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Abstract

In this thesis we study the joint dynamics of multivariate time series using an unsupervised
learning technique. We present a novel non-parametric market regime detection method for mul-
tidimensional data. The detection procedure is based on a k -means clustering algorithm which
makes use of distances between distributions to discriminate between di↵erent market regimes.
In particular, we empirically investigate the performance of the algorithm endowed with either
Wasserstein distances or Maximum Mean Discrepancies. We suggest a two-step approach to clus-
tering multivariate data using this new method and the WK-means algorithm presented in [1]
which we show to be e↵ective on both synthetic and real world data. We demonstrate how our
new approach can be used to obtain approximations to the mean, variance and correlation between
two assets at a given point in time. We further show that these values can be used in the context
of Modern Portfolio Theory to form profitable trading strategies when using two assets, in e↵ect
pairs-trading.
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Chapter 1

Introduction

1.1 Clustering with multivariate time series

Clustering is a well-known and studied field in unsupervised learning. The goal of a clustering
algorithm is to discover patterns and relationships between the input data that are currently
unknown. Datum grouped into a particular cluster should have more similarity with data within
the same group than with data in another group according to some metric [2]. Naturally, clustering
algorithms are particularly useful when we can not immediately categorise data into groups via
other means or when we are approaching a new data set with unknown characteristics. Clustering
techniques are thus often employed with new time series data such as those of a financial origin. In
the field of time series clustering, working with a single time series, referred to as univariate data,
is often simpler than working with multiple time series, referred to as multivariate time series,
in part due to lower time and memory complexity. Indeed, there is a wide body of research on
clustering univariate time series [3] and a variety of clustering methods for time series data have
been studied and employed, such as those summarised in [4].

Clustering multivariate time series is a particularly interesting and di�cult challenge. When
applying clustering algorithms to multivariate data, we open up new areas of study. For example,
suppose we wanted to form a series of risk diversified investment portfolios from the Russell 1000
Index. Forming a time series from the returns for each stock, we might then employ a clustering
algorithm such as the celebrated k -means algorithm [5] in order to form our portfolios as in [6].
Often such an approach is accompanied by a dimension reduction technique such as Principal
Component Analysis (PCA) [7]. If we have M univariate time series of length N then we may
store our multivariate time series in an M ⇥N matrix. PCA can then be used to transform this
matrix into a new coordinate system and thus leave us with a smaller p⇥p matrix formed from the
first p principal components. In reducing the size of our input matrix we benefit from increased
speed and we may also hone in on particularly important features of a time series, but we do so at
the expense of a loss of information from those components which have been discarded. A variety
of multivariate clustering methods are built using PCA and a well-known clustering technique [8]
[9] [10].

Of course, instead of clustering each stock into clusters based on the entire multivariate time
series, we might cluster segments of the multivariate time series. Such clusters might then repre-
sent certain periods where the joint dynamics or distribution of the multivariate time series have
changed, perhaps due to a market regime change from a bull to a bear market and vice versa. This
can be a particularly interesting area of study that can inform both trading strategies and risk
management.

The idea of financial markets and time series being composed of a series of higher-return and-
lower return cycles, coined bull and bear cycles respectively, has existed for centuries [11]. A formal
and universal definition of these terms has not been forthcoming however. At times, some have
defined a bull market as being all non-negative returns with all others indicating a bear market
[12]. Others have defined the bull (bear) cycle as ‘periods of generally increasing (decreasing)
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market prices’ [13]. In spite of not having any formal definition, these terms are now ubiquitous
within finance thanks to their simplicity and the ease with which they can be understood.

The idea of bull and bear markets however is a simplification of the general philosophy of market
regimes, where segments of returns, univariate or multivariate, are split into di↵erent groups or
regimes each characterised by a di↵erent underlying distribution [14]. Thus one need not be
limited to just two market regimes. Indeed, we might instead divide market returns into a three
state model: a bull regime of particularly high returns, a bear regime of particularly low returns
and a ‘normal’ regime of somewhat low, positive returns in the middle [15]. We might otherwise
subdivide the bull and bear markets into two states of bull correction and bull, and bear and bear
rally respectively as in [16], [17].

The method through which these regimes are determined and classified is referred to as the
market regime clustering problem (MRCP) and has been the subject of rigorous study. This
problem may also be viewed as a subset of studies related to change point detection. In such studies,
one works to identify change points in financial markets, points at which the underlying regime or
model driving the market returns is assumed to have changed [18] and where the number of such
change points may be known or unknown [19]. Certain studies work specifically on determining
anomalous datum using outlier detection methods [20] [21].

One of the most popular regime detection methods is the Hidden Markov Model [22]. In such a
model, we would have an observed process, X, and an unobserved process, S. The observed process
X may be the current return of a stock we are interested in while S would be the Markovian
latent state or regime that it is currently following. We say that X is observed as we may actively
monitor its evolution whereas S is unobserved as we have no method of directly monitoring it.
Instead, we use observations of X to approximate the current state S [23]. One drawback of this
approach is that it is not model free - we must model the latent state variable, often using a
Gaussian distribution [24]. Other approaches for determining regimes include directional change
[25] and Bayesian techniques [26].

Classic unsupervised learning techniques have also been deployed more recently on the market
regime clustering problem. The fuzzy c-means algorithm, a close relative of the k -means clustering
algorithm, has been used to identify time series clusters in stock and sector data as in [27]. These
clusters were then used to train single non-linear regime models in order to forecast future stock
prices. A more distinctive approach comes from clustering not the time series data itself, but the
empirical measures to which each segment of the time series can be associated [28]. Indeed, this
will be the approach utilised in this paper which we will endeavour to explain more clearly in the
coming chapters.

Many of the techniques discussed may theoretically be applied to both univariate and multivari-
ate time series. They are, however, often beguiled by problems concerning the curse of dimen-
sionality, and thus e�ciency, in the multivariate case. One must also consider that the underlying
distribution characterising a regime is a joint distribution in the case of multivariate time series. In
the univariate case, these regimes can be identified by their mean and variance [15]. When work-
ing with multivariate time series, other characteristics, such as the correlation between individual
univariate series, also play a role. Clustering based on the cross-correlation between time series
has been studied before and we refer the reader to the examples listed for further discussion [29]
[30] [31].

Why might one want to cluster segments of multivariate time series? Such clusterings might help
to inform one’s portfolio formation and optimisation [6] or a pairs trading strategy. The idea behind
pairs trading is informed by the natural intuition that the returns of related financial instruments
should exhibit some form of relationship. The nature of the financial instruments’ relationship
might be something fundamental. In his book, ‘Quantitative trading: how to build your own
algorithmic trading business’ author Ernest P. Chan creates a pairs trading strategy using the gold
ETF GLD and the gold miners ETF GLDX [32, Example 3.6, page 55]. The assumption here is
that each price series should move in tandem given their natural relationship. Stocks considered to
be in the same economic sector are often used in such trading strategies due to sector wide trends
leading to similarities in their price movements. In general, the goal of a pairs trading strategy is
to identify a pair of related financial assets and, subsequently, to go long/short in each asset in
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order to exploit this relationship and realise returns.

How one goes about forming such a strategy has been studied for years. A good summary of
the main statistical techniques used to identify potential pairings is provided in [33]. The study
is conducted using financial stocks from the S&P 500 and the techniques include correlation,
minimum squared distance, stochastic, stochastic di↵erential residual and co-integration. The
authors find that trading strategies based on the minimum squared distance and co-integration
approaches generate residual series with better properties. An alternative approach is provided by
[34] wherein several unsupervised clustering methods are used to group related stocks together not
solely using their price series but also using similar characteristics. These characteristics include
momentum factors and firm characteristics led out by [35]. The paper finds statistically significant
monthly alpha using this method that is robust but decreases when clusters are formed solely on
the basis of price information. The authors surmise that firm characteristics play a non-trivial role
in finding potential pairs. Our paper also utilises an unsupervised method in the adapted k -means
clustering algorithm but we use these clusters not to group similar stocks but instead, to group
the returns of a predetermined pair of stocks.

1.2 Thesis outline and contributions

This thesis expands upon the work of Blanka Horvath, Zacharia Issa, and Aitor Muguruza in [1].
In their paper, they use an unsupervised learning algorithm to e↵ectively cluster one-dimensional
financial time series into market regimes with a high degree of success. This algorithm is a variant
of the classic k -means algorithm and uses the p-Wasserstein distance as its distance metric. The
algorithm is thus dubbed the WK-means algorithm.

Our main contributions are as follows. We create a novel, model-free algorithm that extends the
WK-means algorithm such that it may work with data of dimension d for d > 1, before showing that
this algorithm is e↵ective in detecting, o✏ine, times of market regime change and, in particular,
changes in the correlation structure between two assets. We also show that this new algorithm
is mutable and can be used with the Maximum Mean Discrepancy instead of the p-Wasserstein
distance. We then use our findings in conjunction with [1] to develop a method for determining
the correct number of clusters in a univariate time series and further, to develop a profitable pairs
trading strategy based on Modern Portfolio Theory.

The rest of the thesis is structured as follows. Chapter 2 will review key definitions in multivariate
time series analysis. Chapter 3 will review and summarise the k -means algorithm, the Maximum
Mean Discrepancy, the p-Wasserstein distance and the WK-means algorithm as described in [1].
Chapter 4 will introduce the 1-dimensional WK-means algorithm and our extension to the d -
dimensional space. Chapter 5 will showcase our experiments using synthetic data and the ability of
our algorithm to detect changes in market regimes characterised by changes in the mean, variance
and correlation of the underlying probability distribution used to generate the synthetic data.
Chapter 6 will show the e↵ectiveness of the algorithm when using real market data while chapter
7 will discuss how we may build profitable trading strategies from our findings. Finally, chapter 8
will conclude our work and discuss possible future research.
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Chapter 2

Multivariate data and
distributions

In this chapter we briefly review some key definitions related to multivariate time series and
distributions.

Definition 2.0.1 (Time series, [36] (Section 1.2, page 2)). Suppose X is a random variable. If
we observe X sequentially in time over or at a fixed interval, known as the sampling interval, the
resulting data form a time series. We refer to these observations as realisations of X and a single
observation as x. The time series is thus the collection of sequential observations {x1, . . . , xn}
where n is the total number of observations.

When discussing univariate time series, we refer to a random variable X. If we were to take
observations of the return of Apple stock at fixed intervals, say every hour, then these observations
would form a univariate time series and the return of Apple is thus our random variable. We would
then say that the return of Apple is distributed over some range of (possibly infinite) points and
we might refer to the expectation and variance of this distribution.

Definition 2.0.2 (PDF and CDF of a random variable, [37] (Section 3.1, page 24)). Suppose X
is a random variable. We say that X has probability density function (PDF), denoted fX(·) over
some interval (a, b) for a, b 2 R if fX(·) is a non-negative, Lebesgue measurable function given by

P(a  x  b) =

Z b

a
fX(x)dx.

We say that the cumulative distribution function (CDF) is then given by

FX(x) := P(X  x) =

Z x

a
fX(t)dt.

Definition 2.0.3 (Expectation and variance of a random variable, [37] (Section 3.1, page 24)).
Suppose X is a random variable on some interval (a, b) ⇢ R. The expectation, E(X) or µ(X), over
(a, b) is given by

E(X) :=

Z b

a
xfX(x)dx.

We define the variance, V(X) or �(X)2, to be

V(X) :=

Z b

a
(x� µ(X))2fX(x)dx,

and the standard deviation �(X) :=
p
V(X).

Multivariate time series are an extension of the univariate case. Observations are made on a
set of random variables X1, X2, . . . , Xd where d is the number of random variables. As in the
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univariate case we might make n such observations, and we may then visualise these observations
in matrix form as in 2.1.

0

BBB@

x11 x12 · · · x1n

x21 x22 · · · x2n
...

... · · ·
...

xd1 xd2 · · · xdn

1

CCCA

Figure 2.1: Matrix form of a d⇥ n multivariate time series.

In 2.1 we have d rows and n columns. Each row i might represent the observations of asset i,
and each column j the observations of all d assets at time j. Analogously to the univariate case,
we can define the PDF and CDF of a multivariate time series.

Definition 2.0.4 (Multivariate PDF and CDF, [37] (Section 3.3, page 28)). Suppose X1, . . . , Xd

are random variables. We say that X1, . . . , Xd have a joint probability density function (PDF),
denoted fX1,...,Xd(·) over some interval I ⇢ R if fX1,...,Xd(·) is a non-negative, Lebesgue measurable
function given by

P((x1, . . . , xd) 2 I) =

Z

I
fX1,...,Xd(x1, . . . , xd)dx1 · · · dxd.

We say that the cumulative distribution function (CDF) is then given by

FX1,...,Xd(x) := P(X1  x1, . . . , Xd  xd).

We refer to both the multivariate PDF and CDF interchangeably as the joint distribution of the
random variables. A univariate distribution is typically characterised by its moments, the first two
of which are the mean and variance as defined above. The joint distribution for multivariate data
may be characterised by a range of possible characteristics including its marginal distributions,
copula structure and correlation structure amongst others. In certain experiments we will focus
on the correlation structure of our random variables.

Definition 2.0.5 (Covariance and Pearson correlation of a collection of random variables, [37]
(Section 3.3, page 28)). Suppose X1, X2, . . . , Xd are random variables. The covariance of Xi and
Xj for i, j 2 {1, . . . , d} is given by

Cov(Xi, Xj) := E[(Xi � E(Xi))(Xj � E(Xj))].

Furthermore, we define the Pearson correlation of Xi and Xj as

Corr(Xi, Xj) :=
Cov(Xi, Xj)p
V(Xi)

p
V(Xj)

.

In this paper we aim to study characteristics of the underlying distributions that govern the
regimes of assets’ returns. In previous work on the univariate case [1], the authors studied the
mean and variance of the uni-dimensional distributions in order to categorise bull and bear market
regimes. A bull market regime was characterised most notably by its lower variance and higher
mean, and a bear market regime most notably by its higher variance and lower mean. In our work,
we investigate whether we can capture regimes generated by the uni-dimensional distributions of the
marginal distributions and those generated by changes in the joint distribution, such as changes in
the correlation structure. We refer to changes in the mean and variance of the underlying marginal
distributions as changes in mean-variance regime while changes in the correlation between the
assets are referred to as changes in correlation regime. Collectively, we refer to changes in the
underlying joint distribution as regime change. For clarity, we refer to the overall clustering
problem as the market regime clustering problem (MRCP). In order to study these regimes, we
must first define our method of choice: an adaption of the well-known k -means algorithm.
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Chapter 3

Distance metrics and clustering
algorithms

In this chapter we introduce the k -means clustering algorithm, the Maximum Mean Discrepancy,
the p-Wasserstein distance metric and the WK-means algorithm. This section is partly an adaption
of the original development of the WK-means algorithm in [1]. We begin with an introduction to
various distance metrics and clustering algorithms.

3.1 Background

In this paper, we aim not to cluster the raw data from the multivariate time series of asset returns
but to instead cluster a set of empirical measures to which this raw data is associated. Each cluster
should then represent a di↵erent market regime to be found in our returns data. This clustering
method requires the use of a distance metric that can be used to cluster probability distributions.
A variety of such distance metrics are available for study.

The Kullback-Liebler (K-L) divergence and its symmetrical counterpart the Jensen-Shannon
(J-S) divergence are popular divergences which have been employed with clustering problems in
the literature before [38], [39]. Informally, given two probability distributions P and Q, the K-L
divergence is a measure of the similarity between the two probability distributions, measured as
the expectation of the logarithmic di↵erence between the two. Often P will represent a set of data
while Q is a reference probability distribution we wish to compare the data to. It has been shown
that the K-L divergence converges in distribution and total variation. One drawback of using
either divergence is that they would require an estimation of the density functions of our empirical
measures [40].

The Kolmogorov-Smirnov (K-S) test statistic uses the empirical distribution function in order
to compare the distributions of two random variables. Informally, it finds the largest absolute
distance between the two distributions across the supplied sample data. By the Glivenko-Cantelli
theorem, if the empirical distribution functions are in fact the same, then the largest absolute
distance between the two should decrease to zero as the number of samples increases. The K-S test
statistic has been used with the k -means clustering algorithm in a financial setting [41] but it is
known that it often lacks the sensitivity required to distinguish between elements of the clustering
set [42].

The Maximum Mean Discrepancy (MMD) is another possible candidate that could be adopted
when studying the similarity between empirical distributions. Informally, for i.i.d. sample data
(x1, . . . , xN ) and (y1, . . . , yN ) from two discrete distributions P and Q, the MMD is found as the
supremum across a suitable set of functions f 2 F of the di↵erence in expectations of f(xi) and
f(yi) for i = 1, . . . , N . Similarly to the K-S test statistic, the MMD can be used as a two sample
test and it has been used in the context of change point detection before [43], [44]. Recently, it has
been combined with signatures in order to study the problem of regime detection and classification,
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and outlier detection in a multidimensional setting [14].

Of course the distance metric chosen is only one aspect of our approach. Equally as important
is the choice of clustering algorithm used. Many clustering algorithms have been developed to
tackle problems in unsupervised learning. The fuzzy c-means algorithm is a close relative of the
classic k -means algorithm. First proposed by J.C. Dunn in 1973 [45], the fuzzy c-means algorithm
does not assign a data point to any one particular cluster but instead to all clusters with varying
weights. Therefore, the fuzzy c-means algorithm may provide a more nuanced interpretation of
clusters and may allow for a richer understanding of the membership properties of each data point.

The k -medoids algorithm is also a close relative of the k -means algorithm. Both algorithms
partition a set of data into k clusters and both attempt to minimise some distance metric between
the points in a given cluster. The two methods di↵er in certain key aspects however. The k -medoids
algorithm takes its centroids from the data itself while the k-means algorithm often creates a new
point as its centroid, one that is the mean of all points in a cluster. The k -medoids algorithm
works with sums of pairwise dissimilarities while the k -means algorithm typically uses the sum of
squared Euclidean distances. These di↵erences often make the k -medoids algorithm more robust
to noise and outliers when compared to the k -means algorithm [46].

Hierarchical clustering is a very di↵erent method of clustering. It typically comes in two flavours:
agglomerative and divisive. The most common form is agglomerative. In agglomerative hierarchical
clustering, each data point is first considered to be its own cluster and clusters are then combined
at each step using a linkage criterion. Many linkage criterion have been suggested, each with
their own uses, advantages and disadvantages. For example, single-linkage clustering forms new
clusters by combining the closest pair of elements which do not yet belong to the same cluster.
In contrast, Ward’s linkage criterion suggests clustering based on the optimisation of some chosen
function. Often, this function is the squared Euclidean distance and clusters are formed such that
they minimise the variance between the clustered points. The hierarchical clustering algorithm
does not require us to input the number of clusters as a parameter. Instead, given N data points,
it will return k clusterings for k from 1 up to N. This can be advantageous when compared to the
k -means clustering algorithm as often we may not know how many clusters a set of data should
contain. As per proposition A.1.1, a good solution to the k -means algorithm requires that each
cluster within our stream of data X is of roughly equal size. Versions of the hierarchical clustering
algorithm do not require such a guarantee.

There are many more distance metrics and clustering algorithms available in addition to those
that have been discussed, and a full review of the field could stretch into the hundreds of pages.
In this paper, we build on the work of [1] and extend it to a multidimensional setting. Our
initial choice of distance metric is therefore the p-Wasserstein distance and our choice of clustering
algorithm is the k -means clustering algorithm. Calculation of the p-Wasserstein distance does not
require us to find an approximation to the probability distribution function as in the case of the
K-L and J-S divergences while we favour the k -means algorithm due to its observed speed [47]
and relative simplicity. Drawing conclusions from the clusters yielded by k-means can also be
easier than when using fuzzy c-means while hierarchical clustering can be slow since the standard
agglomerative algorithm has a time complexity of O(N3) and memory complexity of ⌦(N2). In
addition to the p-Wasserstein distance, we will also test the Maximum Mean Discrepancy as our
distance metric and compare the results of using each metric across a range of experiments.

Having briefly reviewed the vast world of distance metrics and clustering algorithms, we now
discuss in more detail the k -means clustering algorithm, the Maximum Mean Discrepancy, the
p-Wasserstein distance metric and the WK-means algorithm.
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3.2 The k-means clustering algorithm

Definition 3.2.1 (Unsupervised learning, [48]). Unsupervised learning, also known as unsuper-
vised machine learning, uses machine learning algorithms to analyze and cluster unlabeled datasets.
These algorithms discover hidden patterns or data groupings without the need for human inter-
vention.

The k -means clustering algorithm, or Lloyd’s algorithm as it is also known, is a well-known and
celebrated unsupervised learning algorithm that can be traced back to the work of J. MacQueen
in [5]. As in many unsupervised learning algorithms, its use resides in identifying unseen patterns
and clusters in the underlying data. The goal of the k -means clustering algorithm is to partition
a collection of data into k distinct clusters.

Definition 3.2.2 (Set of data streams, [49] (Definition 2.1, page 3)). Take X to be a non-empty
set. The set of streams of data over X is given by

S(X ) := {x = (x1, . . . , xn) : xi 2 X , n 2 N}.

Suppose we have a stream of data X = (x1, . . . , xn) 2 S(V ), over a normed vector space
(V, k · kV ). In this paper we take V = Rd for d 2 Z+. To each xi, i 2 {1, . . . , n}, we associate a
tuple xi = (xi

1, . . . , x
i
d). For example, if we take d = 1 we might consider x to be the price path

of one particular asset with V = R. If we take d = 3, we would then have three price paths such
that at each increment i we have xi = (xi

1, x
i
2, x

i
3) with x

i
1 the price of asset 1 at index i, xi

2 the
price of asset 2 at index i and x

i
3 the price of asset 3 at index i. In this case, V = R3. We might

also think of x as being a subset of the columns of our M ⇥N matrix in figure 2.1.

In the case of d > 1, it is common practice to standardise the values of each xi coordinate-wise,
by finding the mean average and standard deviation of the values and subsequently defining a new
stream of values X̂ = (x̂1, . . . , x̂N ), x̂i 2 Rd such that

E({x̂i
j}1iN ) = 0, V({x̂i

j}1iN ) = 1,

for j = 1, . . . , d. The elements of X̂ are then assigned to k distinct clusters using an iterative
algorithm, where k is a parameter we supply to the algorithm before starting.

Definition 3.2.3 (Set of clusterings over X, [1] (Definition A.1, page 29)). We write

C(X) :=

⇢
{Ci}0in : Ci \ Cj = ;,[n

i=1Ci = X, n 2 N
�

to be the set of all possible (disjoint) clusterings over X.

The goal of the algorithm is to return an element C⇤ 2 C(X̂) which is locally optimal with respect
to some distance metric D : Rd⇥Rd ! [0,1) on Rd. Often the distance metric used for clustering
is the well-known Euclidean distance D(x, y) = kx� yk where x, y 2 Rd. We note however that it
is possible to use any distance metric on the relevant normed vector space. The general steps of
the k -means clustering algorithm are as follows.

Step 1: Choose k initial centroids

Traditionally in the naive k -means algorithm we begin by choosing, uniformly at random, k
points of X̂, defined as x̄ := {x̄j}1jk, which we refer to as centroids. These points can be
thought of as central points in each cluster, and it is around these centres that we cluster our
remaining values. An alternative method is the k -means++ clustering algorithm [50].

