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Abstract

ETF Markets are characterized by two important facts: firstly, they are risk-fungible,

and hence they can be hedged, most likely in diverse ways; secondly, they enjoy the cre-

ation/redemption mechanism, causing the total number of ETFs issued in the market to

float freely, when additional liquidity is provided by the primary market authorized partic-

ipants. Market makers need to quote bid-offers on ETFs for their clients both competitively

and profitably. On quote-driven markets, they must estimate the market impact in their

cost of hedging the ETF, while on order-driven markets, they must determine the price and

size of their bid-offers in accordance with the NAV of the ETF and the slippage costs of their

hedging. In this work, we propose a jump-diffusion model of the limit order book taking

in consideration fundamental aspects of ETF markets and the existence of market-neutral

market makers. Then, we provide a combined stochastic and impulse control problem formu-

lation on the ETF market maker problem, and derive the Hamilton-Jacobi-Bellman Quasi

Variational Inequalities that arise from it. Finally, we evidence the inviability of traditional

numerical solutions, and propose sub-optimal approximate solutions by using Reinforcement

Learning techniques, analyzing their properties with respect to the desired qualities of day-

to-day market making solutions.
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1 Introduction

1.1 Market Making

Making a market is the activity by which dealers engage by quoting bids and offers on
financial instruments, with the intent of making profit by offering liquidity to the markets.
Such dealer is also known as a ’market maker’, or ’liquidity provider’. By contrast, the market
participants that transact with dealers, either by hitting the bids or lifting the offers quoted
by the market maker, are called ’liquidity takers’, or simply ’traders’. Nowadays, agents can
act in both capacities, and the distinction basically is the need for immediacy in the execution.

When making market only on a non-replicable financial product (like a single stock), a liq-
uidity provider (dealer) in general has no alternative but to hold an inventory in the course
of its dealings with clients. Academic literature assumes that market makers expect to be
compensated by holding such risk in their own trading books, and that the bid-offer spread is
such compensation. The reality is that such agents may not wait for their portfolios liquida-
tion passively in order to realize their P&L, eventually becoming active by sending marketable
orders to control their risks according to their risk management guidelines. Also, the volatile
nature of the financial prices makes the bid-offer spread so small compared to the price fluctu-
ations that in practice the spread does not play a relevant role for a dealer that is making an
order-driven market. In a quote-driven market, the bid-offer spread will be significantly more
than that of an order-driven market due to the bigger sizes of the transactions, thus justifying
the claims in the literature.

While fundamentally all financial products have a quote-driven market, many also enjoy
order-driven markets at exchanges (and other automated execution venues), where trading is
generally anonymous but for smaller quantities and require order execution strategies, while
trading desks of investment banks typically act as dealers by providing quotes on basically
any financial product to their institutional clients, but generally without anonymity and only
for larger deals.

In this regard, on order-driven markets, the liquidity provision is a dynamic process with
an embedded price discovery mechanism, as larger orders need to be split up into smaller ones
and be sent for execution against the limit order book, which takes time. On the other hand,
in a traditional quote-driven market, the price is determined by the competition amongst the
dealers (clients know all dealers quotes, but the dealers can’t see other dealer quotes), and the
execution is guaranteed at the quoted price (for firm quotes), entailing a more static process
– quotes may be updated but they are generally good for a longer time-horizon.

Both types of markets are complementary to each other, and transactions in the former
may lead to transactions on the later. Dealers on a quote-driven market may choose to liq-
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uidate their exposure on the order-driven market or look for another agent that is interested
in the exposure. Likewise, exposure accumulated by an order-driven market maker may be
liquidated directly against a dealer quote. Thus, market liquidity cannot be seen as a segre-
gated pool, but as a set of interconnected liquidity pools. So, in this sense, we consider the
price for a trade to be a hidden state variable which can be only be observed in an exchange
or by requesting quotes from diverse dealers.

1.2 Exchange-Traded Funds

Exchanged Traded funds were conceived by Nathan Most following the crash of 1987, draw-
ing from his experience as commodities trader. Since then, the ETF market has grown spec-
tacularly, moved by a continuous trend away from actively managed funds towards passive
funds. Compared to Mutual Funds, ETFs are not only simpler to get in and out (they can be
traded electronically at Exchanges), but they are also cheaper and more tax efficient.

As the name suggests, ETFs can be bought and sold at exchanges, and not directly from/to
the fund. Capital flows in and out of such funds through an Authorized Participant (AP), by
what is known as the Creation/Redemption Process. When demand and offer do not match
properly at the secondary markets (exchanges), the AP uses the creation/redemption mecha-
nism in the primary-market in order to providing additional liquidity and bring equilibrium
to the system. Thus, if there are more buyers than sellers, the AP can issue brand new ETF
shares in the primary market and sell them in the secondary market. On the other hand, if
there are more sellers than buyers, the AP is also able to buy those ETF shares in the sec-
ondary market and redeem them directly from the ETF issuer in the primary market. In this
role, the AP acts simultaneously as a market maker and arbitrageur. Competition between
these dealers guarantee that the spread charged for these services are competitive and in line
with market interest in the funds.

ETFs can be constituted of any asset class. Although widely popular in the equities mar-
ket, with SPY being the most famous with $229B in AUM (the largest for an ETF), there are
ETFs of all kinds: GLD is the largest fund that invest in physical gold, with more than $29B
in gold bars at vaults in London, and AGG has more than $56B invested in US investment
grade bonds1. Some ETFs may be composed of derivatives in order to provide synthetic or
leveraged exposure to other risks. Risk-wise, ETFs display the same properties as their un-
derlying constituents: it makes sense to treat fixed income ETFs are a fixed income portfolio
and leveraged ETFs as derivatives.

Regardless of asset class or risk profile, ETFs have a Net Asset Value (NAV), which is a
linear combination of the prices according to the fund composition, calculated with official

1As of September 2018 based on information from ETF.com (2018)
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end-of-day (EOD) prices. If calculated intraday with the latest available prices, the NAV is
called Intraday Indicative Value (IIV), but Intraday NAV (INAV) is also a popular term. The
Premium-Discount for an ETF is simply the difference between the trading price and its in-
traday NAV value. If positive, the ETF is said to be trading at premium, whereas if negative,
it is said to be trading at discount.

In this work, we focus on ETFs that do not make use of any derivatives for their composition
and that can be usually created or redeemed by physical settlement, i.e., by delivering or tak-
ing delivery of the underlying ETF composition. For these types of ETFs, creation/redemption
fees are paid by the AP to the ETF issuer. These fees are driven by offer and demand. In
ETFs where there are more buyers than sellers, the APs will end up short the ETF and will
eventually have to create new ETFs, thus pushing the creation fee up. On the other hand,
when there are more sellers than buyers, the APs will end up long the ETF and will have to
redeem some of their position, driving the redemption fee up.

Other factors also affect the final costs to the AP. Any taxes due to the transfer of ownership
will play an important role, as is the case of UK stamp taxes and Brazilian IOF. Exchange
trading costs, cash funding and ETF lending/borrow rates also influence the final costs for the
AP, which influences the Premium-Discount actually observed in the markets.

1.2.1 Hedging and Replication

Hedging an ETF position may involve trading the underlying fund composition as best
as possible and/or performing some sort of proxy-hedging, by trading other assets in some
rational fashion2.

A perfect replication is possible for dealers who are authorized participants and that have
access to both the ETF market and the underlying market, but only during the period of time
both markets are open. This is the case for country ETFs, like EWU3 and EWZ4. Some ETFs
never ever have their underlying markets totally open simultaneously, as is the case of EEM5,
and many dealers also do not have access to all such markets. This phenomenon is studied
in Levy & Lieberman (2013), who concluded: “Our findings suggest a structural difference be-

tween synchronized and non-synchronized trading hours. While during synchronized trading

hours ETF prices are mostly driven by their NAV returns, during non-synchronized trading

hours the S&P 500 index has a dominant effect”. This an effect of the market electing the
most liquid broad-market index future available as the go-to proxy instrument to hedge their

2The dealer may design such portfolio to optimize a combination of aspects like accessibility, carry costs, transac-
tion costs, liquidity, etc.

3iShares MSCI United Kingdom ETF
4iShares MSCI Brazil ETF
5iShares MSCI Emerging Markets ETF
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ETF positions.
Various other reasons can be given to explain the impossibility of perfect replication:

(i) Some ETFs have thousands of underlying constituents, making it unpractical to send
thousands of orders6

(ii) The underlying basket for some ETFs (notably Corporate Bond ETFs like LQD and HYG)
may not be liquid enough, so perfect replication may be extremely hard or impossible, or
way more costly than expected

(iii) The dealer may not be able to short sell the underlying constituents, or may be restricted
from buying too many shares of specific companies

1.3 Liquidity provision on ETFs

1.3.1 Market-neutral Market Making

Let us consider the case of a market maker who is an authorized participant in an ETF
and with market access to the underlying constituents, which we assume trade on the same
currency and timezone as the ETF. In such perfectly replicable ETF, a Market-Neutral Mar-

ket Maker will try to be market-neutral as much as possible, avoiding to the greatest extent
possible to have any risk exposure in either the ETF or the underlying basket by immediately
hedging perfectly its exposure. It will bid the ETF according to the price at which can im-
mediately sell the underlying basket, which is the Basket bid. Accordingly, it will offer the
ETF in accordance with the Basket offer. The liquidity it can post will depend precisely on
the liquidity available on-screen for the underlying basket. Larger quotes will have to have
higher depth in the limit order book. If only such type of agent is posting liquidity on the ETF
limit order book, then the shape of the ETF order book is proportional to the shape of the
aggregated order book for the underlying basket. In this sense, every ETF arbitrageur is also
a market-neutral market maker.

If perfect hedging is not possible, a market-neutral market maker will always immediately
hedge its portfolio as to have exposure to the broad market indices as close to zero as possible.
However, the choice of proxy hedge is subjective, hence the ETF market in most cases is flexible
in which bids and quotes the market makers will most likely to post.

1.3.2 Risky Market Making

An ETF market maker that makes a market in various ETFs and that needs to keep in-
ventory (due to differences in the timezone between the ETF market and the constituents

6Trading on too many instruments simultaneously may overload both the dealer and the exchange systems, causing
the slippage to increase significantly
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markets) will inevitably have to incur in some sort of exposure, and consider if it should re-
lax its necessity to be market-neutral. This way, it will have to consider, after trading with
a client, if it should hedge or not such transaction. If hedging, it will need to consider the
impact of the hedge on its own inventory, as it may help(or not) unwind it, or may help im-
prove (or not) the marked to market (MtM) value of its inventory. If not hedging, the trader
will book the trade and carry the risk on its own inventory, while it looks for flow on the op-
posite side. A relaxation or impracticality of the market-neutral premise represents risk, and
should be considered as part of the decision making process of the MM, affecting the pricing
of its quotes. Constant hedging brings the cost up, leading to less executions in a competitive
market. In this sense, we claim that market makers, and in special ETF dealers, must choose
their risk-aversion adequately in order to operate.

1.4 Practicalities

There are some practical difficulties in making ETF markets beyond the usual issues faced
by market makers in general, from which we mention some:

(i) Proxy hedging is necessary for many ETFs

(ii) Trading systems are not always flexible enough to handle the ETF diversity

(iii) Decisions must be constantly made regarding the creation/redemption in order to opti-
mize carry costs or fulfill delivery

(iv) Creation/Redemption process may be disrupted by various events

(v) Currency hedging is necessary for many International ETFs
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2 The Model

Garman (1976) is considered the inaugural work on market microstructure, where it is
introduced the analysis of stochastic demand and supply of securities to study the equilibrium
price of those same securities.

