Imperial College London

Environmental viability of bioethanol derived from the poplar clone Imola

Miao Guo^{1*}, Gianni Facciotto², Changsheng Li³, Sara Bergante², Jade Littlewood¹ and Richard Murphy^{1,4}

LCA of Poplar-based biofuels

¹Department of Chemical Engineering, Department of Life Science, Imperial College London, SW7 2AZ UK . ² Research Units for Intensive Wood Production, Agriculture Research Council, Casale Monferrato, Italy. ³Institute for the Study of Earth, Oceans, and Space, Morse Hall, University of New Hampshire, Durham, NH 03824, USA.⁴ Centre for Environmental Strategy, University of Surrey, GU2 7XH, UK. *miao.guo06@imperial.ac.uk

Three modelling platforms were applied

Decomposition (DNDC) was modified for simulation of perennial bioenergy crops. Imola, a hybrid poplar clone, obtained by controlled crossing of *Populus deltoides* Bartr. with Populus nigra L. and grown under short or very short rotation coppice (SRC or VSRC) management in a plantation located at Casale Monferrato Harrowing was modelled (Latitude 45°13'N, Longitude 8°51'E, Mediterranean climate with annual Fertilizer ap precipitation 600-1100 cm and mean temperature 13.3°C, sandy loam soil). Combine ha

model

Denitrification-

	SRC						VSRC														
	0	1	2	3	4	5	6	7	8	9	10	0	1	2	3	4	5	6	7	8	9
pplication	1	1					1						2	2	2	2	2	2	2	2	2
pplication	3	2	2	2			2	2	2			3	3	3	3	3	3	3	3	3	3
weeds control		2	2	1	1	1	2	2	1	1	1	1	2	1	1	1	1	1	1	1	1
pplication	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
and chipping																					
arvesting																					

this study. An attibutional LCA in approach was undertaken to model potential Imola-derived bioethanol supply chains (combinations of various cultivation methods and processing technologies) and to compare bioethanol with gasoline. The DNDCmodelled soil carbon sequestration and C and N fluxes together with the processing technologies simulated using AspenPlus were integrated into LCA model.

Biogeochemistry

results were used t models for DNDC and

S	Data range for year 1-3	N % ODW	C % ODW	H % ODW
\mathbf{O}	Stem	0.07-0.19%	49.42-49.61%	7.04-7.25%
U	Branch	0.17-0.5%	49.26-50.96%	6.82-7.19%
g	Leaf	2.33-2.65%	46.36-47.16%	6.38-6.58%
d	Corse/fine root	1.07-1.38%	47.78-48.23	6.42-6.57%

- Hypothetical bio-refinery 2,000 ovendry tonne of Poplar biomass per day.
- acid (DA) & liquid hot water (LHW).
- sugars by Zymomonas mobilis.

- An integrated modelling platform advance the understanding of the biogeochemical processes in perennial bioenergy crop agro-ecosystems and their influences on the overall environmental profiles of biofuels.
- VSRC and SRC show similar N flux patterns N₂O (>30%) NH₃ (>24%) and N leaching (>21%) imply low soil buffering effects ; VSRC shows higher C & N fixation.
- Over life cycle, LHW shows environmental advantages over DA on most impact categories except for the abiotic depletion, and ODP.
- SRC is environmentally superior to VSRC on most impact categories except for GWP₁₀₀ where higher C fixation by VSRC crops are more favourable.
- Imola-derived bio-etahnol offers life cycle GWP₁₀₀ savings over petrol of 90% or more, placing it well within the most desirable categories being targeted by • policymakers internationally.
- A particular aspect that warrants further research is the contribution that soil carbon accumulation can make to achieving low-GHG fuels in the future.

ACKNOWLEDGEMENTS

This study is based on the research supported by the European Commission 7th Framework for Research, Food Agriculture and Fisheries, and Biotechnology, within the project ENERGYPOPLAR, FP7-211917. We thank all the participants in ENERGYPOPLAR led by the French National Institute for Agricultural Research. We also wish to acknowledge Novozymes . A/S, Demark for their valuable support with inventory development.

<u>REFERENCES</u>

J. Littlewood, M. Guo, W. Boerjan and R. J. Murphy, 2014. Bioethanol from poplar: a commercially viable alternative to fossil fuel in the EU. Biotechnology for Biofuels (In press).

Li CS. 2000. Modeling trace gas emissions from agricultural ecosystems. Nutrient Cycling in Agroecosystems 58(1-3): 259-276.