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a b s t r a c t 

Crack advance from short or long pre-cracks is predicted by the progressive failure of a co- 

hesive zone in a strain gradient, elasto-plastic solid. The presence of strain gradients leads 

to the existence of an elastic zone at the tip of a stationary crack, for both the long crack 

and the short crack cases. This is in sharp contrast with previous asymptotic analyses of 

gradient solids, where elastic strains were neglected. The presence of an elastic singularity 

at the crack tip generates stresses which are sufficiently high to activate quasi-cleavage. 

For the long crack case, crack growth resistance curves are predicted for a wide range of 

ratios of cohesive zone strength to yield strength. Remarkably, this feature of an elastic 

singularity is preserved for short cracks, leading to a severe reduction in tensile ductility. 

In qualitative terms, these predictions resemble those of discrete dislocation calculations, 

including the concept of a dislocation-free zone at the crack tip. 

© 2019 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Conventional plasticity theories, such as J 2 flow theory, predict that the tensile stress state ahead of a mode I crack in an

elastic-perfectly plastic solid is on the order of three times the yield stress σ Y . The factor of 3 arises from plastic constraint

effects, and is explained in terms of the Prandtl stress field for a flat punch, see for example Rice (1968) . Ductile fracture by

void growth is promoted by this high hydrostatic stress ( McClintock, 1968; Rice and Tracey, 1969; Hancock and Mackenzie,

1976 ). This level of tensile stress is far below the cleavage strength (typically on the order of 10 σ Y ) yet cleavage fracture in

the presence of significant plastic flow has been observed, see for example Elssner et al. (1994) , Bagchi and Evans (1996) and

Korn et al. (2002) . Additional physics is needed to explain the occurrence of cleavage failure in the presence of plasticity. As

argued by Wei and Hutchinson (1997) and Jiang et al. (2010) , cleavage can occur if the stress elevation due to plastic strain

gradients is sufficient to attain the ideal strength. This mechanism is reassessed in the present study. 

The micromechanical basis for strain gradient effects is the elevation of dislocation-based hardening, and thereby of

stress levels, as first appreciated by Nye (1953) and Cottrell (1964) . Additional, dislocation-based arguments were advanced

by Ashby (1970) and Brown and Stobbs (1976) . In broad terms, plastic strain gradients demand the existence of geometrically

necessary dislocations (GNDs), and this elevation in dislocation density increases the flow strength by mechanisms such as

forest hardening ( Fleck et al., 1994 ). Such strain gradient strengthening can explain a wide range of phenomena such as
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the Hall-Petch size effect, see for example Shu and Fleck (1999) . The Hall–Petch effect is based on grain-to-grain plastic

anisotropy such that strain gradients are present at the grain-to-grain level when the macroscopic strain field is uniform (or

non-uniform). Additional strain gradient effects arise when the macroscopic strain field is non-uniform, as near a crack tip,

or in simple test geometries such as a wire in torsion ( Fleck et al., 1994 ), a beam in bending ( Stölken and Evans, 1998 ) or

at the tip of an indenter ( Stelmashenko et al., 1993; Poole et al., 1996; Nix and Gao, 1998 ). A large literature has emerged

on strain gradient plasticity (SGP) formulations ( Aifantis, 1984; Fleck and Hutchinson, 1993; Gao et al., 1999; Fleck and

Hutchinson, 2001 ). The pivotal step in constructing these phenomenological theories is to express the plastic work in terms

of both plastic strain and plastic strain gradient, thereby introducing a length scale into the material description. Recent

SGP models incorporate both dissipative (that is, unrecoverable) and energetic (that is, recoverable) gradient contributions

( Gudmundson, 2004; Gurtin and Anand, 2005; Fleck and Willis, 2009a,b ). 

Recently, the effect of strain gradients in elevating crack tip stress levels has been emphasized in a number of numerical

investigations on stationary cracks ( Jiang et al., 2001; Komaragiri et al., 2008; Martínez-Pañeda and Betegón, 2015; Martínez-

Pañeda and Niordson, 2016 ). It has been suggested that this elevation in stress influences fatigue damage ( Sevillano, 2001;

Brinckmann and Siegmund, 2008; Pribe et al., 2019 ), microvoid cracking ( Tvergaard and Niordson, 2008 ), and hydrogen

embrittlement ( Martínez-Pañeda et al., 2016a; 2016b ). Stress elevation due to plastic strain gradients is also relevant to

propagating cracks. Wei and Hutchinson (1997) , and Wei et al. (2004) , quantified the dependence of steady state frac-

ture toughness K SS upon material length scale � for the ( Fleck and Hutchinson, 1997 ) gradient theory and ( Gao et al.,

1999 ) gradient theory, respectively. Recently, Seiler et al. (2016) computed the initial stages of the crack growth resistance

curve for a viscoplastic, strain gradient plasticity theory ( Huang et al., 2004 ), and investigated the dependence of R-curves

on viscoplastic constitutive parameters and on the intrinsic material length scale. 1 The recent strain gradient theory of

Gudmundson (2004) (see also Gurtin and Anand, 2005; Fleck and Willis, 2009a ) has additional features that can signifi-

cantly influence crack growth resistance: this motivates the present paper. First, the recent asymptotic analysis of Martínez-

Pañeda and Fleck (2019) for a stationary crack in a dissipative strain gradient solid reveals the existence of an elastic crack

tip zone, reminiscent of a dislocation-free zone ( Suo et al., 1993 ). Second, both energetic and dissipative length scales enter

the constitutive relations; their influence on fracture problems has not yet been assessed. Both features are explored here

in the context of both stationary and propagating cracks. In addition, we explore the effect of crack length in relation to the

material length scales and to the fracture length scale of the crack tip process zone. Thereby, insight is gained into the role

of strain gradients on the behaviour of short cracks. 

