NTEC Module: Water Reactor Performance and Safety

Lecture 6 : Introduction to two-phase heat transfer

G. F. Hewitt Imperial College London

1

Forced convective boiling: Chen superposition correlation $\alpha = \alpha_{NB} + \alpha_{FC}$ NB – "Nucleate boiling" FC – "Forced convection" FZ – Forster/Zuber (Slide 10) $\alpha_{NB} = S \alpha_{FZ}$ $\frac{\alpha_{FC}}{M} = F = fn$ Chen, Ind. Eng.Proc. Des.Dev., vol.5,p. 322, 1966 α_L S = fn (Re); Re = Re_L F^{1.25}

6

SATURATED REGION:

SUBCOOLED REGION: (For this region take $\text{Re} = \text{Re}_L$ In calculation of S)

 $\dot{q} = \alpha_W (T_W - T_B) + \alpha_{KB} (T_W - T_{SAT})$ T_B = Bulk liquid temperature

Forced convective boiling: Chen graphical correlations for F and S 10⁵ Re_L xF^{1.25} Formulae (Butterworth) $F = 2.35 \left(\frac{1}{X_{tt}} + 0.213 \right)^{0}$ Take F = 1 for $1/X_u \le 0.1$ $S = \frac{1}{1 + 2.53 \times 10^{-6} \,\mathrm{Re}^{1.17}}$

2

Critical heat flux prediction in annular flow: Application of model to CHF in flow transient

 $\dot{m}(t) = 785 + 1926 \exp(-t/0.275) \text{ (kg/m}^2\text{s)}$ (35)

Comparison with Moxon and Edwards data

Run No	Heat flux (kW/r ¹)	Subcooling (kJ/kg)	Time to dryout (s)			
			Experiment	Old Model (PW31)	New Model (PW31A)	New model Pseudo Steady-state
45/276	955	58.15	0.95	0.65	0.80	0.36
45/275	960	53.50	0.89	0.03	0.77	0.34
45/286	1155	46.52	0.40	0.34	0.32	0.08
45/284	1174	48.15	0.30	0.34	0.35	0.07

Dryout and rewetting I: Hewitt and Govan (1990)

Transitions occur when film flow rate at wet/dry boundary is zero as calculated from transient film flow model.

23