In the k -means++ clustering algorithm, we choose one centroid randomly from the points in
X̂. For each remaining data point x̂i in X̂, we calculate the distance between it and the centroid
that has already been chosen, denoted D(x̂i)2. We then choose our next centroid using a weighted
probability distribution. That is to say, the probability of choosing any given point x̂i as the next
centroid is

D(x̂i)2P
x̂j2X̂ D(x̂j)2

.
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We then repeat the preceding steps until we have k centroids. This method has been found to lead
to faster convergence (O(log(k))-competitive) with a higher degree of accuracy.

Step 2: Define the clusters

We then calculate the distance between each point x̂i and each centroid in x̄. Point x̂i is then
assigned to the j

th cluster for which its distance to the j
th centroid is smallest. More formally, we

define the set of clusters such that

Cj := {x̂i 2 X̂ : argminl=1,...,kD(x̂i, x̄l) = j},

for j = 1, . . . , k.

Step 3: Define the new centroids

Finally, we define a new centroid for each cluster via a function ↵ : 2V ! V such that

x̄j := ↵(Cj),

for j = 1, . . . , k. On d-dimensional space and for a given cluster Cj the function ↵(·) is usually
defined as:

↵(Cj) :=
✓

1

|Cj |
X

x2Cj

xi

◆

1id
.

Remark 3.2.4. In our experimental work we make use of the k -means++ algorithm. Irrespective
of whether we use the naive k -means or k -means++ algorithm, we will refer to steps 1-3 as the
k -means algorithm going forward.

Step 1 is a preliminary step completed only at the very start of the algorithm while, together,
steps 2 and 3 form one iteration of the k -means clustering algorithm. Finally, we must define a
stopping rule for the algorithm after which, the most recent clusters will be returned.

Definition 3.2.5 (k -means stopping rule, [1] (Definition A.4, page 30)). Suppose (V, k · kV ) is a
normed vector space. For fixed k 2 N, consider a loss function l : V k ⇥ V

k ! R+ given by

l(x, y) :=
kX

i=1

kxi � yikV .

For a tolerance level ✏ > 0, the stopping rule corresponding to the k -means algorithm is given by

l(x̄n�1
, x̄

n) < ✏,

where n 2 N denotes the step of the algorithm, V = Rd for d 2 Z+ and x̄
n is the collection of

centroids at the n
th step of the algorithm.

In practice we may stop the algorithm should a certain number of iterations occur before full
convergence is achieved. We recall that the goal of the algorithm is to find a set of clusters C⇤
which are locally optimal with respect to D, the distance metric. C⇤ 2 C(X̂) is thus simply a
set of disjoint clusters which support X̂ and it should be such that it minimises the total cluster
variation.

Definition 3.2.6 (Within-cluster variation, [1] (Definition A.2, page 29)). Let k 2 N and let
X 2 S(V ) be a stream of data over a normed vector space V . Suppose C ⇢ C(X) are disjoint
clusters over X. Associate to each Cj its centroid x̄j for j = 1, . . . , k. Then, for a given Cj , the
within-cluster variation is defined as

WC(Cj) :=
X

x2Cj

kx� x̄jk2V ,

for j = 1, . . . , k.
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Definition 3.2.7 (Total-cluster variation, [1] (Definition A.3, page 29)). With the notation of
definition 3.2.6, define

TC(C) :=
kX

j=1

WC(Cj)

to be the total-cluster variation corresponding to a clustering C 2 C(X) on the normed vector space
(V, k · kV ).

3.3 Maximum Mean Discrepancy

The Maximum Mean Discrepancy is an integrable probability metric, first proposed in [51]. It is
introduced as a test statistic in the context of problem A.1.2. Formally it is defined as follows.

Definition 3.3.1 (Maximum Mean Discrepancy (MMD), [51] (Definition 2, page 726)). Let F be
a class of functions f : X ! R and let X and Y be random variables defined on a topological
space X . Let µ and ⌫ be the Borel probability measures of X and Y respectively and suppose that
x and y are independent samples drawn from X and Y. Then the Maximum Mean Discrepancy
(MMD) between µ and ⌫ is defined as

MMD[F , µ, ⌫] := supf2F

 
Eµ[f(x)]� E⌫ [f(y)]

!
.

If x = (x1, . . . , xn) and y = (y1, . . . , ym) where xi ⇠ µ and yj ⇠ ⌫, then a biased empirical estimate
of the MMD is given by

MMDb[F , x, y] := supf2F

"
1

n

nX

i=1

f(xi)�
1

m

mX

j=1

f(yj)

#
.

An important aspect to the MMD is the class of functions F over which it is defined. Although
other candidates exist, kernel methods are often used to define F . In [51] the unit ball in a
reproducing kernel Hilbert space (RKHS), defined as a Hilbert space H (A.1.2) and an associated
reproducing kernel  : X ⇥ X ! R (A.1.3), is suggested for F . When defined on a RKHS, if the
choice of RKHS is universal (A.1.4), then the MMD can be shown to be a metric when defined on
a compact space X .

In the case of X being non-compact, then it has been shown that the MMD is still a metric if the
kernel  is a characteristic kernel [52] as defined in appendix A.1.5. The Gaussian kernel defined
as

G : Rd ⇥ Rd ! [0,1], G(x, y) = exp(�kx� yk2Rd/2�2),

for (x, y) in Rd ⇥Rd, is a characteristic kernel on the set of Borel measures on X [52]. We will use
the MMD with F = (H,G) as one of our two distance metrics when clustering.

3.4 p-Wasserstein distance

The p-Wasserstein distance was first defined by Leonid Kantorovich in the context of optimisation
methods [53]. It is oft-associated with the optimal transport problem and, where p = 1, the Earth
mover’s distance (EMD) [54]. Suppose we wish to move a pile of earth with shape µ into a hole
of shape ⌫. This only makes sense if µ and ⌫ have some equivalent mass. Suppose also that there
is a cost associated with moving the pile from point x to point y called D(x, y)1 � 0. We call
a function P(x, y) a transport plan to move µ into ⌫ if it describes the amount of mass to move
from x to y. The 1-Wasserstein distance is then the minimal cost needed assuming the optimal
transport plan is used.
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Definition 3.4.1 (p-Wasserstein distance, [55] (Equation 7.1.1, page 151)). Suppose (X,D) is
a separable Radon space and that Pp(X) is the set of probability measures on X with finite p

th

moment. The p
th Wasserstein distance between measures µ, ⌫ 2 Pp(X) is defined by

Wp(µ, ⌫) :=

✓
minP2⇧(µ,⌫)

⇢Z

X⇥X
D(x, y)pP(dx, dy)

�◆ 1
p

,

where
⇧(µ, ⌫) := {P 2 P (X ⇥X) : P (A⇥X) = µ(A),P(X ⇥B) = ⌫(B)}

is the set of transport plans between µ and ⌫.

Proposition 3.4.2 (The p-Wasserstein distance is a metric, [56] (Chapter 5.1, proposition 5.4)).
The distance Wp : Pp(X)⇥ Pp(X) ! [0,1) is a metric on Pp(X).

Proof. See appendix A.1.6

Proposition 3.4.2 states that the p-Wasserstein distance is indeed a metric, and we therefore can
in fact use the p-Wasserstein distance as our distance metric in the k -means clustering algorithm.
Furthermore, the concept of an average or central measure amongst a set of measures has a natural
form when using the p-Wasserstein distance. This is called the Wasserstein barycentre.

Definition 3.4.3 (Wasserstein barycentre, [1] (Definition 2.3, page 9)). Suppose (X,D) is a
separable Radon space and let K = {µi}i�1 ⇢ Pp(X) be a family of Radon measures. The
p-Wasserstein barycentre between measures µ̄ of K is defined to be

µ̄ := argmin⌫2Pp(X)

X

µi2K
Wp(µi, ⌫).

Remark 3.4.4. The p-Wasserstein distance defined in definition 3.4.1, is in fact a special case of
an integral probability metric via its dual formulation and it shares a relationship with the MMD
as shown in appendix A.1.7.

3.5 The WK-means algorithm

In this section we formalise our ideas thus far and explain how we can combine the k -means
algorithm and p-Wasserstein distance in order to yield the WK-means algorithm as in [1]. We
note that the goal of the market regime clustering problem (MRCP) can be stated as the task of
classifying segments of return series (ri)i�0 where

ri = (r1i , . . . , r
n
i ),

for n 2 N and r
j
i 2 Rd for j 2 {1, . . . , n}, where d 2 Z+. We note as well that for any vector

ri 2 Rn, we may form an empirical measure µri = 1
n

Pn
j=1 �rji

, using the dirac delta function

�. Therefore, we may rewrite the goal of the MRCP as being equivalent to assigning labels to
empirical probability measures µ 2 Pp(Rd), where Pp(Rd) is the set of probability measures on Rd

with finite p
th moment. In practice we wish to take potentially overlapping segments of returns

data for d assets and gather the empirical measures associated to these segments together into
distinct clusters, each defined by an underlying distribution, which we then refer to as market
regimes.

In [1], it was taken that in definition 3.2.2, X = R. In this paper, we will take X = Rd for some
d 2 Z+. We fix N 2 N and we will work with elements of the form S = (s0, . . . , sN ) 2 S(Rd),
which are price paths of d financial assets. For S 2 S(Rd), we define the vector of log-returns rS

associated to S as
r
S
i = log(si+1)� log(si),

for 0  i  N � 1 and thus rS 2 S (Rd). As a firm example of these definitions, suppose we have
two assets A and B such that d = 2, and such that the prices of A and B at times 0 and 1 are 20
and 22, and 30 and 34 respectively. Then we would have
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S = (s0, s1),

s0 = [20, 30]T , s1 = [22, 34]T ,

r
S
0 = [log(22)� log(20), log(34)� log(30)]T = [0.04, 0.05]T .

In order to divide our original stream of returns data into segments we use definition 3.5.1.

Definition 3.5.1 (Stream lift, [49] (Section 3.3, page 5)). Let S(Rd) be a space of streams over
the Rd and let m � 1. We call a function

` = (`1, . . . , `m) : S(Rd) ! S(S(Rd))

a lift from the space of streams to the space of streams of segments over Rd.

Using definition 3.5.1 we define a lift l that will take our original returns data of length N, and
divide it into M segments of length h1 using an overlap parameter of length h2, where h1, h2 2 N,
M := b N

h1�h2
c and ` := `h1,h2 such that

`
i(rS) = (rS(h1�h2)(i�1), . . . , r

S
h1+(h1�h2)(i�1)),

for i = 1, . . . ,M . We now have M segments of length h1 for which h2 returns overlap between each
successive segment. As discussed, any segment of returns data ri 2 `(rS) with ri = (r1i , . . . , r

h1
i )

can be associated to an empirical measure µi =
1
n

Pn
j=1 �rji

. Therefore we may define a family of
measures

K := {(µ1, . . . , µM ) : µi 2 Pp(Rd), i = 1, . . . ,M}. (3.5.1)

We now have a set of measures associated to our raw multivariate time series of returns data. In
order to use the k -means algorithm with this family of measures, we need to make certain adaptions
to the steps laid out in section 3.2. The overarching idea is that instead of using the traditional
Euclidean distance as our distance metric, we use a di↵erent distance metric in order to measure
the distance between measures µ and ⌫ in K.

In [1], the authors argue that the p-Wasserstein distance is the natural choice when clustering
probability measures Pp(R) defined on the metric space (X,D), in particular for the univariate
case of dimension d = 1. The distance function D appears directly in definition 3.4.1 and by
proposition 3.5.2, the p-Wasserstein distance metrizes weak convergence.

Proposition 3.5.2 (Weak convergence of p-Wasserstein distance, [57] (Chapters 2 & 3, pages 1
- 155)). A sequence (µi)�1 ⇢ Pp(X) converges weakly to µ 2 Pp(X) if and only if Wp(µi, µ) ! 0
as n ! 1.

Proof. See Chapters 2 & 3, pages 1 - 155 in [57].

In the univariate case of dimension d = 1, the p-Wasserstein distance is quick to compute and
the aforementioned barycentre (definition 3.4.3) acts as a natural aggregator whose computation
is also e�cient. Analogously to section 3.2, we go through the adaptions to the k -means clustering
algorithm required in order to use the p-Wasserstein distance e↵ectively.

Step 1: Choose k initial centroids

The initial step of choosing k initial centroids, µ̄ := {µ̄j}1jk is similar to the standard k -
means algorithm. If using the naive k -means clustering algorithm, then we choose uniformly at
random k measures from our family of measures K to be our initial centroids. If using the k -
means++ algorithm, then the distance metric used in the weighted probability distribution, D, is
the p-Wasserstein distance, Wp, while all other steps remain the same.

Step 2: Define the clusters

We then calculate the distance between each point µi and each centroid in µ̄. Point µi is then
assigned to the j

th cluster for which its distance to the j
th centroid is smallest. More formally, we

define the set of clusters such that for j = 1, . . . , k

Cj := {µi 2 K : argminl=1,...,kWp(µi, µ̄l) = j}.

19



Step 3: Define the new centroids

Finally, we define a new centroid for each cluster using the p-Wasserstein barycentre as defined
in definition 3.4.3. This is prudent as the barycentre of a family of measures {µi}i�1 is the measure
µ̄ which minimises the within-cluster variation as defined in definition 3.2.6. By minimising the
within cluster variation, the total-cluster variation is thus minimised, as defined in definition 3.2.7.

The final adaption is to the stopping rule and its loss function l. The adaption is quite natural
wherein, instead of using the squared Euclidean distance to measure the distance between the old
and new cluster centres, we simply replace this with the p-Wasserstein distance. We then stop the
algorithm once the di↵erence in the old and new centroid values after each iteration falls below a
preset parameter ✏. Thus we have the function l : Pp(Rd)k ⇥ Pp(Rd)k ! [0,1) defined as

l(µ̄n�1
, µ̄

n) :=
kX

i=1

Wp(µ̄
n�1
i , µ̄

n
i ). (3.5.2)

Therefore, for a given value of ✏ > 0, we terminate the algorithm at step n if l(µ̄n�1
, µ̄

n) < ✏.

Definition 3.5.3 (WK-means algorithm, [1] (Definition 2.7, page 11)). Let K ⇢ Pp(Rd) be a
family of measures with finite p

th moment. We refer to the k -means clustering algorithm on
(Pp(Rd),Wp), with aggregation method given by the p-Wasserstein barycentre and loss function
given by equation (3.5.2) as the Wasserstein k -means algorithm or WK-means algorithm.

Remark 3.5.4. Although we state the adaptions to the k -means clustering algorithm in terms of
the p-Wasserstein distance, we will in fact use the same framework with the MMD.
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Chapter 4

The WK-means and
MMDK-means algorithms

In this chapter, we show how the WK-means algorithm is implemented in practice for the univariate
(d = 1) case, and the generic d -dimensional case (d > 1). We separate these into distinct parts as it
is well-known that the p-Wasserstein distance in the univariate case is computationally easier than
in the generic d -dimensional case. We also show how we may use the Maximum Mean Discrepancy
in order to form a similar algorithm which we dub the d -dimensional MMDK-means algorithm.

4.1 The uni-dimensional WK-means algorithm

Our discussion of the univariate case is primarily an adaption of the work in [1]. For univariate data
we work on the space (Pp(R),Wp). In this case, given absolutely continuous measures µ, ⌫ 2 Pp(R),
there exists a closed-form solution to the p-Wasserstein distance.

Proposition 4.1.1 ([58] (Equation (3), page 2)). Suppose µ, ⌫ 2 Pp(R) and that µ, ⌫ are absolutely
continuous with respect to the Lebesgue measure on R. Then the p-Wasserstein distance Wp(µ, ⌫)
is given by

Wp(µ, ⌫) =

✓Z 1

0
D(F�1µ (z), F�1⌫ (z))pdz

◆ 1
p

,

where the quantile function F
�1
µ : [0, 1) ! R is defined as

F
�1
µ (z) := inf{x : Fµ(x) > z}. (4.1.1)

and D(x, y) = |x� y|.

Proof. See appendix A.2.1.

The closed form solution given in proposition 4.1.1 makes computation of the p-Wasserstein
distance in the univariate case e�cient. To illustrate this, suppose we have two empirical measures
µ, ⌫ 2 Pp(R). We recall the formal definition of an empirical measure in the uni-dimensional case.
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Definition 4.1.2 (Empirical measure, [59] (Section 3.9.5, page 65)). Let x 2 S(R) such that
x = (x1, . . . , xN ) for N 2 N. Furthermore, let

Qi : S(R) ! R

be the function which extracts the i
th order statistic of x, for i = 1, . . . , N . Then the cumulative

distribution function of the empirical measure µ
x 2 Pp(R) associated to x is defined as

µ
x((�1, x]) :=

1

N

NX

i=1

1{Qi(x)x}(x),

where 1 : R ! [0, 1] is the indicator function. We refer to (Qi(x))1iN = (Qi)1iN as the
increasing sequence of atoms of µx.

We assume that our measures µ and ⌫ each have an equal numbers of atoms h1 2 N such that

µ((�1, x]) =
1

h1

h1X

i=1

1{↵ix}(x), ⌫((�1, x]) =
1

h1

h1X

i=1

1{�ix}(x),

where (↵i)1ih1 and (�i)1ih1 are the increasing sequences of atoms for µ and ⌫ respectively.

Definition 4.1.3 (Locally finite Borel measure, [60] (Page 55)). A locally finite Borel measure is
a measure, µ, defined on the Borel �-algebra such that every compact set has finite measure, that
is

µ(K) < 1,

for every compact set K.

Definition 4.1.4 (Radon measure, [61] (Page 212)). Let X be a locally compact Hausdor↵ space.
A Radon measure on X is a Borel measure that is finite on all compact sets, outer regular on all
Borel sets, and inner regular on all open sets.

Theorem 4.1.5 ([62] (Theorem 4.3)). There is a one-to-one correspondence between Radon mea-
sures µ on [0,1) and right continuous functions At : R ! [0, 1] of finite variation given by

At = µ((�1, t)).

Every empirical measure on R is a locally finite Borel measure and is thus, in fact, Radon and
hence by theorem 4.1.5 one can associate to µ (and similarly ⌫) a right-continuous function of finite
variation At : R ! [0, 1] given by At = µ((�1, t)). The inverse of this function exists and is given
by the quantile function (4.1.1). Therefore, in the case of µ, we have that

F
�1
µ (z) = ↵i, z 2


i� 1

h1
,
i

h1

◆
, (4.1.2)

for all i = 1, . . . , h1 and analogously for ⌫. Using the fact that F
�1
µ (z) = 0 for all z < ↵1, and

proposition 4.1.1 combined with result (4.1.2), we have that

Wp(µ, ⌫)
p =

Z 1

0
D(F�1µ (z), F�1⌫ (z))pdz =

h1X

i=1

Z i
h1

i�1
h1

D(F�1µ (z), F�1⌫ (z))pdz

=
1

h1

h1X

i=1

D(↵i,�i)
p
.

(4.1.3)

We therefore have that, in the uni-dimensional case at least, calculating the p-Wasserstein dis-
tance is simply a matter of using a quick sort algorithm (O(log(h1))) to order each measure’s
atoms before a simple summation of distances is performed. Furthermore, the computation of the
p-Wasserstien barycentre is e�cient.
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Proposition 4.1.6 (Uni-dimensional p-Wasserstein barycentre, [1] (Proposition 2.6, page 11)).
Suppose that {µi}1iM are a family of empirical probability measures, where each measure has N
atoms, (↵i

j)1jN ⇢ RN . Let

aj = Median(↵1
j , . . . ,↵

M
j ), bj = Mean(↵1

j , . . . ,↵
M
j ),

for j = 1, . . . , 35. Then the cumulative distribution function of the 1-Wasserstein barycentre µ̄ 2
P1(R) over {µi}1iM with respect to the 1-Wasserstein distance is given by

µ̄((�1, x]) =
1

N

NX

i=1

1{aix}(x),

and the p-Wasserstein barycentre µ̄ 2 Pp(R) over {µi}1iM with respect to the p-Wasserstein
distance, for p > 1, is given by

µ̄((�1, x]) =
1

N

NX

i=1

1{bix}(x).

Moreover, µ̄ is not necessarily unique.

Proof. See appendix A.2.2.

Therefore computation of the p-Wasserstein barycentre in the uni-dimensional case requires only
calculation of a median or mean. Together, these results make the WK-means clustering algorithm
e�cient in the univariate case.

4.2 The d-dimensional WK-means algorithm

This section builds on the framework of the WK-means algorithm as presented in chapter 3. It
uses di↵erent methods to that of the uni-dimensional implementation however. We work on the
space (P2(Rd),W2), d > 1 going forward.

4.2.1 Background

Computation of the p-Wasserstein distance and barycentre in Rd, d > 1, is known to be com-
putationally demanding for h1 or M large [63], with evaluation between multi-dimensional mea-
sures often numerically intractable [58]. In recent years, an alternative approach has been to use
variations of the Wasserstein distance including the sliced Wasserstein distance, the max sliced
Wasserstein distance and the generalized sliced Wasserstein distance. The general principle of the
sliced Wasserstein distance is to obtain a family of one-dimensional representations of the original
higher-dimensional probability distribution. This is done by projecting from the higher-dimensional
probability distribution to the unit sphere. One then subsequently calculates the distance between
two input distributions as a functional on the Wasserstein distance of their one-dimensional rep-
resentations. This is typically achieved by using linear projections such as the Radon transform.
The max and generalized versions are then variations of this wherein we use the maximum repre-
sentation [64] (definition 2.1, page 3) and the generalized Radon transform respectively [58] (part
3.1, page 4). All three have been shown to be distance metrics [65] (proposition 5.1.2, page 120),
[58] (part 3.2, page 5).

In using these variations of the Wasserstein distance, we can approximate the true d -dimensional
Wasserstien distance using the uni-dimensional case which is inherently quicker. Furthermore,
the sliced and max sliced p-Wasserstein distances have been shown to be equivalent to the p-
Wasserstein distance for all p � 1 [64] (theorem 2.1, page 4) and the max sliced Wasserstein
distance has been shown to be strongly equivalent to the p-Wasserstein distance for p = 1 [64]
(theorem 2.1, page 4) and p = 2 [66] (proposition 2, page 4).
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The Wasserstein barycentre in higher dimensions is often di�cult to compute if not completely
infeasible. Many algorithms have been proposed to help overcome this problem. These include a
mixture of fixed support methods, where the atoms of the barycentre are fixed in advance and their
optimal weightings need only be found, and free support methods, where the atoms and weightings
are computed. A number of methods rely on some form of entropy regularisation [67], [68] while
others use tools such as Bregman projections [69], stochastic gradient descent methods [63] and
interior point methods [70].

Whether using the sliced versions of the Wasserstein distance or the barycentre approximation
methods, in each case we are trading o↵ some level of accuracy for speed. Rather than utilising
these approximations, we instead return to the original problem itself.

4.2.2 Approach

In the next few paragraphs we lay out our approach for implementing steps 1-3 of the WK-means
algorithm when working in d -dimensional space, which balances trade-o↵s in accuracy and speed.
We recall that each empirical measure µi is formed from a segment of returns data ri 2 `(rS) with
ri = (r1i , . . . , r

h1
i ) and hence µi is in fact a discrete density distribution in Rd. Suppose we take

two measures µi and µj from K (3.5.1) formed from segments ri 2 `(rS) with ri = (r1i , . . . , r
h1
i )

and rj 2 `(rS) with rj = (r1j , . . . , r
h1
j ) respectively, for i, j 2 1, . . . ,M .

