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Abstract: Artificial Intelligence (AI) has potential to fundamentally change the 
way we work, live, and interact. There is however, no general AI out there and 
the accuracy of current machine learning models largely depend on the data on 
which they have been trained. For the coming decades, the development of AI 
will depend on access to ever larger and richer medical and behavioral datasets. 
We now have strong evidence that the tool we have used historically to find a 
balance between using the data in aggregate and protecting people’s privacy, 
de-identification, does not scale to big data datasets. The development and 
deployment of modern privacy-enhancing technologies (PET), allowing data 
controllers to make data available in a safe and transparent way, will be key to 
unlocking the great potential of AI.

A world we could have only envisioned a few years ago is becoming a reality. Cars 
are learning how to drive themselves and are expected to heavily reduce traffic 
accidents and transform our cities1. Machine learning algorithms have started to 
reshape medical care and research. Physicians are already using them to identify 
high-impact molecules for drug development2 and to accelerate skin cancer 
diagnosis, reaching an accuracy on-par with dermatologists in the lab3. A recent 
report by McKinsey found that 45 percent of all work activities could soon be 
automated using artificial intelligence (AI)4. AI is changing our economy and will have 
a radical impact on how we work, live, and interact.
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However, despite what the popular press would have 
us believe, AI bears very little resemblance to human 
intelligence (or Skynet for that matter). This is unlikely to 
change anytime soon. Instead, experts in its most popular 
branch, machine learning, have spent decades training a 
large ecosystem of advanced statistical models to learn 
from data. These are crafted for specific tasks such as 
inferring human emotions from text messages5; e.g. if a 
certain combination of words express a positive, negative 
or, neutral tone; or detecting and classifying cancerous 
lesions in pictures the way a dermatologist would. We are 
unlikely to see any ‘general AI’—machines that could learn 
the way we do and successfully perform a large range of 
tasks—anytime soon6. Access to rich and large-scale 
datasets will thus be crucial to the development of 
AI in the coming decades.

This is particularly visible when 
considering the latest 
“advance” in AI: Deep Learning. 
Techniques very similar to Deep 
Learning (i.e. Deep Neural 
Networks), have been around 
for a long time. Neural Networks 
date back to the 1950s, and 
many of the key algorithmic 
breakthroughs occurred in the 
1980s and 1990s. While the 
increase in computing power7, 
in particular the advent of GPUs, 
has contributed to the recent success 
of deep learning, most of the increase in 
accuracy is arguably due to the availability of 
large-scale datasets8. As in Peter Norvig’s seminal article 
in 20099, one can notice the unreasonable effectiveness of 
data: corpora of millions of speech records, hi-res images, 
and human metadata.

Other examples include the use of large-scale Facebook 
data to build “psychometric profiles” of 220M American 
citizens by Cambridge Analytica10. Their work in identifying 
an individual’s gender, sexual orientation, political beliefs, 
and personality traits has been credited to have influenced 
the 2017 US presidential elections11. However, the research 
that underpins part of their work12 as well as a lot of 
the analysis that has been made public13 is fairly simple 
technically. Here again good accuracy e.g. on personality 
traits could be achieved with a lot of data and a simple 
linear regression.

While fuelling fantastic progress in AI, this data and its 
collection and use by AI algorithms also raises privacy 

concerns that need to be addressed. The vast majority of 
this data, such as Facebook Likes, is personal. Produced 
by individuals going through their daily lives: making calls, 
visiting the doctor, using the GPS on their phone or car, etc. 
it contains detailed and often sensitive information about 
people’s behaviour, medical conditions, travel habits, and 
lifestyles and can be used to infer further information.

AI has immense potential for good but the continuous 
access to always larger and richer datasets it requires will 
only be sustainable if this can be done while preserving 
people’s privacy. Developing solutions allowing AI 
algorithms to learn from large-scale, often sensitive 
datasets, while preserving people’s privacy is one of the 

main challenges we are facing today.

Historically, the balance between using the 
data and preserving people’s privacy 

has relied, both practically 
and legally, on the concept 
of data anonymization. 
Data anonymization is 
achieved through a series of 
techniques used to disassociate 
an individual’s record from 
their identity in a particular 
dataset. If the data cannot be 
associated with the individual 
to whom it relates, it cannot 
harm that person.