In market microstructure, a central limit order book model (CLOB) is a mathematical
model for order-driven markets that aims to explain how stochastic offer (via limit orders) and
demand (via market orders) for a financial asset interact to give rise to executions (trades),
at a very “microscopic scale”, thus the term “market microstructure”. Based on assumptions
on the nature of the offer and demand, and the dynamics of this “model” market, results
can be drawn, either analyzing hypothesis or producing optimal behavior for agents. Clearly,
the actual markets do not work exactly like these mathematical models, and any theoretical
results are to be taken and interpreted in this context, giving practitioners some intuition
about cause-effect relationships and ideas on how to approach problems in actual markets.

This section will firstly discuss previous market making models before introducing our
proposed model. Then we will carry a series of modeling arguments specifically related to
ETFs, and finally derive the wealth dynamics that will be used in the next section.

2.1 Early models and related work

2.1.1 Ho & Stoll (1981)

Stoll (1978) introduced the first formal mathematical framework to study the role of dealers
and dealers services, helping shape policy and regulatory discussions regarding the interme-
diary role in financial markets. According to Stoll, dealers are providers of immediacy, and
Stoll (1978) is among the first to study the cost of such services, which is broken up into three
components: (1) inventory costs, (2) information costs and (3) transaction costs. The inventory
costs, as described by Stoll, is related to the costs (risks) that the dealer faces by holding a
sub-optimal portfolio in “order to accomodate the desires of investors to buy or sell a stock in

which the dealer specializes” (Stoll 1978, p.1134, part I) .
Taking such inspiration from Garman (1976) and Stoll (1978), Ho & Stoll (1981, 1980,

1983) focused on the dealer’s inventory problem under various aspects, which Ho & Stoll
(1981) deserves special attention for being the first concerned about finding a pricing strat-
egy for a risk-averse dealer problem that is concerned about the suboptimal portfolio, using
dynamic programming and stochastic optimal control theory. Ho & Stoll use Poisson jump
process to model the evolution of the dealers position, i.e. it indirectly uses jump processes
to model investors demand for assets. Our work makes this explicit, by understanding that
demand for assets, (or immediacy) is represented by arrival of market orders to a limit order
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book, hence we embed the market orders arrivals by adopting jumps directly into the asset
model.

In Ho & Stoll (1981), the dealer cumulative sales and purchases are modeled by two stochas-
tic jump processes, qa and qb, with intensities λa and λb and constant jump size Q, i.e. qa ∈
{0, Q} represents the total number of shares sold and qb ∈ {0, Q} represents the total number
of shares bought, and dqa and dqb are the number of shares per transaction, with transac-
tions expected to have constant intensity throughout the period. A pricing strategy is posed
in terms of calculating what is called the “price of immediacy” a and b, the distance of the
dealer quotes to its own opinion of the stock price p, and λa and λb are decreasing functions
of a and b respectively, so the further the dealer’s quote is away, less likely an execution will
be. With p, a and b in hands, the dealer is expected to quote bids at p − b and offers at p + a

using passive limit orders. Next, Ho & Stoll (1981) models the dealer’s wealthW using 3 com-
ponents, namely (1) the cash process F , (2) the inventory process I and (3) the base wealth Y .
The dealer is then assumed to maximize his expected utility of his wealth at a terminal time
T, upon which it is supposed to liquidate its inventory without any transaction costs. This can
be also understood as a portfolio optimization problem with single consumption at final time.
The solution of the problem is to find a strategy for calculating a and b at each time step until
T .

Two major problems in Ho & Stoll analysis: the price p for the stock is assumed to be con-
stant, and while the author claims that modeling price uncertainty into the inventory process
(capital gains are modeled as dividends) accounts for all uncertainty, O’Hara & Oldfield (1986)
strongly disagrees and arrives at distinct conclusions when the price is assumed to vary itself.
Another major problem is the very unrealistic assumption that the intensities λa and λb are
linear functions of a and b. Both of these problems are tackled in Avellaneda & Stoikov (2008).

2.1.2 Avellaneda & Stoikov (2008)

Avellaneda & Stoikov (2008) is an improvement on Ho & Stoll (1981). Firstly, the authors
assume the stock price process is stochastic diffusion instead of a constant price. Their choice
of an arithmetic brownian motion7 dSt = σdWt is mostly intended to improve the tractability
of the problem under an exponential utility function. They also recognize that a geometric
brownian motion dSt = σStdWt can also be as tractable under a mean-variance analysis, but
they argue that this would not change the essence of their results.

Secondly, the execution intensities λbt = Λ(δb) and λat = Λ(δa) are exponentially decaying
functions of δb = St − Sbt and δa = Sat − St, the distance of the quoted prices to the reference
prices St. The processes (N b

t )t and (Na
t )t which drive the purchase and sales are assumed

7i.e. a Bachelier model
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independent, and the executions are always assumed to be for a single unit instead ofQ shares
as in Ho & Stoll (1981).

2.1.3 Veraart (2010)

A major characteristic of the market making model of Veraart (2010) is that the dealer is
allowed to cross the spread and actively trade against other participants quotes. The dealer
trades are thus either “liquidity adding” (the ones initiated by incoming market orders) or
“liquidity removing” (the market orders initiated by the dealer). In contrast to Ho & Stoll
(1981) and Avellaneda & Stoikov (2008), the quantity of assets bought and sold from the liq-
uidity adding activity are modeled by a diffusion process approximation of a Poisson process,
because the authors argue that at large intensities, a Poisson process is normally distributed
and converges to a Brownian motion. The drift and diffusion coefficients are functions of the
intensity function Λ, closely in the same spirit of Ho & Stoll (1981) and Avellaneda & Stoikov
(2008), but since only a numerical solution is proposed, the discretization of the control space
allows them to use a “lookup table” for Λ. The liquidity removing trades are modeled as im-
pulse controls, and thus the dealer’s inventory problem posed is a combined stochastic and

impulse control problem, for which the authors propose a Markov chain that locally approxi-
mates the wealth dynamics by matching the first two moments, to be calibrated (trained) by
policy iteration.

2.2 Basic Framework

In the mathematical model we propose, the market maker (liquidity provider) is allowed
to interact with the ETF market exclusively by sending limit orders8, and traders (liquidity
takers) are assumed to use only market orders9, 2.4. Additionally, in this work we permit the
dealer to hedge any or all portion of his inventory by sending market orders on the hedging
market, which we describe in the next section, so it can behave as either traditional market
makers or as arbitrageurs.

The main idea of our work is to use a jump-diffusion process to model our basic asset
(in our case, an exchange-traded fund, but the principle can be applied to any asset), where
the same pure jump process dNt drives both the price jumps dJt and our dealer’s limit order
executions dQt. This is more realistic than the Avellaneda & Stoikov (2008) model, because
when a limit order that is not at the best bid offer gets executed, the price actually jumps, since
a market order wipes out the on-screen liquidity until it gets fully filled, and this adversely
affects existing portfolio. Thus the Wiener process models the liquidity provider activity (limit

8Non-marketable limit orders, which do not cross the bid-offer spread
9Or marketable limit-orders, which we assume to have the same practical effect
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orders) while the jump process model the liquidity taker activity (market orders)10.
Let (Ω,F , (Ft)t≥0,P) be the filtered probability space under which W = (Wt)t≥0 =

[WS
t ,W

P
t ]′t≥0 is a 2-dimensional Wiener process under the natural filtration Ft, and N

N = (Nt)t≥0 = [Na
t , N

b
t , N

ap
t , N bp

t ]′t≥0

is a 4-dimensional Poisson process also under the natural filtration Ft. We denote by

(i) {St : dSt = St−(σdWS
t − dJbt + dJat )} the reference price process for the ETF, i.e. at which

the ETF is trading and can be closely approximated as the last trade price available or,
in absence of any trade, the last trade price for the underlying basket adjusted by the
premium-discount (see equation 1).

(ii) {Pt : dPt = St−(θ(p − Pt−/St−)dt + κdWP
t + dJat − dJbt + 1Pt−<<pdJ

ap
t − 1Pt−>>pdJ

bp
t )}

the premium-discount process for the ETF, modeled by a modified Ornstein-Uhlenbeck
process, whose dynamics will be explained in the next section

(iii) {Jat : dJat = rat dN
a
t } and {Jbt : dJbt = rbtdN

b
t } the compounded poisson processes repre-

senting the positive and negative return jumps

(iv) {Japt : dJapt = rapt dN
ap
t } and {Jbpt : dJbpt = rbpt dN

bp
t } the compounded poisson processes

representing the positive and negative return jumps caused by ETF arbitrageurs

(v) {Qbt : dQbt = ηbtdN
b
t = η(rbt , δ

b
t )dN

b
t } and {Qat : dQat = ηat dN

a
t = η(rat , δ

a
t )dNa

t } the com-
pounded poisson processes representing the quantity of ETF shares bought and sold

(vi) η(rt, δt) ∈ [0, Q] the quantity filled for a limit order of size Q as a function of the instanta-
neous jump return rt and the distance δt of our limit order to the reference price St. This
function is non decreasing with respect to rt/δt.

(vii) {qt : qt = Qbt − Qat } our dealer’s inventory process, i.e, the number of ETF shares repre-
senting the dealer current inventory.

(viii) λb and λa the intensities of the poisson processes N b and Na, which we assume are inde-
pendent.

(ix) λbp and λap the intensities of the poisson processes N bp and Nap, which we assume are
independent.

(x) rbt and rat the size of the price return jumps, assumed independent and under the same
distribution family (with possibly distinct parametrization).

10In reality, it is totally fine for the price to move around without any trade.
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(xi) rbpt and rapt the size of the premium jumps caused by ETF arbitrage, assumed independent
and under the same distribution family (with possibly distinct parametrization)

We work on a continuous limit order book, thus we assume the market maker can continu-
ously post two limit orders for one share according to two stochastic processes Sbt = St(1− δbt )

and Sat = St(1 + δbt ), the bids and offers, where δbt and δat are the bid-offer spread our dealer
wants to capture. Then we define the stochastic control u = u(t,Xt) = (δbt (Xt), δ

a
t (Xt)) as

an Ft-predictable markovian process, i.e., it depends on the system history only through the
latest available state Xt of the system. No cost is assumed for sending limit orders, and no
tick-size concerns are made here.

2.3 Premium-Discount

2.3.1 Conversion levels

At conversion levels, market-neutral market makers can substantially increase the liquid-
ity of the ETF at the expense of market impact to the underlying basket market, causing the
premium-discounts to be bounded within the conversion levels. These levels change only as a
result of structural changes to the markets, like changes to transaction taxes (UK stamp tax,
Brazil IOF) and conversion fees, hence we assume the creation and redemption levels remain
static for our problem.

Thus, a buy (sell) order on the ETF will probably cause the premium to increase (decrease),
but only up to the conversion levels. In the unusual event that either creating or redeeming, or
both, not being possible, then this argument does not apply, and in that case what is observed
is that the spread between ETF and the underlying opens up. We do not consider this risk in
our work.