We describe the elements of ri and rj , and thus the atoms of µi and µj respectively, as being
point clouds X and Y in Rd of size h1. As discussed in [63] (part 2.1, page 3) we may consider the
2-Wasserstein distance between X and Y as

W2(µi, µj)
2 = W2(X,Y)2 = min⇡2⇧h1

X

i2I
kXi �Y⇡(i)k2,

where ⇧h1 is the set of all permutations of h1 elements and I = {1, . . . , h1}. This distance is then
found by computing the optimal assignment i ! ⇡

⇤(i) that minimises W2(X,Y)2. The problem
can be viewed as a linear programming problem such that we aim to find

W2(X,Y)
2 = minB2Bh1

X

i,j2I2

Bi,jkXi �Yjk2,

where Bh1 is the set of bistochastic matrices - that is, nonegative matrices with rows and columns
summing to 1. This can be solved using the Hungarian algorithm [71] which is worst-case O(h3

1)
or, as shown in [72] (chapter 4), in O(h2.5

1 log(h1)) using dedicated solvers. The computational
complexity of these algorithms typically makes this problem unattractive to solve for large h1

or M. However, in python, use of the cython cdist function from the scipy.spatial package when
computing the euclidean distance kXi�Yik2 and the cython linear sum assignment function from
the scipy.optimize give an acceptable speed of computation for our experiments.

Computation of the 2-Wasserstein distance is required for all three steps of our iterative algo-
rithm. In step one, we must compute the distance between each measure and its nearest centroid
when using the k -means++ starting centroids. In step two, the distance between each measure and
each centroid must be found in order to assign each measure to a cluster. Finally, in step three, we
find the 2-Wasserstein barycentre of each cluster, a method which naturally requires computation
of the 2-Wasserstein distance. In fact, the speed of computation is particularly important when it
comes to solving for the 2-Wasserstein barycentre.

As discussed in section 4.2.1, computation of the Wasserstein barycentre can be di�cult if not
infeasible. In order to reduce the computational complexity, we restrict the possible atoms of the
barycentre to those of the measures it is clustering. If the data is particularly sparse, this may
lead to incorrect barycentres but assuming we work with a su�cient size of returns data, we reason
that it should be reasonably accurate. Having restricted our search space, we then form an M⇥M

distance matrix W, where the i
th
, j

th entry is the 2-Wasserstein distance between the i
th and j

th

measures.
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Wij := W2(µi, µj) !

0

BBB@

W11 W12 · · · W1M

W21 W22 · · · W2M
...

... · · ·
...

WM1 WM2 · · · WMM

1

CCCA
!

0

BBB@

P
j W1jP
j W2j

...P
j WMj

1

CCCA
!

q := argmini

nX

j

Wij

o
,

µ̄ := µq

Figure 4.1: Barycentre computation flow diagram

Such a matrix is naturally symmetric which can be used to further cut down our computation
time. We also know that Wij = 0 where i = j, and thus Wii = 0 for i = 1, . . . ,M . Using the cdist
and linear sum assignment functions to find the 2-Wasserstein distance, W2(µi, µj), as discussed,

we form our distance matrix, which is O(M(M�1)
2 ), and proceed to sum the rows. The row with

the minimum sum is judged to be the entry of the measure which minimises the distance to all
other measures in the cluster and is hence the 2-Wasserstein barycentre. Figure 4.1 shows a flow
diagram of the described steps.

4.3 The d-dimensional MMDK-means algorithm

In the final part of this chapter we discuss how we may combine the Maximum Mean Discrepancy
and k -means clustering algorithm to form the d -dimensional MMDK-means algorithm. For our
purposes, we work on the space (P2(Rd),MMD), d > 1 going forward.

4.3.1 Approach

Our approach when using the MMD as the distance metric is analogous to that of the d -dimensional
WK-means algorithm. An important di↵erence between the two is that the MMD is often easier to
compute in higher dimensions. When working with discrete distributions, we compute an unbiased
estimate of the squared MMD as laid out in lemma 4.3.1.

Lemma 4.3.1 (Unbiased empirical estimate of the squared MMD, [51] (Lemma 6, page 728)).
Using the notation of 3.3.1, let x and x

0 be samples of X with distribution µ, and y and y
0 be

samples of Y with distribution ⌫. The squared MMD is given by

MMD2[F , µ, ⌫] = Ex,x0 [(x, x0)]� 2E[(x, y)] + Ey,y0 [(y, y0)],

where x
0 and y

0 are independent copies of x and y respectively. An unbiased empirical estimate is
given by

MMD2
u[F , X, Y ] =

1

m(m� 1)

mX

i=1

mX

j 6=i

(xi, xj) +
1

n(n� 1)

nX

i=1

nX

j 6=i

(yi, yj)�
2

mn

mX

i=1

nX

j=1

(xi, yj).

Our choice of kernel function is the Gaussian kernel laid out in equation (3.3), a choice which
requires a bandwidth parameter �. The optimum choice of kernel size is an area of active research
and it remains a heuristic. A number of Bandwidth estimation methods are discussed in detail in
[73]. One suggestion proposed in [51] is to take � to be the median distance between points in the
aggregate sample. Overall the choice of bandwidth is data dependent. We found that averaging
across a number of choices of bandwidth parameter on the scale of our constituent data worked
well in our experiments, as opposed to instances of our bandwidth parameter being much larger
than our data, which led to poor results.
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Computation of a barycentre when working with the MMD is also required for our algorithm.
Here we follow the same framework as the d -dimensional WK-means algorithm and define the
barycentre to be the measure in a given cluster which minimises the distance to all other measures.
Formally we define the barycentre to be

µ̄j := argmin⌫2Cj

X

µi2K
MMD(µi, ⌫),

where Cj := {µi 2 K : argminl=1,....,kMMD(µi, µ̄l) = j}, a definition analogous to that of the
p-Wasserstein case (definition 3.4.3).

Remark 4.3.2. Going forward, we will refer to our new algorithms as the 2-d WK-means algo-
rithm and the 2-d MMDK-means algorithm respectively, and to the uni-dimensional WK-means
algorithm as either the uni-d 1-WK-means algorithm or the uni-d 2-WK-means algorithm. We do
this in order to highlight both the dimensionality of the data we run each algorithm on, and the
choice of p used for the p-Wasserstein distance in each uni-dimensional algorithm.
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Chapter 5

Synthetic data experiments

In this section, we test the 2-d WK-means and 2-d MMDK-means algorithms on synthetic data
using two time series generated from either a classic geometric Brownian motion (GBM) or a
Merton jump di↵usion (MJD) process. We treat these time series as being synthetic price series
and we convert this original price series into a stream of segments of returns as described in
definition 3.5.1.

Testing unsupervised learning algorithms on real data can often be tricky given we do not know
in advance the exact relationships that exist in the data. When clustering real 2-dimensional
returns series, it is not possible to infer the exact underlying probabilistic structure from which
they are generated and it is therefore di�cult to define what exactly a ‘correct’ clustering is. This
makes any tests conducted on real returns series hard to evaluate since it is impossible to know
exactly when the underlying distribution has changed and thus when a regime change has occurred.

Therefore, in order to evaluate the accuracy of the clustering algorithm, we first tested it on
synthetically generated data. This data was generated such that we knew a priori when shifts in
the underlying probabilistic structure would occur in our returns data. This then allowed us to
evaluate the true accuracy of the clusters formed.

The synthetic data generated from the GBM and MJD processes have a shared schema. Given
T 2 N and a time interval [0, T ], we define a mesh with increments that roughly represent one
market hour. Taking n := 252⇥ 7 to be the number of market hours in a market year, we set

� :=

("
i� 1

n
,
i

n

#
: i = 1, 2, . . . , n⇥ T

)
.

Therefore, T can be thought of as the number of market years. When generating our data using
this mesh, the majority of points will fall into what we designate as a ‘normal’ regime with a
particular underlying distribution.

At certain points this regime will change. Our goal is to study changes in the joint distribution
of our assets, and so these changes will be changes of the mean and variance of the synthetic
assets, of their correlation structure or a mixture of both. Each experiment will explicitly define
its parameters and types of regime change. For a given experiment, we have J independent types
of regime change and we define those periods of change as follows. We take r

j 2 N to be the
number of regime changes of type j for j 2 [1, J ] that we wish to observe. Taking the price series
of a synthetic asset to be {si}1iN , we specify their starting points and lengths by (sji , l

j
i ) 2 N⇥N

for i = 1, . . . , rj , such that
0  s

j
0 < s

j
rj + l

j
rj  n⇥ T,

and
s
j
i + l

j
i < s

j
i+1,

for i = 1, . . . , rj � 1. Each l
j
i may be a constant or a random variable but for our experiments, we

kept this value fixed. We thus have a set of disjoint intervals representing our periods of regime
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change of type j
R

j := {[sji , s
j
i + l

j
i ] : i = 1, . . . , rj}.

We designate periods of non-regime change as N := � \ [j2JR
j . Therefore periods of regime

change will start at point sji and end at point sji + l
j
i for each i in [1, rj ] and j in [1, J ].

Using the mesh structure above, we generated two synthetic price series S1 and S2, and calculated
the log-returns rS 2 S(R2) where S := (S1, S2). The log-returns rS have a joint distribution fS1,S2

and marginal distributions given by fS1 and fS2 . In line with (3.5.1), we created a lifted stream
of data l(rS) 2 S(S(R2)), and subsequently a family of empirical measures K, by segmenting our
return series into M segments.

In order to create the lifted stream, we first chose a value for h1 and h2. In [1], when testing the
original univariate WK-means algorithm, the authors choose h1 = 35 and h2 = 28 given h1 = 35
corresponds to approximately one market week in market hours with h2 being one market day
short of that. The value of h1 dictates the number of returns that form each empirical distribution
while h2 dictates the degree of overlap between segments. While one may reasonably want h1 to
be as large as possible in order to better approximate empirically the true underlying distribution
of a segment, if h1 is too large then we will likely miss certain regime changes. If the value is too
small however then our classifications are likely to be dominated by noise. The value of h2 can be
used to increase the degree of overlap between the segments, which can be useful when our data
is limited in size. In testing their choice of hyperparameters with real data, the authors conclude
the values of h1 = 35 and h2 = 28 to be reasonable, and they note that for a suitably chosen h1

and data of a su�cient size, the value of h2 does not have a large e↵ect on the centroids obtained.
Moving forward, we will take h1 = 35 and h2 = 28 for the uni-d p-WK-means, 2-d WK-means
and 2-d MMDK-means algorithms for our synthetic examples. We will further discuss the values
of h1 and h2 for the 2-d WK-means and 2-d MMDK-means algorithms in the context of real data
in chapter 6.

Remark 5.0.1. We note that given the choice of hyperparameters, and in particular due to the
choice of overlap parameter h2 = 28, any unique return may belong to between 1 and 5 segments.

We ran the uni-d p-WK-means and 2-d algorithms over the lifted stream of data l(rS), returning
k centroids {µ̄i}i=1,...,k and clusters {Cj}j=1,...,k. We display our results primarily using a combina-
tion of three di↵erent plots. The first is referred to as the mean-variance plot. Given each empirical
joint distribution µ 2 K is formed from a multivariate time series and is a discrete distribution, it
may be written in the form given in figure 5.1.

✓
r11 r12 · · · r1h1

r21 r22 · · · r2h1

◆

Figure 5.1: Matrix form of a 2⇥ h1 empirical distribution µ.

Each row is thus a marginal distribution of the joint distribution and each marginal distribution
will have an associated mean and variance. Therefore each marginal distribution can be projected
onto R2 via the mapping

Mp : Pp(R) ! R2
,

µfSi
!
 q

V(µfSi
),E(µfSi

)

!
,

for i = 1, 2, which is simply a scatter plot of each measure in mean-variance space. Each point
is then colored according to its cluster membership. Using this mean-variance plot allows us to
visualise how well our algorithms cluster along each of the marginal distributions fS1 and fS2 .

The second plot we make use of is a plot of the log-returns of each asset which aids us in
visualising the correlation between the points in each cluster. We identify each cluster, and its
points therein, with a color. We recall that the empirical distributions formed from our returns
series overlap. Given the returns series rS = (rS1 , . . . , r

S
N�1), each return r

S
i , and thus asset price,

may be associated with up to 5 di↵erent empirical measures and therefore, there are a number of
potential centroid membership combinations, and colors, that it may have.
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Figure 5.2: Example diagram of the segmentation of returns and the subsequent association of
returns with a cluster color.

We aim to use this algorithm in the context of trading and hence, for the purposes of any color
plots formed, we will associate each return r

S
i with the first centroid membership it has. This will

also make our plots clearer, particularly when we have more than two colours in the same plot.
This idea is demonstrated in 5.2 which shows an example of the segmented returns l(rS). Each
block is of size h1 � h2, and each measure µi is of length h1. Each measure µi overlaps with the
preceding and subsequent measures. Therefore, given h1 = 35 and h2 = 28 the block highlighted
in red is included in measures µ2, µ3, µ4, µ5, and µ6. However, we give it the color of the cluster
in which µ2 is placed, which is highlighted with a thick border in the diagram. In this example, µ2

was placed in the red cluster hence the returns in this block are colored red. The correlation plot
is then formed by coloring each pair of returns rSi = (rS1

i , r
S2
i ) for i 2 {1, . . . , N � 1}, and plotting

these returns pairs. This plot should show the correlation of the points in each cluster.

Finally, our third plot will be a colored time series plot. In a similar manner to the second plot,
we partition the two price series S1, S2 such that each partition is colored according to its centroid
membership. The centroid membership is again the first centroid to which a particular price can be
associated. We will also apply a colored shade to the grid points indicating the periods of regime
change which should allow us to visually ascertain how well the algorithm is picking up periods of
regime change.

In order to numerically evaluate the accuracy of our clustering algorithm, we follow the approach
of [1] and consider three scores of accuracy: total accuracy, accuracy during the normal regime
(regime-o↵) and accuracy during periods of regime change (regime-on). We calculate these in
the following way: for i 2 {1, . . . , N � 1}, associate to each log-return r

S
i the empirical measures

Mi := {µj(i), . . . , µj(i)+v} that it is a member of where j 2 N is the first such measure. We note
that v 2 [0, 4] as seen in remark 5.0.1. We then calculate which cluster in {1, . . . , k} each µ 2 Mi

is associated to, which gives us a set of labels ȳi := {k̄0, . . . , k̄v}. These values are then aggregated
into a row vector

Ȳ
i :=

 
vX

j=0

1{x=l}(k̄j)

!k

l=1

,

for i = 1, . . . , N � 1. Going forward, we assume that k̄ = 0 corresponds to the standard regime
and k̄ = j corresponds to the j

th type of regime change for j in [1, J ]. In our experiments we
test regime change of the underlying distribution using a change of mean and variance, a change
of correlation structure and a mixture of both changes. Therefore we have a number of di↵erent
types of regime change and thus the accuracy during these periods will be dictated by the type of
regime change which has occurred. Nonetheless, we can create a general definition for evaluation
purposes.
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Definition 5.0.2 (Accuracy scores, [1] (Definition 3.7, page 19)). With the notation previously
given, for a given vector of log-returns r

S 2 S(Rd) and cluster assignments C = {Cj}kj=1, the
regime-o↵ accuracy score (ROFS) is given by

ROFS(rS , C) :=
P

rSi 2N
Ȳ

i
0P

rSi 2N
P

k Ȳ
i
k

.

Similarly, the regime-on accuracy score (RONS) for the j
th type of regime change is given by

RONSj(r
S
, C) :=

P
rSi 2Rj Ȳ

i
jP

rSi 2Rj

P
k Ȳ

i
k

.

Finally, total accuracy (TA) is given by

TA(rS , C) :=
P

rSi 2N
Ȳ

i
0 +

P
rSi 2R1 Ȳ

i
1 + · · ·+

P
rSi 2RJ Ȳ

i
J

PN
i=1

P
k Ȳ

i
k

.

We briefly outline the types of joint regime (JR) that are theoretically possible in our experimen-
tal framework. Given we are working with a combination of two assets, there are several types of
joint regime possible. These are summarised in table 5.1. Each joint regime is a combination of the
mean-variance regime and the correlation regime. The mean-variance regime of a particular joint
regime is dictated by the mean-variance regime of each underlying asset. This is a combination of
a lower variance/higher mean (bull) and higher variance/lower mean (bear) market for each asset.
The correlation regime is also one of two. We refer to the correlation regime as being either the
‘normal’ correlation regime or the ‘abnormal’ correlation regime. We refer to the combination of
JR = (Bull, Bull, Normal) as being the standard regime. The number of joint regimes in each of
our experiments will dictate the number of clusters k we test for.

Asset 1 Asset 2 Correlation
Bull Bull Normal
Bull Bear Normal
Bear Bull Normal
Bear Bear Normal
Bull Bull Abnormal
Bull Bear Abnormal
Bear Bull Abnormal
Bear Bear Abnormal

Table 5.1: Possible combinations of joint regimes (JR).

An extensive number of experiments were conducted and in the following sections, we highlight
a few key experiments and their findings.

Remark 5.0.3. In the following experiments, where clustering graphs have been provided these
have been generated using the 2-d WK-means algorithm. Where statements are made regarding
these graphs, similar statements may also be attributed to graphs generated using the 2-d MMDK-
means algorithm where regime accuracy scores are similar.

5.1 Geometric Brownian motion

In this section we generate two synthetic price series modelled as geometric Brownian motions.
Let M(✓) be a family of models indexed by a parameter set ✓ ⇢ R5. For each joint regime, the
parameter set ✓ is characterised by the means (µi), standard deviation (�i) per unit time and the
instantaneous correlation (⇢) of both assets for i = 1, 2 such that ✓ = (µ1

, µ
2
,�

1
,�

2
, ⇢). The price

of each asset i at time t is then found using the stochastic di↵erential equation

dS
i
t = µ

i
S
i
tdt+ �

i
S
i
tdW

i
t ,
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for t � 0, where W
i
t are correlated Brownian motions for i = 1, 2. The solution to this equation

is well-known, and there is a simple method for correlating two Brownian motions such that they
have correlation ⇢. We are then left with

S
1
t = S

1
0 exp

 
µ
1 � (�1)2

2

!
t+ �

1
p
tZ

1
,

S
2
t = S

2
0 exp

 
µ
2 � (�2)2

2

!
t+ �

2
p
t(⇢Z1 +

p
(1� ⇢2)Z2),

where Z
1
, Z

2 are standard normal random variables.

In the following experiments we have one normal regime and J alternative regimes, giving us a
total of J + 1 types of regime. Each regime is characterised by its parameter set ✓j for j in [0, J ].
When generating the plots shown, we simulated a path for each asset over T = 20 market years
and each regime change had a duration of lji = 0.5⇥ 252⇥ 7 for i = 1, . . . , rj and j 2 [1, J ]. This
corresponds to approximately half a year. Our mesh grid was thus

� =

("
i� 1

1764
,

i

1764

#
: i = 1, 2, . . . , 252⇥ 7⇥ 20

)
.

For each experiment we focused on changing one aspect of the joint distribution of our two
assets and evaluated our various algorithms’ performance using the metrics in definition 5.0.2. We
began by fixing the correlation between the two assets and shifting between a bull and bear market
regime characterised by their di↵erent mean and variance. We then took the opposite approach
and fixed the mean-variance regime while altering the correlation between the assets. Finally we
fixed neither and allowed our assets to experience a mixture of both changes in mean and variance,
and in correlation.

5.1.1 Fixed correlation regime

In this experiment we tested how well the 2-d WK-means and 2-d MMDK-means algorithms picked
up a change in the mean-variance regime characterised by a change in the mean and variance of the
generator GBM. In order to do so, we fixed the correlation ⇢ for values of ⇢ = �1,�0.5, 0, 0.5, and
1. We compared their results to those of the univariate algorithms tested on each asset individually
using the p-Wasserstein distance for p = 1, 2. We generated geometric Brownian motion paths for
each asset using the parameter sets

✓0 = (0.02, 0.02, 0.2, 0.2, ⇢), and ✓1 = (�0.02,�0.02, 0.3, 0.3, ⇢)

such that ✓0 and ✓1 correspond to a bull (JR0) and bear market (JR1) respectively, and we took
S
i
0 = 100 for i = 1, 2.

We began by fixing our assets such that both would undergo a regime change at the same time.
Thus we should expect to have two combinations of joint regime JR0 = (Bull, Bull, Normal) and
JR1 = (Bear, Bear, Normal) and we therefore take k = 2. We then fixed ⇢ = 1. When ⇢ = 1 and
both assets undergo regime change at the same time, then, in e↵ect, we have created two assets
that should in fact move as one. The goal of this experiment was to compare and contrast the
performance of the 2-d algorithms with respect to that of the uni-d WK-means. We have only
two regimes and hence we have J = 1. We took r

1 = 10 meaning that approximately a quarter
of our path was generated using the JR1 parameter set with the rest generated from the JR0 set.
Figure 5.3(a) shows an example of such GBM paths with the regime change periods highlighted
via a filled in red background colour. Figure 5.3(b) similarly shows the log-returns generated by
such price paths.
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(a) GBM price paths with ⇢ = 1, regime changes
highlighted.

(b) GBM log-returns with ⇢ = 1, regime changes
highlighted.

Figure 5.3: GBM synthetic price paths with ⇢ = 1, and their associated log-returns.

We ran the 2-d WK-means and 2-d MMDK-means algorithms, and the uni-d p-WK-means
algorithms for p = 1, 2 on the same simulated path. We report the accuracy scores for each
algorithm in table 5.2 for a total of n = 50 runs. We can see from the accuracy scores that the 2-d
WK-means algorithm is able to accurately pick up the regime changes’ start and end points and, in
this regard, all three WK-means algorithms tend to show similar results. The uni-d 2-WK-means
algorithm does appear to be superior overall however, with a significantly higher regime-o↵ score.
Although the 2-d MMDK-means algorithm returns weaker scores in comparison, these still remain
strong with a narrow confidence interval.

Algorithm Total Regime-on Regime-o↵
2-d WK-means 85.61% ± 3.54% 87.11% ± 2.78% 85.12% ± 4.42%

Uni-d 1-WK-means 86.46% ± 4.04% 89.45% ± 2.64% 85.26% ± 4.82%
Uni-d 2-WK-means 94.28% ± 1.82% 86.78% ± 2.34% 96.55% ± 1.87%
2-d MMDK-means 77.57% ± 4.10% 81.59% ± 3.86% 76.05% ± 5.62%

Table 5.2: Accuracy scores with 95% CI, GBM synthetic path with simultaneous mean-variance
regimes and fixed ⇢ = 1, n = 50 runs.

We visualise the clustering generated by the 2-d WK-means using our three types of plot. Given
we have k = 2, each point is assigned a color, green or red, which signifies which cluster it belongs
to. Since ⇢ = 1, both assets will have the same mean-variance plot and so, we need only show
that of asset S1 in figure 5.4(a). We mark with a cross the position of the centroid of each cluster.
Upon inspection, we see that the algorithm has done a good job of picking up the two clusters
and we note that the red cluster centroid has a higher variance and lower mean than that of the
green cluster centroid, as we would expect from our parameter set. Figure 5.4(b), which shows the
simulated historical price series for S1 colored according to each segment’s associated cluster, also
reinforces the strong detection properties of the 2-d WK-means algorithm.

