Sustainable Energy Futures Annual Conference 2015

Energy Development Policy

#SEFAC15

energy futures lab

Imperial College London

Energy Policy Development

Group 1

Ademola Okuwoga, Aleksandrs Svilans, Jenny Cherkasky, Konstantinos Anagnostou,,
Philipp Stoelting and Matthew Gibson

What are the opportunities for energy policy improvement?

POLICY LEVELS

INTERNATIONAL POLICY

Geopolitics of Oil and Gas Energy Security

Energy Planning in Morocco
UK and Shale Gas

REGIONAL POLICY

Local Enterprise Partnerships

LOCAL POLICY

Public Policy Communication

INTERNATIONAL POLICY

Geopolitics of Oil and Gas Energy Security

NATIONAL POLICY

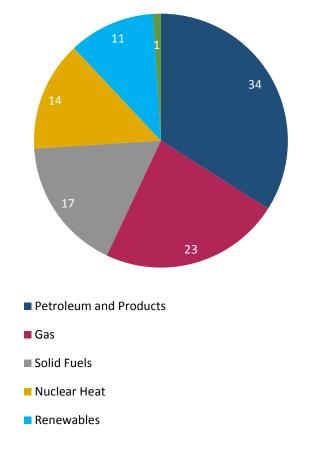
Energy Planning in Morocco UK and Shale Gas

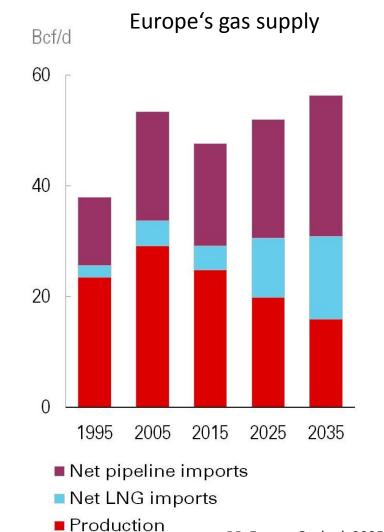
REGIONAL POLICY

Local Enterprise Partnerships

LOCAL POLICY

Public Policy Communication





Europe's gas supply: dry gas stays important

Europe increasingly dependent on gas imports

Russia biggest exporter of natural gas

Imperial College London 6

Pipelines are negotiated by the 'strong'

Transit disputes

Ukraine: 2006, 2008, **2009**

Belarus: 2004, 2010

Moldova: 2006

→ Transit avoidance

Legislation fails

Some major energy exporters did not sign the Energy Charter Treaty

→ Russia, Nigeria, Venezuela

Even when signed, the treaty was often **not applied**

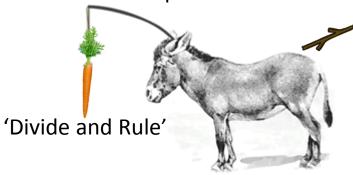
→ Ukraine hinders gas transit in 2009, no dispute settlement, no criticism

European Commission uses legislation as political and bargaining tool

→ Gazprom can only use 2/3 of the Nord Stream Pipeline (Third Party Access)

Lack of trust leads to inefficiencies and overcapacities in the gas market

Transit avoidance pipelines: unnecessary and problematic

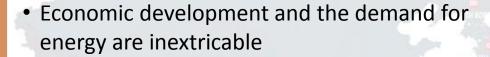


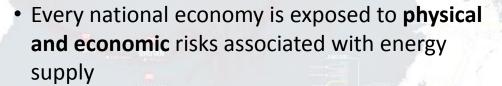
High investment costs

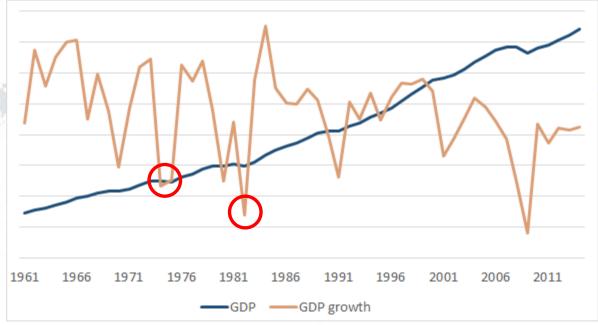
Loss in transit revenues

Higher end customer prices






Energy Security in the Asia-Pacific


Why energy security?