Bounded Levy process The mean-reversion nature of ETF premiums-discounts initially
suggests using a Ornstein-Uhlenbeck process

dPt = St−(θ(p− Pt−/St−)dt+ κdWP
t )

but this alone is not enough for ETF premiums to remain bounded within the conversion
levels. If we denote by Pcheap and Prich the levels (−∞ < Pcheap < Prich < ∞) which trigger
ETF arbitrage, we can then model the premium by adding two additional jump processes,
similarly as done by Hilliard (2014):

dPt = St−(θ(p− Pt−/St−)dt+ κdWP
t + dJat − dJbt + 1Pt<PcheapdJ

ap
t − 1Pt>PrichdJ

bp
t )

where Jap and Jbp are compounded Poisson processes representing the ETF arbitrageurs ac-
tivity. The values Pcheap and Prich varies per ETF and the degree of competitiveness. This
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modeling choice means the ETF returns and premiums are mutually excited processes, which
is clearly the case for co-integrated assets. The intensity λbp(t) of Jbp can be made constant
or an increasing linear function of Pt, and the intensity λa(t) of Jap can also be made con-
stant or an decreasing linear function of Pt. The amplitude can be considered exponentially
distributed with constant parameter, as we assume all arbitrageurs would use a sequence of
similarly sized market orders.

Additionally, the instantaneous correlation %t between the two Wiener processes can be
made constant and calibrated from data.

2.3.2 Jump amplitudes

The previous section was concerned about the influence from St to Pt. Our interest now is
the way back: how the jump amplitudes rat and rbt behave near the conversion levels, i.e., how
the premium affects the liquidity on the ETF. We assume that our dealer’s limit orders pres-
ence (or activity) in the market does not affect or influence the intensity of the market orders
arrival rate, i.e., dN b

t and dNa
t are independent of our dealer’s choice of controls (δbt , δ

a
t )11.

Conditional distribution of jumps When trading at conversion levels, the additional liq-
uidity brought by ETF arbitrageurs will lower the jump amplitudes rat , when near or above
creation level, and rbt , when near or below redemption level. This means the jump amplitudes
distribution is conditional to the current state.

Hanson & Westman (2002) suggests using a log-uniform distribution to model the jump
amplitudes for equities. In that case, they would follow a mixture distribution of log-uniforms
where the weights are determined by Pt and the arbitrage levels Pcheap and Prich, so that when
Pt reaches these levels, the distribution is more weighed on lower returns.

A better and possibly more elegant alternative is assume that rat and rbt both follow expo-
nential distributions. This means that the aggregated jump process dJat −dJbt would follow an
asymmetric Laplace distribution, and the ETF log-returns as we modeled would follow what
is called a Normal-Laplace distribution, as described by Arnold et al. (2006):

rat ∼ Exp(Λa)

rbt ∼ Exp(Λb)

A nice property of this approach, beyond being a better fit to data, is that exponential
distributions are closed under scaling by a positive factor, so if we multiply either rbt or rat by a
positive number, the result will still follow an exponential distribution. This means we can use

11Although a large limit order at a competitive price may cause some liquidity takers to accelerate their execution
rate, but we do not consider this in our work
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a simple linear scaling to explain the conditional distribution and keep the same distribution
family:

rat ∼ ra(Pt)Exp(Λ) = Exp(Λ/ra(Pt)) = Exp(Λ/(1− r1Pt>Phigh))

rbt ∼ rb(Pt)Exp(Λ) = Exp(Λ/rb(Pt)) = Exp(Λ/(1− r1Pt<Plow))

for some positive constants Λ and 0 < r < 1, which can be calibrated by analyzing the distri-
bution of the jump amplitudes of ETF returns conditioned on the regime of Pt with respect to
Pcheap and Prich.

Further improvements An even more sophisticated improvement that can be made and
which we will not pursue in this work is that the dealer’s quoting activity play a cushioning
role to the impact of market orders. To illustrate this, recall that rat is a positive random
variable describing the positive jump in the ETF returns caused by an incoming market buy
order. Obviously if we are quoting an offer, rat will assume smaller values due to the cushioning
effect, so the closer we are quoting to the reference price (smaller δat ) and the bigger our offer
size, the smaller the impact rat will be. Similar reasoning follows for rbt with respect to our bid.
Thus if rat > δat or if rbt > δbt , then our dealer’s quotes presence in the market will cushion the
impact of incoming market orders, as an increasing function of ηat = η(rat , δ

a
t ) and ηbt = η(rbt , δ

b
t ),

i.e., rat and rbt follow a distribution that depends on δat and δbt , respectively.

2.4 Hedging and Replication

Recent research (e.g. Lai & Lim (2003)) have suggested the use of singular perturbation
and impulse control techniques market microstructure, thus pointing towards event-based
and non-smooth policies for algorithmic trading12. In this spirit, it is clear that singular and
impulse control approaches are highly appropriate for finance, with results enjoying greater
applicability. In particular, Bruder & Pham (2009) uses impulse control with execution delay
to understand the importance of latency and timely execution. It has also particular interest-
ing applicability to option pricing, because it can account for discretization aspects (e.g. option
gamma monetization, transaction costs, market impact) while automatically prescribing a (su-
per)hedging strategy. Many other interesting applications of impulse control in finance can
be found in Korn (1999).

Veraart (2010), Guilbaud & Pham (2011) and Guilbaud & Pham (2012) all go in this di-
rection, and encouraged by their work, we propose the use of impulse control for the hedging
activity of our ETF market maker. This approach not only allow us to easily account for in-
tervention costs, but also to model the repercussion of the intervention back into the system,

12The event-based software development paradigm called “reactive programming” is extensively used in algorithmic
trading, and thus thinking about impulse control is very relatable to practitioners.
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e.g. hedging activity may negatively affect the remaining portfolio value (selling part of a long
portfolio will depress the mark-to-market value of the remaining).

Impulse Control Singular and impulse controls both prescribe an intervention (perturba-
tion) to the system at specific moments in time, in contrast to traditional deterministic or
stochastic control, where the control is continuously active in the system. The main distinc-
tion between them is that in singular control, the intervention times are deterministic, while
in impulse control, such intervention times are stopping times. An example of a singular
control problem is a executing a TWAP order (time-weighted average price), where the inter-
vention times are regularly spaced in time during the period of the execution, or the end of day
liquidation of the inventory of a market maker. The delta hedging of an options portfolio is an
impulse control problem, because trading the underlying is only necessary if the underlying
market price moves, so the impulse is conditioned to a “trading rule”, which in mathematical
finance jargon is called a “stopping time”.

In our work, we consider only impulse controls and focus on the perfect replication case,
where the dealer is an authorized participant in the ETF in which it is providing liquidity and
that has access to the underlying market, which we assume trades on the same currency as
of the ETF, hence no foreign exchange risk. Let us denote by

(i) 0 < τ1 < τ2 < · · · < τi < · · · a sequence of stopping times representing the impulse
(hedging) times

(ii) ξ1, ξ2, · · · , ξi, · · · a sequence of non-zero real valued random variables, where each ξi isFτi -
adapted, representing the hedging quantity in ETF shares (positive for buying, negative
for selling)

(iii) vi = (τi, ξi) the i-th impulse control, to be decided and instantaneously executed by the
dealer at τi, when ξi underlying shares will be traded in the underlying market

(iv) v = (v1, v2, · · · , vi, · · · ) is the impulse control policy, i.e. the hedging strategy to be fol-
lowed

(v) ht =
∑
τi<=t ξi the position in the underlying at time t

All hedging is performed by trading the underlying, whose reference price Bt is given by
the simple defining relation of premium

Pt = St −Bt ⇒ Bt = St − Pt (1)

where the premium here is considered in price unit instead of return unit.
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By using the underlying portfolio to hedge, we are indirectly trading the premium, because
being long (resp. short) on St and hedging that by selling (resp. buying) St−Pt means replacing
a risk exposure to St to a risk exposure on Pt. In other words, an ETF arbitrageur is essentially
a market maker of the premium-discount.

Additional constraints are necessary to prevent the dealer’s hedge from increasing an ex-
posure, or from reverting the exposure (ex.: dealer long 100 ETF should not be allowed to sell
more than 100 shares of the underlying):

0 ≥ ξi ≥ −qτi if qτi > 0

0 ≤ ξi ≤ qτi if qτi < 0

0 = ξi if qτi = 0

(2)

Optimal stopping Another question that can be formulated is how to define the optimal
stopping time T. Di Graziano (2014) and Leung & Zhang (2017) study trailing stops in optimal
trading. This is an interesting area of research and further study would have to be done on
the optimal calibration of stopping rules, like the trailing stop, to data.

Proxy hedging The premium-discount is just a market conceptual construct to study the
cointegration between exchange-traded funds and their underlying baskets, and it does not
exist in the real world, therefore does not play any role in proxy-hedging, which is necessary
when perfect replication is not possible or not practical. Typical approaches under imperfect
replication involve the use of:

(a) a market-broad index futures contract like ES futures13

(b) a portfolio of futures contracts reasonably correlated to the ETF

(c) an optimized basket restricted to a reduced subset of ETF constituents

(d) another more liquid and closely related ETF

The interested reader will find a more comprehensive coverage on the usage of futures for
proxy-hedging in (Alexander 2008, c.III.2), as well as in the blog post Proxy / Cross Hedging

(2011)14.
A future work can cover the case of ETF market making under imperfect replication, by

abolishing the existence of a market for the premium Pt and instead considering the existence
of a portfolio of assets with some dependence structure related to St.

13E-mini S&P 500 futures trade on CME and are among the most liquid futures available
14No author information available
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2.5 Wealth dynamics

The wealth process can be described by a function of the cash Yt, price St, premium Pt and
inventories Qt and Ht:

v(y, s, p, q, h) = y + qs+ h(s− p) (3)

thus we only need dynamical description of these processes.

2.5.1 Cash process

We denote by (Y
(u)
t )t≥0 the u-controlled process representing the amount of cash of the ETF

market maker, which has the following dynamics in absence of any impulse control:

dY
(u)
t = Sat dQ

a
t − Sbt dQbt = St[η

a
t (1 + δat )dNa

t − ηbt (1− δbt )dN b
t ]

which is the amount of cash obtained from the market making activity during the instant from
t to t+ dt. When hedging is allowed, the impulses take effect only at τi and thus we have the
w-controlled process (Y

(w)
t )t≥0

Y
(w)
t = Y

(u)
t ∀t 6= τi i = 1, 2, · · ·

Y (w)
τi = Y (u)

τi −Bτiξi − |ξi|Sτiχτi ∀i = 1, 2, · · ·

where w = (u; v) is the combined stochastic and impulse control, and the term Bτiξi−|ξi|Sτiχt
refers to the amount of cash made or lost on the hedging activity. Note that hedging is done
by crossing the spread on the hedging portfolio, so the dealer will sell at the bid and buy
at the offer. We assume the proportional cost χt already includes the bid-offer spread of the
underlying and is given in terms of ETF returns, hence Sτiχτi is the actual dollar cost of
trading one share of the underlying portfolio.

2.5.2 Inventory process

Let us denote by (Q
(u)
t )t≥0 the u-controlled ETF inventory process, representing the quan-

tity of ETF shares in the dealers inventory, whose mark-to-market value is defined as QtSt
and whose dynamics are simply described by

Qt = Qbt −Qat

dQt = ηbtdN
b
t − ηat dNa

t

= η(rbt , δ
b
t )dN

b
t − η(rat , δ

a
t )dNa

t

We also denote by (H
(v)
t )t≥0 the v-controlled underlying inventory process, whose mark-to-

market value is HtBt = Ht(St − Pt), is simply described by netting all hedging activity from
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the impulse control v:

H
(v)
t =

∑
τi≤t

ξi

dH(v)
τi = ξi
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3 Optimal Control of Jump-Diffusions

Control theory has seen a large number of successful applications in many areas of en-
gineering and finance. Controllable dynamical systems are those which humans can apply
control, like a force or energy, to exert influence on the trajectory, performance or costs of the
said system. Driving a car is an example of a controllable dynamic system - the driver is able
to control its trajectory and even optimize its efficiency by the proper use of the available con-
trols like the wheel, gears and brakes. Financial systems can also be considered controllable
systems - the act of sending limit or market orders is the investor’s control, whose objective
is to maximize his wealth or minimize his risk, given specific criteria regarding the wealth’s
trajectory. All the works so far mentioned in the field of optimal execution and market making
are classical applications of stochastic control theory, a branch of control theory dedicated to
the study and control of stochastic processes. Some of the first works on stochastic control of
financial systems are Samuelson (1969), Merton (1969, 1971), which extend Markowitz (1952)
modern portfolio theory to a multi-period setting.

