations generally occur in the vicinity of a crack, the numerical
framework of the chosen SGP theory is developed for allowing large strains and rotations. The material
model is implemented in a commercial finite element (FE) code by a user subroutine, and crack-tip fields
are evaluated thoroughly for both infinitesimal and finite deformation theories by a boundary-layer
formulation. An extensive parametric study is conducted and differences in the stress distributions ahead
of the crack tip, as compared with conventional plasticity, are quantified. As a consequence of the strain-
gradient contribution to the work hardening of the material, FE results show a significant increase in the
magnitude and the extent of the differences between the stress fields of SGP and conventional plasticity
theories when finite strains are considered. Since the distance from the crack tip at which the strain gra-
dient significantly alters the stress field could be one order of magnitude higher when large strains are
considered, results reveal that the plastic size effect could have important implications in the modeliza-
tion of several damage mechanisms where its influence has not yet been considered in the literature.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Experiments and direct-dislocation simulations have demon-
strate that metallic materials display a strong size effect at the
micro- and sub-micron scales. Attributed to geometrically neces-
sary dislocations (GNDs) associated with non-uniform plastic
deformation; this size effect is especially significant in fracture
problems since the plastic zone adjacent to the crack tip is physical-
ly small and contains strong spatial gradients of deformation. Since
conventional plasticity possesses no intrinsic material length,
several continuum strain-gradient plasticity (SGP) theories have
been developed through the years to incorporate some length-scale
parameters in the constitutive equations. Most of them can be clas-
sified as a function of their approach as phenomenological (Fleck
and Hutchinson, 1993, 1997, 2001) or mechanism-based (Gao
et al., 1999; Huang et al., 2000).

The experimental observation of cleavage fractures in the pres-
ence of significant plastic flow (Elssner et al., 1994; Korn et al.,
2002) has aroused significant interest in the influence of the plastic
strain gradient on crack-tip stresses (Wei and Hutchinson, 1997;
Chen et al., 1999; Wei, 2001). Jiang et al. (2001) investigated the
crack-tip field by a mechanism-based strain-gradient (MSG)
plasticity theory established from the Taylor dislocation model.
Their investigation showed that GNDs near the crack tip promoted
strain-hardening and that the GNDs led to a much higher stress
level in the vicinity of the crack than that predicted by classical
plasticity. Qu et al. (2004) implemented the lower-order conven-
tional theory of mechanism-based strain-gradient (CMSG) plas-
ticity (Huang et al., 2004) that does not involve higher-order
stresses and where the plastic strain gradient is involved through
the incremental plastic modulus. They showed that the higher-
order boundary conditions have essentially no effect on the stress
distribution at a distance greater than 10 nm from the crack tip,
well below the lower limit of physical validity of the SGP theories
based on Taylor’s dislocation model (Shi et al., 2001).

However, the aforementioned studies were conducted in the
framework of the infinitesimal deformation theory, and although
large deformations occur in the vicinity of the crack, little work
has been done to investigate crack-tip fields under SGP to account
for finite strains. Hwang et al. (2003) developed a finite deforma-
tion theory of MSG plasticity, but they were unable to reach strain
levels higher than 10% near the crack tip due to convergence
problems. Mikkelsen and Goutianos (2009) determined the range
of material length scales where a full strain-gradient-dependent
plasticity simulation is necessary in the finite strain version
(Niordson and Redanz, 2004) of the SGP theory of Fleck and
Hutchinson (2001). Pan and Yan (2011) used the element-free
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Galerkin method to analyze the crack-tip stresses through a lower-
order gradient plasticity (LGP) model (Yuan and Chen, 2000) and
they showed that the known elastic–plastic fracture mechanics
parameter G can be directly applied to the crack assessment under
strain-gradient plasticity for both infinitesimal and finite deforma-
tion theories.