 Therefore energy security is of critical importance in the formation of national energy policies

Energy crisis, 1973 and 1979

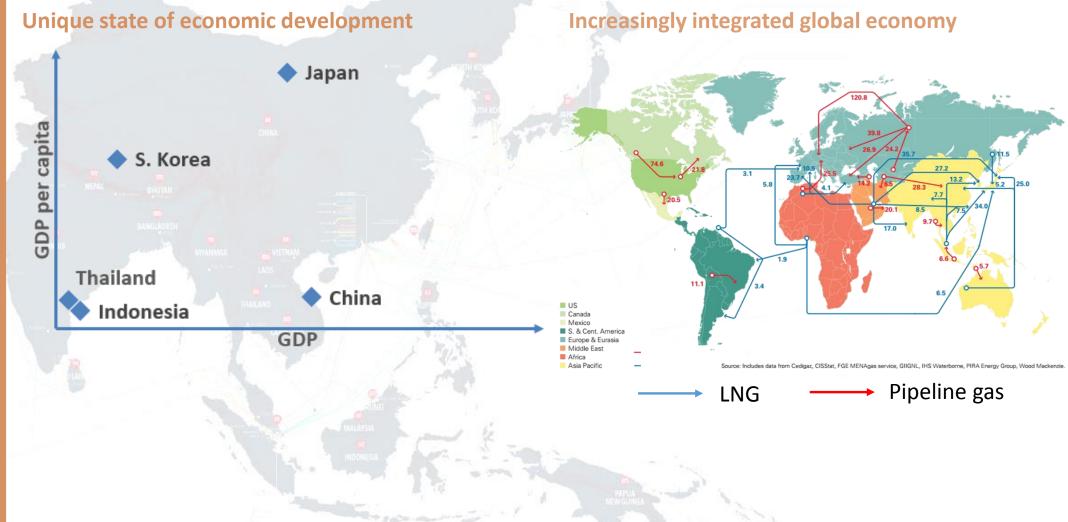
Supply disruptions, price shocks

Equilibrium of economy is altered

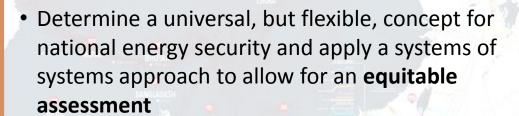
Economy experiences economic loss

Negative impacts

Energy Security in the Asia-Pacific



Existing methods are inadequate for the assessment of energy security in the region


Energy Security in the Asia-Pacific

The development of a methodology

Address limitations of existing methods

• The systems of systems approach is based on the aggregation of **indicators** for national energy security

INTERNATIONAL POLICY

Geopolitics of Oil and Gas Energy Security

NATIONAL POLICY

Energy Planning in Morocco UK and Shale Gas

REGIONAL POLICY

Local Enterprise Partnerships

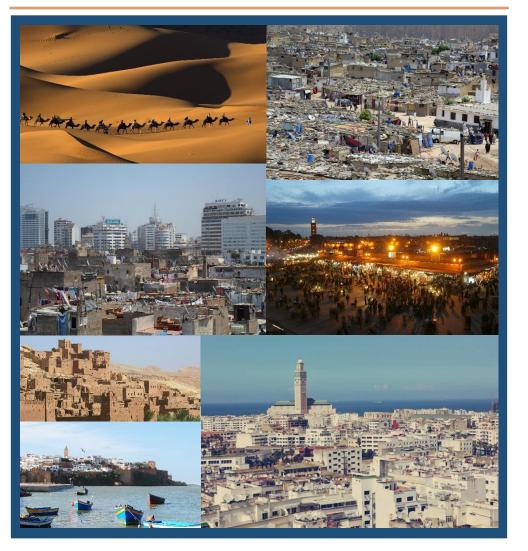
LOCAL POLICY

Public Policy Communication

But really...

CO₂ emissions!!!

Energy planning in Morocco



A case study of energy policy that does not meet national needs

SUSTAINABILITY IN MOROCCO = ???