The market maker’s problem is essentially a control problem, where the dealer must make
decisions at each time t regarding the price and quantity of its bid and offer quotes. Regarding
passage of time, in this work t = 0 is considered the start of the first day, t = 1− is the end
of the first day, t = 1 is the start of the second day, and so on. In practice, we would fix our
final time T = 1, and solve the market maker problem from market open from one day to
the next. From 0 until T our parameters remain constants, similarly to Ho & Stoll (1981),
Avellaneda & Stoikov (2008) and Mudchanatongsuk et al. (2008). Thus at the beginning of
every day, we must estimate the model parameters and solve our optimal control problem
to find the optimal trading strategy, which would be considered optimal15 for that day only.
Alternatively, we could consider the problem on a higher frequency16, and recalibrate every
hour, for example.

We also consider that the dealer is allowed to trade only under strict risk constraints, so if
any of the risk limits (constraints) is met, then all trading must stop. Mathematically, this is
represented by a stopping time τS = inf{t : Xt /∈ S}where S is the set of all states that respect
the risk limits. We also define X as the whole state space, thus S ⊂ X and X \ S is the set of
all restricted states.

3.1 Dynamic Programming

The term Dynamic Programming was coined by Bellman (1957) to refer to the mathemati-
cal optimization “theory of multi-stage decision processes”

15Such strategy is optimal conditioned on the assumptions and the quality of the parameter estimations.
16Ideally we should pick a time window for which our estimation procedure is reliable enough.
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(Bellman 1957, p.viii). This theory aims to solve problems that display what is called an
“optimality substructure”, i.e., those that can be broken up in two smaller subproblems whose
optimal solutions can be composed to form an optimal solution to the bigger problem. Such
class of problems are thereby referred to as Dynamic Programs. For Bellman, a policy is a se-
quential decision making rule, i.e., a function that prescribes an action to take given the state
of the problem at a specific moment in time. An optimal policy is then the best course of action
for a decision maker to achieve the desired objectives. If a problem displays the “optimality
substructure”, then the optimal policy is said to follow the “Principle of Optimality”, which is
stated below:

Principle of Optimality An optimal policy has the property that whatever the initial state

and initial decision are, the remaining decisions must constitute an optimal policy with regard

to the state resulting from the first decision (Bellman 1957, chapter 3, page 83).

Consider the following discrete-time dynamic system

xt+1 = ft(xt, ut, wt)

where xt is a controllable process, ut is a control (or policy), wt is some random disturbance
and ft is some state transition function. The value function V (u)(xt, t) is defined as the value
of the state xt according to the policy u = u(xt, t), i.e., the total performance (or reward) of
following such policy starting at the state xt from the current time t until some future time T .

V (u)(xt, t) = Et

 ∑
i=t,··· ,T−1

ri(xi, ui, wi) + rT (xT , wT )


where the functions ri are called performance or reward functions. The controller, or agent,
wants to find an optimal policy u∗ = {u∗t ; t = 0, 1, · · · , T}, i.e., one that maximizes the value
function V :

V (u∗)(xt, t) = max
u

V (u)(xt, t)

The function V ∗ = V (u∗) is said to be the optimal value function of the dynamic program.
The principle of optimality can be expressed in recursive form by what is called the Bellman
equation:

V (u∗)(xt, t) = max
ut

Et
[
rt(xt, ut, wt) + V (u∗)(xt+1, t+ 1)

]
(4)

The optimal control ut for this last problem, followed by the optimal policy for the rest of
the problem (from t + 1 to T ) is essentially the optimal policy for the whole problem. Con-
secutive applications of this recursive principle means we can break up the problem into tail
subproblems whose optimal solutions are all part of the original problem. The same principle
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is also applicable to infinite horizon problems, when T is infinity, assuming that the future
total reward series

∑
i=t,··· ,T ri(xi, ui, wi) converges when T →∞.

3.1.1 Hamilton-Jacobi-Bellman equations

The Hamilton-Jacobi-Bellman PDE equations are essentially a continuous-time version of
the Bellman equation (4). Here we provide an intuitive and informal derivation of the HJB
PDE equations similar to one presented in (Prigent 2007, section 6.1.3).

Finite-horizon case Let’s first consider the following continuous-time version of the finite-
horizon dynamic program:

V u
∗
(x, t) = max

u∈U
E

[∫ T

t

dR(Xs, us, s) + rf (XT , T )|Xt = x

]
(P1)

where dR is the instantaneous reward (or running performance) function, rf is the final re-
ward function and X is a jump-diffusion process controlled by the stochastic control u. No
impulse control is considered at this moment.

If we apply the stochastic Bellman’s principle of optimality to P1, we obtain the following
expression:

V u
∗
(xt, t) = max

u∈U(t,t+ε]
Et
[∫ t+ε

t

dR(Xs, us, s) + V u
∗
(Xt+ε, t+ ε)|Xt = xt

]
for any ε ∈ (0, T − t]. The integral term can be rewritten as Rt+ε −Rt as follows

V u
∗
(xt, t) = max

u∈U(t,t+ε]
Et
[
Rt+ε −Rt + V u

∗
(Xt+ε, t+ ε)|Xt = xt

]
Then, by moving the left term V u

∗
(xt, t) inside the expectation and dividing by ε:

0 = max
u∈U(t,t+ε]

Et
[

1

ε
(Rt+ε −Rt + V (Xt+ε, t+ ε)− V (xt, t)) |Xt = xt

]
(5)

Taking the limit of the above when ε→ 0+:

lim
ε↓0

Et
[

1

ε
(R(Xt+ε, t+ ε)−R(Xt, t)) |Xt = xt

]
= AR(xt, t)

lim
ε↓0

Et
[

1

ε
(V (Xt+ε, t+ ε)− V (xt, t)) |Xt = xt

]
= AV (xt, t)

where A is the infinitesimal generator of the process X, also known as the Dynkin operator.
Applying those results back into equation (5) while taking the same limit ε→ 0+ yields:

0 = max
ut

[AV (xt, t) +AR(xt, t)] (6)

which is the HJB equation, and must be satisfied for all combinations of t and xt, subject to
the final boundary condition V (x, T ) = rf (x, T ). Observe here that R is given, so we must
solve such equation for V .
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Infinite-horizon case Let now consider the discounted infinite-horizon version of the same
problem:

V u
∗
(x, t) = max

u∈U
E
[∫ ∞

t

e−ρ(s−t)dR(Xs, us, s)|Xt = x

]
(P2)

where we are only given the reward process R and a constant discount rate ρ. We can again
apply the principle of optimality and have the following Bellman equation:

V u
∗
(x, t) = max

u∈U
E
[∫ t+ε

t

e−ρ(s−t)dR(Xs, us, s) + e−ρεV u
∗
(Xt+ε, t+ ε)|Xt = x

]
(7)

By applying Ito formula on the function f(R, t) = e−ρtR (which ends up being an application
of integration by parts since e−ρ(s−t) is a deterministic function), we can establish∫ t+ε

t

e−ρ(s−t)dR(Xs, us, s) = e−ρεRt+ε −Rt +

∫ t+ε

t

ρe−ρ(s−t)Rsds

Substituting that back into the Bellman equation (7) and subtracting V u∗ from both sides, we
have

0 = max
u∈U

E
[ ∫ t+ε

t

ρe−ρ(s−t)Rsds+ e−ρεRt+ε −Rt

+ e−ρεV u
∗
(Xt+ε, t+ ε)− V u

∗
(x, t)|Xt = x

] (8)

Multiplying that by eρε/ε and taking the limit as ε→ 0+, we obtain

lim
ε↓0

Et
[

1

ε

(∫ t+ε

t

ρe−ρ(s−t)Rsds

)
|Xt = xt

]
= ρR

lim
ε↓0

Et
[

1

ε
(R(Xt+ε, t+ ε)−R(Xt, t) + (1− eρε)R(Xt, t)) |Xt = xt

]
= AR− ρR

lim
ε↓0

Et
[

1

ε
(V (Xt+ε, t+ ε)− V (xt, t) + (1− eρε)V (Xt, t)) |Xt = xt

]
= AV − ρV

Putting everything together back into (8), we finally get

0 = max
ut

[AR(xt, t) +AV (xt, t)− ρV (Xt, t)]

which is the HJB equation for the infinite horizon case and must hold for all t and xt, but now
without any boundary condition. For a more complete and formal statement and proof of the
HJB equations for Optimal Control of Jump-Diffusions, we refer to (Øksendal & Sulem 2007,
p.46-47 thm 3.1)

3.1.2 Hamilton-Jacobi-Bellman quasi-variational inequalities

Impulse control problems can also be approached by dynamic programming, but this does
not lead to an HJB equation anymore - instead we obtain what are called HJB quasi-variational
inequalities. Quasi-Variational Inequality Problems (QVI) are a generic class of problems for
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which, given a function F : Rn → Rn and a point to set mapping K : Rn → Rn with closed
convex images, the objective is to find for a point x∗ ∈ K(x∗) such that

F (x∗) · (x− x∗) ≥ 0 ∀x ∈ K(x∗) (9)

Traditional convex optimization problems can be written as variational inequality prob-
lems (special case of QVI where the mapping K is constant). For example, if the objective is
to minimize a given convex objective function F ∈ C2(Rn) over a convex set K ⊂ Rn, then the
problem is find x∗ for the first-order condition (here expressed as a variational inequality):

∇F (x∗) · (x− x∗) ≥ 0 ∀x ∈ K

Quasi-Variational Inequalities can also be defined on function spaces embedded with norm
and inner products (a Hilbert space). In this case, F would be a functional (function of func-
tions) and K would be a closed convex set of functionals, and the objective would be to find a
function x∗ that solves (9). This is precisely the case for the HJB quasi-variational inequalities,
introduced by Bensoussan & Lions, where the objective is to find the optimal value function V
and its related optimal control function for the given HJBQVI. In the case of impulse control,
since the problem is dynamic, we must solve one HJBQVI for each time t. A complete coverage
of impulse control and related HJBQVI are Bensoussan & Lions (1984), Øksendal & Sulem
(2007). On the general topic of QVI, we refer to Antipin et al. (2018), Facchinei et al. (2014).

Like in section 3.1.1, the principle of optimality allow us to restrict on looking for optimal
control for the period (t, t+ ε] of the combined stochastic and impulse control problem, which
entails finding a combination of optimal stochastic control u and optimal impulse control v.

At each instant t ∈ (t, t+ ε] we have the choice of applying or not the impulse impulse (t, ξ),
and so we must make the optimal choice by checking if intervening will lead us to a better
value-to-go V (w)(Xt+ε, t + ε) or not. The intervention operator M on V is defined such that
MV (x, t) is the best resulting value possible of V by applying a non-zero impulse ξ at time t

to the system X. The valueMV (x, t)− V (x, t) then must be compared to what would happen
if we just applied the optimal control u∗. IfMV −V > AR+AV − ρV for the optimal u∗, then
applying impulse is optimal, otherwise, we are better off by not intervening until the next
instant time t + dt, falling back to the no impulse case where the HJB equation must hold.
Thus, when ε ↓ 0, the last section equations become:

0 = max
wt∈W

[
sup
u∈U
{AR+AV − ρV },MV − V

]
(10)

which are known as the Hamilton-Jacobi-Bellman Quasi-Variational Inequalities, and must
be satisfied for all x and t. In the finite-horizon case, ρ = 0 and the boundary condition
V (·, T ) = J(·, T ) must be satisfied. The intervention operatorM is defined as

MV (x) = sup{V (Γ(x, ξ)) +K(x, ξ); ξ ∈ Ξ and Γ(x, ξ) ∈ S} (11)
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where Γ : X × Ξ → X is a function that maps a state x and a corresponding impulse ξ to a
new state resultant from the application of such impulse, and K is the utility benefit function
(reward) of applying the impulse ξ while on state x.

