Non-linear inertial loading and the onset of structural ringing

Tahir Bashir

With an increasing trend towards deep water production, the susceptibility of offshore structures to dynamic response has become an important issue. Indeed, this has been bough to the forefront by a new response phenomenon, commonly referred to as 'ringing', which is thought to be associated with steep near-braking waves. At present, neither the occurrence of 'ringing' or the mechanisms which produce this high frequency transient response are fully understood. In particular, current design solutions, which employ linear-based predictions, are unable to account for the observed behaviour.

To address these points, this dissertation presents results quantifying the non-linear components of the problem. This has been achieved through a detailed programme of numerical and experimental investigations, which has concentrated on inviscid, irrotational and potential-flow conditions. This in turn has been used to assess the loading and response which contributes directly towards the onset of structural 'ringing'. The assessment of non-linear terms is addressed as follows. Firstly, a detailed description of the kinematics within a flow field was modelled and validated highlighting significant contributions from the higher-order terms. Secondly, non-linear terms which arise from the evaluation of forces on a slender body and bodies within the diffraction regime were investigated. Thirdly, a dynamic model representative of the response was also determined. On the basis of these individual non-linear terms, the overall effect was investigated for extreme 2-D transient waves impacting a single, vertical, surface-piercing cylinder extending from the bed upwards. The present results clearly demonstrate that the most significant 'errors' arising in present design practice can be accounted for by a detailed description of the kinematics within the flow field.