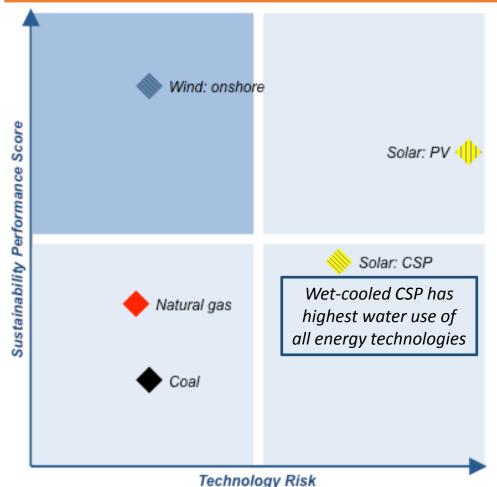
Energy planning in Morocco

Coal and CSP key to energy strategy but potentially poor choices

Performance index:

Generation technology	Sustainability Performance Indicators (SPIs)						
	LCOE [\$/MWh]	Fuel Cost [\$/toe]	Availability Factor [%]	Economic Value Add (Domestic)**	Associated Employment [#FTE years/GWh]	Water Use [m3/TJe]	Carbon Footprint [tCO2eq/GWh
Solar: CSP	128-146 (Richts 2012)	0	24.3-36 (Richts 2012; Galeazzi & Bourg 2009)	2	0.23* (Lucas & Ferroukhi 2011)	118-2180* (Mekonnen et al. 2015)	8.8-63* (Schlömer et al. 2014)
Solar: PV	96-103 (Richts 2012)	0	19.6-26 (Richts 2012)	3	0.87* (Lucas & Ferroukhi 2011)	6.4-303* (Mekonnen et al. 2015)	18-180* (Schlömer et al. 2014)
Wind: onshore	52-65 (Galeazzi & Bourg 2009)	0	29-35 (Salvatore et al. 2013; Galeazzi & Bourg 2009)	7	0.18* (Lucas & Ferroukhi 2011)	0.2-12* (Mekonnen et al. 2015)	7-56* (Schlömer et al. 2014)
Wind: offshore	147-367* (Salvatore et al. 2013)	0	32-42* (Salvatore et al. 2013)	8	0.18* (Lucas & Ferroukhi 2011)	0.2-12* (Mekonnen et al. 2015)	8-35* (Schlömer et al. 2014)
Hydropower	50 (Galeazzi & Bourg 2009)	0	5-50 (Galeazzi & Bourg 2009; ONEE 2013)	1	0.27* (Lucas & Ferroukhi 2011)	0.3-850* (Mekonnen et al. 2015)	1-2200* (Schlömer et al. 2014)
Coal	45-61 (Galeazzi & Bourg 2009)	122-184 (Galeazzi & Bourg 2009)	85 (Galeazzi & Bourg 2009)	4	0.11* (Lucas & Ferroukhi 2011)	79-2100* (Mekonnen et al. 2015)	740-910* (Schlömer et al. 2014)
Oil	80-100* (Hadian 2013)	317-502 (Galeazzi & Bourg 2009)	85 (Galeazzi & Bourg 2009)	4	0.11* (Lucas & Ferroukhi 2011)	214-1190* (Mekonnen et al. 2015)	657-866* (World Energy Council 2004)
Natural gas	58-90 (Galeazzi & Bourg 2009)	317-529 (Galeazzi & Bourg 2009)	85 (Galeazzi & Bourg 2009)	4	0.11* (Lucas & Ferroukhi 2011)	76-1240* (Mekonnen et al. 2015)	410-650* (Schlömer et al. 2014)
Nuclear	91-147* (Salvatore et al. 2013)	15.4 (Galeazzi & Bourg 2009)	85-92 (Salvatore et al. 2013; Galeazzi & Bourg 2009)	9 chnology value c	0.16* (Lucas & Ferroukhi 2011)	18-1450* (Mekonnen et al. 2015)	3.7-110* (Schlömer et al. 2014)

Energy planning in Morocco




Success of energy policy should be measureable → portfolio analysis!