3.2 Problem formulation

We now formulate the ETF Market maker problem as a combined stochastic and impulse
control problem. We start defining the controlled jump-diffusion state process Xt ∈ X = R5

Xt = X
(w)
t =

[
Y

(w)
t St Pt Qt Ht

]′
which depends on the combined stochastic and impulse control process w = (u; v) = wt(ω) :

[0,∞)× Ω→W:

wt = (
[
δbt δat

]′
; (τi, ξi)i=1,2,···)

whereW = U ×V is the set of admissible combined controls, and transaction costs are consid-
ered constant χt = χ. The state dynamics can be described by

dXt = dX
(u)
t =

[
dY

(u)
t dSt dPt dQt dHt

]′
which can also be expressed in the following way

dXt = µ(Xt, wt, t)dt+ σ(Xt, wt, t)dWt + γ(Xt, wt, t)dNt

where

(i) dWt describes the uncorrelated 2-dimensional Wiener process (Wt)t≥0

(ii) dNt describes the 4-dimensional Poisson process (Nt)t≥0

(iii) µ(Xt, wt, t) : R5 ×W × R+ → R5 is the drift function

0

0

θ(pSt− − Pt−)

0

0


(12)

(iv) σ(Xt, wt, t) : R5 ×W × R+ → R5×2 is the diffusion function

0 0

St−σ
√

1− %2 St−σ%

0 St−κ

0 0

0 0


(13)
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(v) γ(Xt, wt, t) : R5 ×W × R+ → R5×4 is the jump amplitude function

St−η
a
t (1 + δat ) −St−ηbt (1− δbt ) 0 0

St−r
a
t −St−rbt 0 0

St−r
a
t −St−rbt 1

cheapSt−r
ap
t −1richSt−rbpt

−ηat ηbt 0 0

0 0 0 0


(14)

We will denote by µi the i-th component of µ, and likewise for σ and γ, therefore µ1 would
be the drift function in the dYt expression we obtained earlier, µ2 would be the drift function
in the dSt expression, and so on.

If an impulse is made, then the state is impacted by the following function Γ

Γ(Xt, ξ) = Xt +



−(St − Pt)ξ − |ξ|Stχt
0

0

0

ξ


(15)

which implies that the hedging does not affect neither the ETF price or the premium.
While many formulations to the problem are possible, here we illustrate two classes of

control problems: finite horizon, where the objective is to optimize the total reward (or cost)
over a finite time interval, and infinite horizon ones, where the objective is to optimize the
total future reward (or cost).

Finite horizon problem In the finite horizon formulation, our ETF dealer’s objective is to
maximize the conditional expectation of a risk-averse utility functional U [X,w, T ](xt, t), risk
constrained to the state space S, evaluated at the final time T :

V (w∗)(xt, t) = max
w∈W(t,T ]

Et [U [X,w, T ](xt, t)|Xt = xt] (PF)

xt =
[
y s p q h

]′
where Yt = y is the initial wealth, St = s is the initial ETF price, Pt = p is the initial premium-
discount, qt = q is our initial position in the ETF,Ht = h is the initial position in the underlying
and t is the initial time. The function V w

∗ , the optimal value function, is the solution to the
dynamic programming problem stated above, from time t until T. The optimal control w∗ is

w∗ = argmax
w∈W(t,T ]

Et [U [X,w, T ](xt, t)]

i.e., V (w∗)(x, t) = Et U [X,w∗, T ](x, t) for all x ∈ S and t ∈ [0, T ].
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Infinite Horizon problem One can argue that an ETF market maker desires be making
ETF markets forever (or at least without a set deadline). Hence, it makes sense to formu-
late the infinite horizon dealer’s problem, where the objective is to maximize the conditional
expectation of the present value of all future rewards:

V (w∗)(xt, t) = max
w∈W(t,T ]

Et
[∫ ∞

t

e−ρ(s−t)dR(Xs, ws, s)|Xt = xt

]
(PI)

xt =
[
y s p q h

]′
where dR stands for the dynamics of the reward process (Rt)t≥0 is defined byRt = R(Xt, wt, t) =

v(Xt)− ψ(Xt), the wealth17 value v(Xt) penalized by the risk ψ(Xt) incurred on the state Xt.
If seen this way, the reward function R coincides with the utility function U .

3.2.1 HJBQVI equations

We now proceed to derive the exact expression for the HJBQVI equations for both formu-
lations of the ETF dealer’s problem, as they both share the same mathematical ‘ingredients’.
First we state the infinitesimal generator formula, considering constant intensities for the
Poisson processes.

Proposition 1. The infinitesimal generator AV for the optimal value function V (u∗) where

u∗ = u∗(x) is a markov control is given by

AV (x) =

5∑
i=1

µi(x, u(x))
∂V

∂xi
(x) +

1

2

5∑
i,j=1

(σσ′)ij(x, u(x))
∂2V

∂xi∂xj
(x)

+
∑

j∈{a,b,ap,bp}

{
E
(
V (x+ γ(j)(x, u(x)))− V (x)

)}
λj

where γ(j) is the column of γ relative to the Poisson process N j (i.e. for j = a (alt. b, ap, bp) the

jump-amplitude function relative to dNa
t (alt. dN b

t , dN
ap
t , dN bp

t )

Proof. Application of theorem 1.22 page 11 from Øksendal & Sulem (2007)

Based on equation (13), we calculate σσ′:

(σσ′)(Xt, ut, t) =



0 0 0 0 0

0 S2
t−σ

2 S2
t−%σκ 0 0

0 S2
t−%σκ S2

t−κ
2 0 0

0 0 0 0 0

0 0 0 0 0


17Recall wealth function definition (3)
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and applying the proposition 1 (with equations (12), and (14)) we have the expression for
AV (x) = AV (y, s, p, q)

AV (y, s, p, q, h, t) = Vt + θ(ps− p)Vp +
1

2

{
s2σ2Vss + s2κ2Vpp + 2s2%σκVsp

}
+ λa E[∆aV ] + λb E[∆bV ] + λap E[∆apV ] + λbp E[∆bpV ]

(16)

where p is the fair value for the premium, σ now is the constant volatility parameter and ∆jV

stands for the change in V cause by a jump dN j :

∆aV = V (y + sηat (1 + δat ), s+ srat , p+ srat , q − ηat , h)− V (y, s, p, q, h)

∆bV = V (y − sηbt (1− δbt ), s− srbt , p− srbt , q + ηbt , h)− V (y, s, p, q, h)

∆apV = V (y, s, p+ 1
cheapsrapt , q, h)− V (y, s, p, q, h)

∆bpV = V (y, s, p− 1richsrbpt , q, h)− V (y, s, p, q, h)

where 1
cheap = 1Pt<Pcheap and 1

rich = 1Pt>Prich are measurable functions of the state Xt,
and ηbt = η(rbt , δ

b
t ) and ηat = η(rat , δ

a
t ) are “controlled” random variables (functions of a random

variable and the control u).
Now we use equation (6) to find the final expression for the HJB equations of the problem

(PF):

0 ≥ Vt + θ(ps− p)Vp +
1

2

{
s2σ2Vss + s2κ2Vpp + 2s2%σκVsp

}
+ λa max

u∈U
E[∆aV ] + λb max

u∈U
E[∆bV ] + λap E[∆apV ] + λbp E[∆bpV ]

with the boundary condition V (XT , uT , T ) = U [X,u, T ](XT , T ), equality holding if no impulse
is allowed. The expression forMV based on equation (11) and Γ in (15) is:

MV (x) = sup{V (Γ(x, ξ)); ξ ∈ Ξ and Γ(x, ξ) ∈ S}

where we are restricted to impulses that bring the new state to the valid states set S.

HJB quasi-variational inequalities for (PF) By applying (10) we get the final expression
for the quasi-variational inequalities for the finite horizon problem

0 = max
wtW

[
Vt + θ(ps− p)Vp +

1

2

{
s2σ2Vss + s2κ2Vpp + 2s2%σκVsp

}
+ λa max

u∈U
E[∆aV ] + λb max

u∈U
E[∆bV ]

+ λap E[∆apV ] + λbp E[∆bpV ],

max
ξ∈Ξ;Γ(x,ξ)∈S

(V (Γ(x, ξ))− V )

]
where Ξ must satisfy conditions (2) and V (·, T ) = U(·, T ).
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HJB quasi-variational inequalities for (PI) The HJB equation for the infinite horizon
problem can be derived by assuming that the reward process R coincides with the process
generated by the utility function U evaluated at each instant in time, i.e.,∫ T

t

dR(Xs, ws, s) = U [X,w, T ](xt, t)− U [X,w, t](xt, t)

Thus, the HJBQVI for the infinite horizon problem can be expressed as

0 = max
wt∈W

[
sup
ut∈U

[AU +AV − ρV ], max
ξ∈Ξ;Γ(x,ξ)∈S

(V (Γ(x, ξ))− V )

]
where AV is defined in (16), and AU similarly defined but for a given utility function U .

3.3 Problem Extensions

Intraday liquidity patterns It is typical for equity markets, as demonstrated in Brooks
et al. (2003) for NYSE stocks and Ivanov (2017) for 18 ETFs, to exhibit a J-shaped pattern
for the spread and the volume. In addition, Iwatsubo et al. (2017) also investigates intraday
liquidity for commodities markets, identifying relevant influences from exchanges that trade
in different timezones. International and Global ETFs also display this same characteristic,
suggesting that we should pay special attention to this aspect.

Hence, in the case we want study the problem where the spread χt of the underlying is not
constant, the problem can be trivially extended by adding χt to the state Xt ∈ X = R6:

Xt = X
(w)
t =

[
Y

(w)
t St Pt Qt Ht χt

]′
xt =

[
y s p q h χt

]′
The transaction cost χt can be considered a stochastic process itself (which can be estimated

by online filtering) or be considered a deterministic function of time (possibly in C1,2, piecewise
continuous or even a table lookup). By solving the optimal control under different scenarios
for χt, it is then possible to understand how different intraday patterns for liquidity affects
our dealer.

Cost of carry and Funding The infinite horizon problem can be further enhanced to ac-
count for the cost of carry by considering checkpoints at t = 1, 2, · · · when the trader must pay
or receive the discounted carry for the next (or previous) day. The optimization would be let to
run until τS , so as long as the dealer does not breach any risk limit, it will be allowed to trade.
Either a stochastic or a deterministic model for the carry cost and funding could be used.

Additionally, the dealer could be allowed to use singular controls at each of those check-
points t = 1, 2, 3, · · · to reduce its exposure to both the ETF and the underlying in order to
avoid carry a position that is hard to finance.
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If a futures contract is available on the same index of the ETF or a very similar one, an im-
pulse control for hedging using futures could improve the carry while simultaneously hedging
the dealers position.