Moreover, identifying and quantifying the relation between
material parameters and the physical length over which gradient
effects prominently enhance crack-tip stresses is essential in rating
their influences on crack-growth mechanisms, and for rationally
applying SGP theories to predict damage and fracture. This has
been done recently by Komaragiri et al. (2008) for the phenomeno-
logical SGP theory of Fleck and Hutchinson (2001) within the
small-strain theory. But, as the strain gradient increases the resis-
tance to plastic deformation thereby lowering crack-tip blunting,
and consequently avoiding the local stress triaxiality reduction
characteristic of the conventional plasticity predictions, it is
imperative to quantify the distance ahead of the crack tip where
the plastic size effect significantly alters the stress distribution
accounting for finite strains.

In this work, the influence of the plastic strain gradient on the
fracturing process of metallic materials is numerically analyzed
in the framework of small- and large-deformations by the CMSG
theory. An extensive parametric study is conducted and differences
in the stress distributions ahead of the crack tip, compared with
conventional plasticity, are quantified. Implications of the results
on fracture- and damage-modeling are thoroughly discussed.

2. Conventional theory of mechanism-based strain gradient

The conventional theory of mechanism-based strain-gradient
plasticity (CMSG) is based on the Taylor dislocation model but does
not involve higher-order stresses. Therefore, the plastic strain gra-
dient appears only in the constitutive model and the equilibrium
equations and boundary conditions are the same as the conven-
tional continuum theories (Huang et al., 2004).

The dislocation model of Taylor (1938) gives the shear-flow
stress s in terms of the dislocation density q as:

s ¼ alb
ffiffiffiffi
q
p

; ð1Þ

where l is the shear modulus, b is the magnitude of the Burgers
vector, and a is an empirical coefficient that takes values between
0.3 and 0.5. The dislocation density comprises the sum of the
density qS for statistically stored dislocations and the density qG

for geometrically necessary dislocations:

q ¼ qS þ qG; ð2Þ

with qG related to the effective plastic strain gradient gp by:

qG ¼ r
gp

b
; ð3Þ

where r is the Nye-factor that is assumed to be approximately 1.90
for face-centered-cubic (fcc) polycrystals.

The tensile flow stress rflow is related to the shear-flow stress s
by:

rflow ¼ Ms; ð4Þ

M being the Taylor factor, that equals 3.06 for fcc metals. Rear-
ranging Eqs. (1)–(4) yields:

rflow ¼ Malb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qS þ r

gp

b

r
: ð5Þ

qS can be determined from (5), knowing the relation in uniaxial
tension (where gp ¼ 0) between the flow stress and the material
stress–strain curve, as
qS ¼ rref f ðepÞ=ðMalbÞ
� �2

; ð6Þ

where rref is a reference stress and f is a non-dimensional function
of plastic strain ep determined from the uniaxial stress–strain curve.
Substituting in (5), rflow yields:

rflow ¼ rref

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2ðepÞ þ lgp

q
; ð7Þ

where l is the intrinsic material length that provides a combination
of the effects of elasticity (l), plasticity (rref ), and atomic spacing (b)
and is given by:

l ¼ M2ra2 l
rref

� �2

b ¼ 18a2 l
rref

� �2

b: ð8Þ

According to Gao et al. (1999), the effective plastic strain
gradient gp is given by:

gp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
gp

ijkg
p
ijk

r
; ð9Þ

where the third-order tensor gp
ijk is obtained by:

gp
ijk ¼ ep

ik;j þ ep
jk;i � ep

ij;k; ð10Þ

and the tensor for plastic strain equals:

ep
ij ¼

Z
_ep

ijdt: ð11Þ

To avoid higher-order stresses, Huang et al. (2004) used a vis-
coplastic formulation that gives the plastic strain rate _ep in terms
of the effective stress re rather than its rate _re. Also, to remove
the strain-rate- and time-dependence, a viscoplastic-limit is used
by replacing the reference strain with the effective strain rate _e:

_ep ¼ _e
re

rref

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2ðepÞ þ lgp

q
2
64

3
75

m

: ð12Þ

This procedure is merely for mathematical convenience and dif-
ferences are negligible for a large value of the rate-sensitivity expo-
nent (m P 20). Considering that the volumetric- and deviatoric-
strain rates are related to the stress rate in the same way as in clas-
sical plasticity, the constitutive equation of the CMSG theory
yields:

_rij ¼ K _ekkdij þ 2l _e0ij �
3 _e

2re

re

rflow

� �m

_r0ij
	 


: ð13Þ

As it is based on the Taylor dislocation model, which represents
an average of dislocation activities, the CMSG theory is only appli-
cable at a scale much larger than the average dislocation spacing.
For common values of dislocation density in metals, the lower limit
of physical validity of the SGP theories based on Taylor’s disloca-
tion model is approximately 100 nm.

3. Crack-tip fields with infinitesimal strains

Crack-tip fields are evaluated in the framework of the finite ele-
ment method by a boundary-layer formulation, where the crack
region is contained by a circular zone and a mode-I load is applied
at the remote circular boundary through a prescribed
displacement:

uðr; hÞ ¼ KI
1þ m

E

ffiffiffiffiffiffiffi
r

2p

r
cos

h
2

� �
ð3� 4m� coshÞ; ð14Þ

vðr; hÞ ¼ KI
1þ m

E

ffiffiffiffiffiffiffi
r

2p

r
sin

h
2

� �
ð3� 4m� coshÞ; ð15Þ
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u and v being the horizontal and vertical components of the
displacement boundary condition, respectively; r and h the radial
and angular coordinates of a polar coordinate system centered at
the crack tip, E and m the elastic properties of the material, and
KI the stress intensity factor that quantifies the remote applied
load.

The material model is implemented in the commercial finite
element package ABAQUS via its user-material subroutine UMAT.
Since higher-order boundary conditions are not involved, the
governing equations of the CMSG theory are essentially the same
as those in conventional plasticity. The plastic strain gradient is
obtained by numerical differentiation within the element: the
plastic strain increment is interpolated through its values at the
Gauss integration points in the isoparametric space and afterwards
the increment in the plastic strain gradient is calculated by differ-
entiation of the shape function. Another possible implementation
scheme lies in using C0 finite elements incorporating the effect of
the strain gradient as an extension of the classical FE formulation
(Swaddiwudhipong et al., 2006a,b).

Plane strain conditions are assumed and only the upper half of
the circular domain is modeled because of symmetry. An outer
radius of R = 42 mm is defined and the entire specimen is
discretized using 1580 eight-noded quadrilateral plane-strain
elements with reduced integration (CPE8R). As seen in Fig. 1, to
accurately characterize the strain-gradient effect, a very fine mesh
is used near the crack tip, where the length of the smallest element
is approximately 10 nm.

To compare and validate our numerical implementation, we
have employed the same material properties considered by Qu
et al. (2004) in the present study. Thus, if the stress–strain relation
in uniaxial tension can be written as:

r ¼ rref f ðepÞ ¼ rY
E
rY

� �N

ep þ rY

E

� �N
; ð16Þ
Fig. 1. Finite element mesh for the boundary layer formulation.

Fig. 2. rhh distribution ahead of the crack tip for both CMSG and classical plasticity
KI ¼ 17:3rY

ffiffi
l
p
;rY ¼ 0:2% of E; m ¼ 0:3;N ¼ 0:2 and l ¼ 3:53 lm.
where rY is the initial yield stress and N is the strain hardening
exponent. rref ¼ rY E=rYð ÞN is the assumed reference stress, and

f ðepÞ ¼ ep þ rY=Eð Þð ÞN; the material parameters being rY ¼ 0:2% of
E; m ¼ 0:3;N ¼ 0:2;m ¼ 20; b ¼ 0:255 nm, and a ¼ 0:5, which give
an intrinsic material length of l ¼ 3:53 lm according to (8).