Finally, figure 5.4(c) shows the correlation plot of the clusters and figure 5.4(d) shows the corre-
lation plot for the atoms of each centroid. The log-returns across both clusters exhibit a correlation
of ⇢ = 1, as we would expect, and the atoms of both centroids reflect this as well.

Having tested the case of ⇢ = 1, we then subsequently varied the correlation to values of ⇢ =
�1,�0.5, and 0.5. Results for the 2-d WK-means and 2-d MMDK-means algorithms are included
in appendix A.3.1 for each experiment. We note that, apart from a particularly strong showing
by the 2-d MMDK-means algorithm for ⇢ = 0.5, for each value of ⇢ the regime-on accuracy score
remains relatively stable and strong with only small divergences across the scores. We provide the
plots pertaining to ⇢ = 0 in figures 5.5(a) and 5.5(b). Although we see a weaker clustering in the
example mean-variance plot for ⇢ = 0 than that of ⇢ = 1, the clustering remains strong, as per the
accuracy scores in table 5.3. We provide the accuracy scores for both uni-d algorithms for S1 as a
comparison.
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(a) S1 mean-variance clustering plot. (b) S1 price series segmented by cluster association.

(c) Clusters 1 and 2 log-returns plot with cluster
colours.

(d) Centroids 1 and 2 log-returns plot with cluster
colors.

Figure 5.4: GBM, ⇢ = 1, example mean-variance, correlation and price series plots.

Algorithm Total Regime-on Regime-o↵
2-d WK-means 84.36% ± 4.19% 86.52% ± 4.35% 83.45% ± 4.65%

Uni-d 1-WK-means 86.37% ± 3.90% 89.50% ± 3.10% 85.13% ± 4.68%
Uni-d 2-WK-means 94.94% ± 1.55% 89.82% ± 1.21% 96.43% ± 1.66%
2-d MMDK-means 84.63% ± 4.21% 86.57% ± 5.22% 83.78% ± 4.57%

Table 5.3: Accuracy scores with 95% CI, GBM synthetic path with simultaneous mean-variance
regimes and fixed ⇢ = 0, n = 50 runs.
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(a) S1 mean-variance clustering plot. (b) S2 mean-variance clustering plot.

(c) Clusters 1 and 2 log-returns plot with cluster
colours.

(d) Centroids 1 and 2 log-returns plot with cluster
colors.

(e) Price series segmented by cluster association.

Figure 5.5: GBM, ⇢ = 0, example mean-variance, correlation and price series plots.
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Keeping ⇢ = 0, in our next experiment we allowed the mean-variance regimes of each asset to
move freely from one another. We therefore had four possible joint regimes: JR0 = (Bull, Bull,
Normal), JR1 = (Bull, Bear, Normal), JR2 = (Bear, Bull, Normal), and JR3 = (Bear, Bear,
Normal). We thus had four parameter sets given by

✓0 = (0.02, 0.02, 0.2, 0.2, ⇢), ✓1 = (0.02,�0.02, 0.2, 0.3, ⇢),

✓2 = (�0.02, 0.02, 0.3, 0.2, ⇢), and ✓3 = (�0.02,�0.02, 0.3, 0.3, ⇢),

and J = 3. We took r
1 = 5, r2 = 5 and r

3 = 5 meaning that approximately an eighth of our path
was generated using each of ✓1, ✓2, and ✓3 and the rest generated from ✓0. As an example of what
can go wrong should we choose the wrong number of clusters, taking k = 2 yields an inconsistent
and poor clustering. Anecdotally, we find that the algorithm tends to focus on one type of regime
change, as seen in figure 5.6(a). In this example, time spent in the red section of the plot relates to
JR1, in the blue section relates to JR2 and in the orange section relates to JR3. All other points
fall under JR0. We see that the algorithm successfully identifies two market regimes, JR0 and
JR3 but fails to find the other two. This is to be expected since we are attempting to cluster four
market regimes with only two clusters.

(a) GBM price paths with four regimes, ⇢ = 0 and
k = 2.

(b) GBM price paths with four regimes, ⇢ = 0 and
k = 4.

Figure 5.6: GBM price paths with four regimes and ⇢ = 0, example plots.

We therefore increased the number of clusters to k = 4 and ran the 2-d WK-means and 2-d
MMDK-means algorithms. We report the accuracy scores for each algorithm in table 5.4 for a
total of n = 50 runs.

Algorithm Total Regime-on Regime-o↵
2-d WK-means 62.94% ± 4.01% 71.58% ± 5.69% 57.60% ± 6.30%

2-d MMDK-means 42.54% ± 2.54% 56.35% ± 5.41% 34.16% ± 3.28%

Table 5.4: Accuracy scores with 95% CI, GBM synthetic path with four di↵erent mean-variance
regimes and fixed ⇢ = 0, n = 50 runs.

Clearly there is a marked drop in the accuracy scores when compared to previous cases. The
regime-on score for the 2-d WK-means algorithm still remains relatively strong but this comes at
the expense of the regime-o↵ score which su↵ers greatly. In comparison, each of the accuracy scores
for the 2-d MMDK-means algorithm are significantly impacted. Figure 5.6(b) shows an example
path generated using k = 4 clusters and such that the path is segmented into four colors: green,
red, blue and orange.
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5.1.2 Fixed mean-variance regime

In this series of experiments we tested how well the 2-d algorithms picked up a change in correlation
regime, characterised by a change in the correlation ⇢ between the two assets. In order to do so,
we fixed the mean-variance regime and varied the correlation between two values ⇢0 and ⇢1. We
generated geometric Brownian motion paths for each asset using the parameter sets

✓0 = (0.02, 0.02, 0.2, 0.2, ⇢0), and ✓1 = (0.02, 0.02, 0.2, 0.2, ⇢1)

such that ✓0 and ✓1 correspond to a normal and abnormal correlation regime respectively. Again
we took S

i
0 = 100 for i = 1, 2. In these experiments we always had exactly two di↵erent correlation

regimes and thus we took k = 2 throughout. Therefore J = 1 and we took r
1 = 10, meaning that

approximately a quarter of our path was generated using ✓1, and the rest was generated from ✓0.
Formally, our regimes are JR0 = (Bull, Bull, Normal), and JR1 = (Bull, Bull, Abnormal).

We began by fixing ⇢ = (⇢0, ⇢1) = (0, 1). Our assets therefore have a correlation of 0 three
quarters of the time but a correlation of 1 otherwise. Such a jump in correlation initially appears
extreme but during times of crisis it is well-known that the correlation between assets often increases
significantly [74]. We report the accuracy scores for the 2-d WK-means and 2-d MMDK-means
algorithms in table 5.5 for a total of n = 50 runs. We see from the accuracy scores that both
algorithms perform very well in picking up the regime changes.

Algorithm Total Regime-on Regime-o↵
2-d WK-means 92.71% ± 4.72% 98.98% ± 0.14% 90.40% ± 6.29%

2-d MMDK-means 99.46% ± 3.76% 99.20% ± 0.00% 99.32% ± 0.00%

Table 5.5: Accuracy scores with 95% CI, GBM synthetic path with simultaneous correlation
regimes and ⇢0 = 0, ⇢1 = 1, n = 50 runs.

We visualise the clustering using our three types of plot. Figures 5.7(a) and 5.7(b) show our
mean-variance plot for each asset, S1 and S2. As we would expect, there are no discernible clusters
when plotting in mean-variance space due to the fixed mean-variance regime. In contrast, our
correlation plots for each cluster’s log-returns in figure 5.7(c) and each centroid’s log-returns in
5.7(d) show that our algorithm has found clear relationships in the data. The second cluster’s log-
returns and the associated centroid’s atoms clearly fall on the x = y axis while those of the first
cluster are spread out evenly around the centre. Finally, figure 5.7(e) gives a visual demonstration
of the strength of our algorithms in picking up changes in correlation through time.

Having tested the case of ⇢ = (0, 1), we then subsequently varied the values of ⇢0 and ⇢1 between
-1 and 1. Complete results are included in appendix A.3.1 for each experiment. We find that both
algorithms report strong accuracy scores for the cases of ⇢ = (1, 0) ⇢ = (0,�1) and ⇢ = (�1, 0).
This was reassuring as it indicated that the algorithm does not respond uniquely to the case of
⇢ = (0, 1) but instead picks up the structural changes in the correlation value. It is noticeable
however, that the regime-on accuracy score does tend to be somewhat weaker for the cases of
⇢ = (1, 0) and ⇢ = (�1, 0) when compared to ⇢ = (0, 1) and ⇢ = (0,�1).

One might reasonably question whether the severity of the correlation changes impacts the
accuracy of the algorithm. In order to test this, we took ⇢ = (0.5, 1), ⇢ = (�0.5,�1), and
⇢ = (0, 0.5). We report the accuracy scores for ⇢ = (0.5, 1) in table 5.6 for a total of n = 50
runs. Although there is a slight drop in each respective score when compared to ⇢ = (0, 1), overall
the algorithms still perform strongly. Results for ⇢ = (�0.5,�1) and ⇢ = (0, 0.5) are included in
appendix A.3.1.

Algorithm Total Regime-on Regime-o↵
2-d WK-means 87.78% ± 5.21% 91.85% ± 4.76% 86.22% ± 6.09%

2-d MMDK-means 97.41% ± 2.78% 96.56% ± 3.22% 97.33% ± 2.81%

Table 5.6: Accuracy scores with 95% CI, GBM synthetic path with simultaneous correlation
regimes and ⇢0 = 0.5, ⇢1 = 1, n = 50 runs.

36



(a) S1 mean-variance clustering plot. (b) S2 mean-variance clustering plot.

(c) Clusters 1 and 2 log-returns plot with cluster
colours.

(d) Centroids 1 and 2 log-returns plot with cluster col-
ors.

(e) Price series segmented by cluster association.

Figure 5.7: GBM with correlation regimes, ⇢0 = 0 and ⇢1 = 1, example mean-variance, correlation
and price series plots.
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(a) S1 mean-variance clustering plot. (b) S2 mean-variance clustering plot.

(c) Clusters 1 and 2 log-returns plot with cluster
colours.

(d) Centroids 1 and 2 log-returns plot with cluster col-
ors.

(e) Price series segmented by cluster association.

Figure 5.8: GBM with correlation regimes, ⇢0 = 0.5 and ⇢1 = 1, example mean-variance, correla-
tion and price series plots.
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Figure 5.8 includes the three plots associated with ⇢ = (0.5, 1). Again we see similar results
to before and we may reasonably conclude that the algorithms tend to pick up changes in the
correlation regime change, severe or otherwise. One trend that did appear is that the clustering
tends to be weaker for jumps of 0.5 in correlation when the normal correlation is 0, as shown in
the results for ⇢ = (0, 0.5) in the appendix. In such pairings, the 2-d WK-means algorithm does
well in picking up the correlation regime changes but returns weaker scores than in other pairings
of (⇢0, ⇢1). In contrast the 2-d MMDK-means algorithm struggles considerably and returns a
much lower regime-on accuracy score. It is also noticeable across most tests that the 2-d WK-
means algorithm tends to respond more strongly to changes in correlation regime than the 2-d
MMDK-means algorithm.

5.1.3 Free correlation and mean-variance regime

In our final set of experiments, we varied both the mean-variance regime and correlation regime.
To begin, we tested three joint market regimes: JR0 = (Bull, Bull, Normal), JR1 = (Bull, Bull,
Abnormal) and JR2 = (Bear, Bear, Normal). We generated geometric Brownian motion paths for
each asset using the parameter sets

✓0 = (0.02, 0.02, 0.2, 0.2, 0), ✓1 = (0.02, 0.02, 0.2, 0.2, 1),

and ✓2 = (�0.02,�0.02, 0.3, 0.3, 0).

We took S
i
0 = 100 for i = 1, 2, J = 2 and r

1 = r
2 = 5. We ran the 2-d algorithms for k = 3

clusters. We report the accuracy scores for each algorithm in table 5.7 for a total of n = 50 runs.

Algorithm Total Regime-on Regime-o↵
2-d WK-means 70.10% ± 6.18% 61.78% ± 10.24% 72.70% ± 5.87%

2-d MMDK-means 70.83% ± 5.58% 71.99% ± 10.54% 70.28% ± 4.73%

Table 5.7: Accuracy scores with 95% CI, GBM synthetic path, k = 3, with correlation and mean-
variance regimes, n = 50 runs.

Algorithm Regime-on JR1 Regime-on JR2

2-d WK-means 56.35% ± 10.15% 67.20% ± 10.15%
2-d MMDK-means 65.85% ± 12.40% 78.12% ± 10.26%

Table 5.8: Accuracy scores with 95% CI, GBM synthetic path, k = 3, with correlation (JR1) and
mean-variance (JR2) regimes, n = 50 runs.

We note the drop in accuracy for both algorithms as seen in table 5.7 when changing both
the mean-variance and correlation regime compared to changing only one. The 2-d WK-means
algorithm struggles to cluster for both regimes and often picks up one whilst ignoring the other as
exemplified by figure 5.9(a). This leads to a large variation in the regime-on score for each type of
regime as demonstrated in table 5.8. Figure 5.9(b) is an example of a successful clustering where
each type and period of regime change has been identified. Green segments are those generated by
JR0, red are those generated by JR1 and blue are those generated by JR2. The 2-d MMDK-means
algorithm outperforms the 2-d WK-means algorithm and still retains relatively strong accuracy
scores. We note that on this occasion, both algorithms have done a better job of picking up changes
in the mean-variance regime than in the correlation regime as shown in table 5.8.
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(a) Price series segmented by cluster association,
incorrect clustering.

(b) Price series segmented by cluster association,
correct clustering.

Figure 5.9: GBM price paths with three market and correlation regimes that do not overlap
segmented by cluster association, ⇢0 = 0 and ⇢1 = 1, example plots.

We then tested four joint market regimes: JR0 = (Bull, Bull, Normal), JR1 = (Bull, Bull,
Abnormal), JR2 = (Bear, Bear, Normal) and JR3 = (Bear, Bear, Abnormal). We generated
geometric Brownian motion paths for each asset using the parameter sets

✓0 = (0.02, 0.02, 0.2, 0.2, 0), ✓1 = (0.02, 0.02, 0.2, 0.2, 1),

✓2 = (�0.02,�0.02, 0.3, 0.3, 0), and ✓3 = (�0.02,�0.02, 0.3, 0.3, 1).

We took S
i
0 = 100 for i = 1, 2, J = 3 and r

1 = r
2 = r

3 = 5. We then ran the 2-d algorithms for
k = 4 clusters. We report the accuracy scores for each algorithm in table 5.9 for a total of n = 50
runs.

Algorithm Total Regime-on Regime-o↵
2-d WK-means 63.52% ± 5.04% 61.46% ± 5.10% 64.57% ± 6.41%

2-d MMDK-means 60.49% ± 3.08% 61.85% ± 3.59% 59.51% ± 4.59%

Table 5.9: Accuracy scores with 95% CI, GBM synthetic path, k = 4, with correlation and mean-
variance regimes, n = 50 runs.

Algorithm Regime-on JR1 Regime-on JR2 Regime-on JR3

2-d WK-means 58.77% ± 9.08% 43.57% ± 13.09% 82.03% ± 8.88%
2-d MMDK-means 21.87% ± 10.14% 70.01% ± 9.77% 93.67% ± 3.85%

Table 5.10: Accuracy scores with 95% CI, GBM synthetic path, k = 3, with correlation (JR1),
mean-variance (JR2) and joint correlation-mean-variance (JR3) regimes, n = 50 runs.

Our accuracy scores in table 5.10 make for interesting reading. The algorithms again struggle
to cluster for both regimes where one of the mean-variance regime or correlation regime changes
(JR1 and JR2 respectively), with quite a wide confidence interval and low score. However, both
the 2-d WK-means and 2-d MMDK-means algorithms are far better at picking up instances of
change when both the mean-variance and correlation regimes change together (JR3), returning
accuracy scores of above 80% and 90% respectively. It is also noticeable that the 2-d WK-means
algorithm was better at picking up changes in the correlation regime whilst the opposite was true
for the 2-d MMDK-means algorithm, which displayed stronger scores when picking up changes in
the mean-variance regime. The overall scores remain low as seen in table 5.9. Inspection of the
corresponding price series with segmented colors often helps us to ascertain whether the clustering
has been e↵ective. Figures 5.10(a) and 5.10(b) are examples of such plots. Green segments are
those generated by JR0, red are those generated by JR1, blue are those generated by JR2 and
orange are those generated by JR3.
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(a) Price series segmented by cluster association,
incorrect clustering.

(b) Price series segmented by cluster association,
correct clustering.

Figure 5.10: GBM price paths with four mean-variance and correlation regimes segmented by
cluster association, ⇢0 = 0 and ⇢1 = 1, example plots.

5.2 Merton jump di↵usion process

In order to further test our algorithms, we apply them to a non-Gaussian environment. In this
section we generate two synthetic price series modelled as Merton jump di↵usion processes. In the
uni-dimensional case, the stock price of one asset is then the solution to the stochastic di↵erential
equation
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for t � 0, where (W 1
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for i = 1, 2. Here, we have that Nt ⇠ Po(�t) is a Poisson random variable, and ln(1 + Yj) ⇠
Normal(�i

, (�i)2). We note that this equation, and indeed solution, is similar to the previous
geometric Brownian motion case but with an added jump component.

When working with two assets, it is not su�cient to simply correlate the Brownian motions alone
however. We must also correlate the jumps generated in each process. As in [75], we model each
price series such that the jth jumps Y 1

j and Y
2
j are correlated with instantaneous correlation ⇢ and

occur together, driven by the same Poisson arrival process Nt. The case of one jump size being
zero and one being non-zero is possible, thus allowing our assets to experience idiosyncratic shocks
along with joint shocks. A full description of the process and results are described in appendix
A.3.2. This model yields a solution of the form
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Again, we take M(✓) to be a family of models indexed by a parameter set ✓ ⇢ R10. For
each regime, the parameter set ✓ is characterised by the means (µi) and standard deviations
(�i) per unit time of the assets used to generate the geometric Brownian motion, the intensity
(�) of the Poisson process, the means (�i) and standard deviations (�i) per unit time of the
jump process, and the instantaneous correlation (⇢) of both assets for i = 1, 2 such that ✓ =
(µ1
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We apply the same methodology in this section as we did in section 5.1. In the following
experiments we have one normal regime and J di↵erent regimes, giving us J + 1 types of regime.
Each regime is characterised by its parameter set ✓j for j in [0, J ]. We simulate a path using the
correlated Merton jump di↵usion process for each asset over T = 20 years and each regime change
will have a duration of lji = 0.5⇥ 252⇥ 7 for i = 1, . . . , rj and j 2 [1, J ].

5.2.1 Fixed correlation regime

In this experiment we tested how well the 2-d algorithms picked up a change in mean-variance
regime characterised by a change in the mean and variance of the generator MJD. The testing
structure is analogous to that of section 5.1.1. We fixed the correlation ⇢ for values of ⇢ =
�1,�0.5, 0, 0.5, and 1 and compared the results of our novel algorithms to those of the univariate
algorithm tested on each asset individually using the 1- and 2-Wasserstein distances. We generated
Merton jump di↵usion paths for each asset using the parameter sets

✓0 = (0.05, 0.05, 0.2, 0.2, 5, 0.02, 0.02, 0.005, 0.005, ⇢), and

✓1 = (�0.05,�0.05, 0.35, 0.35, 10,�0.04,�0.04, 0.04, 0.04, ⇢)

such that ✓0 (JR0) and ✓1 (JR1) correspond to a bull and bear market regime respectively. Once
again, we took S

i
0 = 100 for i = 1, 2.

We began by fixing our assets such that both would undergo a regime change at the same time.
Thus we have two combinations of joint regime JR0 = (Bull, Bull, Normal) and JR1 = (Bear,
Bear, Normal) and take k = 2. We then fixed ⇢ = 1. We have only two regimes and hence we took
J = 1. We took r

1 = 10 meaning that approximately a quarter of our path was generated using
the JR1 parameter set with the rest generated from the JR0 set. Figure 5.11(a) shows an example
of such a MJD path with the regime change periods highlighted on the grid in red. Alongside,
figure 5.11(b) shows the log-returns associated to this example path, again with the regime changes
highlighted.

(a) MJD price paths with ⇢ = 1, regime changes
highlighted.

(b) MJD log-returns with ⇢ = 1, regime changes
highlighted.

Figure 5.11: MJD synthetic price paths with ⇢ = 1, and their associated log-returns.

We ran the algorithms on the same simulated path. We report the accuracy scores for each
algorithm in table 5.11 for a total of n = 50 runs.

Algorithm Total Regime-on Regime-o↵
2-d WK-means 94.04% ± 1.90% 81.46% ± 8.05% 98.00% ± 0.15%

Uni-d 1-WK-means 93.06% ± 2.45% 85.37% ± 8.38% 95.40% ± 2.33%
Uni-d 2-WK-means 94.63% ± 1.88% 81.80% ± 7.73% 98.68% ± 0.07%
2-d MMDK-means 90.82% ± 2.12% 93.97% ± 1.00% 89.56% ± 3.00%

Table 5.11: Accuracy scores with 95% CI, MJD synthetic path with simultaneous mean-variance
regimes and ⇢ = 1, n = 50 runs.
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The 2-d WK-means, uni-d 1- and 2-WK-means algorithms exhibit lower regime-on accuracy
scores when compared to the geometric Brownian motion case in 5.1.1 with both the 2-d WK-means
and uni-d 2-WK-means algorithms su↵ering larger drops than the uni-d 1-WK-means algorithm.
This is not unreasonable given both the 2-d WK-means and the uni-d 2-WK-means algorithms
use the 2-Wasserstein distance and thus may be more susceptible to extreme outliers that would
occur in a Merton jump di↵usion process. In comparison, the 2-d MMDK-means algorithm returns
significantly stronger accuracy scores than its analogous GBM case.

We visualise the clustering generated by the 2-d WK-means using our three types of plot in
figure 5.12, analogously to section 5.1.1. As in the GBM case, we see that the algorithm has
done a good job of picking up the two clusters and we note that the red cluster centroid has
higher variance than that of the green cluster centroid, as we would expect from our parameter
set. Figure 5.12(b), which shows the simulated historical price series for S1 coloured according to
each segment’s associated cluster, also reinforces the strong detection properties of our algorithms.
As expected, the correlation amongst all values in both clusters is approximately one as seen in
figures 5.12(c) and 5.12(d).

(a) S1 mean-variance clustering plot. (b) S1 price series segmented by cluster association.

(c) Clusters 1 and 2 log-returns plot with cluster
colours.

(d) Centroids 1 and 2 log-returns plot with cluster col-
ors.

Figure 5.12: MJD, ⇢ = 1, example mean-variance, correlation and price series plots.