The present study is structured as follows. The constitutive model is presented in Section 2 , including the phenomeno-

logical formulation of strain gradient plasticity, and the implicit finite element implementation. The asymptotic response at

the tip of a stationary crack in a strain gradient solid is investigated in Section 3 . Crack growth is explored in Section 4 in

two steps. First, R-curves are computed for a long crack by means of a cohesive zone, and the relative role of energetic ver-

sus dissipative strain gradient terms is quantified. Second, the short crack case is examined and we compute the sensitivity

of the macroscopic stress versus strain response to crack length a and to the material length scale � . The sensitivity of the

tensile ductility to the presence of a short crack is emphasized: it is shown that strain gradients play a major role. Finally,

concluding remarks are given in Section 5 . 

2. Strain gradient plasticity 

2.1. Flow theory 

2.1.1. Variational principles and balance equations 

We adopt a small strain formulation. The total strain rate ˙ ε i j is the symmetric part of the spatial gradient of the dis-

placement rate ˙ u i , such that ˙ ε i j = 

(
˙ u i, j + ˙ u j,i 

)
/ 2 ; ˙ ε i j decomposes additively into an elastic part, ˙ ε e 

i j 
, and a plastic part, ˙ ε p 

i j 
.

Write σ ij as the Cauchy stress, q ij as the so-called micro-stress tensor (work-conjugate to the plastic strain ε p 
i j 

) and τ ijk as

the higher order stress tensor (work-conjugate to the plastic strain gradient ε p 
i j,k 

). For a solid of volume V and surface S , the

principle of virtual work reads, ∫ 
V 

(
σi j δε 

e 
i j + q i j δε 

p 
i j 

+ τi jk δε 
p 

i j,k 

)
dV = 

∫ 
S 

(
T i δu i + t i j δε 

p 
i j 

)
dS (1)

The right-hand side of Eq. (1) includes both conventional tractions T i and higher order tractions t ij . Write σ ′ 
i j 

as the

deviatoric part of σ ij , and write n k as the unit outward normal to the surface S . Then, upon making use of the Gauss

divergence theorem, equilibrium within V reads 

σi j, j = 0 

τi jk,k + σ ′ 
i j − q i j = 0 (2)
1 We note in passing that the ( Huang et al., 2004 ) theory is a lower order theory that neglects higher order stresses. The present study assumes the 

presence of higher order stresses that are work conjugate to plastic strain gradients. 
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and on S reads, 

T i = σi j n j 

t i j = τi jk n k (3) 

2.1.2. Constitutive description 

Gudmundson (2004) and Fleck and Willis (2009a) explain that both q ij and τ ijk can have dissipative and energetic con-

tributions: q i j = q D 
i j 

+ q E 
i j 

and τi jk = τD 
i jk 

+ τ E 
i jk 

, where the superscripts D and E denote dissipative and energetic, respectively.

In general, the Cauchy stress σ ij , along with q E 
i j 

and τ E 
i jk 

, are derived from the bulk free energy of the solid � . In the present

study, we shall assume that q E 
i j 

vanishes and thus limit attention to a solid that displays isotropic hardening in the absence

of a strain gradient. The significance of a finite value of q E 
i j 

(with τD 
i jk 

≡ 0 ) has been explored in the recent study of Martínez-

Pañeda and Fleck (2018) ; here, we limit our focus to the role of kinematic hardening associated with the gradient of plastic

strain. Accordingly, the bulk free energy � of the solid depends upon the elastic strain ε e 
i j 

and the plastic strain gradient

ε p 
i j,k 

but not upon the plastic strain ε p 
i j 
, such that 

�
(
ε e i j , ε 

p 

i j,k 

)
= 

1 

2 

ε e i j C i jkl ε 
e 
kl + 

1 

2 

μL 2 E ε 
p 

i j,k 
ε p 

i j,k 
(4) 

Here, C ijkl is the isotropic elastic stiffness tensor, μ is the shear modulus and L E is the energetic constitutive length param-

eter. Upon noting that 

δ� = σi j δε 
e 
i j + τ E 

i jk δε 
p 

i j,k 
(5) 

the energetic stress quantities follow as 

σi j = 

∂�

∂ε e 
i j 

= C i jkl 

(
ε kl − ε p 

kl 

)
(6) 

τ E 
i jk = 

∂�

∂ε p 
i j,k 

= μL 2 E ε 
p 

i j,k 
(7) 

Now consider plastic dissipation. For both the rate dependent case, and the rate independent limit, we define the plastic

work rate as 

˙ W 

p = 	 ˙ E p (8) 

where 	 is an effective stress, work-conjugate to a gradient-enhanced effective plastic strain rate ˙ E p . The latter is defined

phenomenologically as 

˙ E p = 

(
2 

3 

˙ ε p 
i j 

˙ ε p 
i j 

+ L 2 D ˙ ε 
p 

i j,k 
˙ ε p 
i j,k 

)1 / 2 

(9) 

where L D is the dissipative length scale. Upon noting that 

δ ˙ W 

p = 	δ ˙ E p = q D i j δ ˙ ε p 
i j 

+ τ D 
i jk δ ˙ ε p 

i j,k 
(10) 

the constitutive relations for the dissipative stress quantities read 

q D i j = 

2 

3 

	