Fig. 2 shows the hoop stress rhh distribution ahead of the crack

tip (h ¼ 0�) under a remote load of KI ¼ 17:3rY

ffiffi
l
p

for both CMSG
and classical plasticity theories; rhh is normalized to the material
yield stress and the distance to the crack tip r ranges from
0.1 lm, the lower limit of CMSG plasticity, to 100 lm. As depicted
in Fig. 2, the stress-field predicted by the CMSG theory agrees with
the estimations of Hutchinson, Rice, and Rosengren (HRR) away
from the crack tip, but becomes much larger within 1 lm distance
from it. Indeed, the stress level in the CMSG theory at r ¼ 0:1 lm is
equal to 12rY , which is high enough to trigger cleavage fracture as
discussed by Qu et al. (2004). Results agree with those obtained by
Qu et al. (2004) and Jiang et al. (2001) for the CMSG and MSG the-
ories, respectively, proving that higher-order boundary conditions
do not influence crack-tip fields within its physical domain and
thus validating the present numerical implementation. Note that
the crack-tip stress-elevation obtained by the mechanism-based
theory quantitatively agrees with the predictions of the phe-
nomenological approach, but with length parameters 4–5 times
the corresponding quantity in the Fleck–Hutchinson theory:
lMSG � ð4� 5ÞlSG (see Wei and Qiu, 2004).

A parametric study covering several material properties,
applied loads, and constraint conditions is conducted as a function
of physical inputs to determine the influence of the strain gradient
on crack-tip fields. As shown in Fig. 2, with the aim of quantifying
the size of the region that is affected by the plastic size effect, the
distance over which the stress is significantly higher than that
predicted by conventional plasticity (rCMSG > 1:5rHRR) is defined
by rSGP . Differences between the stress field obtained at a given point
in the crack-tip region, for the CMSG theory (rCMSG), and the HRR
field (rHRR) will depend on the following dimensionless terms:

rCMSG

rHRR
¼ f

rY

E
;N; m;

l
R
;

KI

rY

ffiffi
l
p

� �
: ð17Þ

The material properties considered in Fig. 2 are taken as refer-
ence values and to avoid confusion as its corresponding variables
are denoted with an asterisk. Also, to quantify the plastic size effect
under different crack-tip constraint conditions, the stress-fields are
evaluated through a modified boundary layer (MBL) formulation
where the remote boundary is also dependent on the elastic
T-stress (Betegon and Hancock, 1991):
theories in small strains, r being the distance to the crack tip in log scale for
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uðr; hÞ ¼ KI
1þ m

E

ffiffiffiffiffiffiffi
r

2p

r
cos

h
2

� �
ð3� 4m� coshÞ þ T

1� m2

E

� �
Rcosh;

ð18Þ

vðr; hÞ ¼ KI
1þ m

E

ffiffiffiffiffiffiffi
r

2p

r
sin

h
2

� �
ð3� 4m� coshÞ � T

mð1þ mÞ
E

� �
Rsinh:

ð19Þ
Fig. 3. Distance ahead of the crack tip where the strain gradient significantly influences
stress rY , (c) strain hardening exponent N, (d) Poisson’s ratio m, (e) intrinsic material len
Fig. 3(a) shows the size of the domain influenced by the strain
gradient plotted as a function of the applied load for the same con-
figuration and material properties as above with rSGP normalized to
the outer radius R and the normalized applied stress intensity fac-