In practice, datasets are rendered 
anonymous through a combination of 

pseudonymization and anonymization (also called 
de-identification). The former, pseudonymization, is 

the process of replacing clear identifiers, such as names 
or account numbers, by pseudonyms. This is only the 
first line of defence as pseudonymization alone has 
been shown to be insufficient. In the late 1990s, the 
Massachusetts Group Insurance Commission released 
“anonymized” data containing every hospital visit made 
by state employees. The then governor of Massachusetts, 
William Weld, assured that GIC had protected patient 
privacy by deleting identifiers. By using the public electoral 
rolls of the city of Cambridge, MIT student Latanya Sweeney 
was able to re-identify (linking data back to a person) the 
medical records of the governor using his date of birth, sex, 
and postcode and sent his medical records to his office14. 

The second line of defence, de-identification, was then 
developed to prevent re-identification, allowing once again 
for data to be used while preserving people’s privacy. 
The first de-identification criteria, k-anonymity15, and an 

“Developing solutions 
allowing AI to learn from 

data while preserving 
people’s privacy is one of 
the main challenges we 

are facing today.”
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algorithm to achieve it, were proposed directly after Latanya 
Sweeney’s attack. A dataset is said to be k-anonymous if 
no combination of user attributes (e.g. year of birth, sex, 
and postcode) are shared by fewer than k individuals. This 
makes it impossible to uniquely identify a specific person in 
the dataset as any information collected will always lead us 
to a group of at least k individuals. Datasets can be modified 
in various ways to make them k-anonymous: values in the 
dataset are coarsened (e.g. by recording the age range of 
a person rather than their exact age), certain attributes 
(columns) or users (rows) can be removed, etc. These 
principles of generalisation and deletion along with others 
underpin all algorithms designed to enforce k-anonymity. 
Extensions of k-anonymity, such as l-diversity16 and 
t-closeness17, have furthermore been proposed to protect 
against more complex inference attacks. 

This combination of pseudonymization and de-
identification worked quite well for about 15 to 20 years. 
However, modern datasets, and especially the datasets 
used by AI, are very different from those used in the mid 
90s. Today’s datasets, coming from phones, browsers, 
IoT, or smart-cities, are high-dimensional: they contain 
hundreds or thousands of pieces of information for 
each individual and the way they behave. Mobile phone 
metadata contain all the places where an individual has 
used their phone, sometimes for years. Web browsing data 
contain every single page you have visited while a human 
genome is composed of approx. 21,000 genes.

This fundamentally changes the ability of anonymization 
methods to effectively protect people’s privacy while 
allowing the data to be used. Following several high-profile  
re-identifications of behavioral datasets18,19, in 2013 the  
concept of unicity was introduced to evaluate the 
effectiveness of anonymization in modern datasets. Unicity, 
estimates the fraction of users that are uniquely identified 
by a number of randomly chosen pieces of information an 
adversary could have access to. A study based on mobile 
phone metadata, showed that just 4 points—approximate 
times and places—are sufficient to uniquely identify 95% of 
people in a dataset of 1.5 million individuals20. This means 
that knowing where and when an individual was a mere 4 
times in the span of 15 months is, on average, sufficient 
to re-identify them in a simply anonymized mobile phone 
dataset, unraveling their entire location history.

Originally obtained in a European country, these results 
have now been replicated several times. A 2015 study looks 
at a dataset of 1M people in Latin America21 while another 
replicates the results on a dataset of 0.5M individuals in 
another country22. In 2015, the same methodology was 
applied to bank transaction data (credit and debit cards). 
This study, published in Science, concluded that 4 points—
date and place of a purchase—were again sufficient to 
uniquely identify 90% of people among one million credit 
card users23.

We are unlikely to see any ‘general 
AI’—machines that could learn the 
way we do and successfully perform 
a large range of task—anytime soon
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The way we move around is  
so unique that, very quickly,  

it identifies us amongst millions

While pseudonymization and simple anonymization utterly 
fail to protect people’s privacy, could generalisation, 
deletion, and other methods throw people off the scent 
again? Unfortunately, for both mobile phones and credit 
cards data, the answer is a resounding ‘no’. The same is 
likely to be true for other large-scale behavioral datasets 
such as browsing data, IoT data or others. The above 
studies demonstrate that adding noise or reducing the 
spatial or temporal resolution of data makes identification 
only marginally more difficult. Indeed, even in a very low-
resolution mobile phone dataset24, 10 points are enough 
to find a person more than 50% of the time25. Surprisingly 
perhaps, in the credit card study, knowing just 10 instances 
of when an individual has visited any one of 350 stores in a 
two-week period would result in a correct re-identification 
80% of the time26. Deletion has mathematically the same 
marginal effect on the likelihood of re-identification.