˙ E p 
˙ ε p 
i j 

and τ D 
i jk = 

	

˙ E p 
L 2 D ˙ ε 

p 

i j,k 
(11) 

The effective stress 	 is readily obtained by substitution of (11) into (9) to give 

	 = 

(
3 

2 

q D i j q 
D 
i j + 

1 

L 2 
D 

τ D 
i jk τ

D 
i jk 

)1 / 2 

(12) 

2.2. Numerical implementation 

A robust and efficient finite element framework is now presented in order to model crack propagation in a rate inde-

pendent gradient plasticity solid. An implicit time integration scheme is developed for both energetic and dissipative higher

order contributions. 

Gradient plasticity theories are commonly implemented within a rate-dependent setting, thereby taking advantage of 

computational advantages and circumventing complications in the corresponding time independent model associated with 

identifying active plastic zones (see, for example, Nielsen and Niordson, 2014 ). The mathematical foundations and associated

variational structure for both the rate dependent and rate independent cases are given by Fleck and Willis (2009a,b) . Here,

we make use of the viscoplastic law by Panteghini and Bardella (2016) , and exploit the fact that it adequately approximates
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the rate-independent solution in a computationally efficient manner. The effective flow resistance is related to the gradient-

enhanced effective plastic flow rate through a viscoplastic function, 

	 = σF ( E 
p ) V ( ̇ E p ) (13)

where the current flow stress σ F depends upon an initial yield stress σ Y and on E p via a hardening law. Here, we adopt the

following isotropic hardening law, 

σF = σY 

(
1 + 

E E p 

σY 

)N 

(14)

in terms of the Young’s modulus E and strain hardening exponent N (0 ≤ N ≤ 1). Following Panteghini and Bardella (2016) the

viscoplatic function V ( ̇ E p ) is defined as 2 

V ( ̇ E p ) = 

{
˙ E p / ( 2 ̇ ε 0 ) if ˙ E p / ̇ ε 0 ≤ 1 

1 − ˙ ε 0 / 
(
2 ̇

 E p 
)

if ˙ E p / ̇ ε 0 > 1 

(15)

in terms of a reference strain rate ˙ ε 0 . A sensitivity study for a sufficiently small choice of ˙ ε 0 is conducted to ensure that

the rate independent limit is attained in all the results presented subsequently. The reader is referred to Panteghini and

Bardella (2016) for a more detailed interpretation of ˙ ε 0 . 
The finite element scheme takes displacements and plastic strains as the primary kinematic variables, in accordance with

the theoretical framework. C 0 -continuous finite elements are adopted since the differential equations are of second order.

The displacement field u i at position x is written in terms of the shape functions N 

n 
i 

and associated nodal displacements U 

n ,

where n denotes the degree of freedom, such that 

u i = 

D u ∑ 

n =1 

N 

n 
i U 

n (16)

Here, D u is the total number of degrees of freedom for the nodal displacements. Likewise, the plastic strain field ε p 
i j 

is

expressed in terms of the shape functions M 

n 
i j 

and associated nodal quantities ε n p as 

ε p 
i j 

= 

D ε p ∑ 

n =1 

M 

n 
i j ε 

n 
p (17)

where D ε p denotes the total number of degrees of freedom for the nodal plastic strain components. Quadratic shape func-

tions are employed for interpolation of both displacements and plastic strains. Accordingly, the plastic strain gradient ε p 
i j,k

and the total strain εij are related to the nodal plastic strains and displacements through M 

n 
i j,k 

and the strain-displacement

matrix B n 
i j 
, respectively; see the Supplementary Material for further details. 

The non-linear system of equations is solved iteratively by the Newton–Raphson method from time step t to ( t + 
t ) [
u 

ε p 

]
t+
t 

= 

[
u 

ε p 

]
t 

−
[

K u,u K u,ε p 

K ε p ,u K ε p ,ε p 

]−1 

t 

[
R u 

R ε p 

]
t 

(18)

where the residuals comprise the out-of-balance forces, 

R 

n 
u = 

∫ 
V 

σi j B 

n 
i j d V −

∫ 
S 

T i N 

n 
i d S (19)

R 

n 
ε p = 

∫ 
V 

[
(q i j − σ ′ 

i j ) M 

n 
i j + τi jk M 

n 
i j,k 

]
d V −

∫ 
S 

t i j M 

n 
i j,k d S (20)

and the components of the consistent stiffness matrix K are obtained by differentiating the residuals with respect to the

incremental nodal variables. Details are given in the Supplementary Material. 