tor going from KI ¼ 30r�Y
ffiffiffiffi
l�
p

to KI ¼ 300r�Y
ffiffiffiffi
l�
p

. The trend described
by rSGP could be justified by the influence of geometrically neces-
sary dislocations on plastic resistance. Since, as can be seen in (7)
and (13), the plastic strain gradient gp is an internal variable of
the stress distribution in small strains as a function of (a) applied load KI , (b) yield
gth l and (f) T-stress.
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the constitutive equation of the CMSG theory which acts to
increase the tangent modulus, hence reducing the plastic strain
rate. Therefore, the plastic size effect translates into an additional
hardening law, which causes an increase of the stress level that
is enhanced as the applied load increases. Maintaining small-scale
yielding (SSY) conditions, three load levels are considered in the
analysis of subsequent parameters: KI ¼ 0:12r�Y

ffiffiffi
R
p

;KI ¼ 0:6r�Y
ffiffiffi
R
p

and KI ¼ 1:2r�Y
ffiffiffi
R
p

.
Fig. 3(b) shows the plots for the normalized relation between

rSGP and the material elastic properties for different values of the
yield stress rY . The results show that as the value of the yield stress
increases, the length of the domain where crack-tip fields are influ-
enced by the size effect decreases. This is due to the fact that a
higher value of rY causes a reduction in plastic deformation, hence
downsizing the interval in which the strain gradient influences the
tangent modulus. Note also that while an increase in the value of
rY translates into a higher rflow in conventional plasticity, the mag-
nitude of the term accounting for the strain-gradient effect in (7) is
independent of the material yield stress since the intrinsic material
length l (8) also depends on rY .

Fig. 3(c) illustrates the normalized distance over which the
strain gradient significantly influences the stress distribution as a
function of the strain hardening exponent N, with N values varying
between 0.1 and 0.4. As seen in Fig. 3(c), the higher the work-
hardening degree of the material the lower the extension of the
influence of the plastic size effect on crack-tip fields. Since, as
shown by Shi et al. (2001) for the MSG theory and unlike the
HRR field, the power of stress-singularity in CMSG plasticity is
independent of N. This is because the strain gradient becomes
more singular than the strain near the crack tip, and it dominates
the contribution to the flow stress in (7), implying that the density
of geometrically necessary dislocations qG around the crack tip is
significantly larger than the density of statistically stored disloca-
tions qS.
Fig. 4. Finite element mesh for the boundary layer formulation under large
deformations: (a) complete model and (b) vicinity of the crack.

Fig. 5. rhh distribution ahead of the crack tip for both CMSG and classical plasticity th
KI ¼ 17:3rY

ffiffi
l
p
;rY ¼ 0:2% of E; m ¼ 0:3;N ¼ 0:2, and l ¼ 3:53 lm.
Fig. 3(d) shows the variation of the normalized magnitude of
the domain influenced by the size effect for different values of
the Poisson’s ratio m (0.2–0.45). The results show that an increase
in the Poisson’s ratio leads to a reduction in the extension of the
differences caused by the plastic size effect. This is a result of the
Poisson’s ratio influence on plastic deformation and its weight on
the intrinsic material length (8).

In Fig. 3(e) the normalized distance ahead of the crack tip,
where the strain gradient influences the stress distribution, is plot-
ted as a function of the intrinsic material length l. A range of values
for l of 0.1–100 lm is considered, since the scale at which the plas-
tic size effect is observed is on the order of microns (Fleck and
Hutchinson, 1993), and corresponds to the range of values that
can take l according to (8) for material properties common to
metals. As expected, higher values of l also result in higher values
of rSGP since the influence of the term associated with the strain
gradient inside the square root in (7) increases.

Fig. 3(f) shows the variation of the normalized size of the
domain influenced by the strain gradient for different constraint
situations. As can be seen, rSGP decreases as the constraint level
increases because of the plastic-zone size dependence on the elas-
tic T-stress (Wang, 1991). However, the length of the domain
where crack-tip fields are influenced by the size effect shows very
low sensitivity to different crack-tip constraint conditions since
changes on the T-stress value entail the same effect in both CMSG
and HRR fields: negative T-stresses lead to a significant downward
shift in the stress fields whereas positive values of T slightly
increase the stress level near the crack.
4. Crack-tip fields with finite strains

Stress distributions in the vicinity of the crack are obtained in
the framework of the finite deformation theory. Rigid body rota-
tions for the strains and stresses are conducted by Hughes and
Winget (1980) algorithm and the strain gradient is obtained from
the deformed configuration since the infinitesimal displacement
assumption is no longer valid.