These results have led researchers to conclude that 
“we have currently no reason to believe that an efficient 
enough, yet general, anonymisation method will ever exist 
for high-dimensional data, as all the evidence so far points 
to the contrary. The current de-identification model, where 
the data are anonymised and released, is obsolete”27. 
An opinion shared by President’s [Obama] Council of 
Advisors on Science and Technology who concluded that 
anonymisation “is not robust against near-term future 
re-identification methods. PCAST does not see it as being 
a useful basis for policy”28. 

To make the matter worse, modern datasets are not only 
impossible to anonymize but also extremely rich. In the 
past, it was sufficient to look through the data to assess 
the potential damage of re-identification (e.g. whether 
these are medical records or fairly innocuous data). 
Sometimes sensitive information could even be removed 
to make the data “non”-sensitive (e.g. removing the fact 
that people might have watched specific movies). As we 
have seen in the Cambridge Analytica example, this doesn’t 
work anymore with modern high-dimensional datasets. 
Their richness means that the sensitivity of the dataset 
might not be directly visible but instead come from what 
can be inferred from it. To assess the sensitivity of the 
data, one would needs to guess what an algorithm could 
possibly infer about an individual from his data, now or in 
the future. For instance, it has been shown that personality 
traits29, demographics30, socioeconomic status31,32, or even 
loan repayment rates33 can all be predicted from seemingly 
innocuous mobile phone data. This “risk of inference” in big 
data renders comprehensive risk assessments incredibly 
challenging – some would say impossible – to perform.

With the traditional de-identification 
model failing us how do we move 
forward training machine learning 
models on large-scale datasets 
in a way that truly preserves 
individuals’ privacy?

Back in the 90s, when the first de-identification algorithms 
were developed, data transfer was exceedingly costly. 
Anonymizing the dataset once and for all and sending a 
copy of it to the analyst was the only feasible solution. 
20 years later with internet, the cloud, and arrays of GPU 
powered machines,  
this is no longer the case. Data controllers can easily grant 
remote, tightly controlled and monitored access to datasets 
for training purposes instead of sharing the “anonymized” 
raw records – bringing algorithms to the sensitive data 
instead of the sending data to the algorithms.

For example, the OPen ALgorithms (OPAL) project34, 
recently funded by the French Development Agency (AFD), 
is based on this framework. Led by the Computational 
Privacy Group at Imperial College London, in partnership35 
with Telefonica and Orange, OPAL aims to allow third 
parties to safely use the geolocation data through a 
questions-and-answers model. In short, the platform allows 
third-parties, such as researchers, to submit algorithms 
that will be trained on the data. The privacy of individuals 
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“We have currently no 
reason to believe that 

an efficient enough, yet 
general, anonymisation 

method will ever exist for 
high-dimensional data.”

A 2015 Science paper showed  
that 4 points, a shop and a date, 
was enough to uniquely identify 

90% of individuals in a large-scale 
credit card dataset

is ensured through a serie of control mechanisms put in 
place. For example, the platform validates the code before 
training the model; it ensures that only aggregated 
results sometimes with a little bit of noise are 
returned36, ensuring that no single individual 
can be identified; and it records every 
interaction in a tamper-proof 
ledger ensuring auditability of 
the system. The combination 
of access-control mechanisms, 
code sandboxing, aggregation 
schemes, among others, allows 
OPAL to guarantee that data 
is being used anonymously by 
machine learning algorithms 
even if the data itself is 
only pseudonymous.

Recognizing the issue, several 
other privacy-enhancing technologies 
(PET) are being developed to allow datasets 
to be used in a privacy-conscientious way through 
a mix of access-control, security based, and auditing 
mechanisms. Google’s DeepMind is, for instance, 
developing an auditable system to train machine learning 
algorithms on individual-level health data records from 
the National Health Service37 in the UK. Their ‘Verifiable 
Data Audit’ ensures that any interaction with the data is 

recorded and accessible to mitigate the risk of foul play.  
The French government also developed a similar solution, 

the Secure Data Access Centre (CASD)38, to allow 
researchers to build statistical models using 

public surveys and national censuses 
through remote access and 

smartcard technologies.

AI and machine learning could 
revolutionize the way we work 
and live. Their potential is 
however crucially dependent 
on access to large and high-
quality datasets for algorithms 
to be trained on. The way 
we have historically found a 
balance between using the data 
in aggregate and protecting 

people’s privacy, de-identification, 
does not scale to the big data datasets 

used by modern algorithms. Moving forward, 
it is both crucial for our algorithms to be trained 

on the best available datasets out there and to do so in 
a way that truly protects the privacy of the individuals. 
The successful future of AI requires us to rethink our 
approach to data protection. Solutions like OPAL are at the 
forefront of this effort, forming the bedrock of safely using 
large-scale sensitive data for the public good.
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