The numerical scheme is implemented in the commercial finite element package ABAQUS by means of a user ele-

ment subroutine. To the best of the authors’ knowledge, it constitutes the first Backward Euler implementation of the

( Gudmundson, 2004 ) class of strain gradient plasticity theories, including energetic and dissipative higher order contri-

butions. 3 The reader is referred to Danas et al. (2012) and Dahlberg and Faleskog (2013) for implicit implementations for

the case of dissipative higher order stresses (with τ E 
i jk 

= 0 ). 
2 This choice has the advantage that the consistent stiffness matrix, as defined in the Supplementary Material, remains finite as ˙ E p → 0 . 
3 The code is made freely available at www.empaneda.com , hoping to facilitate research and enabling readers to reproduce the results. 

http://www.empaneda.com
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3. Stationary crack analysis 

We assume that small scale yielding conditions prevail and we make use of a boundary layer formulation to prescribe a

remote K field. Consider a crack with its tip at the origin and with the crack plane along the negative axis of the Cartesian

reference frame ( x, y ). The elastic response of the solid is characterised by the Young’s modulus E and Poisson’s ratio ν .

Then, an outer K field is imposed by prescribing nodal displacements on the outer periphery of the mesh as 

u i = 

K 

E 
r 1 / 2 f i ( θ, ν) (21) 

where the subscript index i equals x or y , and the functions f i ( θ , ν) are given by 

f x = 

1 + ν√ 

2 π
( 3 − 4 ν − cos θ ) cos 

(
θ

2 

)
(22) 

and 

f y = 

1 + ν√ 

2 π
( 3 − 4 ν − cos θ ) sin 

(
θ

2 

)
(23) 

in terms of polar coordinates ( r, θ ) centred at the crack tip. A representative value for the plastic zone size R p is given by

the Irwin expression 

R p = 

1 

3 π

(
K 

σY 

)2 

(24) 

for a stationary crack in an elastic, ideally plastic solid. Upon exploiting reflective symmetry about the crack plane, only half

of the finite element model is analysed. A mesh sensitivity study reveals that the domain is adequately discretised by means

of 5200 plane strain, quadratic, quadrilateral elements. The characteristic element size is R p /7500 and the outer radius of

the boundary layer is 50 0 0 R p , ensuring small scale yielding conditions. 

A representative small scale yielding solution is presented in Fig. 1 for the choice N = 0 . 1 , σY /E = 0 . 003 , and ν = 0 . 3 .

Insight is gained into the relative role of L E and L D by considering the three cases L E = L D = 0 . 05 R p , L E = 0 . 05 R p ( L D = 0 ),

and L D = 0 . 05 R p ( L E = 0 ). An elastic zone exists directly ahead of the crack tip if L E and/or L D is finite. The plastic strain

ε p yy reaches a plateau value over 0 < r < � , see Fig. 1 b. Consequently, the stress state within this crack tip zone is elastic in

nature. This finding is supported by a plot of tensile stress σ yy as a function of r directly ahead of the crack tip ( y = 0 ), see

Fig. 1 a. The stress component σ yy scales as r −1 / 2 for sufficiently small r . Likewise, the elastic strain component ε e yy scales

as r −1 / 2 for r / � < 1; from Hooke’s law and Fig. 1 it is clear that the elastic strain dominates the plastic strain ε e yy >> ε p yy .

Beyond the plastic zone ( r / R p > 1) the stress state again converges to the elastic K -field and σ yy scales as r −1 / 2 . Thus, both

an outer and an inner K field exist. The plastic strain distribution ε p yy (r) is relatively insensitive to the choice of values of L E 
and L D in Fig. 1 b. In all three cases, the plastic strain is almost constant over 0 < r < � . In their recent asymptotic analysis,

Martínez-Pañeda and Fleck (2019) find that the leading order terms of the plastic strain ε p yy along θ = 0 ◦ are 

ε p yy = A + Br 3 / 2 (25) 

for the case L D 	 = 0, L E = 0 , where ( A, B ) are functions of R p . In the present finite element study, it is also found that the

plastic strain is finite at the crack tip when energetic higher order terms are present. We note in passing that the plastic

strain is not sufficiently singular to contribute to the J -integral as the crack tip is approached. Instead, the J -integral is

determined solely by the elastic strain state near the crack tip. 

The relative insensitivity of the stationary crack response in Fig. 1 to the ratio L E / L D leads us to focus on a single reference

length scale L E = L D = � . The tensile stress σ yy directly ahead of the crack tip is shown in Fig. 2 a for selected values of � / R p ,

with �/R p = 0 corresponding to the conventional plasticity limit. In all cases, except for �/R p = 0 , the asymptotic stress state

is elastic in nature, with the tensile stress exhibiting an r −1 / 2 singularity. Now place a cohesive zone at the crack tip; then,

a cohesive zone strength ˆ σ on the order of 4 σ Y is sufficient to prevent crack advance in the conventional solid but not in

the strain gradient case. In broad terms, the presence of strain gradients elevates stress and diminishes the degree of plastic

straining near the crack tip. To illustrate this, the crack opening profile for the strain gradient solid is compared to that of

the conventional elasto-plastic solid ( �/R p = 0 ) and to that of an elastic solid in Fig. 2 b. The opening profile in the strain

gradient plasticity solid ( � > 0) is close to the elastic case as r → 0, and is close to the conventional elasto-plastic solid as

r / R p → 1. 