Choice of utility In economics, the utility function U(.) models the investor preferences
towards the reward-risk tradeoff. A risk-neutral dealer will only care a about maximizing the
expected value, so in that case U [X,u, T ](x, t) = v(x), indifferent to any risk resultant from any
remaining portfolio at time T, thus not displaying any of the usual asymmetrical risk-aversion
to losses. On the extreme spectrum, an infinitely (or extremely) risk averse dealer will behave
like a market-neutral market maker, and will try its best to immediately realize any arbitrage
opportunity without incurring in inventory risk.

The literature is diverse regarding the possible choices available for the utility functional
U :

(a) Mean variance utility (as in Ho & Stoll (1981))

U [X,w, T ](x, t) = v(Y
(w)
T , St, Pt, Qt, Ht)−

λ

2
V ar(v(Y

(w)
T , St, Pt, Qt, Ht))

(b) Running quadratic utility (Veraart (2010))

U [X,w,∞](x, t) =

∫ ∞
0

e− b s(v(Xs)−
λ

2

∑
j∈{1,4,5}

σ2
j (Xs, w, s))ds

(c) Exponential utility (as in Avellaneda & Stoikov (2008) )

U [X,w, T ](x, t) = −exp(−γv(X
(w)
T ))

(d) Power utility18 (as in Mudchanatongsuk et al. (2008) )

U [X,w, T ](x, t) =
1

γ
(v(X

(w)
T ))γ

In sight of recent changes to the Fundamental Review of the Trading Book (FRTB) and
its mandatory use of the Conditional Value-At-Risk (CVaR) for risk management of trading
desks, we could imagine a Coherent Risk measure utility

U [X,w, T ](x, t) = v(X
(w)
T )− λEST−t,α(v(X

(w)
T ))

where EST−t,α is the Expected Shortfall, or Conditional Value-at-Risk, over a period of the
time horizon from t to T at α% level, i.e. the average loss in the worst α% of the cases from t
to T. In this direction, Miller & Yang (2015) investigates Optimal Control under coherent risk
measures on portfolio optimization under CVaR constraints, providing an interesting alter-
native to the previously cited utility functions, which is more sensible for real-world trading
applications, as also hinted by Bertsimas et al. (2004) and Gundel & Weber (2008).

18This function can only be applied to positive wealth processes
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4 Algorithmic solutions

4.1 Backward induction

A traditional way to solve HJB PDEs is by backward induction, whereby we discretize the
time and state spaces and solve the HJB PDEs numerically going backwards in time from T to
current t. Infinite horizon problems can also be approached this way if we take a large enough
T . The finite differences numerical scheme we suggest here is largely based on Guilbaud &
Pham (2012) and Azimzadeh (2017). First let us assume a uniform discretization of the time
interval [0, T ] into intervals of ∆t = T/N :

TN = {ti = i∆t; i = 0, 1, · · · , N}

In the hedging problem, each component of the state space X = R5 must be discretized:

(i) S = {si = s+ i∆s; i = −NS , · · · ,−1, 0, 1, · · · , NS} where ∆s is the ETF tick size, and the
bounds smin and smax cover at least 3 sigmas in price change for the given time horizon
[0, T ].

(ii) P = {pi = p + i∆s; i = −NP , · · · ,−1, 0, 1, · · · , NP } where the bounds pmin = p−NP and
pmax = p+NP for the ETF premium-discount cover the conversion levels

(iii) Q = {qi = q+ i∆q; i = −NQ, · · · ,−1, 0, 1, · · · , NQ} where ∆q = 1 is the minimum tradable
lot size, and qmin = q−NQ and qmax = q+NQ are risk-limit bounds approved by the dealer’s
risk department

(iv) H = {hi = h+ i∆q; i = −NH , · · · ,−1, 0, 1, · · · , NH} with bounds hmin = h−NH and hmax =

hNH large enough as to be able to fully hedge the ETF position

(v) Y = {yi = y + i(∆s∆q); i = −NY , · · · ,−1, 0, 1, · · · , NY } is the discretization of the cash
amount

(vi) R = {ri = i∆r; i = −NR, · · · ,−1, 0, 1, · · · , NR} is a sensible discretization of the random
variables rat , rbt , rapt and rbpt , so ∆r must be about the return generated by a move in 1
tick in the price

(vii) U = {δni = i∆s; i = −NU , · · · ,−1, 0, 1, · · · , NU} is the discretization of the stochastic
control space

(viii) Ξ = {ξi = i∆q; i = 0, 1, · · · , NΞ} is the discretization of the impulse space representing
the hedging quantity, which must respect any imposed maximum order size for a market
order

(ix) X = Y× S× P× Q× H is the whole discretized state space
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(x) I is the index space for all elements in X, i.e., it is composed of all combinations of indexes
(iy, is, ip, iq, ih) such that xi = (yiy , sis , pip , qiq , hih)

Define V ni = V (xi, tn) the discrete value for the optimal value function, and by V n =

{V ni ; i ∈ I} the discrete values for the value function at time tn. The partial derivatives Vt, Vp,
Vss and Vpp are approximated using forward and central differences methods:

∂V

∂t
(xi, tj) ≈

V (xi, tj+1)− V (xi, tj)

∆t
=
V j+1
i − V ji

∆t
∂V

∂p
(xi, tj) ≈

V (xi+1p , tj)− V (xi, tj)

∆p

∂2V

∂s2
(xi, tj) ≈

V (xi+1s , tj)− 2V (xi, tj) + V (xi−1s , tj)

∆s2

∂2V

∂p2
(xi, tj) ≈

V (xi+1p , tj)− 2V (xi, tj) + V (xi−1p , tj)

∆s2

where i ∈ I and 1s = (0, 1, 0, 0, 0) and 1p = (0, 0, 1, 0, 0) are the unit vectors in I corresponding
to the S and P directions. We thus define operators Dt,Dp,Dss and Dpp

DtV n =

{
V n+1
i − V ni

∆t
; i ∈ I

}
DpV n =

{
V ni+1p

− V ni
∆p

; i ∈ I

}
DssV n =

{
V ni+1s

− 2V ni + V ni−1s
∆s2

; i ∈ I

}
DppV n =

{
V ni+1p

− 2V ni + V ni−1p
∆s2

; i ∈ I

}
Since we discretized the jump amplitude space as a finite set R, the expected values in∇kV

for k ∈ {a, b, ap, bp} can be calculated by weighted average of V :

∇aV (xi, ui, tn) = ∇aV ni (δa,ni ) =
∑
r∈R

P(ra = r;xi)V
n
i+a,r,δa,ni

− V ni

∇bV (xi, ui, tn) = ∇bV ni (δb,ni ) =
∑
r∈R

P(rb = r;xi)V
n
i+b,r,δb,ni

− V ni

∇aV (xi, ui, tn) = ∇aV ni =
∑
r∈R

P(rap = r;xi)V
n
i+ap,r − V ni

∇bV (xi, ui, tn) = ∇bV ni =
∑
r∈R

P(rbp = r;xi)V
n
i+bp,r − V ni

where V ni+k,r,δ is a multivariate interpolation approximation to V in the case the compounded
process Nk jumps by r given the stochastic control δ. Jumps on the state variable will not
necessarily make the index i land on the index space I, so we need to resort to an approxima-
tion. The probability function is conditional on the state xi (because of principle 2.3.2) but it
is deterministic and can be calculated easily.

The above are ingredients to approximate the HJB term of the HJBQVI by means of the
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HJB equation operator L

LV n = {LV ni = V ni +DtV ni +
1

2
s2σ2DssV ni +

1

2
s2κ2DppV ni

+ λa max
δa,ni

∇aV ni + λb max
δb,ni

∇bV ni

+ λap∇apV ni + λbp∇bpV ni ; i ∈ I}

while the intervention operatorM can be approximated as

MV n = {MV ni = max
ξ∈Ξn

V nΓ(i,ξ); i ∈ I}

where V nΓ(i,ξ) is a multivariate interpolation approximation to V if an impulse ξ is applied
when in state xi, since it is not guaranteed that Γ(i, ξ) will land on the index space (h will, but
y may not).

An important remark to be made is is that we assume no extrapolation on all these opera-
tors, so if index is out of bounds, we use the nearest neighbor, e.g. V(iy,is,ip,iq,ih) = V(̂iy ,̂is ,̂ip ,̂iq ,̂ih)

where îk = −Nk ∨ (ik ∧Nk) and so on. Lastly, we can define the operator K as

KV n = {max(LV ni ,MV ni ); i ∈ I}

and the backward induction algorithm is simply an application of the K operator backwards,
which is the proposed algorithm by Guilbaud & Pham (2012).

Algorithm 1 Backward induction
1: for all i ∈ I do
2: V Ni ← U(xi, tN ) . Initialization using the final condition

3: for t = N − 1, N − 2, · · · , 0 do
4: V t ← KV t+1

As we can see, the index space has #I = (2NY + 1)(2NS + 1)(2NP + 1)(2NQ + 1)(2NH + 1)

elements, while the time space have N elements. For each item in the time and state space
grid, we must search through the control space U and through the impulse space Ξ. This
makes the number of operations at least 26O(NNYNSNPNQNH(NU + NΞ)). If any of the
model parameters needs to be updated, a new recalculation is necessary. As we can see, the
time complexity of this algorithm escalates quickly the larger T is. For example, if our time
range is 5 minutes, and ∆s = ∆p = 0.01, ∆q = ∆h = 1, ∆t = 0.0001 (1 basis point), we
estimate that #S = #P = 50, and if the dealer can hold up to 100 shares, then #Q = #H = 201.
If N = 300 (so ∆t is 1 second), we end up with more than 30 billion possible states. As T
increase, the number of possibilities for the final price S also increases, evidencing the curse
of dimensionality of the problem.
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4.2 Reinforcement Learning

The concepts and methods of Dynamic Programming (DP) and Reinforcement Learning

(RL) have striking similarities, but according to Buşoniu et al. (2010), the main difference lies
in the reliance on models: DP precludes a model for the state dynamics, hence it is considered
a model-based approach, while RL does not require any kind of model, thus it is considered
a model-free / data-based approach. Although this is a very important distinction, in the
rest of this work, we will consider Approximate Dynamic Programming (ADP) as model-based
RL, employing the term Reinforcement Learning in the broader sense when referring to both
model-free and model-based approaches.

The objective of using Approximate Dynamic Programming to our problem is to obtain
a near-optimal approximative solution to a dynamic program instead of analytically or nu-
merically solving the HJBQVI system. This approach was specifically conceived to handle the
curse of dimensionality, and it has been successful in obtaining solutions that are very close to
optimality. In general, when discussing model-based and model-free Reinforcement Learning
methods, we will be exclusively interested in those that are able to handle large state spaces.

Powell (2009) and Powell (2014) are good introductory articles on ADP. In the later, the
author compares different approximative methods by applying them to a problem with known
analytical solution and benchmarking those suboptimal approximations against the known
optimal solution.

Reinforcement learning problems distinguish themselves from the traditional Supervised

learning (SL) problems in that it is not always clear what label should be assign to the train-
ing data. In supervised learning, problems are be solved by training a prediction model with
labeled data, so that the model can extrapolate and predict a label for a new data point. The
dynamical structure of problems like weather prediction and algorithmic trading prevent us
from easily identifying labels: we would have to wait until the label is known is order to train
our model. In reinforcement learning, instead of labeling data, we provide a reward mecha-
nism that facilitates the learning process, and the model is trained not with examples, but by
incentives. Hence, RL methods are particularly suited to dynamic optimization problems like
high-frequency trading, with the added bonus that they improve with experience, contrary to
supervised learning methods.

