

Long term stability analysis of a guided wave SHM system for platelike structures

V. Attarian, F.B. Cegla, P. Cawley

Non-Destructive Testing Group Department of Mechanical Engineering Imperial College London SW7 2AZ United Kingdom

Outline

- Introduction
 - Motivation
 - Background
 - Project goals
- Ruggedized SHM system development
- Testing
- Results
- Conclusions
- Questions

Imperial College London

Introduction

RONDE

Motivation

Background

Guided wave transducers in sparse arrays

- (1) Suitability for large area inspection
- (2) Defect sensitivity
- (3) Complex feature effects

Issues for monitoring platelike structures

Compensation strategies

Imperial College

London

Background

Temperature compensation strategies

Background

Defect detection in container panel

Performance in real life scenario?

- Long term testing of structure in exposed weather
 - Need to ruggedize transducer
- Assess feasibility and variability of reliable monitoring
 - Robustness

Imperial College

londor

- Baseline stability
- Study on simple plate and complex structure

Imperial College

Transducer design

- Phase stability
- Pure mode excitation
- Strain relief
- ➤ Waterproof
- Electrical connectivity/ grounding

+V

Finite element analysis

Cap

Minimize cap reverberations

• Undesirable coupling of portal frame dynamics in excited SO

• Parametric + material changes allow shift to ω_n and damping

Imperial College

London

Final transducer

Imperial College London

Baseline database collection

- Baselines collected after 3 months of outdoor robustness testing
- Signals acquired at 0.5°C increments in [-5, 40]°C

• *Noise floor* imaged with 0.5°C gap to nearest baseline throughout range

V. Attarian

Testing

Instrumented plate outdoors

Monitoring since beginning of March for +4 months

Robustness

- Tx-Rx ok for ¹/₂ yr through temperature swings (-10 to 30°C), rain, light snow
- Signal amplitudes

- >80% pairs show ∆amplitude
 - To -37% initial value, on average
 - Unrelated to temperature
 - Regressions on noise levels/pair indicate correlation with △amplitude

Baseline stability assessments

Imaging suggests issues for monitoring small reflectors

Spatial distribution of noise

• Statistical metric suggests noise exhibits lack of sensitivity to location in coverage area

- Key findings
 - Rugged transduction of GW
 - feasible for >6 months
 - o amplitudes decline over time identified
 - Noise floor changes quantified
 - o drifts to -25 dB in +4 months observed + analyzed
 - o trends don't exhibit spatial dependency
- Future work
 - Continued monitoring outdoors/analysis
 - Fix amplitude decline issue
 - Quantifying defect detection sensitivity over time
 - Further prototyping of array on complex structure

Possibility of frequent data collection and detrending

A. Galvagni talk @ 11:30 AM

Imperial College London

Thank you. Questions?

Transducer @ 1/2 yr