Having tested the case of ⇢ = 1, we then subsequently varied the correlation to values of ⇢ =
�1,�0.5, and 0.5 with results for each test included in appendix A.3.3. The accuracy scores for the
2-d WK-means algorithm tend to be lower than the analogous GBM case. The 2-d MMDK-means
algorithm, on the other hand, significantly outperforms the 2-d WK-means algorithm, returning
very strong scores in each test. The accuracy scores for ⇢ = 0 can be found in table 5.12 along
with the related plots in figure 5.13.
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Algorithm Asset Total Regime-on Regime-o↵
2-d WK-means - 85.47% ± 4.83% 79.16% ± 9.73% 87.37% ± 5.30%

Uni-d 1-WK-means 1 90.07% ± 3.79% 83.75% ± 8.38% 91.96% ± 4.67%
Uni-d 2-WK-means 1 94.71% ± 1.65% 81.45% ± 6.77% 98.91% ± 0.05%
Uni-d 1-WK-means 2 89.74% ± 3.23% 80.33% ± 9.47% 92.67% ± 3.63%
Uni-d 2-WK-means 2 89.50% ± 2.35% 60.12% ± 9.65% 99.07% ± 0.08%
2-d MMDK-means - 83.07% ± 7.44% 75.06% ± 11.07% 85.55% ± 6.30%

Table 5.12: Accuracy scores with 95% CI, MJD synthetic path with simultaneous mean-variance
regimes and ⇢ = 0, n = 50 runs.

We focus on the regime-on accuracy score for each algorithm in table 5.12. We note that
compared to the case of ⇢ = 1, the accuracy scores of the 2-d WK-means and uni-d 1-WK-means
algorithms are relatively similar with only a small reduction. A much more noticeable drop is to be
found in the regime-on score for the uni-d 2-WK-means algorithm when applied to S2. Examining
the mean-variance plots in figures 5.13(a) and 5.13(b), we see that S2 exhibits more extreme jumps
than S1. Given the uni-d 2-WK-means algorithm utilises the mean average when calculating its
centroids, as shown in proposition 4.1.6, its performance is therefore more susceptible to extreme
outliers and this is reflected in the contrasting regime-on accuracy scores when it is applied to S1

and S2. We might then reasonably expect the performance of the 2-d WK-means algorithm to also
su↵er since both use the 2-Wasserstein distance. In fact its regime-on accuracy score is relatively
unchanged, indicating that its method of clustering both assets has made it more robust when
compared to its uni-dimensional counterpart.

Overall when testing, we found that an increase in extreme outliers tended to reduce the accuracy
scores for all four algorithms but that this was particularly detrimental to the performance of the
uni-d 2-WK-means algorithm.

Remark 5.2.1. We note in passing that, when compared to our real data tests in chapter 6, the
MJD process used had a tendency to produce more extreme variance outliers which may be seen
when comparing mean-variance clustering plots.

Keeping ⇢ = 0, in our next experiment we allowed the mean-variance regimes of each asset to
move freely from one another. We therefore had four possible joint regimes: JR0 = (Bull, Bull,
Normal), JR1 = (Bull, Bear, Normal), JR2 = (Bear, Bull, Normal), and JR3 = (Bear, Bear,
Normal). Our parameter sets are given by

✓0 = (0.05, 0.05, 0.2, 0.2, 5, 0.02, 0.02, 0.005, 0.005, ⇢),

✓1 = (0.05,�0.05, 0.2, 0.35, 7, 0.02,�0.04, 0.005, 0.04, ⇢)

✓2 = (�0.05, 0.05, 0.35, 0.2, 7,�0.04, 0.02, 0.04, 0.005, ⇢), and

✓3 = (�0.05,�0.05, 0.35, 0.35, 10,�0.04,�0.04, 0.04, 0.04, ⇢),

and J = 3. We took r
1 = 5, r2 = 5 and r

3 = 5. In our example plot 5.14(a), taking k = 2
yields a good clustering when using the 2-d WK-means algorithm in that our algorithm can pick up
the various regime changes. However, it can not distinguish between the di↵erent types of regime
change and thus all types are classified as one.

We therefore increased the number of clusters to k = 4 and ran the 2-d algorithms. We report
the accuracy scores for each algorithm in table 5.13 for a total of n = 50 runs.

Algorithm Total Regime-on Regime-o↵
2-d WK-means 67.19% ± 3.93% 46.91% ± 6.76% 79.14% ± 5.29%

2-d MMDK-means 53.01% ± 4.46% 49.94% ± 4.97% 54.70% ± 5.25%

Table 5.13: Accuracy scores with 95% CI, MJD synthetic path with four di↵erent mean-variance
regimes and ⇢ = 0, n = 50 runs.
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(a) S1 mean-variance clustering plot. (b) S2 mean-variance clustering plot.

(c) Clusters 1 and 2 log-returns plot with cluster
colours.

(d) Centroids 1 and 2 log-returns plot with cluster
colors.

(e) Price series segmented by cluster association.

Figure 5.13: MJD, ⇢ = 0, example mean-variance, correlation and price series plots.
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(a) MJD price paths with four regimes, ⇢ = 0 and
k = 2.

(b) MJD price paths with four regimes, ⇢ = 0 and
k = 4.

Figure 5.14: MJD price paths with four regimes and ⇢ = 0, example plots.

Clearly there is a significant drop in the regime-on accuracy scores when compared to previous
cases including that of its GBM counterpart. Figure 5.14(b) shows an example path generated
using k = 4 clusters and such that the path is segmented into four colors: green, red, blue and
orange.

5.2.2 Fixed mean-variance regime

In this series of experiments we tested how well the 2-d algorithms picked up a change in correlation
regime, characterised by a change in the correlation ⇢ between the two assets. In order to do so,
we fixed the mean-variance regime and varied the correlation between two values ⇢0 and ⇢1. We
generated Merton jump di↵usion paths for each asset using the parameter sets

✓0 = (0.05, 0.05, 0.2, 0.2, 5, 0.02, 0.02, 0.005, 0.005, ⇢0), and

✓1 = (0.05, 0.05, 0.2, 0.2, 5, 0.02, 0.02, 0.005, 0.005, ⇢1)

for the normal and abnormal regimes respectively, and once again we took S
i
0 = 100 for i = 1, 2.

In these experiments we always had exactly two di↵erent correlation regimes and thus we took
k = 2 throughout. Formally, our regimes are JR0 = (Bull, Bull, Normal), and JR1 = (Bull, Bull,
Abnormal).

We report the accuracy scores for ⇢ = (0, 1) in table 5.14 for a total of n = 50 runs. As in the
GBM case, both 2-d algorithms perform very well in picking up the regime changes.

Algorithm Total Regime-on Regime-o↵
2-d WK-means 95.72% ± 3.35% 92.02% ± 6.30% 96.73% ± 3.69%

2-d MMDK-means 96.02% ± 2.87% 96.91% ± 2.11% 95.50% ± 3.26%

Table 5.14: Accuracy scores with 95% CI, MJD synthetic path with simultaneous correlation
regimes and ⇢0 = 0, ⇢1 = 1, n = 50 runs.

We visualise the clustering generated by the 2-d WK-means. Our correlation plots for each
cluster’s log-returns in figure 5.15(d) and each centroid’s log-returns in 5.15(e) show that the
algorithm has found the expected relationships in the data. Although somewhat less clear than
the GBM case, the second cluster’s log-returns and associated centroid’s atoms fall on the x = y

axis while those of the first cluster are spread out evenly around the centre. Figure 5.15(f) gives a
visual demonstration of the strength of our algorithm in picking up changes in correlation through
time.
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(a) S1 mean-variance clustering plot. (b) S2 mean-variance clustering plot.

(c) Clusters 1 and 2 log-returns plot with cluster
colours.

(d) Clusters 1 and 2 log-returns plot with cluster
colours, magnified.

(e) Centroids 1 and 2 log-returns plot with cluster col-
ors.

(f) Price series segmented by cluster association.

Figure 5.15: MJD with correlation regimes, ⇢0 = 0 and ⇢1 = 1, example mean-variance, correlation
and price series plots.
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Having tested the case of ⇢ = (0, 1), we then subsequently varied the values of ⇢0 and ⇢1 between
-1 and 1. Again, results are included for each supplementary test in appendix A.3.3. The general
trends noted in the GBM case were observed here as well, albeit with each regime-on accuracy
score being lower. Taking ⇢ = (0.5, 1) we observed similar results to the case of ⇢ = (0, 1) for the
2-d WK-means algorithm. The 2-d MMDK-means algorithm, however, showed a marked decrease
in regime-on accuracy score. We report the accuracy scores for each algorithm in table 5.15 for a
total of n = 50 runs. Figure 5.16 includes the three plots associated with ⇢ = (0.5, 1).

Algorithm Total Regime-on Regime-o↵
2-d WK-means 80.38% ± 5.94% 85.58% ± 7.41% 78.46% ± 7.50%

2-d MMDK-means 78.04% ± 8.11% 68.17% ± 11.91% 81.14% ± 6.88%

Table 5.15: Accuracy scores with 95% CI, MJD synthetic path with simultaneous correlation
regimes and ⇢0 = 0.5, ⇢1 = 1, n = 50 runs.
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(a) S1 mean-variance clustering plot. (b) S2 mean-variance clustering plot.

(c) Clusters 1 and 2 log-returns plot with cluster
colours.

(d) Clusters 1 and 2 log-returns plot with cluster
colours, magnified.

(e) Centroids 1 and 2 log-returns plot with cluster col-
ors.

(f) Price series segmented by cluster association.

Figure 5.16: MJD with correlation regimes, ⇢0 = 0.5 and ⇢1 = 1, example mean-variance, correla-
tion and price series plots.
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5.2.3 Free correlation and mean-variance regime

Finally, we tested the algorithms while varying the mean-variance regime and correlation regime.
We tested three joint market regimes: JR0 = (Bull, Bull, Normal), JR1 = (Bull, Bull, Abnormal)
and JR2 = (Bear, Bear, Normal). We generated Merton Jump di↵usion paths for each asset using
the parameter sets

✓0 = (0.05, 0.05, 0.2, 0.2, 5, 0.02, 0.02, 0.005, 0.005, 0),

✓1 = (0.05, 0.05, 0.2, 0.2, 5, 0.02, 0.02, 0.005, 0.005, 1), and

✓2 = (�0.05,�0.05, 0.35, 0.35, 10,�0.04,�0.04, 0.04, 0.04, 0).

We took S
i
0 = 100 for i = 1, 2, J = 2 and r

1 = r
2 = 5. We ran the 2-d algorithms for k = 3

clusters. We report the accuracy scores for each algorithm in table 5.16 for a total of n = 50 runs.

Algorithm Total Regime-on Regime-o↵
2-d WK-means 78.39% ± 4.47% 64.70% ± 10.05% 85.54% ± 4.86%

2-d MMDK-means 84.31% ± 4.61% 74.20% ± 8.68% 89.52% ± 4.43%

Table 5.16: Accuracy scores with 95% CI, MJD synthetic path, k = 3, with correlation and mean-
variance regimes, n = 50 runs.

Algorithm Regime-on JR1 Regime-on JR2

2-d WK-means 70.68% ± 11.22% 58.71% ± 11.62%
2-d MMDK-means 68.41% ± 12.23% 79.98% ± 8.73%

Table 5.17: Accuracy scores with 95% CI, MJD synthetic path, k = 3, with correlation (JR1) and
mean-variance (JR2) regimes, n = 50 runs.

We note the drop in accuracy as seen in table 5.16 when changing both the mean-variance and
correlation regime compared to changing only one, which is similar to our observations in the GBM
case. Both algorithms struggle to cluster for both regimes and often pick up one whilst ignoring the
other as exemplified by figure 5.17(a). We note again the tendency of the 2-d WK-means algorithm
to pick up changes in the correlation regime and the 2-d MMDK-means algorithm’s tendency to
pick up changes in the mean-variance regime as seen in table 5.17. Figure 5.17(b) is an example of
a clustering where each type and period of regime change has been picked up successfully. Green
segments are those generated by JR0, red are those generated by JR1 and blue are those generated
by JR2.

(a) Price series segmented by cluster association,
incorrect clustering.

(b) Price series segmented by cluster association,
correct clustering.

Figure 5.17: MJD price paths with mean-variance and correlation regimes that do not overlap
segmented by cluster association, ⇢0 = 0 and ⇢1 = 1, example plots.
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We then tested four joint regimes: JR0 = (Bull, Bull, Normal), JR1 = (Bull, Bull, Abnormal),
JR2 = (Bear, Bear, Normal) and JR3 = (Bear, Bear, Abnormal). We generated paths for each
asset using the parameter sets

✓0 = (0.05, 0.05, 0.2, 0.2, 5, 0.02, 0.02, 0.005, 0.005, 0),

✓1 = (0.05, 0.05, 0.2, 0.2, 5, 0.02, 0.02, 0.005, 0.005, 1),

✓2 = (�0.05,�0.05, 0.35, 0.35, 10,�0.04,�0.04, 0.04, 0.04, 0), and

✓3 = (�0.05,�0.05, 0.35, 0.35, 10,�0.04,�0.04, 0.04, 0.04, 1).

We took S
i
0 = 100 for i = 1, 2, J = 3 and r

1 = r
2 = r

3 = 5. We ran the algorithms for k = 4
clusters. We report the accuracy scores for each algorithm in table 5.18 for a total of n = 50 runs.

Algorithm Total Regime-on Regime-o↵
2-d WK-means 68.25% ± 4.34% 53.94% ± 5.37% 76.63% ± 5.68%

2-d MMDK-means 70.76% ± 5.12% 66.78% ± 5.20% 72.95% ± 6.26%

Table 5.18: Accuracy scores with 95% CI, MJD synthetic path, k = 4, with correlation and mean-
variance regimes, n = 50 runs.

Algorithm Regime-on JR1 Regime-on JR2 Regime-on JR3

2-d WK-means 48.52% ± 13.09% 47.11% ± 10.89% 66.18% ± 12.25%
2-d MMDK-means 31.75% ± 12.38% 76.23% ± 9.89% 92.36% ± 2.83%

Table 5.19: Accuracy scores with 95% CI, MJD synthetic path, k = 3, with correlation (JR1),
mean-variance (JR2) and joint correlation-mean-variance (JR3) regimes, n = 50 runs.

Our accuracy scores in table 5.19 again reflect the trends noted in the GBM case. The algo-
rithms struggle to cluster for both regimes where one of the mean-variance or correlation regime
changes (JR1 and JR2 respectively) with quite a wide confidence interval and low score. However,
both the 2-d WK-means and 2-d MMDK-means algorithms are better at picking up instances of
simultaneous change in both the mean-variance and correlation regimes, returning accuracy scores
of above 66% and 99% respectively for JR3. The 2-d MMDK-means algorithm again exceeds in
detecting changes in the mean-variance regime as seen in table 5.19 but for both algorithms the
overall scores remain low as seen in table 5.18. Figures 5.18(a) and 5.18(b) are examples of our
price series coloured according to cluster membership. In figure 5.18(a) the algorithm has success-
fully identified the presence of certain changes in the market regimes but it struggles to disentangle
them and assign them to independent clusters. 5.18(b) is similar but on this occasion the algorithm
has managed to identify each of the independent market regime changes.

(a) Price series segmented by cluster associa-
tion, incorrect clustering.

(b) Price series segmented by cluster associa-
tion, correct clustering.

Figure 5.18: MJD price paths with mean-variance and correlation regimes segmented by cluster
association, ⇢0 = 0 and ⇢1 = 1, example plots.
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5.3 Speed

In this section, we consider the speed of our new algorithms and the impact of increasing the
number of market years T, runs n, clusters k, and assets d. We primarily focus on the 2-d WK-
means algorithm in our experiments and fix the hyperparameters (h1, h2) = (35, 28). In chapter 4
we gave a full description of our 2-d WK-means algorithm and we showed that the 2-Wasserstein
distance can be reformulated as a linear sum assignment problem (LSAP) while solving for the
2-Wasserstein barycentre can be done using a distance matrix. Although algorithms solving the
LSAP are worst-case O(h3

1), use of the cdist and linear sum assignment functions from the scipy
package give an acceptable speed for our experiments.

The first column of table 5.20 shows the average computation time across 50 runs with T = 5
years of hourly data for computing the 2-Wasserstein distance, Wij , and the MMD, MMDij ,
between two measures µi and µj with i, j in {1, . . . ,M}, for a di↵erent number of assets d.
Inspecting the computation times for Wij , we might suggest that the computation time tends to
remain largely the same as d increases. Indeed, when we inspect the computation time needed for
the distance matrix W, shown in the fourth column of table 5.20 and formed using Wij , the total
computation time remains relatively unchanged as d increases with a marginal uptick for d = 100
assets. In contrast, although the computation time for MMDij also remains stable irrespective
of the number of assets d, it is significantly slower than the Wij case with computation of Wij

approximately an order of magnitude faster. When conducting experiments, this di↵erence in speed
impacted computation of the distance matrix, with calculations involving Wij being significantly
quicker than those involving MMDij in our test environments.

d Wij MMDij Distance matrix (W)
2 2.05s ⇥10�5 ± 3.41s ⇥10�6 4.70s ⇥10�4 ± 9.78s ⇥10�5 27.91s ± 0.05s
3 2.91s ⇥10�5 ± 1.81s ⇥10�5 3.79s ⇥10�4 ± 6.77s ⇥10�5 27.35s ± 0.03s
5 7.17s ⇥10�5 ± 5.85s ⇥10�5 4.50s ⇥10�4 ± 6.04s ⇥10�5 27.00s ± 0.06s
10 4.78s ⇥10�5 ± 1.79s ⇥10�5 5.29s ⇥10�4 ± 1.28s ⇥10�4 27.42s ± 0.04s
20 4.06s ⇥10�5 ± 1.21s ⇥10�5 4.53s ⇥10�4 ± 7.45s ⇥10�5 27.33s ± 0.02s
100 3.24s ⇥10�5 ± 1.21s ⇥10�5 4.28s ⇥10�4 ± 1.30s ⇥10�4 29.05s ± 0.03s

Table 5.20: Distance matrix computation time with 95% CI for d assets, T = 5.

The real bottleneck of our algorithm is the distance matrix W, computed to solve for the 2-
Wasserstein and MMD barycentre. Calculating the distance matrix W is O(M(M�1)

2 ) where M is
the number of measures formed from our segmented stream of returns of length (T ⇥ 252⇥ 7)� 1.
The computation time for computing W for di↵erent values of T shown in table 5.21 reflects this,
and we see that a single run can take approximately 7.5 minutes for T = 20 market years of hourly
data. Table 5.22 demonstrates the average time taken to complete n runs for each value of T, post-
calculation of the distance matrix W, calculated as an average of 50 such computations. We note
that increasing the number of runs does not exceptionally increase the duration of the algorithm.
This is one advantage of using the distance matrix when computing the barycentre. We need only
compute W once and the subsequent time to complete n runs is approximately O(n).

T Row i ([Wij ]1jM ) Distance matrix (W)
2 0.019s ± 0.0002s 4.47s ± 0.01s
5 0.048s ± 0.0003s 27.91s ± 0.05s
10 0.096s ± 0.0003s 113.36s ± 0.35s
20 0.197s ± 0.0005s 454.33s ± 1.10s

Table 5.21: Computation time with 95% CI for computing one row of the distance matrix
([Wij ]1jM ), and for the entire distance matrix W, for T years of data and over 50 runs.
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T
n

1 5 25 50

2 0.31s ± 0.02s 1.48s ± 0.06s 7.12 ± 0.11 14.32s ± 0.15s
5 0.68s ± 0.06s 3.60s ± 0.16s 18.25s ± 0.32s 36.02s ± 0.48s
10 1.55s ± 0.13s 7.63s ± 0.30s 37.28s ± 0.83s 74.28s ± 1.04s
20 3.05s ± 0.25s 15.47s ± 0.57s 78.72s ± 1.32s 157.22s ± 1.95

Table 5.22: Computation time with 95% CI for post-distance matrix computation for n runs of
the 2-d WK-means algorithm, for T years of data, and where k = 2 computed over 50 runs.

If we were to use this algorithm in a production environment, we would ideally like the compu-
tation time to be shorter. Another advantage of using the distance matrix is that we do not need
to recreate the matrix each time we run our algorithm. Instead, we may store each row, as shown
in figure 4.1, for future use. Upon receipt of a new empirical measure, which we call µM+1, we
proceed to calculate its distance to each of the previous measures, ([W(M+1)j ]1jM ) and append
these distances to each respective row. We also append the new row ([W(M+1)j ]1jM ). Comput-
ing the total distance between any one measure and all prior measures is significantly faster and
approximately O(M), as shown in column two of table 5.21.

Finally, table 5.23 shows the computation time for running the iteration post-distance matrix
computation for di↵erent numbers of clusters k and runs n. In order to assign each measure to
its respective cluster our algorithm must compute the distance between each measure and each
cluster centroid. Increasing the number of clusters will then lead to more such computations and
a longer run time, which is borne out in the results in table 5.23.

k
n

1 5 25

2 2.59s ± 0.11s 13.22s ± 0.34s 65.88s ± 0.88s
4 3.95s ± 0.23s 20.34s ± 0.57s 97.61s ± 1.25s
8 7.38s ± 0.45s 36.87s ± 0.94s 183.89s ± 2.19s

Table 5.23: Total computation time with 95% CI for k clusters and n runs, T = 20, d = 2.

5.4 Summary

The following is a short summary of our key findings from our synthetic data experiments which
should help inform us of our approach in the real data environment. Both the 2-d WK-means
and 2-d MMDK-means algorithms returned strong scores when testing for a change in one of
the mean-variance regime or the correlation regime. We found that often the 2-d WK-means
algorithm was stronger when detecting di↵erent changes in the correlation regime for both the
GBM and MJD cases. In contrast, the 2-d MMDK-means algorithm thrived when asked to detect
changes in the mean-variance regime, particularly when working with MJD data. The accuracy of
both algorithms however drops as we increase the number of di↵erent types of regime, particularly
when we introduce both changes in the mean-variance and correlation regimes to our data. Finally,
we note that computation of the distance MMDij tends to be slower than that of Wij for each pair
of measures µi and µj with i, j in {1, . . . ,M}, thus leading to a longer computation time for the
distance matrix W when using the MMD.
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Chapter 6

Real data experiments

In this section we consider applications of the 2-d algorithms to sets of real data taken from
securities in the S&P 500. We learned in our synthetic data experiments that the 2-d WK-
means and 2-d MMDK-means algorithms are e↵ective when clustering mean-variance regimes in
the marginal distributions or when clustering correlation regimes between the assets. In such
experiments, our algorithms return high regime-on and regime-o↵ accuracy scores. However, the
accuracy scores fall significantly when we attempt to cluster both mean-variance and correlation
regimes in the same dataset as exhibited in tables 5.9 and 5.18. Thus should we apply the 2-d WK-
means or 2-d MMDK-means algorithm to our real data directly, we likely will find the clustering
to be weaker than we might otherwise desire.

Therefore we propose a di↵erent approach. Instead of applying one of the 2-d algorithms alone,
we make use of both the uni-d 1-WK-means algorithm and one of the 2-d algorithms in a best
of both worlds approach. We begin by applying the uni-d 1-WK-means algorithm to the data in
order to remove the e↵ects of the marginal distribution on each asset and subsequently apply the
2-d WK-means or 2-d MMDK-means algorithm to this transformed data. This method is based
on the theory of copulas.

Definition 6.0.1 (Copula, [76] (Definition 1, page 229)). Let X = (X1, . . . , Xd) be a random
vector with joint CDF F and continuous marginal CDFs F1, . . . , Fd. Then we say that the copula
of F (or X ) is the joint CDF C of the random vector (F1(X1), . . . , Fd(Xd)) on [0, 1]d.