The proposed use of Markov chain in Veraart (2010) is an application of model-based RL
to the market maker problem. A more recent study (Spooner et al. 2018) focuses on analyz-
ing a model-free RL method called Temporal Differences (TD) to market making, presenting
interesting results. The problem of model-based approaches for trading is that they are only
as good as the model, failing in the real world when the model assumptions are not verified,
while the success of model-free approaches relies on the fact that they are data-based: data is
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a better proxy to reality. However, as we will discuss later, we consider model-based techniques
relevant as training bootstrap.

4.2.1 Preliminaries

Before we proceed, we must establish a few definitions and notations. In general we use π
to denote a deterministic policy, which is a function π : X → A that maps a state xt from the
state space X into an action at from the action space A.

In Reinforcement Learning problems, instead of dealing with labeled datasets of the form
{(xi, zi); i = 0, 1, · · · , n} common in Supervised Learning, we usually deal time-series datasets
of the form {(x1, a1, r1), (x2, a2, r2), · · · , (xT , aT , rT )}, which are called episodes, trajectories or
just state-action-reward sequences. For the market making problem we defined, these episodes
can be simulated by applying a given policy to the state dynamics of the controlled process we
define in our problem formulation (section 3.2). This form of representing the data is natural
in algorithmic trading, market making and other financial applications.

Based on (4), in a discrete-time setting, the Bellman operator19 T π for the policy π on a
function V : X → R is defined as

T πV (xt) = E [R(xt, π(xt), xt+1) + γV (xt+1)|Ft]

where R(xt, π(xt), , xt+1) is the reward (or cost) of applying the policy π while in state xt, γ
is a discounting factor and Ft is the filtration generated by the discrete-time controlled state
process (xt)t=1,2,···. Extending this concept, the Optimality operator20 T ∗ on the same function
V is defined as

T ∗V (xt) = max
π

E [R(xt, π(xt), xt+1) + γV (xt+1)|Ft]

Both T π and T ∗ are called Backup operators (Williams & Baird 1993). We can then redefine
the value function V π of the policy π as the fixed-point of the Bellman operator T π:

T πV π = V π

and the optimal value function V ∗ as the fixed-point of the optimality operator T ∗

T ∗V ∗ = V ∗

By definition, the Bellman residual (or Bellman error) T πV − V for the value function V π

and the Optimal Bellman residual T ∗V ∗ − V ∗ for the optimal value function V ∗ are both 0.
19Some authors also call it Bellman evaluation operator, since it is used only for policy evaluation
20Some authors also call it Dynamic programming operator (De Farias & Van Roy 2000)
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If we remove the expectation operator from these Bellman operators, we have what are
called Sampled Bellman operators T̂ π and T̂ ∗:

T̂ πV (xt) = R(xt, π(xt), xt+1) + γV (xt+1)

T̂ ∗V (xt) = max
π

R(xt, π(xt), xt+1) + γV (xt+1)

where xt+1 is sampled either based on the state dynamics, or from some episode.
The Greedy Policy Operator E of a value function V is defined as

EV (xt) = argmax
π

E [R(xt, π(xt), xt+1) + γV (xt+1)|Ft]

and a policy π is said to be greedy for a given value function V if π(xt) = EV (xt) for all states
xt ∈ X . The optimal policy π∗ is then the greedy policy for the optimal value function V ∗, i.e.,
π∗ = EV ∗.

Value functions can also be expressed as Action-Value functions, which many authors also
refer to as Q-functions. The action-value function Qπ : X ×A→ R maps a state xt and action
at to the value resultant from immediately taking action at and following the policy π onwards

Qπ(xt, at) = Et [R(xt, at, xt+1) + γV π(xt+1)|Ft]

= E [R(xt, at, xt+1) + γQπ(xt+1, π(xt+1))|Ft]

and the optimal action-value functionQ∗ : X×A→ R is defined byQ∗ = Qπ
∗ . All the operators

previously defined for value functions can also be applied for action-value functions

T πQ(xt, at) = E [R(xt, at, xt+1) + γQ(xt+1, π(xt+1))|Ft]

T ∗Q(xt, at) = E
[
R(xt, at, xt+1) + γmax

a
Q(xt+1, a)|Ft

]
T̂ πQ(xt, at) = R(xt, at, xt+1) + γ E [Q(xt+1, π(xt+1))]

T̂ ∗Q(xt, at) = R(xt, at, xt+1) + γmax
a

Q(xt+1, a)

and the greedy policy operator E of action-value functions Q is thus defined as

EQ(xt) = argmax
π

Q(xt, π(a))

4.2.2 Value Iteration

The method called Approximate Value Iteration tries to approximate the value function V
(can be either V π or V ∗) by recursively defining a sequence of functions (Vi)i=0,1,··· with the
Backup operator T (either Tπ or T ∗)

Vi = T Vi−1

where V0 = V̄ for some given function V̄ , until convergence, i.e., the sequence of Bellman
residuals T Vi − Vi reaches an established error threshold ε > 0 as i → ∞. This method is
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said to be a bootstrapping method because the choice of the function V̄ is arbitrary. Since the
Bellman operator is a contraction, the performance of the greedy policy EVi+1 is guaranteed
to be better than the greedy policy EVi, and the sequence of greedy policies converges, i.e.,
limi→∞ EVi = EV .

Since it needs to calculate an expectation for every step in the recursion, this method tends
to be computationally slow, only working well if the initial V̄ is a good approximation for all
xt ∈ X . If we are able to find good approximations for subsets of X , we can also compose them
into a decision tree and obtain such V0.

The sequence of greedy policies generated by this method are also known as look-ahead

policies, and EVi is said to be an (i + 1)-step look-ahead policy. In a variant of the value
iteration, instead of electing an arbitrary V̄ and performing a recursive computation until
convergence, the number of iterations i is fixed, and some intelligent choice of approximation
function V̄ is used.

4.2.3 Rollout

The rollout method (Bertsekas et al. 1997, Bertsekas 2013) is a subclass of the value itera-
tion (some authors also relate it to policy improvement) method where function V̄ is chosen to
be the value of some sub-optimal policy that can be calculated analytically or by simulation.
Such sub-optimal policy is called the heuristic policy. For the reasons already discussed, the
greedy policy EVi = E(T ∗)iV̄ is guaranteed to outperform the heuristic policy used to calculate
V̄ .

For the infinite-horizon problem, a possible heuristic policy is to quote a constant spread
for δa and δb and never hedge (ξ = 0). The existence of a model for the ETF limit order book
then allow us to try to find an analytical formula for the value of such heuristic policy, or just
use Monte Carlo simulation. Another example of heuristic policy that can be employed is the
immediate portfolio liquidation policy. In that case, the value of such trivial policy is just the
portfolio value minus the liquidation costs, which is a well researched topic (Almgren & Chriss
2001, Bouchaud 2009).

4.2.4 Fitted Value Iteration

Instead of adopting a heuristic policy and performing a rollout, we can instead approximate
the optimal value function V ∗ by making a sensible choice for the bootstrap function V̄ between
members of some parametric family of functions V.

Under this parametric approach, a functional architecture V̄ [θ;φ] is proposed, where V̄ is
a functional, θ ∈ Rn is a n-dimensional parameter and φ : X → Rm is a vector valued function
whose components {φi; i = 1, · · · ,m}, called features, define a set of basis functions. These
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three elements span the space of functions V, under which the desired V̂ is optimal for the
training sample. The linear architecture

V̄ [θ;φ](Xt) =
∑

i=1,··· ,n
θiφi(Xt) (17)

is basically a linear combination of the (possibly non-linear) basis functions φi, being very
popular among practitioners of RL. Another area of study that has gained popularity is Neuro-

dynamic programming (NDP), which studies the use of neural networks as approximation
architectures in ADP (Bertsekas & Tsitsiklis 1995). If such NN are multiple layered, then we
say such architecture is a Deep Neural Network (DNN) and the study of RL methods restricted
to NN and DNN architectures is the subject of Deep Reinforcement Learning.

The numerous ways to calibrate V̄ to data can be grouped in two classes of RL meth-
ods (Geist & Pietquin 2010). Projection methods21 focus on trying to project the sequence Vi
of value iteration functions onto the parametric function space V, generating a sequence of
project value functions V̄i ∈ V defined by V̄i = ΠVi as to minimize ‖ΠVi−Vi‖n for some norm n.
Gradient methods applies gradient descent to generate a sequence of value functions V̄i with-
out ever leaving the function space V, avoiding the need for projections, while also minimizing
the objective ‖T Vi−Vi‖n under the norm n. Since the value functions V̄i are parameterized by
θi, the sequence (V̄i)i=0,1,2··· is defined by the parameter sequence (θi)i=0,1,··· under the update
rule θi+1 = θi + α∇θi V̄i for some learning rate α and initial θ0.

For both approaches, the objective is to minimize the Bellman residual T ∗V̄ − V̄ directly,
or the sampled Bellman residual T̂ ∗V̄ − V̄ , which is also called Temporal Difference error.
Methods that minimize the Bellman residual are called Residual methods, while methods
that minimize the sampled Bellman residual are called Temporal Differences (TD) methods.
By definition, TD methods require the ability to sample data, whereas Residual methods can
but do not necessarily require sampling.

Projected Residuals Let us apply the projection methods to minimize the Bellman resid-
ual. Assuming the linear architecture (17) with some chosen feature function φ and some
initial value for θ0, a sequence of approximate value functions (V̄i)i=0,1,··· is defined by

V̄i = V̄ [θi;φ]

Under the L2 norm, we define V̄i+1 as the function in V that best approximates T ∗V̄i by mini-
mizing (T ∗V̄i − V̄i+1)2, i.e., by performing an ordinary least squares linear regression

θi+1 = argmin
θ

∑
x∈X̃

‖T ∗V̄i(x)− V̄ [θ;φ](x)‖2 (18)

21Geist & Pietquin (2010) uses the term Projected Fixed-Point methods
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over a sample X̃ of the state space X . Once a reasonably good parameter vector θk is reached,
the greedy policy E V̄ [θk;φ] is used. Regularization techniques can be applied to the regres-
sion problem (18) to avoid over-fitting. A particular class of L1 regularization, LASSO, is also
able to perform ‘feature selection’, thus reducing the number of basis functions and helping
us achieve the right balance of model complexity. In particular, Geist & Scherrer (2012) stud-
ies L1 penalized Projected Bellman residual methods. We refer to Farahmand (2011) as an
excellent work regarding the application of regularization methods to reinforcement learning.

Algorithm 2 Projected Residuals
1: V̄i ≡ V̄ [θi;φ]

2: T ∗V̄i(xt) = maxu Et
[
R(xt, u) + γV̄i(xt)|xt

]
.

3: Initialize θ0

4: for all i = 0, 1, · · · , n or until convergence do
5: θi+1 ← argminθ

∑
x∈X̃ ‖T ∗V̄i(x)− V̄ [θ;φ](x)‖2

Temporal Differences In Temporal Difference (TD) methods (Sutton 1988), we try to min-
imize the TD error T̂ V̄i− V̄i, instead of the Bellman residual T ∗V̄i− V̄i. This minimization can
be performed by gradient methods, as in the original publication of Sutton (1988), or by pro-
jection methods, as in Bradtke & Barto (1996) where least squares are used in similar fashion
to (18).

Under this method, a sequence of value predictors (V̄i)i=0,1,··· are defined by iterations of
predict-measure-update steps. During the k+ 1-th iteration, V̄k is used to predict the value of
each state of the state-action-reward sequence (x1, u1, r1), (x2, u2, r2), · · · . After this prediction
step is performed, the measure step reviews the prediction quality of the predictor V̄k, and
based on such measurement, the update is performed, generating a new value predictor V̄k+1.