The above results for the asymptotic crack tip fields are in marked contrast to those obtained by Chen et al. (1999) . They

considered the asymptotic crack tip singular field for a mode I crack in a rigid power-law hardening strain gradient solid, as

introduced by Fleck and Hutchinson (1997) . Chen et al. (1999) neglected elastic strains by assuming, a priori, that the crack

tip plastic strain field dominates the elastic strains. They find that the crack tip plastic strain field scales as r N/ (N+1) in order

for the strain energy density to scale as r −1 as the crack tip is approached (thereby giving a finite value of the J -integral at

the crack tip). Consequently, the plastic strain vanishes as r → 0. The asymptotic analysis of Chen et al. (1999) carries over

directly to our case if we assume that elastic strains are negligible in comparison with plastic strains at the crack tip . But in so

doing, we find that the plastic strain vanishes at the crack tip and consequently the elastic strain vanishes at the crack tip
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Fig. 1. Finite element analysis of the asymptotic crack tip fields ( θ = 0 ◦), (a) tensile stress component σ yy , and (b) tensile plastic strain component ε p yy for 

selected length scale parameters. Material properties: σY /E = 0 . 003 , N = 0 . 1 , and ν = 0 . 3 . Small scale yielding conditions. 

Fig. 2. Response of a stationary crack for different length parameters L D = L E = �, (a) normalized tensile stress distribution ahead of the crack ( θ = 0 ◦), and 

(b) crack tip opening profile ( θ = 180 ◦). Material properties: σY /E = 0 . 003 , ν = 0 . 3 and N = 0 . 1 . Small scale yielding conditions. 
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Fig. 3. Cohesive zone description of fracture, (a) schematic representation, and (b) constitutive traction–separation relation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

also. This result is unphysical: the crack tip is sharp and will give rise to a strain concentration. We conclude that the elastic

strains must dominate the plastic strains as the crack tip is approached. Consequently, an elastic K -field exists at the crack

tip, such that the elastic strains and Cauchy stresses scale as r −1 / 2 . The finite element results fully support this finding, and

reveal that the crack tip plastic strain is finite. 

Chen et al. (1999) argued that the asymptotic field is not a physical representation over a small region (a small fraction

of � ) from the crack tip on the basis that the traction is negative in that zone. We draw an alternative conclusion: within a

zone of order � , the crack tip field is elastic in nature. The asymptotic field of Chen et al. (1999) has no zone of validity as

it neglects elastic straining. 

4. Analysis of a growing crack 

In the current study, we investigate crack growth from either a short or a long crack by making use of strain gradi-

ent plasticity theory. In the long crack case, R-curves are obtained and the present study thereby extends the results of

Tvergaard and Hutchinson (1992) by incorporating the role of plastic strain gradients. Failure by cleavage, by void growth

or by other mechanisms is idealised by an assumed traction T versus separation δ law along a cohesive strip directly ahead

of the crack tip, see Fig. 3 a. Following Tvergaard and Hutchinson (1992) , a trapezoidal shape is assumed for the T ( δ) rela-

tion, as characterised by three salient values of opening ( δ1 , δ2 , δc ) and a strength ˆ σ (see Fig. 3 b). We hold fixed the ratios

δ1 /δc = 0 . 15 and δ2 /δc = 0 . 5 , and thereby treat (δc , ˆ σ ) as the two primary parameters that define the cohesive zone law.

The work of fracture �0 is the area under the T ( δ) curve, as given by 

�0 = 

1 

2 

ˆ σ ( δc + δ2 − δ1 ) (26) 

It follows directly from the surface work terms on the right hand side of (1) that, in general, a cohesive zone can support

both tractions T i and higher order tractions t ij . We assume that the tensile traction T on the cohesive zone depends only

upon the crack opening displacement δ. Further, we assume that the higher order traction t ij vanishes on the surface of the

cohesive zone; this is a natural boundary condition in the finite element formulation. The use of a cohesive zone model

embedded within an elasto-plastic solid gives insight into both ductile fracture and cleavage by suitable choices of the

cohesive zone parameters ˆ σ and �0 . 

We proceed to evaluate the influence of crack length, material length scale � of the strain gradient solid, and a represen-

tative fracture process zone size 4 

R 0 = 

1 

3 π(1 − ν2 ) 

E�0 

σ 2 
Y 

(27) 

on the fracture response. Regimes of behaviour are sketched in non-dimensional space ( � / R 0 , R 0 / a ) in Fig. 4 a. Our analysis

spans the regimes of small scale yielding (for which an outer K -field exists), J -controlled fracture and large scale plasticity.

A representative crack tip plastic zone, computed at crack initiation, is shown in Fig. 4 b for the case of small scale yielding.

The plastic zone size is defined by the contour along which the von Mises effective stress equals the initial yield stress.

Crack growth resistance is assessed for three distinct regimes in ( � / R 0 , R 0 / a ) space, as shown by the ellipses in Fig. 4 a.

Section 4.2 deals with the fracture response of a strain gradient plasticity solid with a long crack while the mechanics of

short flaws and the influence of crack length on the fracture response are addressed in Section 4.3 . 
4 R 0 corresponds to the plastic zone size in a conventional solid at the onset of crack growth. 
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Fig. 4. Schematic diagram of the regimes and competing length scales involved in the fracture process of metals. Material properties: σY /E = 0 . 003 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. Boundary value problem 

We investigate crack initiation and subsequent growth in an edge-cracked plate loaded in uniaxial tension under plane

strain conditions, see Fig. 5 . The same geometry is used for the study of long and short pre-cracks. The specimen has

a height-to-width ratio of H/W = 4 and an initial crack length of a/W = 0 . 1 . The cohesive zone model outlined above is

employed to model crack initiation and growth. Following Wei and Hutchinson (1997) , micro-free boundary conditions t i j =
0 are adopted on the symmetry plane. Cohesive elements with 6 nodes and 12 integration points are implemented by means

of a user element (UEL) subroutine, as described elsewhere ( del Busto et al., 2017 ). The finite element mesh is refined ahead

of the initial crack tip to ensure that the element size is able to resolve the fracture process zone. Specifically, the model

consists of approximately 10 6 degrees of freedom and the characteristic element length equals R 0 /100. Post-processing of

the results is performed with Abaqus2Matlab ( Papazafeiropoulos et al., 2017 ). 