The copula of a random vector X captures the dependency structure between the marginals
X1, . . . , Xd and thanks to the work of Sklar we have theorem 6.0.2.

Theorem 6.0.2 (Sklar’s theorem, [76] (Theorem 2, page 230)). Let X = (X1, . . . , Xd) be a
random vector with joint CDF F and with marginal CDFs F1, . . . , Fd. Then there is a copula
C : [0, 1]d ! [0, 1] such that

F (x1, . . . , xd) = C

⇣
F1(x1), . . . , Fd(xd)

⌘
,

where x1, . . . , xd 2 R [ {�1,1}. Moreover, the copula is uniquely defined when F1, . . . , Fd are
continuous.

In our synthetic experiments we characterised changes in the joint regime between two assets by
their respective marginal distribution’s changes in mean and variance, and their joint change in
correlation. Correlation can tell us how closely related our two assets are in a linear sense but the
copula structure is far richer, and it helps us model the inter-correlation dependence between assets.
If we apply the marginal distribution to each respective asset then the joint distribution of our
transformed data should be the copula according to Sklar’s theorem. Moreover, the transformed
data for each asset should be uniform.
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Proposition 6.0.3 (Probability transformation). Suppose X is a random variable with continuous
CDF F. Then F (X) ⇠ Uniform(0, 1).

Proof. See appendix A.4.1.

We now have a set of tools with which to approach our real data clustering problem. Our
approach when treating real data is laid out in the following steps.

Step 1: Univariate clustering and data transformation

We begin by establishing the marginal distributions of each asset using the uni-d WK-means
algorithm. As established in our synthetic data experiments, tables 5.2 and 5.11, as well as [1],
the uni-d WK-means algorithm performs well in detecting the underlying probability distributions,
characterised by their mean and variance, present in the data of an individual asset. In particular,
we make use of the uni-d 1-WK-means algorithm due to its superior accuracy when testing on
data generated from a Merton jump di↵usion process. In order to estimate the number of clusters
present in our uni-dimensional data, we propose an approach based on the Kolmogorov-Smirnov
test as described in theorem 6.0.4.

Theorem 6.0.4 (Kolmogorov-Smirnov two-tail goodness-of-fit test, [77] (pages 283-287)). Let
X = (X1, . . . , Xn) be independent and identically distributed random variables with an empirical
cumulative distribution function denoted Fn(x) and let F (x) be a continuous distribution. We set
up a goodness-of-fit test using the Kolmogorov-Smirnov test statistic defined as

Dn = supx|Fn(x)� F (x)|,

and where our hypotheses to test are

H0 : Fn(x) = F (x) for each x,

H1 : Fn(x) 6= F (x) for at least one value of x.

We first assume that each asset has the minimum number of clusters possible, k = 2. If we have
chosen the correct number of clusters for the given data then we would expect the uni-dimensional
clustering to be e↵ective. Furthermore, if we were to then apply the empirical cumulative dis-
tribution function of each cluster to its respective returns data, proposition 6.0.3 assures us that
the transformed returns data should in fact be uniform. Therefore application of the Kolmogorov-
Smirnov test, theorem 6.0.4 where F (x) is a uniform distribution, should lead us to not reject the
null hypothesis that our data is uniform. Since we are using the empirical CDF formed from all
values in each cluster, we would expect the p-value yielded from our test to be close to 1. Should
we find the p-value to not be close to 1, we might reason that a larger number of clusters may be
required. Subsequently, we increase the number of clusters k until the p-value is very close to or
exactly 1.

Having established approximations to the marginal distributions for each asset, we then proceed
to apply the empirical cumulative distribution function of our approximations to the data in their
respective clusters. As previously discussed, the process of segmenting our data for clustering
involves overlapping data and thus any one return may belong to up to 5 di↵erent segments. Each
of these segments is then placed in one of our clusters and so, any one return can be associated
with possibly multiple centroids and we then have a choice of which empirical CDF to apply. We
follow our previous approach in this regard, and associate each return with the first cluster to
which it is assigned. We now have a new dataset of transformed returns where each value falls
within [0, 1] and should follow a uniform distribution.

Step 2: Multivariate clustering

The joint distribution of our newly transformed dataset should be the copula of the original
data, and so we apply the 2-d WK-means or 2-d MMDK-means algorithm to our transformed data
in order to obtain correlation regimes.
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6.1 Synthetic data experiments revisited

In order to validate our approach, we will briefly return to our previous synthetic data experiments,
specifically to those of the free correlation and mean-variance regime clustering problems introduced
in sections 5.1.3 and 5.2.3. Experimenting with both GBM and MJD price paths, we found that
the accuracy scores su↵ered when either of the 2-d algorithms was tasked with clustering mean-
variance regime changes in the marginal distributions as well as correlation regime changes across
both assets using four clusters, as shown in tables 5.10 and 5.19. We treat both experiments using
our new two-step approach, beginning with the case of the GBM price path in some detail and
subsequently for the MJD.

Step 1: Univariate clustering

We first cluster each of our two assets using the uni-d 1-WK-means algorithm where we take
k = 2. As in our synthetic data experiment, we display mean-variance clustering plots in figures
6.1(a) and 6.1(b). Upon inspection, we see that the algorithm appears to have performed well
in clustering for both regimes. The higher variance cluster clearly has a lower mean than that
of the lower variance cluster for both assets, as seen by the placement of the cluster cross on the
plots. Table 6.1 displays the accuracy scores achieved for each asset, confirming that this is indeed
a strong clustering. Finally, figures 6.1(c) and 6.1(d) display histograms of E(µi)1iM for the
distributions generated from segments of assets 1 and 2, and analogously figures 6.1(e) and 6.1(f)
show histograms of V(µi)1iM . The histogram plots for each asset also show dashed vertical lines
indicating the value of each centroid’s mean and variance, and a solid line indicating the value of
each regime’s theoretical mean and variance. Recalling the mean and variance of the parameter
sets

✓0 = (0.02, 0.02, 0.2, 0.2), and ✓1 = (�0.02,�0.02, 0.3, 0.3)

used to simulate the GBM and generate each asset’s log-returns for the joint regimes JR0 (bull)
and JR1 (bear), the true distributions of the log-returns are

PJR0 = N (�1.97⇥ 10�21, 2.27⇥ 10�05), and PJR1 = N (�3.68⇥ 10�05, 5.1⇥ 10�05)

for each asset, where N is the normal distribution. It appears that the first two moments of our
centroids match the theoretical values quite well and thus, the empirical CDF of each cluster should
act as a su�cient proxy for the true distributions in step 2.

Algorithm Asset Total Regime-on Regime-o↵
Uni-d 1-WK-means 1 94.49% 94.43% 94.29%
Uni-d 1-WK-means 2 95.82% 96.06% 95.52%

Table 6.1: Accuracy scores of uni-d 1-WK-means applied to GBM synthetic paths with mean-
variance and correlation regimes, ⇢0 = 0 and ⇢1 = 1, n = 50 runs.

We now apply the empirical cumulative distribution function of each cluster to their respec-
tive cluster of log-returns. Conducting the Kolmogorov-Smirnov test on each asset’s transformed
returns yields p-values of 1.000 and 1.000 respectively. In this instance we have the advantage
of foresight and hence we know that k = 2 is the correct number of clusters. In our real data
experiments, this step often requires changing the number of clusters k until we have a satisfactory
p-value.

Step 2: Multivariate clustering

Finally, we apply the 2-d WK-means and 2-d MMDK-means algorithms to the transformed data
and display the accuracy scores in table 6.2

Algorithm Total Regime-on Regime-o↵
2-d WK-means 99.48% ± 0.00% 99.01% ± 0.00% 99.41% ± 0.00%

2-d MMDK-means 99.44% ± 0.00% 99.41% ± 0.00% 99.22% ± 0.00%

Table 6.2: Accuracy scores of 2-d WK-means and 2-d MMDK-means applied to GBM synthetic
paths with mean-variance and correlation regimes, ⇢0 = 0 and ⇢1 = 1, n = 50 runs.
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(a) S1 mean-variance clustering plot. (b) S2 mean-variance clustering plot.

(c) S1 distribution of {E(µi)}i�0. (d) S2 distribution of {E(µi)}i�0.

(e) S1 distribution of {V(µi)}i�0. (f) S2 distribution of {V(µi)}i�0.

Figure 6.1: Uni-d 1-WK-means applied to assets 1 and 2 clustering and centroid plots.
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Clearly, when compared to our original results in table 5.10, we have a substantial improvement
in our regime accuracy scores. Figure 6.2 displays the associated price series colored according
to cluster association. Figures 6.2(c) and 6.2(d) show the colored price series for assets 1 and
2 respectively with periods of mean-variance regime change highlighted in red. Similarly, figure
6.2(e) shows both segmented time series with periods of correlation regime change highlighted.

We also introduce two new plots in figures 6.2(a) and 6.2(b) that we may use to analyse our
results. Figure 6.2(a) shows the correlation between the two assets over a rolling window of 35
market hours. Each point is then assigned a color based on the cluster association of the returns it
is formed from. It is noticeable that those periods of high rolling correlation are most commonly
associated with cluster 2, which is colored red, as we would expect. All other points are colored
green indicating that their associated returns belong to cluster 1.

Figure 6.2(b) shows the correlation of each of the empirical measures formed from our returns
data, colored according to their cluster association. We note that periods of increasing correla-
tion in the empirical measures are colored red while periods of decreasing or relatively stationary
correlation are colored green. This is in line with what we might expect and further supports our
claim that the 2-d WK-means algorithm has e↵ectively clustered the empirical measures into their
correct correlation regimes. These plots are reassuring when viewed in the context of our synthetic
examples but they will become much more useful when we identify the correlation regimes present
in real data which we do not know a priori.

Analogously, we apply our approach to the price series generated by the Merton jump di↵usion
process in section 5.2.3. The accuracy scores are summarised in tables 6.3 and 6.4. Figure 6.3
shows the associated color plots.

Algorithm Asset Total Regime-on Regime-o↵
Uni-d 1-WK-means 1 97.71% 97.30% 97.62%
Uni-d 1-WK-means 2 97.14% 97.59% 96.77%

Table 6.3: Accuracy scores of uni-d 1-WK-means applied to MJD synthetic paths with mean-
variance and correlation regimes, ⇢0 = 0 and ⇢1 = 1, n = 50 runs.

Algorithm Total Regime-on Regime-o↵
2-d WK-means 99.46% ± 0.00% 98.69% ± 0.00% 99.49% ± 0.00%

2-d MMDK-means 99.42% ± 0.00% 99.44% ± 0.00% 99.18% ± 0.00%

Table 6.4: Accuracy scores of 2-d WK-means and 2-d MMDK-means applied to MJD synthetic
paths with mean-variance and correlation regimes, ⇢0 = 0 and ⇢1 = 1, n = 50 runs.

58



(a) Correlation between assets 1 and 2 over a rolling
window, coloured according to cluster designation.

(b) Correlation of each empirical measure, coloured
according to cluster designation.

(c) S1 price series segmented by mean-variance
regime cluster association.

(d) S2 price series segmented by mean-variance
regime cluster association.

(e) S1 and S2 price series segmented by correlation
regime cluster association.

Figure 6.2: Geometric Brownian motion assets 1 and 2 correlation and price series segmented by
cluster association.
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(a) Correlation between assets 1 and 2 over a rolling
window, coloured according to cluster designation.

(b) Correlation of each empirical measure, coloured
according to cluster designation.

(c) S1 price series segmented by mean-variance
regime cluster association.

(d) S2 price series segmented by mean-variance
regime cluster association.

(e) S1 and S2 price series segmented by correla-
tion regime cluster association.

Figure 6.3: Merton jump di↵usion assets 1 and 2 correlation and price series segmented by cluster
association.
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6.2 Real data

Now that we have validated our approach on our synthetic examples, we proceed to treat real
world cases. At this point we diverge slightly from our previous experiments and use only the 2-d
WK-means algorithm going forward. The reason for doing so is three-fold:

1. The primary function of the 2-d algorithm in our two-step approach is to identify correlation
regimes in the data. In our synthetic data experiments we found the 2-d WK-means algorithm
to often be superior in this domain.

2. Although not unreasonable, the speed of computation for the distance matrix W is signifi-
cantly slower when using the Maximum Mean Discrepancy.

3. Use of the MMD requires choosing a bandwidth parameter, �. Thus far we have averaged our
results over bandwidth parameters in the range of 10�3 to 10�6. It is possible that further
research may yield an optimal � which may yet prove more e↵ective when clustering but for
the moment the estimation remains basic. The 2-d WK-means algorithm requires no such
parameter.

Our subsequent experiments will be conducted using three pairs of stocks; Apple Inc and Ama-
zon.com Inc (AAPL-AMZN), AvalonBay Communities Inc and Essex Property Trust Inc (AVB-
ESS), and J.M. Smucker Co and Paycom Software Inc (SJM-PAYC). In most cases of pairs trading,
stocks are selected such that they have some innate relationship of which the trader is typically
aware. For example, AVB-ESS would be a possible candidate pairing as both stocks represent real
estate companies with typically high correlation, and the trader may use this property, or some
other relationship such as possible cointegration, in order to create a profitable strategy.

This is not our approach. We do not rely on any preconceived notions of stocks in the S&P
500 to form our portfolios. So far as we have tested our ideas, the general framework laid out at
the start of this chapter works in principle for any pairing. The three pairings chosen are used
to demonstrate the ubiquity of this approach irrespective of the general correlation between the
two assets. AVB-ESS are highly correlated, while SJM-PAYC have a correlation close to 0 and
AAPL-AMZN have a correlation just below 0.5 across their respective testing periods. We will
go through the steps in some detail when approaching the case of AAPL-AMZN, before providing
shorter summaries for the other pairings. We will naively use hyperparameters (h1, h2) = (35, 28)
for both the uni-d 1-WK-means and 2-d WK-means algorithms before providing a more detailed
investigation in section 6.3.

6.2.1 AAPL - AMZN

No modern finance-related paper would be complete without some mention of a tech stock. Luckily,
we get to mention two: Apple Inc (AAPL) and Amazon.com Inc (AMZN). We use the hourly close
prices for each stock from 2005-2023. The correlation of these assets over the entire testing period
is 0.433 while the standard deviation of their rolling correlation using a window of 35 hours is
28.68%. Figure 6.4(a) shows the price series evolution of AAPL and AMZN stock between 2005
and 2023 while figure 6.4(b) shows the rolling correlation over a window of 35 market hours between
these two assets during that time.

Step 1: Univariate clustering and data transformation

We initially cluster the empirical measures of each of our two assets using the uni-d 1-WK-means
algorithm. We begin by choosing the smallest number of clusters possible, k = 2 clusters, for each
asset, such that each cluster represents either a low or high variance regime. Subsequently, we
then associate each return to the cluster that its first empirical measure is placed in. We then
gather the returns into two groups representing the two clusters, and apply the empirical CDF
of each cluster to its constituent data, thus leaving us with transformed data where each value is
between 0 and 1. In this case, since we have chosen k = 2, if there are two underlying probability
distributions in the returns of each asset and our clustering has captured these, then we would
expect the transformed data to be uniform.
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(a) AAPL and AMZN price series 2005 - 2023. (b) AAPL and AMZN rolling correlation of returns
plot using a rolling window of 35 market hours.

Figure 6.4: Price series and rolling correlation plots of AAPL and AMZN.

To test the uniformity of our transformed data, we apply the Kolmogorov-Smirnov test. Given
we are using the empirical CDF of all the data in each cluster, we would expect the p-value of
our test to be close to 1. If it is less than 1, it is possible that we require a further cluster. This
methodology is critical to determining the number of clusters required for transforming our data.
If we do not remove the marginal distributions from our data then the 2-d WK-means algorithm
employed in our second step will struggle to detect the copula structure and changes in correlation,
as seen in our synthetic experiments 5.1.3 and 5.2.3.

In the case of AAPL and AMZN, should we use k = 2 clusters our tests return a p-value of 0.944
and 0.801 respectively. We therefore increase the number of clusters, and find that k = 3 clusters
returns a p-value of 0.999 for AAPL while k = 4 clusters returns a p-value of 0.982 for AMZN.

Figures 6.5(a) and 6.5(b) show the mean-variance clustering plots of each asset. AAPL seems
to exhibit three mean-variance regimes of increasing variance; a low variance regime (green), a
medium variance regime (blue) and a high variance regime (red). AMZN also exhibits three regimes
of increasing variance, however its medium variance regime is further split into two regimes of high
(orange) and low (blue) means.

(a) AAPL mean-variance clustering plot. (b) AMZN mean-variance clustering plot.

Figure 6.5: Uni-d 1-WK-means applied to AAPL and AMZN mean-variance clustering plots.

Step 2: Multivariate clustering

Now that we have removed the influence of the marginal distributions on the data, we apply the
2-d WK-means algorithm. As an input to our algorithm, we must decide on the number of clusters
k we will run our algorithm for. The simplest possible choice is k = 2. These would represent one
regime of higher correlation and one of a lower correlation.
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Indeed, for k = 2, we obtain one correlation regime of high correlation where the correlation of
the centroid’s atoms is 0.738 and one of a lower correlation, where the correlation of the centroid’s
atoms is 0.373. Figure 6.6(a) shows the correlation of each of the empirical measures that we have
clustered with their associated cluster colors. Much like our synthetic example plot in figure 6.2(b),
we note that where the correlation is increasing the second (red) cluster tends to dominate while
where the correlation is decreasing, the first (green) cluster is more apparent. These trends are
further reinforced in figures 6.6(b) and 6.6(c) which show a portion of figure 6.6(a) magnified and
where only one cluster is presented.

Figures 6.7(a) and 6.7(b) show our standard plots of the correlation of the centroids and log
returns respectively of each cluster. Figure 6.7(c) shows the rolling correlation plot with cluster
colors. We see from the plot that the second (red) cluster has caught instances of higher correlation
above the average line, represented by the black horizontal line, while the first (green) cluster tends
to fall below this line indicating that it captures periods of lower correlation. This is reassuring
as it is similar to the analogous plot in our synthetic example, figure 6.2(a). Figures 6.7(d) and
6.7(e) show the same plot where only one cluster is shown.

(a) AAPL and AMZN empirical measures correlation plot
with cluster colors.

(b) AAPL and AMZN empirical measures correlation
plot with cluster colors, cluster 1 only.

(c) AAPL and AMZN empirical measures correlation
plot with cluster colors, cluster 2 only.

Figure 6.6: Empirical measures correlation plots of AAPL and AMZN for 2 clusters.

63



(a) Centroids 1 and 2 log-returns plot with cluster
colors.

(b) Clusters 1 and 2 log-returns plot with cluster
colors.

(c) AAPL and AMZN rolling correlation of returns
plot using a rolling window of 35 market hours with
cluster colors.

(d) AAPL and AMZN rolling correlation of returns
plot using a rolling window of 35 market hours with
cluster colors, cluster 1 only.

(e) AAPL and AMZN rolling correlation of returns
plot using a rolling window of 35 market hours with
cluster colors, cluster 2 only.

Figure 6.7: Centroid, cluster and rolling correlation plots of AAPL and AMZN for 2 clusters.
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6.2.2 AVB - ESS

AVB and ESS constitute our second test pairing. These stocks represent AvalonBay Communities
Inc (AVB) and Essex Property Trust Inc (ESS), both of which are real estate companies and thus
we would expect them to be highly correlated. Indeed, using the hourly close prices for each stock
from 2009-2023, the correlation of these assets over the entire testing period is 0.835 while the
standard deviation of their rolling correlation using a window of 35 market hours is 13.96%. This
is a noticeably lower variation in the rolling correlation than that of AAPL-AMZN. Figure 6.8(a)
shows the price series evolution of AVB and ESS stock between 2009 and 2023 while figure 6.8(b)
shows the rolling correlation over a window of 35 market hours between these two assets during
that time.

(a) AVB and ESS price series 2009 - 2023. (b) AVB and ESS rolling correlation of returns plot
using a rolling window of 35 market hours.

Figure 6.8: Price series and rolling correlation plots of AVB and ESS.

Step 1: Univariate clustering and data transformation

We initially cluster the empirical measures of each of the two assets using the uni-d 1-WK-means
algorithm. As with AAPL-AMZN, we begin by choosing the smallest number of clusters possible,
k = 2 clusters, for each asset. After testing, we find that in the case of AVB and ESS, we require
6 and 4 clusters respectively. When using k = 6 for AVB, the Kolmogorv-Smirnov test yields a
p-value of 0.994 and when using k = 4 clusters for ESS, we have a p-value of 0.991.

Figures 6.9(a) and 6.9(b) show the mean-variance clustering plots of each asset. AVB exhibits
six mean-variance regimes; a very low variance regime (green), a low variance regime (blue) with
low mean, a low variance regime with high mean (orange), a medium variance regime (pink), a
high variance regime (black) and a very high variance regime (red). ESS however exhibits four
mean-variance regimes of increasing variance; a low variance regime (green), a medium variance
regime (blue), a high variance regime (orange), and a very high variance regime (red).

Step 2: Multivariate clustering

Upon inspection of the rolling correlation graph in 6.8(b), although there are notable downward
spikes in correlation at times, the rolling correlation tends to be quite steady on average. It
therefore seems reasonable to take k = 2 clusters for our 2-d WK-means algorithm. These clusters
should represent one regime of higher correlation and one of a lower correlation.

Indeed, for k = 2, we obtain one correlation regime of high correlation, where the correlation of
the centroid’s atoms is 0.878, and one of a lower correlation, where the correlation of the centroid’s
atoms is 0.737. Figures 6.11(a) and 6.11(b) show our standard plots of the correlation of the
centroids and log returns respectively of each cluster. Figure 6.11(c) shows the rolling correlation
plot with cluster colors. We see from the plot that the second (red) cluster has caught instances of
higher correlation above the average line, represented by the black horizontal line, while the first
(green) cluster tends to fall below this line indicating that it captures periods of lower correlation.
Figures 6.11(d) and 6.11(e) show the same plot where only one cluster is shown.
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(a) AVB mean-variance clustering plot. (b) ESS mean-variance clustering plot.

Figure 6.9: Uni-d 1-WK-means applied to AVB and ESS mean-variance clustering plots.

Figure 6.10(a) shows the correlation of each of the empirical measures that we have clustered
with their associated cluster colors. We note that where the correlation is increasing the second
(red) cluster tends to dominate while where the correlation is decreasing, the first (green) cluster
is more apparent. These trends are further reinforced in figures 6.10(b) and 6.10(c) which show a
portion of figure 6.10(a) magnified and where only one cluster is presented.

(a) AVB and ESS empirical measures correlation plot
with cluster colors.

(b) AVB and ESS empirical measures correlation plot
with cluster colors, cluster 1 only.

(c) AVB and ESS empirical measures correlation plot
with cluster colors, cluster 2 only.

Figure 6.10: Empirical measures correlation plots of AVB and ESS for 2 clusters.
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(a) Centroids 1 and 2 log-returns plot with cluster
colors.

(b) Clusters 1 and 2 log-returns plot with cluster col-
ors.

(c) AVB and ESS rolling correlation of returns plot
using a rolling window of 35 market hours with cluster
colors.

(d) AVB and ESS rolling correlation of returns plot
using a rolling window of 35 market hours with cluster
colors, cluster 1 only.

(e) AVB and ESS rolling correlation of returns plot
using a rolling window of 35 market hours with clus-
ter colors, cluster 2 only.