TECHNOLOGIES – SUSTAINABILITY VS. RISK

Technologies have ranges of performance for every indicator which introduces technology risk in stochastic decision-making

PORTFOLIO SUSTAINABILITY

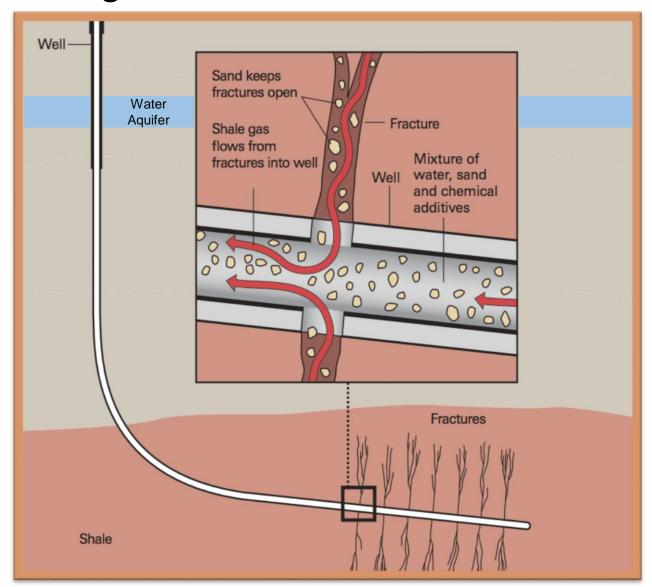
PORTFOLIO ANALYSIS OFFERS POLICY INSIGHTS

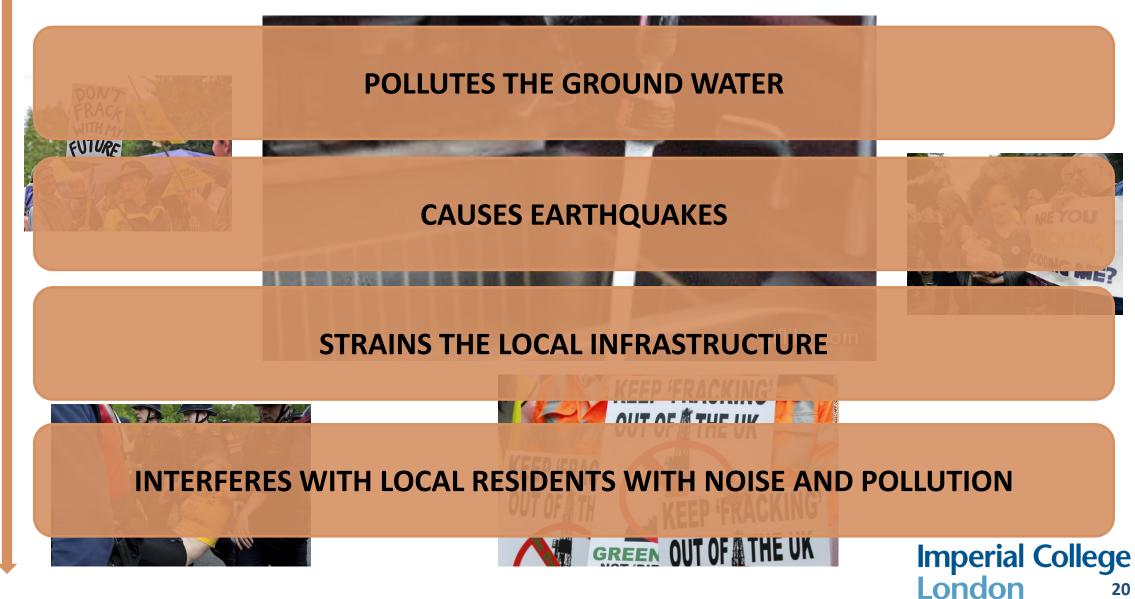
- Formulate concrete policy goals for water use, economic growth, and domestic employment associated with the electricity sector
- Restrict concentrated solar power projects to using dry-cooling technologies and considerer photovoltaic projects
- Build **natural gas** power plants **instead of coal**fired plants **Imperial College**