It is widely appreciated that elastic snap-back instabilities can arise when cohesive elements experience stiffness degra-

dation, complicating the modelling of the post-instability behaviour. The simultaneous reduction of the remote load and the

prescribed displacement inevitably triggers convergence problems in quasi-static finite element computations. A numerical

strategy to overcome these instabilities lies in prescribing a quantity that increases monotonically throughout the loading

history while making the remote load an output of the model ( Tvergaard, 1976; Segurado and LLorca, 2004 ). In the present

study, a control algorithm is used to prescribe the crack tip opening and obtain the displacement at the remote boundary

by ensuring global force equilibrium. Details are given in the Supplementary Material. 

4.2. Small scale yielding response 

The K calibration for the specimen geometry of Fig. 5 was determined as follows. Consider the elastic solid, absent a

cohesive zone and apply a uniform remote displacement u y = u ∞ on the top edge, with T x ≡ 0. A linear elastic finite element
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Fig. 5. Configuration of the edge cracked plate employed to model crack growth in the presence of short and long cracks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

calculation reveals that the average traction T̄ on the top edge is T̄ ≈ E ′ u ∞ /H where E ′ = E/ (1 − ν2 ) , assuming plane strain

conditions. A contour integral evaluation of the stress intensity factor K at the crack tip gives K = 1 . 15 ̄T 
√ 

πa . Thus, for the

small scale yielding case of limited crack tip plasticity, the remote K value for the geometry of Fig. 5 is given by, 

K = 

1 . 15 Eu 

∞ 

√ 

πa 

(1 − ν2 ) H 

(28) 

Small scale yielding prevails when, 

a > 2 . 5 

K 

2 

σ 2 
Y 

(29) 

in accordance with ASTM E1820. This places an upper limit on the value of u ∞ / H for small scale yielding; rearrangement of

(28) and (29) implies, 

u 

∞ 

H 

< 

σY (1 − ν2 ) 

1 . 8 

√ 

πE 
(30) 

This condition was satisfied in the following determination of the R-curve under small scale yielding conditions. Consider a

long crack subjected to a remote load K . Crack initiation occurs within the cohesive zone at a value of K equal to 

K 0 = 

(
E�0 

1 − ν2 

)1 / 2 

(31) 

Dimensional analysis implies that the crack growth resistance for a long crack depends on the following dimensionless

groups 

K 

K 0 

= F 

(

a 

R 0 

, 
ˆ σ

σY 

, 
� 

R 0 

; N, 
σY 

E 
, ν

)
(32) 

where ( N , σ Y / E , ν) are held fixed in the present study, along with the values of δ1 / δc and δ2 / δc in (26) . The computed crack

growth resistance curves for ˆ σ/σY = 3 . 8 and for selected values of the constitutive length scales L E = L D = �, relative to R 0 ,

are shown in Fig. 6 a. The influence of plastic strain gradients in lowering the fracture resistance is evident: the steepness

of the R-curve and the steady state value K SS / K 0 diminish with increasing � / R 0 . Seiler et al. (2016) considered the initial

stage of the R-curve for a visco-plastic solid whereby the viscoplastic strain rate ˙ ε V P scales as σ m where 1 < m < ∞ . They

showed that the sensitivity of the R-curve to the material length scale � increases with increasing m . In the present study

we consider the rate independent limit, m → ∞ , and a high sensitivity of the R-curve to length � is, indeed, observed. 

The crack tip opening angle has been used as a criterion for crack growth resistance in metallic alloys ( Kanninen and

Popelar, 1985 ). The dependence of the crack tip opening angle upon crack extension is shown in Fig. 6 b. Here, the crack

opening angle α, as defined in the inset of Fig. 6 b, is almost independent of 
a after an initial transient phase. The steady

state value of α decreases with increasing � / R 0 , consistent with the crack opening profile for a stationary crack, as shown in

Fig. 2 b. It is clear that the crack tip opening angle is sensitive to strain gradient effects. In turn, this is due to the sensitivity

of the plastic strain field to strain gradient effects. This is now explored in detail. 

The plastic field surrounding the tip of a crack propagating at steady state is examined in Fig. 7 . A von Mises measure of

plastic strain is defined as, 

ε p = 

(
2 

3 

ε p 
i j 
ε p 

i j 

)1 / 2 

(33) 
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Fig. 6. Crack growth resistance for different length parameters L D = L E = �, (a) R-curves, and (b) crack opening angle. Long crack a/R 0 = 125 . Material 

propert ies: δ1 /δc = 0 . 15 , δ2 /δc = 0 . 5 , ˆ σ/σY = 3 . 8 , σY /E = 0 . 003 , ν = 0 . 3 and N = 0 . 1 . 