Figure 6.11: Centroid, cluster and rolling correlation plots of AVB and ESS for 2 clusters.
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6.2.3 SJM - PAYC

Finally, SJM and PAYC constitute our last test pairing. J.M. Smucker Co (SJM) is a food and
beverage manufacturing company while Paycom Software Inc (PAYC) is an online payroll and
human resource technology provider. As one might suspect, the price series of the associated
stocks tend to have low correlation on average. Indeed, using the hourly close prices for each
stock from 2015-2023, the correlation of these assets over the entire testing period is 0.060 while
the standard deviation of their rolling correlation using a window of 35 market hours is 29.25%.
Figure 6.12(a) shows the price series evolution of SJM and PAYC stock between 2015 and 2023
while figure 6.12(b) shows the rolling correlation over a window of 35 market hours between these
two assets during that time.

(a) SJM and PAYC price series 2015 - 2023. (b) SJM and PAYC rolling correlation of returns
plot using a rolling window of 35 market hours.

Figure 6.12: Price series and rolling correlation plots of SJM and PAYC.

Step 1: Univariate clustering and data transformation

We initially cluster the empirical measures of each of the two assets using the uni-d 1-WK-means
algorithm. Again, we begin by choosing the smallest number of clusters possible, k = 2 clusters,
for each asset. After testing, we find that in the case of SJM and PAYC, we require 3 and 4 clusters
respectively. When using k = 3 for SJM, the Kolmogorv-Smirnov test yields a p-value of 0.993
and when using k = 4 clusters for PAYC, we have a p-value of 0.999.

Figures 6.13(a) and 6.13(b) show the mean-variance clustering plots of each asset. SJM exhibits
three mean-variance regimes; a low variance regime (green), a medium variance regime (blue), and
a high variance regime (red). PAYC however exhibits four mean-variance regimes of increasing
variance; a low variance regime (green), a medium variance regime (blue), and a higher variance
regime which is further split into two regimes, one of a higher mean (orange) and one of a lower
mean (red).

Step 2: Multivariate clustering

We stick to the simplest approach possible and take k = 2 in the 2-d WK-means algorithm. The
clusters should represent one regime of higher correlation, and one regime of a lower correlation.
Indeed, for k = 2 we obtain one correlation regime of high correlation, where the correlation of the
centroid’s atoms is 0.268, and one of a lower correlation, where the correlation of the centroid’s
atoms is -0.059. Figure 6.15(c) shows the rolling correlation plot with cluster colors. We see from
the plot that the second (red) cluster has caught instances of higher correlation above the average
line, represented by the black horizontal line, while the first (green) cluster tends to fall below this
line indicating that it captures periods of lower correlation. Figures 6.15(d), and 6.15(e) show the
same plot where only one cluster is shown.
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(a) SJM mean-variance clustering plot. (b) PAYC mean-variance clustering plot.

Figure 6.13: Uni-d 1-WK-means applied to SJM and PAYC mean-variance clustering plots.

Figure 6.14(a) shows the correlation of each of the empirical measures that we have clustered
with their associated cluster colors. We note that as we might expect, the second (red) and first
(green) clusters tend to pick up instances of stronger and weaker correlation respectively. These
trends are further reinforced in figures 6.14(b), and 6.14(c) which show a portion of figure 6.14(a)
magnified and where only one cluster is presented.

(a) AVB and ESS empirical measures correlation plot
with cluster colors.

(b) SJM and PAYC empirical measures correlation
plot with cluster colors, cluster 1 only.

(c) SJM and PAYC empirical measures correlation
plot with cluster colors, cluster 2 only.

Figure 6.14: Empirical measures correlation plots of SJM and PAYC for 2 clusters.
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(a) Centroids 1 and 2 log-returns plot with cluster
colors.

(b) Clusters 1 and 2 log-returns plot with cluster col-
ors.

(c) SJM and PAYC rolling correlation of returns
plot using a rolling window of 35 market hours with
cluster colors.

(d) SJM and PAYC rolling correlation of returns
plot using a rolling window of 35 market hours with
cluster colors, cluster 1 only.

(e) SJM and PAYC rolling correlation of returns
plot using a rolling window of 35 market hours with
cluster colors, cluster 2 only.

Figure 6.15: Centroid, cluster and rolling correlation plots of SJM and PAYC for 2 clusters.
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6.3 Selection of hyperparameters

Choosing values of h1 and h2 when using the 2-d clustering algorithm can often be more of an
art than a science. The correlation between di↵erent assets may change with di↵erent levels of
frequency and over di↵erent lengths of time which in turn may justify di↵erent values of (h1, h2)
depending on the pair of assets. Although we do not know the true underlying probability distri-
butions which exist in our real data, we can attempt to test how stable the correlation regimes we
find are when we use di↵erent hyperparameters (h1, h2). To do so, for each pair of assets, we run
the 2-d WK-means algorithm for several pairs of hyperparameters as shown in the first column of
table 6.5. We do this for n = 200 runs. Subsequently, we then take the average percentage occur-
rence of the most common cluster designation for each empirical measure. For example, suppose
that we choose (h1, h2) = (70, 63) and suppose empirical measure µi, for some i in {1, . . . ,M},
is found in the low correlation cluster in 150 of our 200 runs. We would then say that, under
the chosen hyperparameters, approximately 75% of the time our algorithm will place µi in the
same cluster. We repeat this for all measures µj , for j in {1, . . . ,M}, and take a mean average of
the scores. This should give us an idea as to which hyperparameter pairing gives us the greatest
stability for a given pair of assets. We note that we ensure h1�h2 = 7 throughout as we then have
approximately the same number of measures M, and thus the same volume of data to cluster, for
each pair of (h1, h2).

(h1, h2) AAPL-AMZN AVB-ESS SJM-PAYC
(35, 28) 82.87% 61.67% 65.26%
(70, 63) 73.37% 69.96% 74.27%
(105, 98) 79.82% 74.32% 79.23%
(140, 133) 84.58% 74.97% 83.32%
(175, 168) 85.13% 78.15% 77.82%
(210, 203) 85.81% 82.97% 78.15%

Table 6.5: Average percentage occurrence of the most common cluster designation for each empir-
ical measure, n = 200 runs.

Table 6.5 shows our results. We refer to each result as a stability score. In the case of AAPL-
AMZN, we note that the clustering is actually quite stable for the lowest pairing (h1, h2) = (35, 28)
but should we increase the values of h1 and h2 we then see a drop in stability before it recovers and
peaks at approximately 84-85% with (h1, h2) = (140, 133). The di↵erence in stability when using
(h1, h2) = (35, 28) and (h1, h2) = (140, 133) is less than 2% which suggests that using a h1 value of
one market week is suitable. Figure 6.16 shows the rolling correlation and measure correlation plots
should we take (h1, h2) = (140, 133). One benefit of increasing our hyperparameter values is that
we lose many spurious correlations and our plots become considerably clearer, whilst maintaining
the same trends. In particular, the empirical measure correlation plots show that the algorithm
distinguishes between periods of increasing and decreasing correlation quite e↵ectively.

When clustering with AVB-ESS, we see a clear trend in that increasing the (h1, h2) hyperpa-
rameters yields an increase in stability score. In fact, when (h1, h2) = (35, 28) the 2-d WK-means
algorithm only yields the same average clustering on approximately 60% of the runs. In compari-
son, should we increase (h1, h2) to (210, 203), a h1 value corresponding to six market weeks, then
our clusters are much more stable. The lower stability for AVB-ESS when compared to AAPL-
AMZN is not surprising given the volatility in the rolling correlation is much lower, making each
empirical measure more susceptible to switching cluster. Figure 6.17 shows the rolling correla-
tion and measure correlation plots when using (h1, h2) = (210, 203). Again, our plots become
clearer while maintaining the same trends and the empirical measure correlation plots show that
the algorithm distinguishes between periods of increasing and decreasing correlation e↵ectively.

Finally, when clustering SJM-PAYC we find a similar trend to that of AVB-ESS in that the
stability score tends to increase as (h1, h2) increases. In this case however, the score peaks at
(h1, h2) = (140, 133) and subsequently decreases. This highlights the specific nature of the hyper-
parameter pairs and that a ‘one-size-fits-all’ approach may not always yield the best results. Figure
6.18 shows the rolling correlation and measure correlation plots when using (h1, h2) = (140, 133).
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(a) AAPL and AMZN rolling correlation plot with
cluster colors, (h1, h2) = (140, 133).

(b) AAPL and AMZN empirical measures correlation plot
with cluster colors, (h1, h2) = (140, 133).

(c) AAPL and AMZN empirical measures correlation
plot with cluster colors, (h1, h2) = (140, 133) cluster 1
only.

(d) AAPL and AMZN empirical measures correlation
plot with cluster colors, (h1, h2) = (140, 133) cluster 2
only.

Figure 6.16: Correlation plots of AAPL and AMZN for 2 clusters, (h1, h2) = (140, 133).
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(a) AVB and ESS rolling correlation plot with clus-
ter colors, (h1, h2) = (210, 203).

(b) AVB and ESS empirical measures correlation plot
with cluster colors, (h1, h2) = (210, 203).

(c) AVB and ESS empirical measures correlation
plot with cluster colors, (h1, h2) = (210, 203) clus-
ter 1 only.

(d) AVB and ESS empirical measures correlation
plot with cluster colors, (h1, h2) = (210, 203) clus-
ter 2 only.

Figure 6.17: Correlation plots of AVB and ESS for 2 clusters, (h1, h2) = (210, 203).
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(a) SJM and PAYC rolling correlation plot with
cluster colors, (h1, h2) = (140, 133).

(b) SJM and PAYC empirical measures correlation
plot with cluster colors, (h1, h2) = (140, 133).

(c) SJM and PAYC empirical measures correlation
plot with cluster colors, (h1, h2) = (140, 133) cluster
1 only.

(d) SJM and PAYC empirical measures correlation
plot with cluster colors, (h1, h2) = (140, 133) cluster
2 only.

Figure 6.18: Correlation plots of SJM and PAYC for 2 clusters, (h1, h2) = (140, 133).
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Chapter 7

Trading strategies

In this chapter, we use our new two-step clustering-based approach to facilitate a trading strategy.
Our candidate assets will be the three pairs of stocks described in chapter 6 and the overall trading
strategy is based on Modern Portfolio Theory (MPT).

7.1 Modern Portfolio Theory

First proposed by H. Markowitz in 1952 [78], Modern Portfolio Theory suggests we assemble
our portfolio such that we maximise our expected returns µp for a given level of risk �p. This
is commonly referred to as mean-variance optimisation. For two assets, this problem may be
expressed in symbolic form as

maxw µp = w
T
µ

s.t. �2
t = w

T⌃w and w
T1 = 1,

where w is our 2 ⇥ 1 weights vector, µ is the 2 ⇥ 1 vector of expected returns, �2
t is our target

portfolio variance, 1 is a 2⇥ 1 vector of ones (highlighted in bold so as to distinguish it from the
integer value 1), and ⌃ is the 2⇥ 2 covariance matrix of our constituent assets. For a portfolio of
two assets one may write the covariance matrix ⌃ as

⌃ =

✓
�
2
1 ⇢⇥ �1 ⇥ �2

⇢⇥ �1 ⇥ �2 �
2
2

◆
,

where �
2
1 is the variance of asset 1, �2

2 is the variance of asset 2, and ⇢ is the correlation between
the two assets. The constraint of wT1 = 1 ensures the total weight of our portfolio sums to 1. This
optimisation problem has a dual form where we instead minimise the variance of our portfolio for
a given target return, µt,

minw �
2
p = w

T⌃w (7.1.1)

s.t. µt = w
T
µ and w

T1 = 1. (7.1.2)

This is a constrained minimisation problem and we may solve it using a Lagrangian function
and matrix algebra.

Theorem 7.1.1 (Lagrange multipliers, [79] (Pages 282 - 289)). Let f : Rn ! R be our objective
function we wish to minimise and g : Rn ! Rc be our constraints function, and let f, g both be
continuous and at least once di↵erentiable. Suppose w

⇤ is an optimal solution to the optimisation
problem

minw �
2
p = w

T⌃w

s.t. µt = w
T
µ and w

T1 = 1,

such that rank(D(g(w⇤))) = c < n where D(g(w)) is the matrix of partial derivatives, [D(g(w)]j,k =

[ @gj@gk
]. Then there exists a unique Lagrange multiplier �⇤ 2 Rc such that D(f(w⇤)) = �

⇤T
D(g(w⇤)).
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By theorem 7.1.1 if there exists a local minima for equation (7.1.1) given constraints (7.1.2), then
the gradient of our objective function w

T⌃w may be expressed as a linear sum of the gradients of
the constraints µt = w

T
µ and w

T1 = 1 where �⇤ will be the coe�cients. Our Lagrangian function
can therefore be expressed as

L(w,�1,�2) = w
T⌃w + �1(w

T
µ� µt) + �2(w

T1� 1).

The first order conditions of this function are

@L(w,�1,�2)

@w
= 2⌃w + �1µ+ �21 = 0,

@L(w,�1,�2)

@�1
= w

T
µ� µt = 0,

@L(w,�1,�2)

@�2
= w

T1� 1 = 0,

and subsequently, we may express our first order conditions as a system of linear equations using
matrix algebra 0

@
2⌃ µ 1
µ
T 0 0

1T 0 0

1

A

0

@
w

�1

�2

1

A =

0

@
0
µt

1

1

A ,

which is an equation of the form Ax = b. Should A be invertible, then it has solution x = A
�1

b

where

A =

0

@
2⌃ µ 1
µ
T 0 0

1T 0 0

1

A , x =

0

@
w

�1

�2

1

A , b =

0

@
0
µt

1

1

A . (7.1.3)

In order to solve equation (7.1.3) in python, we make use of the scipy.linalg package and its
solve method. Passing the matrix A and vector b as inputs, the method returns the array x. We
then proceed to normalise the array such that the weights are less than 1 in absolute value.

7.2 The Magic Genie strategy

The Modern Portfolio Theory approach requires four variables: approximations of the expected
returns µ, the variance �

2, and the correlation ⇢ of the assets in our portfolio, and a target return
µt. In using our two step method with the uni-d 1-WK-means and 2-d WK-means algorithms
we cluster both the marginal and joint distributions into distinct clusters. These clusters each
have an associated centroid which should act as an average of that cluster’s constituent data.
When we cluster with the uni-d 1-WK-means algorithm, our synthetic and real data experiments
would lead us to expect the mean and variance of each cluster’s centroid’s atoms to be an average
representation of the returns data in its cluster. Similarly, when clustering with the 2-d WK-
means algorithm we would expect the correlation of the centroid’s atoms to be representative of
the returns data in its cluster. Therefore our two-step approach lends itself nicely to the mean-
variance optimisation problem where we may use each cluster’s centroid’s mean, variance and
correlation values as approximations to the true values in our calculations.

We call the following experiment the Magic Genie strategy. Suppose you rub on a magical,
mathematical lamp from which a gilet-wearing genie appears. The genie can see the entire price
path of each of the assets in your portfolio. However, they will not tell you what the future returns
will be. Instead, at each period t, the genie will tell you which cluster the next set of returns
belongs to when clustered with the uni-d 1-WK-means algorithm and 2-d WK-means algorithm as
described in our two-step approach. They will also tell you the mean, variance and correlation of
each cluster’s centroid but that is all. Now, should the approximations garnered from our two-step
approach be valid, we should hope that using each centroid’s approximations for the mean, variance
and correlation of the assets at a given time will lead to a profitable portfolio when substituted
into equation (7.1.3). Should this not be the case, then our genie is cruel and we should throw
their lamp into the ocean.
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Formally, we apply our two-step approach to our three pairs of assets AAPL-AMZN, AVB-ESS,
and SJM-PAYC for the periods 2005-2022, 2009-2022 and 2015-2022 respectively. We assume that
we want to trade over a specific window and take h1 = 35, equivalent to one market week in
market hours, and h2 = 28 for both the uni-d 1-WK-means and 2-d WK-means algorithms. As
demonstrated in figure 5.2, each return is then associated with the first empirical measure it is
included within and thus we approximate its mean, variance and correlation using the atoms of
the centroid of the cluster associated to that measure. We form our mean-variance portfolios using
these approximations and refer to this as the Magic Genie (MG) portfolio. In order to benchmark
our strategy, we provide an alternative portfolio where we have used the average over a rolling
window of 35 returns as an approximation to the mean, variance and correlation of each asset. We
refer to this portfolio as the Rolling Average (RA) portfolio.

Each portfolio starts with a value of one and each trading period is one market hour. The
portfolio cumulative returns are shown in table 7.1 for di↵erent values of µt. We see that the
choice of µt does have an impact on the returns generated by the MG strategy but in all cases we
generate a positive return. Figure 7.1 shows the performance of each pair when using its optimal
target return tested. That is to say, our target return µt for the pairings in each respective period is
0.1%, 0.05% and 0.15% for AAPL-AMZN, AVB-ESS, and SJM-PAYC respectively. Tables 7.2, 7.3
and 7.4 show statistics for the MG and RA strategies when trading each asset pair under its optimal
target return. Statistics provided include the cumulative return of each portfolio, calculated as
the cumulative product of returns over the testing period when starting from a portfolio value of
1 and the classic annualised Sharpe ratio (SRy) defined as

SRy = SRh ⇥
p
252⇥ 7 =

µh

�h
⇥
p
252⇥ 7,

where SRh is the hourly Sharpe ratio, µh is the average hourly return adjusted to account for an
annual risk free rate of 2%, and �h is the hourly standard deviation. We also provide the maximum
drawdown of each strategy during this period, defined as being the largest drop from a peak in our
cumulative returns to a subsequent trough as well as the hourly standard deviation in returns �h.
The results generated use the hourly closing prices of each asset and do not account for market
intricacies such as trading fees, bid-ask spread, shorting constraints etc.

Pair
µt 0.05% 0.10% 0.15%

AAPL-AMZN 6401.37 133,781.43 8225.44
AVB-ESS 41.03 5.53 3.16
SJM-PAYC 30.55 268.39 979.85

Table 7.1: Magic Genie strategy cumulative returns for µt = 0.05%, 0.10%, 0.15%.

Strategy Cumulative returns Sharpe ratio Max drawdown �h

MG 133,781.43 3.03 25.55% 0.55%
RA 5.40 0.46 51.45% 0.13%

Table 7.2: Magic Genie (MG) vs Rolling Average (RA) strategy statistics for AAPL-AMZN.

Strategy Cumulative returns Sharpe ratio Max drawdown �h

MG 41.03 1.80 23.28% 0.37%
RA 0.92 -0.13 45.39% 0.33%

Table 7.3: Magic Genie (MG) vs Rolling Average (RA) strategy statistics for AVB-ESS.

Strategy Cumulative returns Sharpe ratio Max drawdown �h

MG 979.85 3.62 16.97% 0.65%
RA 2.05 0.45 28.49% 0.60%

Table 7.4: Magic Genie (MG) vs Rolling Average (RA) strategy statistics for SJM-PAYC.
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(a) AAPL - AMZN performance for the Magic Genie
portfolio.

(b) AAPL - AMZN performance for the Rolling
Average portfolio.

(c) AVB - ESS performance for the Magic Genie
portfolio.

(d) AVB - ESS performance for the Rolling Aver-
age portfolio.

(e) SJM - PAYC performance for the Magic Genie
portfolio.

(f) SJM - PAYC performance for the Rolling Av-
erage portfolio.

Figure 7.1: Magic Genie and Rolling Average portfolios.
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Figure 7.2: Example diagram of information used to trade with the Cluster Based (CB) strategy.

7.3 Cluster Based trading strategy

Moving beyond the realm of magic genies, we present a more realistic setting. The Magic Genie
strategy makes primarily two unrealistic assumptions: that we should know the entire returns path
of each asset in order to form our centroids before we begin trading, and that we may trade a given
return as it occurs. We now remove those assumptions.

As in the Magic Genie experiment, we apply our two step approach to our three pairs of assets
AAPL-AMZN, AVB-ESS, and SJM-PAYC for the periods 2005-2022, 2009-2022 and 2015-2022
respectively in order to obtain our clusters and centroids. We consider this to be our training
data. We then use data between January 2022 and August 2023 as our testing/trading data. We
therefore have removed the assumption that we should know the entire price path that we are
trading. Taking h1 = 35 and h2 = 28 as before, we form empirical measures from our testing
data and assign them to the cluster for which the p-Wasserstein distance is minimised. We do
this for both the uni-d 1-WK-means clusters where we take p = 1 and for the 2-d WK-means
clusters where we take p = 2. We subsequently form our mean-variance optimal portfolios using
the associated cluster’s centroids as described in the Magic Genie experiment and we use the same
target returns as previously stipulated; that is 0.01% for AAPL-AMZN, 0.05% for AVB-ESS, and
0.15% for SJM-PAYC, given they were optimal for the training data. At no point during our
testing data do we rerun our algorithm to form new centroids.

Figures 7.3(a), 7.3(c) and 7.3(e) show our results, which remain strong and profitable in each
instance. We might then assume that rerunning our algorithms to form new centroids continuously
is not necessary and instead, we may rerun our algorithms after a certain period of time, for example
every few weeks. In doing so, we save reduce our overall computation time when running a strategy
based on the clusters, as discussed in section 5.3.

We then remove our second assumption of trading a given return as it occurs, by shifting the
weights of our portfolio. Each empirical measure will overlap on h2 = 28 returns. Thus, after our
first empirical measure, we will be able to form a new measure every h1�h2 = 7 returns and hence
we should shift our weights by 7 in order to trade. In e↵ect, we trade on day t using information
from day t� 1 to day t� 5. This is demonstrated in figure 7.2. In the MG strategy we would use
information from the block of returns data forming measure µbt in order to trade the returns in
block bt. Instead, we now use information from the block of returns data forming measure µbt�1

in order to trade the returns in block bt.

Figures 7.3(b), 7.3(d) and 7.3(f) show the performance of our Cluster Based (CB) portfolio of
each pair on the testing data. Clearly the performance is markedly di↵erent to previous cases and
is considerably more volatile. This shows the importance of predicting the next cluster as opposed
to assuming the next cluster designation will be the same as the current one at all times.
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(a) AAPL - AMZN performance for the Cluster
Based trading strategy, January 2022 - August
2023, using centroids from 2005 - 2022.

(b) AAPL - AMZN performance for the Cluster
Based trading strategy, January 2022 - August 2023,
using centroids from 2005 - 2022 and shifted weights.

(c) AVB - ESS performance for the Cluster Based
trading strategy, January 2022 - August 2023, using
centroids from 2005 - 2022.

(d) AVB - ESS performance for the Cluster Based
trading strategy, January 2022 - August 2023, using
centroids from 2005 - 2022 and shifted weights.

(e) SJM - PAYC performance for the Cluster
Based trading strategy, January 2022 - August
2023, using centroids from 2005 - 2022.

(f) SJM - PAYC performance for the Cluster Based
trading strategy, January 2022 - August 2023, using
centroids from 2005 - 2022 and shifted weights.