The initial configuration and the background mesh of the
boundary layer formulation are shown in Fig. 4. A very fine mesh
of 6134 CPE8R elements is used to obtain accurate results. As seen
in Fig. 5, the hoop stress rhh distribution ahead of the crack line is
obtained for both the CMSG and classical plasticity theories for the
same material properties and loading conditions as in Fig. 2.

In classical plasticity (McMeeking, 1977), large strains at the
crack tip cause the crack to blunt, which reduces the stress
triaxiality locally. However, because of the strain-gradient
eories in large deformations, r being the distance to the crack tip in log scale for



Fig. 6. Distance ahead of the crack tip where the strain gradient significantly influences the stress distribution under small (dashed lines) and large (solid lines) strains as a
function of (a) applied load KI , (b) yield stress rY , (c) strain hardening exponent N, (d) Poisson’s ratio m, (e) intrinsic material length l, and (f) T-stress. The material properties
considered in Fig. 2 are considered as the reference values ð�Þ.
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contribution to the work-hardening of the material, this behavior
is not appreciated when the plastic size effect is considered. As
proved by McMeeking (1977), in conventional plasticity the crack-
opening stress reaches a peak at approximately the same distance
from the crack tip as the onset of the asymptotic behavior of the
plastic-strain distribution. Therefore, as seen in Fig. 5, the strain
gradient influences the stress distribution of the CMSG theory at
approximately the same distance where a maximum of rhh is
obtained in conventional plasticity, significantly increasing the
differences between the stress distributions of the SGP and classi-
cal plasticity theories; the magnitude of the distance where these
differences occur: rSGP is one order of magnitude higher than that
presented in Fig. 2.
To quantify the domain of influence of the strain gradient under
large deformations, a parametric study is conducted. Furthermore,
with the aim of establishing a comparison, results are obtained in
the framework of the infinitesimal deformation theory; mimicking
material properties and loading conditions. The variation of the
normalized distance over which the strain gradient significantly
influences the stress distribution-as a function of material proper-
ties, constraint conditions, and the applied load-is plotted in Fig. 6.
Following the works by McMeeking (1977), a relation between the

crack tip and outer radii (R=r ¼ 105) is considered and a sufficiently

higher upper bound for the load range (KI ¼ 1:2r�Y
ffiffiffi
R
p

) is chosen to
ensure a final blunting five times larger than the initial radius.



Fig. 7. Ratio between the rhh predictions of CMSG and classical plasticity at r ¼ 0:1 lm ahead of the crack tip (h ¼ 0) as a function of the applied load for (a) small strains and
sharp crack and (b) large strains and blunted crack. The material properties are the same as those in Fig. 2.
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Since the same range of values used for each parameter in Section 3
is also considered in this case, results obtained can be compared
with those shown in Fig. 4.

The trends shown in Fig. 6 for both large (solid lines) and small
(dashed lines) strains are the same as those obtained for the para-
metric analysis in Section 3. However, significantly higher values of
rSGP are obtained in all cases when large deformations are consid-
ered. These results reveal that even in the case of a very small load
(KI ¼ 0:12r�Y

ffiffiffi
R
p

), accounting for large strains brings a relatively
meaningful influence of the strain gradient. These differences with
respect to the predictions that could be expected from the classical
plasticity theory are much higher for load levels relevant to frac-
ture and damage in metals (KI ¼ 0:6r�Y

ffiffiffi
R
p

and KI ¼ 1:2r�Y
ffiffiffi
R
p

).
Moreover, the results show a high sensitivity of the plastic size
effect to the material properties and the applied load, so that a
parametric study within the finite deformation theory is essential
to rationally assess the need to incorporate an intrinsic material
length in the continuum analysis.
5. Discussion