Fig. 7. Effective plastic strain contours ahead of a propagating crack at steady state, (a) strain gradient plasticity, with L D = L E = � = 0 . 05 R 0 , and (b) con- 

ventional plasticity. Long crack a/R 0 = 125 . Material properties: δ1 /δc = 0 . 15 , δ2 /δc = 0 . 5 , ˆ σ/σY = 3 . 8 , σY /E = 0 . 003 , ν = 0 . 3 and N = 0 . 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

and its contours are plotted in Fig. 7 for strain gradient plasticity, with �/R 0 = 0 . 05 , and also for the conventional plasticity

case � = 0 . For the choice �/R 0 = 0 . 05 , plastic strains attain a plateau value of ε p /ε Y = 3 at a distance on the order of �

from the crack tip. Furthermore, the maximum level of plastic strain is not attained at the crack tip, a feature which also

observed in discrete dislocation plasticity ( Chakravarthy and Curtin, 2010 ). This contrasts with the conventional plasticity

case, see Fig. 7 b. In addition, plastic strains are approximately one order of magnitude larger than for the strain gradient

plasticity case. 

The dependence of K SS / K 0 upon ˆ σ/σY is given in Fig. 8 for selected values of � / R 0 . There is a qualitative change when

� / R 0 is increased from zero to a finite value. For �/R 0 = 0 , continued crack advance (at K = K SS ) is precluded for ˆ σ/σY > 4 ;

the level of crack tip stress is unable to overcome the cohesive strength when ˆ σ/σY ≥ 4 . In contrast, when strain gradients

are taken into account, the crack tip stresses can attain any value of cohesive strength, and K SS / K 0 increases monotonically

with increasing ˆ σ/σY . However, the degree of elevation of the R-curve, K SS / K 0 , decreases with increasing � / R 0 for any given

ˆ σ/σY ; this is consistent with the results shown in Fig. 6 a for the choice ˆ σ/σY = 3 . 8 . Recall that the choice of ˆ σ/σY ≈ 10

is representative of the mechanism of quasi-cleavage in metallic alloys: the crack tip advances by cleavage, but surrounded
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Fig. 8. Steady state toughness as a function of ˆ σ/σY for different length parameters L D = L E = � . Lo ng crack a/R 0 = 125 . Material properties: δ1 /δc = 0 . 15 , 

δ2 /δc = 0 . 5 , σY /E = 0 . 003 , ν = 0 . 3 and N = 0 . 1 . 

Fig. 9. Crack growth resistance curves for different combinations of length scale parame ters: L E = L D = �, L E = 10 L D = �, and L D = 10 L E = � . Long crack 

a/R 0 = 125 . Material properties: N = 0 . 1 , σY /E = 0 . 003 , ˆ σ/σY = 5 and ν = 0 . 3 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

by a plastic zone. The predictions of Fig. 8 show that a shallow R-curve can exist for such a case: K SS / K 0 equals 4 for

ˆ σ/σY = 10 and �/R 0 = 0 . 06 . The qualitative response is similar to that obtained by Wei and Hutchinson (1997) for the case

of Fleck and Hutchinson (1997) strain gradient theory. However, significant quantitative differences arise. If we consider a

cohesive strength of ˆ σ/σY ≈ 10 in both studies, then a value of K SS / K 0 on the order of 4 is achieved for � / R 0 an order of

magnitude smaller than that found by Wei and Hutchinson (1997) . 

Finally, we investigate the relative influence of energetic and dissipative gradient contributions to the R-curve. Crack

growth resistance curves are shown in Fig. 9 for three cases: (i) L E = 10 L D = �, (ii) L D = 10 L E = �, and (iii) L D = L E = � (i.e.,

the reference case). All of the R-curves are for ˆ σ/σY = 5 , and results are given for the two choices �/R 0 = 0 . 03 or �/R 0 = 0 . 05 .

The R-curve is steepest for �/R 0 = 0 . 03 and L D = 10 L E = �, for which dissipative hardening dominates. Combined energetic

and dissipative hardening with L E = L D = � emphasizes the role of strain gradients and leads to a less steep R-curve; the

choice L E = 10 L D = � (energetic hardening dominant) is the intermediate case. Consistent with the results shown in Fig. 8 ,

for which L E = L D = �, the R-curve is less steep and K SS / K 0 drops with increasing � / R 0 for all 3 choices of L D / L E . 

4.3. Short crack limit 

We now turn our attention to crack advance from a short pre-crack, for which a / R 0 < 1, recall Fig. 4 a. Such cracks com-

monly arise at grain boundaries, at cracked carbide particles or as machining damage in structural alloys. The cracks are

sufficiently short for no K -field (or J -field) to exist and are accompanied by plastic collapse at the structural level. Thus,

failure occurs at a stress level somewhat above the yield strength, and the question of interest becomes: what is the depen-

dence of macroscopic failure strain (below the necking strain) on a / R and � / R ? 
0 0 
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Fig. 10. Fracture response in short cracks ( a 0 /R 0 = 0 . 38 ): (a) remote stress versus nominal strain, and (b) failure strain versus length scale parameter. 