Figure 7.3: Cluster Based strategy results.
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Chapter 8

Conclusion

In this thesis, we have shown that the p-Wasserstein distance and Maximum Mean Discrepancy
can be combined with the k -means clustering algorithm in order to e↵ectively partition multidi-
mensional market returns into regimes. These regimes include periods characterised by a change
in the mean and variance of the underlying distribution and periods characterised by a change
in the correlation between two assets. We compared the use of each distance metric in synthetic
settings and found that while the p-Wasserstein distance led to stronger clustering for correlation
regimes, the MMD was more e↵ective when clustering regimes characterised by their mean and
variance changes. We then demonstrated how combining the WK-means algorithm, as described
in [1], with our novel multidimensional algorithms can be e↵ective in clustering real world market
returns. Finally, we showed that knowledge of the cluster membership of each market return can
be e↵ective in building a profitable portfolio.

Areas ripe for further investigation are plentiful. These include fundamental elements to our al-
gorithm such as our choice of clustering algorithm and distance metric in the multivariate setting.
Replacing the k -means algorithm with the fuzzy c-means algorithm or a hierarchical clustering al-
gorithm is an area of possible study. A method for determining the optimal bandwidth parameter
when using the MMD would be useful while a more rigorous statistical method for choosing the
number of clusters when using the 2-d WK-means algorithm to find correlation regimes in a real
data environment would be preferable. Further investigation into the optimal selection of hyper-
parameters for a given pair of stocks when using the 2-d WK-means algorithm is also warranted.
Most notably, studying the changes in joint distribution for d > 2 assets would be interesting.
Such changes are not as simple to characterise as those of d = 2 but the d -dimensional WK-means
and MMDK-means algorithms can be used for higher values of d. Regarding our trading strategy,
we have presented only a toy model in order to illustrate the e↵ectiveness of our clustering. A
method for predicting the next cluster, possibly based on the overlapping returns or some form
of traditional time series prediction, would be useful. It would also be interesting to investigate
the application of mixture distributions in this context, wherein we would use a mixture of the
centroid empirical distributions as opposed to only one when trading a given period of returns.
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Appendix A

Technical Proofs and further
results

A.1 Appendix 1

In this appendix we provide statements and proofs related to results in chapter 3 of the thesis.

A.1.1 The k-means clustering algorithm

Proposition A.1.1 (k-means clustering, [80]). Given data X, the k-means algorithm produces k
suitable clusters if the following is true:

1. There exist k clusters in the data X.

2. Each cluster within X is of roughly equal size.

3. Within-cluster variation (Definition 3.2.6) is uniform. That is, for �2 > 0 small we have that

kWC(Ci)�WC(Cj)k < �2,

for i, j = 1, . . . , k and i 6= j.

Clusters are spherical in shape, so we expect the nearest neighbours Cj to the j
th centroid x̄j to

be contained within a ball B(x̄j , �) where � > 0 is uniform across all clusters j = 1, . . . , k. If
conditions (1)-(4) are satisfied, then optimal clusterings C

⇤ will be suitable.

Proof. See [80] for details.

A.1.2 Maximum Mean Discrepancy

Problem 1 (Two-sample test, [51] (Problem 1)). Let (X , D) be a metric space. Suppose X and
Y are independent random variables on X . Suppose that the Borel probability measure of X is µ
and that of Y is ⌫, where µ, ⌫ 2 P(X ), where P(X ) is the set of probability measures on X . If we
draw i.i.d. samples x = (x1, . . . , xn) and y = (y1, . . . , ym) where xi ⇠ µ for i = 1, . . . , n and yj ⇠ ⌫

for j = 1, . . . ,m, when can we determine if µ 6= ⌫? In other words, we wish to implement a test
for the two-sample problem

H0 : µ = ⌫ H1 : µ 6= ⌫.

Definition A.1.2 (Hilbert space, [61] (Pages 171 - 172)). A Hilbert space H is a complex vector
space equipped with an inner product, that is complete with respect to the norm induced by its
inner product.
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Definition A.1.3 (Kernel function, [81] (Equation 3, page 3). Let X be a topological space. We
define a symmetric, similarity measure of the form

 :X ⇥ X ! R
(x, x0) ! (x, x0),

such that  returns a real number characterising the similarity between x and x
0. We refer to  as

a kernel function or method.

Definition A.1.4 (Universal reproducing kernel Hilbert space, [51] (Section 2.2, page 727)). Let
X be a topological space, H be a Hilbert space and  : X ⇥ X ! R be a reproducing kernel. We
say that the reproducing kernel Hilbert space (H,) is universal if (·, ·) is continuous and H is
dense in C (X ), the space of bounded, continuous functions on X , with respect to the L1 norm.

Definition A.1.5 (Characteristic kernel, [52] (Section 2)). Let X be a non-empty set. A kernel
 on X is called characteristic if the mean mapping

µ ! EX⇠µ[(·, X)]

is injective.

A.1.3 p-Wasserstein distance

Proposition A.1.6 (The p-Wasserstein distance is a metric, [56] (Chapter 5.1, proposition 5.4)).
The distance Wp : Pp(X)⇥ Pp(X) ! [0,1) is a metric on Pp(X).

Proof. As in [56], we show that the first three criteria of being a metric are met. The final criterion,
the triangle inequality, can be shown using the ‘gluing lemma’ as described in [56] chapter 5.1,
proposition 5.4. We note that by definition Wp(µ, ⌫) � 0 for any µ, ⌫ 2 Pp(X), giving us the first
requirement. Furthermore, since D(x, y) is itself a metric, we must have that it is symmetrical
and since P 2 ⇧(µ, ⌫) if and only if S#P 2 ⇧(µ, ⌫) where S(x, y) = (y, x) we have that Wp(µ, ⌫)
is symmetrical.

Finally, if µ = ⌫ then we may take P(x, y) = �x(y)µ(x) such that

Wp(µ, ⌫) 
Z

X⇥X
D(x, y)pP(dx, dy) = 0,

as x = y P-almost everywhere. Suppose we have that Wp(µ, ⌫) = 0. Then there must exist some
P 2 ⇧(µ, ⌫) such that x = y P-almost everywhere. Hence for any function f : X ! R,

Z

X
f(x)µ(dx) =

Z

X⇥X
f(x)P(dx, dy) =

Z

X⇥X
f(y)P(dx, dy) =

Z

X
f(y)⌫(dy).

Since this holds for all f we have that µ = ⌫.

Remark A.1.7. The p-Wasserstein distance, defined in definition 3.4.1, is in fact a special case
of an integral probability metric via its dual formulation. As shown in [82], where p = 1, the dual
formulation is given by

W1(µ, ⌫) = supf2Lip1(X)

 Z

X
f(x)dµ(x)�

Z

X
f(y)d⌫(y)

!
, (A.1.1)

where Lip1(X) denotes a collection of Lipschitz functions with Lipschitz constant 1

Lip1 := {f : kfkLip  1},

and where

kfkLip := supx2supp(µ),y2supp(⌫),x 6=y
|f(x)� f(y)|

D(x, y)
.
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Since µ and ⌫ are probability measures we may write equation (A.1.1) as

W1(µ, ⌫) = supLip1
(Eµ[f(x)]� E⌫ [f(y)]).

Therefore the 1-Wasserstein distance is an integrable probability metric over F given by the unit
ball in the space of functions

Lip(X) = {f : X ! R : f continuous, kfkLip < 1},

and it shares a relationship with the Maximum Mean Discrepancy.

A.2 Appendix 2

In this appendix we provide statements and proofs related to results in chapter 4 of the thesis.

Proposition A.2.1 ([58] (Equation (3), page 2)). Suppose µ, ⌫ 2 Pp(R) and that µ, ⌫ are ab-
solutely continuous with respect to the Lebesgue measure on R. Then the p-Wasserstein distance
Wp(µ, ⌫) is given by

Wp(µ, ⌫) =

✓Z 1

0
D(F�1µ (z), F�1⌫ (z))pdz

◆ 1
p

,

where the quantile function F
�1
µ : [0, 1) ! R is defined as

F
�1
µ (z) := inf{x : Fµ(x) > z},

and D(x, y) = |x� y|.

Proof. A consequence of the fact that the unique optimal transport map pushing µ onto ⌫ is given
by f(x) = (F�1⌫ � Fµ)(x), and therefore

Wp(µ, ⌫) =

✓Z

R
D(x, F�1⌫ (F⌫(x)))

p
dx

◆ 1
p

=

✓Z 1

0
D(F�1µ (z), F�1⌫ (z))pdz

◆ 1
p

by a change of variables.

Proposition A.2.2 (Uni-dimensional p-Wasserstein barycentre, [1] (Proposition 2.6, page 11)).
Suppose that {µi}1iM are a family of empirical probability measures, where each measure has N
atoms, (↵i

j)1jN ⇢ RN . Let

aj = Median(↵1
j , . . . ,↵

M
j ), bj = Mean(↵1

j , . . . ,↵
M
j ),

for j = 1, . . . , 35. Then the cumulative distribution function of the 1-Wasserstein barycentre µ̄ 2
P1(R) over {µi}1iM with respect to the 1-Wasserstein distance is given by

µ̄((�1, x]) =
1

N

NX

i=1

1{aix}(x), (A.2.1)

and the p-Wasserstein barycentre µ̄ 2 Pp(R) over {µi}1iM with respect to the p-Wasserstein
distance, for p > 1, is given by

µ̄((�1, x]) =
1

N

NX

i=1

1{bix}(x). (A.2.2)

Moreover, µ̄ is not necessarily unique.

Proof. This proof is taken from appendix C.1 in [1], pages 33 - 34. We prove that equation (A.2.1)
holds. Assume that N = 1, such that each measure µi is comprised of only one atom ↵i for
i = 1, . . . ,M . Without loss of generality we may also assume that the sequence (↵i)Mi=1 is non-
decreasing. By convexity of the function �a(x) = |x � a| for a 2 R, the Wasserstein barycentre
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will also have N = 1 atoms. Then, using statement (4.1.3) with D(x, y) = |↵i � �i|, the problem
of finding the barycentre µ̄ is equivalent to the optimisation

inf⌫2P1(R)

MX

i=1

W1(µi, ⌫) = infa2R

MX

i=1

|a� ↵i| = infa2R

MX

i=1

�↵i(a). (A.2.3)

The minimiser a⇤ 2 R to the right hand side of (A.2.3) is obtained using first order conditions,
where we solve df

dx (x) = 0 over R, where

f(x) = |x� ↵1|+ · · ·+ |x� ↵m| = �↵1(x) + · · ·+ �↵M (x).

Since
d�↵i

dx
(x) = sgn(x� ↵i),

for i = 1, . . . ,M , we have that

a
⇤ = arginfa2R

MX

i=1

|a� ↵i| = Median(↵1, . . . ,↵M ). (A.2.4)

In particular, if M mod 1 = 0, then a
⇤ 2 [↵M

2
,↵M

2 +1). If M mod 2 = 1, then the (unique)

optimiser is given by a
⇤ = ↵K where K = bM

2 c+ 1. Setting a = a
⇤ gives (A.2.1). If N > 1, then

the problem of finding the Wasserstein barycentre is equivalent to

inf⌫2P1(R)

MX

i=1

W1(µi, ⌫) = inf(a1,...,aN )2RN

MX

i=1

NX

j=1

|aj � ↵
j
i |.

Interchanging the order of summation, we have that

inf(a1,...,aN )2RN

MX

i=1

NX

j=1

|aj � ↵
j
i | =

NX

j=1

 
infaj2R

MX

i=1

|aj � ↵
j
i |
!
.

By applying (A.2.4) to each summation over M, we obtain the desired result (A.2.1). When p > 1,
the proof for result (A.2.2) is similar.

A.3 Appendix 3

In this appendix we provide further results related to the experiments in chapter 5 of the thesis.
We also provide a derivation of the correlated Merton jump di↵usion processes used in section 5.2.

A.3.1 Geometric Brownian motion

5.1.1: Further results

Algorithm Total Regime-on Regime-o↵
2-d WK-means 88.12% ± 4.48% 83.53% ± 3.88% 89.44% ± 4.96%

2-d MMDK-means 95.02% ± 1.70% 95.31% ± 0.35% 94.70% ± 2.32%

Table A.1: Accuracy scores with 95% CI, GBM synthetic path with simultaneous mean-variance
regimes and fixed ⇢ = 0.5, n = 50 runs.

Algorithm Total Regime-on Regime-o↵
2-d WK-means 82.52% ± 4.21% 87.99% ± 3.11% 80.51% ± 4.99%

2-d MMDK-means 77.17% ± 5.43% 85.42% ± 6.27% 74.24% ± 5.84%

Table A.2: Accuracy scores with 95% CI, GBM synthetic path with simultaneous mean-variance
regimes and fixed ⇢ = �0.5, n = 50 runs.
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Algorithm Total Regime-on Regime-o↵
2-d WK-means 85.89% ± 4.25% 86.25% ± 2.68% 85.57% ± 5.09%

2-d MMDK-means 74.85% ± 3.69% 87.23% ± 2.91% 70.55% ± 4.32%

Table A.3: Accuracy scores with 95% CI, GBM synthetic path with simultaneous mean-variance
regimes and fixed ⇢ = �1, n = 50 runs.

5.1.2: Further results

Algorithm Total Regime-on Regime-o↵
2-d WK-means 82.28% ± 6.78% 84.07% ± 8.43% 81.49% ± 7.01%

2-d MMDK-means 88.32% ± 5.55% 84.42% ± 7.84% 89.41% ± 5.23%

Table A.4: Accuracy scores with 95% CI, GBM synthetic path with simultaneous correlation
regimes and ⇢0 = 1, ⇢1 = 0, n = 50 runs.

Algorithm Total Regime-on Regime-o↵
2-d WK-means 98.60% ± 1.69% 97.83% ± 1.93% 98.63% ± 1.60%

2-d MMDK-means 95.03% ± 4.20% 95.18% ± 3.80% 94.76% ± 4.32%

Table A.5: Accuracy scores with 95% CI, GBM synthetic path with simultaneous correlation
regimes and ⇢0 = 0, ⇢1 = �1, n = 50 runs.

Algorithm Total Regime-on Regime-o↵
2-d WK-means 85.21% ± 6.00% 91.17% ± 5.31% 83.02% ± 6.82%

2-d MMDK-means 80.01% ± 6.67% 83.91% ± 5.63% 78.52% ± 7.26%

Table A.6: Accuracy scores with 95% CI, GBM synthetic path with simultaneous correlation
regimes and ⇢0 = �1, ⇢1 = 0, n = 50 runs.

Algorithm Total Regime-on Regime-o↵
2-d WK-means 94.70% ± 3.84% 95.92% ± 3.23% 94.08% ± 4.47%

2-d MMDK-means 89.49% ± 5.59% 91.55% ± 4.94% 88.59% ± 6.03%

Table A.7: Accuracy scores with 95% CI, GBM synthetic path with simultaneous correlation
regimes and ⇢0 = �0.5, ⇢1 = �1, n = 50 runs.

Algorithm Total Regime-on Regime-o↵
2-d WK-means 65.92% ± 4.31% 80.12% ± 5.00% 61.04% ± 5.93%

2-d MMDK-means 52.75% ± 2.70% 59.65% ± 2.14% 50.33% ± 3.73%

Table A.8: Accuracy scores with 95% CI, GBM synthetic path with simultaneous correlation
regimes and ⇢0 = 0, ⇢1 = 0.5, n = 50 runs.

A.3.2 Correlation of Merton jump di↵usion processes

The following work has been adapted from [75].

Let (⌦,F , {Ft},P) be a probability space and let Wt = (W 1
t ,W

2
t ) be a bivariate correlated

Brownian motion process adapted to the filtration. We define a covariance matrix

⌃ =

✓
1 ⇢

⇢ 1

◆
,

where dW
1
t ,W

2
t = ⇢dt with ⇢ the instantaneous correlation between the two Brownian motion

components. We define a homogeneous Poisson counting measure p(dy, dt) ⌘ p(dy1, dy2, dt) defined
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over R2 ⇥ [0, T ] which is associated with a marked point process ((Yn), Nt). The intensity of the
Poisson measure is �mP(dy)dt, where � > 0 is the constant arrival rate of the jumps of the Poisson
process Nt under P and mP(dy) is the probability distribution on the independently and identically
distributed marks Yn, which is also independent of Nt and Wt.

We denote the compensated measure as

p̂(dy, dt) = p(dy, dt)� �mP(dy)dt.

We assume that we have two assets S1 and S
2 whose return dynamics under the market measure

P are given by
dS

i
t

S
i
t�

= µ
i
dt+ �

i
dW

i
t +

Z

R2

[ey
i

� 1]p̂(dy, dt),

for i = 1, 2 where µ
i is the expected return per unit time, and �

i is the instantaneous volatility
per unit time. Since we have two assets in our model, the jump-size Y = (Y 1

, Y
2)T is a bivariate

process taking values y = (y1, y2)T in R2. When restricting the Poisson measure to one of the
jump-size components, we write

p(dyi, dt) ⌘
Z

R
p(dyi, dyj , dt)dyj ,

for i = 1, 2 and j = 2, 1 with the associated compensated measures

p̂(dyi, dt) = p(dyi, dt)� �mP(dy
i)dt,

for i = 1, 2 where mP(dyi) denotes the marginal distribution of jump-sizes Y i
n under P.

The Y
i for i = 1, 2 are random jump-sizes assumed to be correlated pairwise with correlation

Corr[Y 1
, Y

2] = ⇢Y . For our purposes we assume ⇢Y = ⇢. We define the expected proportional
jump-size as


i ⌘ EP[e

Y i

� 1] ⌘
Z

R
[ey

i

� 1]mP(dy
i).

We note that in terms of the compensated Poisson measure associated with each particular asset,
we may write

dS
i
t

S
i
t�

= µ
i
dt+ �

i
dW

i
t +

Z

R
[ey

i

� 1]p̂(dyi, dt)

= µ
i
dt+ �

i
dW

i
t +

Z

R
[ey

i

� 1](p(dyi, dt)� �mP(dy
i)dt)

= µ
i
dt+ �

i
dW

i
t +

Z

R
[ey

i

� 1]p(dyi, dt)� �

Z

R
[ey

i

� 1]mP(dy
i)dt

= (µi � �
i)dt+ �

i
dW

i
t +

Z

R2

[ey
i

� 1]p(dyi, dt),

which yields a solution of the form

S
i
t = S

i
0exp

" 
µ
i � �

i � �
i

2

!
t+ �

i
W

i
t +

NtX

n=1

Y
i
n

#
,

for i = 1, 2.

A.3.3 Merton jump di↵usion process

5.2.1: Further results

Algorithm Total Regime-on Regime-o↵
2-d WK-means 87.54% ± 3.96% 77.76% ± 9.27% 90.59% ± 4.81%

2-d MMDK-means 97.27% ± 1.97% 96.49% ± 0.81% 97.30% ± 2.40%

Table A.9: Accuracy scores with 95% CI, MJD synthetic path with simultaneous mean-variance
regimes and fixed ⇢ = 0.5, n = 50 runs.
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Algorithm Total Regime-on Regime-o↵
2-d WK-means 90.84% ± 3.05% 78.15% ± 9.37% 94.85% ± 2.64%

2-d MMDK-means 90.71% ± 3.67% 98.46% ± 0.15% 87.92% ± 4.92%

Table A.10: Accuracy scores with 95% CI, MJD synthetic path with simultaneous mean-variance
regimes and fixed ⇢ = �0.5, n = 50 runs.

Algorithm Total Regime-on Regime-o↵
2-d WK-means 89.05% ± 3.81% 76.12% ± 10.65% 94.97% ± 3.50%

2-d MMDK-means 88.04% ± 4.35% 95.13% ± 1.85% 85.47% ± 5.40%

Table A.11: Accuracy scores with 95% CI, MJD synthetic path with simultaneous mean-variance
regimes and fixed ⇢ = �1, n = 50 runs.

5.2.2: Further results

Algorithm Total Regime-on Regime-o↵
2-d WK-means 83.41% ± 6.11% 78.35% ± 9.70% 84.90% ± 6.45%

2-d MMDK-means 77.41% ± 6.79% 79.48% ± 6.46% 76.54% ± 7.20%

Table A.12: Accuracy scores with 95% CI, MJD synthetic path with simultaneous correlation
regimes and ⇢0 = 1, ⇢1 = 0, n = 50 runs.

Algorithm Total Regime-on Regime-o↵
2-d WK-means 90.05% ± 4.87% 84.63% ± 9.41% 91.64% ± 6.11%

2-d MMDK-means 90.98% ± 5.12% 84.26% ± 9.39% 93.00% ± 4.10%

Table A.13: Accuracy scores with 95% CI, MJD synthetic path with simultaneous correlation
regimes and ⇢0 = 0, ⇢1 = �1, n = 50 runs.

Algorithm Total Regime-on Regime-o↵
2-d WK-means 82.95% ± 6.56% 74.09% ± 10.39% 85.71% ± 6.77%

2-d MMDK-means 75.77% ± 6.75% 79.08% ± 7.06% 74.94% ± 7.33%

Table A.14: Accuracy scores with 95% CI, MJD synthetic path with simultaneous correlation
regimes and ⇢0 = �1, ⇢1 = 0, n = 50 runs.

Algorithm Total Regime-on Regime-o↵
2-d WK-means 82.09% ± 5.58% 84.48% ± 7.59% 81.10% ± 6.91%

2-d MMDK-means 89.34% ± 5.54% 88.48% ± 6.61% 89.43% ± 5.39%

Table A.15: Accuracy scores with 95% CI, MJD synthetic path with simultaneous correlation
regimes and ⇢0 = �0.5, ⇢1 = �1, n = 50 runs.

Algorithm Total Regime-on Regime-o↵
2-d WK-means 64.86% ± 4.63% 77.81% ± 7.73% 60.40% ± 6.94%

2-d MMDK-means 55.86% ± 2.54% 66.40% ± 4.73% 52.23% ± 2.33%

Table A.16: Accuracy scores with 95% CI, MJD synthetic path with simultaneous correlation
regimes and ⇢0 = 0, ⇢1 = 0.5, n = 50 runs.
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A.4 Appendix 4

In this appendix we provide statements and proofs related to results in chapter 6 of the thesis.

Proposition A.4.1 (Probability transformation). Suppose X is a random variable with continuous
CDF F. Then F (X) ⇠ Uniform(0, 1).

Proof. Let X be a continuous random variable with CDF F (x). We define Y := F (X) such that
G(y) is the CDF of Y . Then for y 2 [0, 1], if F�1(y) exists we have that

G(y) = P(Y  y)

= P(F (X)  y)

= P(X  F
�1(y))

= F (F�1(y))

= y

If F�1(y) does not exist then we replace it with the generalised inverse F (y) = inf{x : F (x) � y}
for y 2 (0, 1), F (�1) = 0 and F

 (1) = 1, and the result still holds.

89



Bibliography

[1] Blanka Horvath, Zacharia Issa, and Aitor Muguruza. Clustering market regimes using the
wasserstein distance. arXiv preprint arXiv:2110.11848, 2021.

[2] Yingjie Tian and Dongkuan Xu. A comprehensive survey of clustering algorithms. Annals of
Data Science, 2:165–193, 2015.

[3] Pierpaolo D’Urso and Elizabeth Ann Maharaj. Wavelets-based clustering of multivariate time
series. Fuzzy Sets and Systems, 193:33–61, 2012.

[4] T Warren Liao. Clustering of time series data—a survey. Pattern recognition, 38(11):1857–
1874, 2005.

[5] J MacQueen. Classification and analysis of multivariate observations. In 5th Berkeley Symp.
Math. Statist. Probability, pages 281–297. University of California Los Angeles LA USA, 1967.
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