London

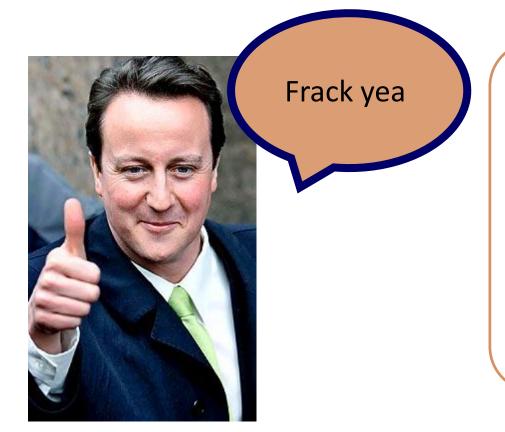
The UK and Shale Gas

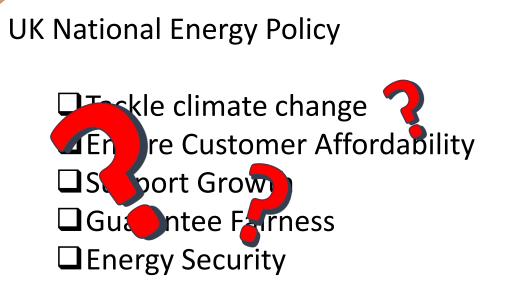
The Shale Gas Resource

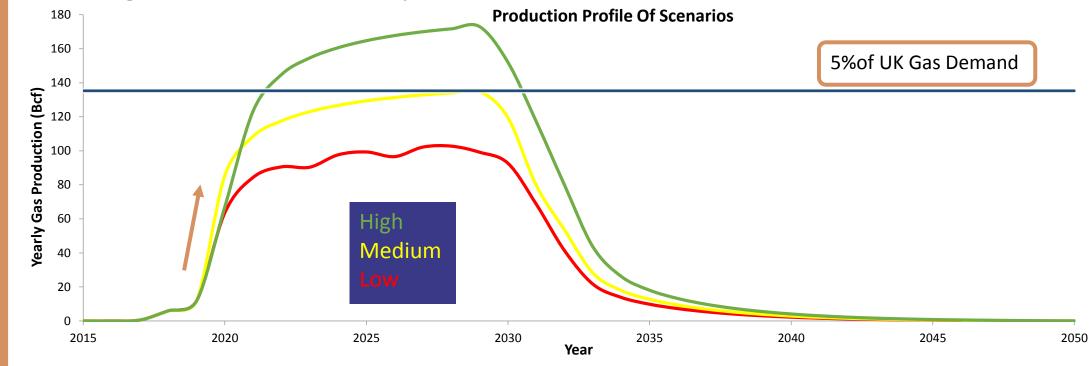

Hydraulic fracturing



Fracking Opposition


National Interest





Main National Policy Implication

- Streamline the licencing process
- Strategic oversight for the development
- Encourage transparency in industry

INTERNATIONAL POLICY

Geopolitics of Oil and Gas Energy Security

NATIONAL POLICY

Energy Planning in Morocco UK and Shale Gas

REGIONAL POLICY

Local Enterprise Partnerships

LOCAL POLICY

Public Policy Communication

Local Enterprise Partnerships

The Driver: Economic Decentralisation

Need to **rebalance** the UK economy both **sectorally** and **spatially**

Devolution: high on the political agenda

Local areas

Local Enterprise Partnerships

Policy gaps and Pitfalls

The UK needs to rapidly decarbonise its energy system but the role of local entities has not yet been defined

Poor alignment between national low carbon agendas & local low carbon strategic plans

Abolition of Regional Development Agencies

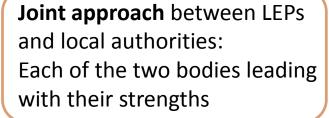
Excessively centralised energy policy

Frequent changes in national energy policy

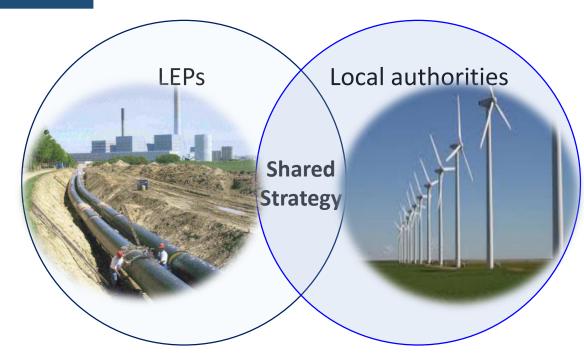
Absence of a strategic energy body providing