The parametric study shows that higher values of the applied
load and the intrinsic material length increase the influence of
the strain gradients on crack-tip fields, whereas the opposite is true
for the yield stress; the strain hardening exponent and the Pois-
son’s ratio, being rSGP less sensitive to the latter parameter. Results
concerning the yield stress are especially relevant since the hydro-
static stress follows the same trends. Therefore, the plastic size
effect could strongly influence the process of hydrogen embrittle-
ment, which severely degrades the fracture resistance of high
strength steels. This is due to the central role that the stress field
close to the crack tip plays on both hydrogen concentration and
interface decohesion (Lee and Gangloff, 2007). Also, while results
obtained within the infinitesimal deformation theory show that
the effect of plastic strain gradient is negligible for higher values
of rY , which are common to high strength metallic alloys, strong
differences arise between the stress fields of SGP and conventional
plasticity theories when large strains are considered. This demon-
strates the need to include the plastic size effect in the modeliza-
tion of hydrogen-assisted cracking in metals. It is important to
note that hydrogen-assisted damage occurs very close to the crack
tip, the critical distance being lower than 1 lm (see e.g. Gangloff,
2003) where the magnitude of stress elevation due to the influence
of the strain gradient is significant. The ratio between the CMSG
and the classical plasticity predictions is plotted in Fig. 7, where
one can also notice that much higher values are obtained when
large strains are considered.
Previous works established that the domain where SGP effects
can significantly elevate stresses over the HRR result for small
strains was confined to distances less than 10 lm from the crack
tip (Komaragiri et al., 2008). However, results shown in Section 4
reveal that, when finite strains are considered, stress elevations
persist to distances that could be one order of magnitude higher
than those obtained within the infinitesimal deformation theory.
This could have important implications on fracture and damage
modeling of metals since the area where the strain gradient would
significantly alter the crack-tip fields could span several voids
ahead of the crack, and therefore influence various damage
mechanisms that are characteristic of ductile fracture. Thus, results
obtained from this work reveal that in the presence of a crack,
near-tip stress-elevation that are predicted by SGP theories could
significantly influence the probability of cleavage fracture in duc-
tile-to-brittle transition analyzes (Betegon et al., 2008), the predic-
tion of stress-controlled nucleation of voids at large inclusions
(Chu and Needleman, 1980), the value of the parameters intrinsic
to micromechanical failure models (Gurson, 1975; Tvergaard and
Needleman, 1984) when fitted through a top-down approach, or
the onset of damage in stress-related coalescence criteria
(Thomason, 1990). This is unlike previous studies on cleavage frac-
ture and void growth, which did not consider the influence of the
plastic strain gradient in modelization.

Results concerning the MBL formulation (Figs. 3(f) and 6(f))
reveal that the aforementioned influence of the strain gradient
on crack-tip fields remains under different constraint conditions
since the size of the domain where significant differences between
the stress fields of the SGP and the conventional plasticity theories
arise is almost insensitive to changes in the T-stress value.
6. Conclusions

In this work, the influence of SGP theories on the fracture pro-
cess of metallic materials has been numerically analyzed for both
small and large deformations. The extensive parametric study con-
ducted relates material properties, constraint scenarios, and
applied loads with the physical distance ahead of the crack tip
where the strain gradient significantly influences the stress distri-
bution, thus identifying the conditions where the plastic size effect
should be included in crack-tip damage modeling.

Moreover, the incorporation of large strains and finite geometry
changes in the numerical model reveals a meaningful increase in
the domain influenced by the size effect, which may indicate the
need to take consider the influence of the plastic strain gradient
in the modelization of damage mechanisms, which has not been
considered so far in the literature.
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