Material properties: ˆ σ/σY = 5 , δ1 /δc = 0 . 15 , δ2 /δc = 0 . 5 , σY /E = 0 . 003 , ν = 0 . 3 and N = 0 . 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

First consider the case of a short crack of length a/R 0 = 0 . 38 . Dimensional analysis implies, 

σ∞ 

σY 

= F 

(
ε ∞ 

ε y 
, 

� 

R 0 

, 
a 

R 0 

; ˆ σ

σY 

, 
σY 

E 
, ν, N 

)
(34)

where σ∞ is the macroscopic remote stress on a tensile specimen (recall Fig. 5 ) and ε∞ is the work-conjugate remote tensile

strain. A series of finite element simulations have been performed for ˆ σ/σY = 5 and N = 0 . 1 , for illustrative purposes. The

σ∞ versus ε∞ response is given in Fig. 10 a for selected values of � / R 0 in the range 0–0.03. The tensile response is very

sensitive to the choice of � / R 0 , as follows. For �/R 0 = 0 , the tensile response is almost identical to the material stress versus

strain curve, and no failure is predicted. In contrast, the failure strain drops to about 1% when plastic strain gradients are

accounted for. This is emphasized by the plot of failure strain εf versus � / R 0 in Fig. 10 b: εf drops steeply from ε f /ε y = 3 . 7 at

�/R 0 = 0 . 007 to ε f /ε y = 1 . 45 at �/R 0 = 0 . 09 . Thus, strain gradient plasticity theory, along with a cohesive zone model, gives

mechanistic insight into the drop in ductility when the fracture length scale R 0 drops (e.g., due to embrittlement) in relation

to the plasticity length scale � . 

In order to interrogate the source of the dramatic drop in ductility with increasing � we examine the stress field ahead

of a stationary short crack, absent the cohesive zone. The tensile stress σ yy is plotted as a function of r / a in Fig. 11 for a

fixed value of ε ∞ = 0 . 005 such that material remote from the crack tip has fully yielded. Results are shown for �/a = 0 , 0 . 1

and it is clear that the asymptotic stress field is similar to that for the long crack, as shown in Fig. 1 . For the strain gradient

solid, an elastic zone of extent on the order of � exists at the crack tip. A crack tip K -field is evident, as for the long crack

case, and it is this feature that results in the drop in ductility for the growing crack case of Fig. 10 . It remains to explore

the dependence of failure strength σ f / σ Y upon crack length a / R 0 . It is anticipated that, for sufficiently large a / R 0 , small scale

yielding applies and failure occurs at K = K SS for a long pre-crack, such that σ f ≈ K SS / 
√ 

πa . With diminishing crack length,

σ f / σ Y rises until, for sufficiently small pre-cracks ( a / R 0 < 25) the K -field ceases to exist and a J -analysis is necessary for a

fracture mechanics assessment. A further reduction in a / R leads to the short crack regime, and the full trajectory of a / R is
0 0 
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Fig. 11. Tensile stresses ahead of a stationary short crack ( θ = 0 ◦) for �/a = 0 . 1 and the conventional case, �/a = 0 . Remote tensile strain ε ∞ = 0 . 005 . 

Material properties: σY /E = 0 . 003 , N = 0 . 1 , and ν = 0 . 3 . 

Fig. 12. Influence of the crack length: (a) failure stress versus crack length for � / R 0 , and (b) transition flaw sensitivity to � / R 0 . Material properties: ˆ σ/σY = 5 , 

δ1 /δc = 0 . 15 , δ2 /δc = 0 . 5 , σY /E = 0 . 003 , ν = 0 . 3 an d N = 0 . 1 . 

 

 

 

 

 

 

 

 

 

 

 

labelled as transition in Fig. 4 a. The above qualitative discussion is now made precise by a series of calculations for selected

values of a / R 0 . 

The predicted failure strength σ f / σ Y is plotted as a function of a / R 0 in Fig. 12 a for the case of fixed �/R 0 = 0 . 02 . As

expected, σ f / σ Y increases from the small scale yielding value to the plastic collapse value σ f / σ Y ≈ 1 with diminishing a / R 0 .

The regimes of validity of K and J are shown for completeness. A transition crack length can be identified by equating

the fracture strength from plastic collapse theory σ f = σY to the fracture strength from K = K SS ; such that σY 
√ 

πa T = K SS .

Thus, 

a T ≡ 1 

π

(
K SS 

σY 

)2 

(35) 

The dependence of a T / R 0 upon � / R 0 is plotted in Fig. 12 b upon making use of (35) . Upon recalling (27) , the relation (35) re-

duces to 

a T 
R 0 

= 3 

(
K SS 

K 0 

)2 

(36) 

Thus, the sensitivity of a T / R 0 to � / R 0 arises directly from the dependence of K SS / K 0 upon � / R 0 . 

5. Conclusions 

The current study highlights the role of plastic strain gradients in influencing the R-curve for a long crack under small

scale yielding and the tensile response in the presence of a short crack. An asymptotic analysis of the elastic-plastic stress

state at the tip of a stationary crack in a strain gradient solid reveals that an elastic zone is present in the immediate

vicinity of the crack tip. Consequently, the tensile stress immediately ahead of the crack tip displays an inverse square

root singularity, in contrast to the HRR field of a conventional solid. This has immediate implications for a cohesive zone
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analysis of a growing crack: crack advance is predicted for cohesive strengths much greater than the yield strength. These

predictions are consistent with observations of quasi-cleavage fracture with limited plasticity ( Elssner et al., 1994; Bagchi

and Evans, 1996; Korn et al., 2002 ). 

Our study also reveals that the elastic crack tip singularity persists for the short crack case. Consequently, the tensile

stress ahead of the short crack can far exceed the yield strength and overcome the cohesive strength of a cohesive zone

placed at the crack tip. In turn, this leads to a significant drop in tensile ductility. 
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