guidance to local actors

Lack of statutory requirement on local


authorities to reduce emissions

Local authorities have faced deep budget cuts (37%) since 2010


Local Enterprise Partnerships

Effectively **integrate** decarbonisation into devolution

Make clear that the **focus** of LEPs is **not** purely **economic**

Make additional **funds** available for low carbon projects

No more regulation is required

INTERNATIONAL POLICY

Geopolitics of Oil and Gas Energy Security

NATIONAL POLICY

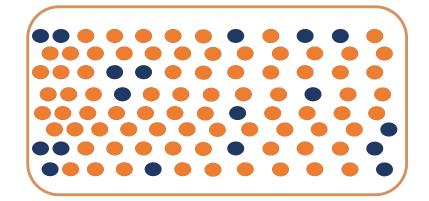
Energy Planning in Morocco UK and Shale Gas

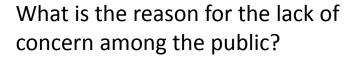
REGIONAL POLICY

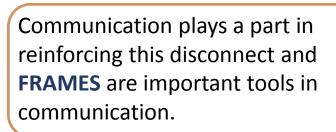
Local Enterprise Partnerships

LOCAL POLICY

Public Policy Communication






The climate change disconnect between scientists and the public

97% of scientists say that climate change is happening and that humans are the main influence in the observed warming.

Just 18% of the UK public are 'very concerned' with climate change.

CLIMATE CHANGE

Climate change framing effects how the public engages with the issue

Large framing analysis of UK climate change media coverage

Analysis of **1,257** climate change articles over the past year from **5** major UK newspapers.

The Daily Telegraph

Example

Headline:

Will YOUR child witness the end of humanity? Mankind will be extinct in 100 years because of climate change, warns expert.

Keywords:

Survival, fate, catastrophic, mass extinction

Frame?

Disaster!

Climate change media framing lacks diversity

Multiple frames for multiple audiences

Poster #1

Ademola Okuwoga

BEng in Chemical Engineering
University College London
ade_oku@hotmail.com
+44 (0) 7535019068

Scenarios for Shale Gas Development in the UK

Poster #6

Matthew Ford Gibson The Role of Media Framing and

BSc in Physics

Durham University

m.fordgibson@gmail.com

+44 (0) 75814 26351

Values in the Public Climate
Change Disconnect

Thank You!

Poster #2

Aleksandrs Svilans

BEng in Chemical Engineering
The University of Leeds
aleksandrs.svilans@outlook.com
+44 (0) 7706 101 390

Energy Security in the Asia-Pacific: A quantitative analysis

Poster #5

Philipp Stoelting

B.S. in Mechanical Engineering
Columbia University
philipp.stoelting@gmail.com
+49 (0)163 3848040

Design of sustainable electricity portfolios for Morocco using a stochastic MCDM framework

We Welcome Your Questions

Poster #3

Jenny Cherkasky

B.Sc. Electrical Engineering and Business Administration Technische Universität Darmstadt, Germany jenny.cherkasky@gmail.com

+44(0)7514112949

The Role of the Energy Hegemony conceptualisation in providing new insights on International Relations and Regional Geopolitics

Poster #4

Konstantinos Anagnostou

MEng in Electrical & Computer Engineering National Technical University of Athens anagnostou.konstantinos12@gmail.com

+44 (0) 7510991052

The role that LEPs may have as strategic low carbon energy intermediaries between national & local government

Schedule

09:00 - Registration opens

09:30 - Welcome

09:35 - Keynote

10:00 - Energy development policy

10:35 - Wind, tidal and hydro-power

11:05 - Tea and coffee break

11:20 - Market economics

11:55 - Large scale systems

12:30 - Lunch and Poster session

14:30 - Bioenergy

15:05 - Small scale systems

15:35 - Tea and coffee break

15:50 - New technologies

16:20 - Management strategy

16:55 - Closing remarks

17:00 - Drinks reception and poster discussion

#SEFAC15