The measurement step is the most interesting aspect of the TD method. As time passes, ev-
ery state transition from xt into xt+1 contributes with more information, and for that episode,
the complete information is known only at T . Information is represented as the set It =

{r1, · · · , rt−1}. As t increases from 1 to T , the value predictor V̄k can be improved for all pre-
vious xt′<t: while at time t the prediction for V (xt) is V̄k(xt), at time t + 1 the prediction for
V (xt) would have been rt + γV̄k(xt+1). The information delta ∆It+1 = It+1 − It = {rt} is used
to update the predictor V̄k by minimizing the Temporal Difference error for the states xt′<t.

The objective is to minimize the total TD error for the episode∑
t

‖T̂ V̄k − V̄k‖2 =
∑

t=1,··· ,T
‖rt + γV̄k(xt+1)− V̄k(xt)‖2

The parameter θk+1 for the next predictor V̄k+1 is initialized with θk and then updated by
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Table 1: Value Predictions and TD errors

State Prediction given It′ Prediction given It′+1 TD error

x1 V̄k(x1) r1 + γV̄k(x2) r1 + γV̄k(x2)− V̄k(x1)

x2 V̄k(x2) r2 + γV̄k(x3) r2 + γV̄k(x3)− V̄k(x2)

· · · · · · · · · · · ·

xt V̄k(xt) rt + γV̄k(xt+1) rt + γV̄k(xt+1)− V̄k(xt)

gradient descent

θk+1 ← θk+1 + α(rt + γV̄k(xt+1)− V̄k(xt))
∑

t′=1,··· ,t
∇θV̄k(xt′) (19)

where α is called the learning rate. The update rule (19) defines the TD(1) algorithm. The
TD(λ) family, for 0 ≤ λ ≤ 1, is the same algorithm but with a different update rule:

θk+1 ← θk+1 + α(rt + γV̄k(xt+1)− V̄k(xt))
∑

t′=1,··· ,t
λt−t

′
∇θV̄k(xt′)

where the λ parameter defines how further in the past we update our previous predictions.
TD methods are not only very attractive but also very successful: they can be implemented

iteratively, are computationally very efficient, with good convergence and can perform both
offline and online learning in various degrees. During Offline learning, a new parameter θk+1

is defined only after processing a whole episode. In online learning, new parameters θk+1 are
generated much more frequently, possibly after each time step, without waiting for the end of
the episode. This is a very important aspect for algorithmic trading and market making: the
possibility to perform offline training with historical market data22 before the opening of the
trading session, and continue with online learning while executing the trades during the day.

22TD methods can also be applied in model-based RL by performing offline training on simulated data
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Algorithm 3 Model-based offline TD(λ)
1: V̄i ≡ V̄ [θi;φ]

2: T̂ V̄i(xt, ei) ≡ maxu
[
R(xt, u) + γV̄i(xt+1)|ei

]
. xt+1 is draw from the episode ei

3: Initialize θ0

4: for all i = 0, 1, · · · , n or until convergence do
5: Define policy πi ≡ E V̄i
6: Generate episode ei by simulating the state dynamics under the policy πi
7: Initialize θi+1 ← θi

8: Initialize ∆V ← 0

9: for all t = 0, 1, · · · , T do
10: ∆V ← λ∆V +∇θi V̄i(xt)

11: θi+1 ← θi+1 + α(T̂ V̄i(xt, ei)− V̄i(xt))∆V

12: Final policy is π∗ ≡ E V̄n∗ . θn∗ is the converged parameter

4.2.5 Approximate Policy Iteration

So far the methods we have discussed approximate only the optimal value function V ∗,
and are called ‘critic-only’ methods. Methods that approximate the optimal policy function π∗

directly are called ‘actor’ methods, where ‘actor’ term is used to refer to the Policy Function

Approximation (PFA). Actor methods are computationally more efficient than calculating the
various expectations required by the VFA policy E V̄n∗ , making them ideal for latency-sensitive
high-frequency market making.

There is an important distinction in the nature of the policy. In critic-only methods, the
policies E V̄i are always deterministic, while with actor methods, we can search for policies in
the wider class of stochastic policies, whose outputs are probability distributions on the action
space.

A stochastic policy π : X ×A→ [0, 1] maps a state x and an action u to a conditional proba-
bility, i.e., π(x, u) = P(ut = u|xt = x). In Approximate Policy Iteration (Williams 1992, Sutton
et al. 1999, Perkins & Precup 2003), a sequence of stochastic policies (πi)i=0,1,··· are drawn from
a parametric family of functions P by iterations of policy evaluation and policy improvement

steps, where π0 = π̄[ϑ0] ∈ P is chosen arbitrarily. In practice, this sequence of parametric
functions is represented by the sequence of parameters (ϑi)i=0,1,···, and it is expected that this
sequence converges to some ϑn∗ for which the policy πn∗ = π̄[ϑn∗ ] is considered optimal.

The most interesting aspect of policy iteration is the policy evaluation procedure. While in
VFA methods we were interested in the optimal value V ∗(xt) of a state xt, here the interest is
in the value of a policy πi,

V (πi) = E [V πi(x)] (20)



4.2 Reinforcement Learning 45

the average total reward of the policy regardless of circumstances (initial state).
In the policy improvement step, the objective is to define a new improved policy πi+1 based

on an existing policy πi such that V (πi+1) ≥ V (πi). The policy gradient methods perform this
by gradient ascent:

ϑi+1 ← ϑi + α∇ϑV (πi)

where α is the learning rate. The challenge remains on how to calculate the gradient∇ϑV (πi).
Williams (1992) proposes an actor-only algorithm named REINFORCE, which is also called
Monte Carlo Policy Gradient (Sutton & Barto 2018, chapter 13, pages 326-329). This algo-
rithm essentially simulates an episode ei for each policy πi

ei = {(xi,1, ui,1, ri,1),

(xi,2, ui,2, ri,2),

· · · ,

(xi,T , ui,T , ri,T )}

to perform an approximative policy evaluation step called episodic policy evaluation:

V (πi) ≈ V (ei) =
∑
t

γt−1ri,t

The policy update step is then realized using the Policy Gradient Theorem (Sutton et al.
1999), restricted to the episode in question. We skip the details about the derivation of the
update rule and present it below in the algorithm 4.

Algorithm 4 Model-based offline REINFORCE
1: πi(x) ≡ π̄[ϑi](x)

2: V (ei, t) ≡
∑
k≥t γ

k−1rπij,k

3: Initialize ϑ0

4: for all i = 0, 1, · · · , n or until convergence do
5: Generate episode ei under the policy πi
6: Initialize ϑi+1 ← ϑi

7: for all t = 1, · · · , T do
8: ϑi+1 ← ϑi+1 + αV (ei, t)∇ϑ log πi(xi,t, ui,t))

9: Final policy: π∗ ≡ πn∗ . ϑn∗ is the converged parameter

4.2.6 Actor-critic methods

The slow convergence of Monte Carlo Policy gradient methods and the high variance of
their predictions point us toward actor-critic methods, which, in essence, allow us to approx-
imate a policy function with the help of an approximation to the value function. The ‘critic’



4.2 Reinforcement Learning 46

helps the ‘actor’ in finding the policy gradients that minimize the variance of the prediction
error (Grondman et al. 2012), while achieving faster convergence. The convergence of actor-
critic policy gradient methods to a locally optimal policy is proved by the Policy Iteration
with Function Approximation Theorem in Sutton et al. (1999). The exact policy gradient is
unknown, but the approximated value function can give us a rough estimate of the policy gra-
dient, hence actor-critic methods are also known Approximate Policy Gradient methods. The
policy update rule is also provided by Sutton et al. (1999) in the Policy Gradient with Func-
tion Approximation Theorem. It should be noted that the critic reduces the variance at the
cost of introducing bias because the approximated policy gradient tends to be biased.

Bertsekas & Ioffe (1996) approximates the value function by the TD method while perform-
ing approximate policy iteration, a form of TD-based Policy Iteration, unifying two successful
approaches.

Deterministic Policy Gradient We can also learn deterministic policies by applying the
Deterministic Policy Gradient Theorem from Silver et al. (2014). This is an important aspect
for high-frequency market making, as we would like to avoid changing quotes constantly. De-
terministic policies map states into actions directly, hence are computationally more efficient
than stochastic policies. The Deterministic Policy Gradients (DPG) method (Silver et al. 2014)
is an actor-critic method.

In order to evaluate a deterministic policy, we must observe that for any episode e generated
by a policy π, the distribution of the initial state x1 is independent of the policy π, but the
distribution of the resulting states depend on both π and on x1. Thus, the value of an episode
that follows a deterministic policy π can be expressed as

T∑
t=1

γt−1R(xt, π(xt), xt+1)

which is a random variable dependent on the initial state x1, the policy π and the dynamics of
the controlled state process (xt)t=1,2,···. Hence, the expected value of an episode that follows a
policy π given the initial state x1 is

V (π, x1) =

T∑
t=1

γt−1 E [R(xt, π(xt), xt+1)] (21)

The value of a policy π can then be defined as the expected value of all episodes that follow
π, i.e. regardless of circumstances, as already noted in (20).

V (π) = E [V (π, x)] (22)

If we denote Pπt (x→ (x′, x′′)) the probability density of observing the state transition xt =

x′ → xt+1 = x′′ in an episode following the policy π given an initial x1 = x, then we can express
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(21) as

V (π, x) =

T∑
t=1

γt−1

∫
(x′,x′′)∈X×X

Pπt (x→ (x′, x′′))R(x′, π(x′), x′′)

=

∫
(x′,x′′)∈X×X

T∑
t=1

γt−1Pπt (x→ (x′, x′′))R(x′, π(x′), x′′)

which by replacing
∑T
t=1 γ

t−1Pπt (x→ (x′, x′′)) for dπ(x, x′, x′′) gives

V (π, x) =

∫
(x′,x′′)∈X×X

dπ(x, x′, x′′)R(x′, π(x′), x′′)

From this last results and (22), the value of a policy V (π) can be expressed by

V (π) =

∫
(x′,x′′)∈X×X

dπ(x′, x′′)R(x′, π(x′), x′′)

= E(x′,x′′)∼dπ [R(x′, π(x′), x′′)]

where dπ(x′, x′′) = P(x1 = x)dπ(x, x′, x′′) is called the (improper) discounted state distribution

under π (Silver et al. 2014).
Given this policy evaluation procedure, the Deterministic Policy Gradient Theorem (Sil-

ver et al. 2014) states the following

Theorem 1. Deterministic Policy Gradient Theorem

Assume ∇ϑπ(x) and ∇aQπ(x, a) exists for all states x ∈ X and actions a ∈ A. Then the

gradient of the objective V (π) is

∇ϑV (π) = Ex∼dπ
[
∇ϑπ(x)∇aQπ(x, a)|a=π(x)

]
We can then perform policy iteration by defining a sequence of policy parameters (ϑi)i=0,1,···

while performing gradient ascent on V (πi) using the above theorem, with an action-value
function approximation for Qπi by the TD(λ) method. We present below two versions of this
algorithm: in the online version, there is little exploratory search in the action space: the
episodes are generated by the learning policy (the one we are learning), while in the offline
version, the episodes are generated by a behavior policy that guarantees enough exploration of
the action space, which can be just a stochastic policy which randomly selects an action (maybe
by adding noise to the learning policy). The choice between these two versions is a specific case
of a dilemma known as exploration vs exploitation tradeoff. Offline learning tends to explore
and gather more data before improving the decision making, while online learning tends to
make the best decision given the current data, at the risk of getting stuck at locally optimal
policy.
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Algorithm 5 Off-Policy Deterministic Actor-Critic
1: Q̄t ≡ Q̄[θt;φ]

2: T̂offQ̄t(xt, ei) ≡ R(xt, at, xt+1) + γQ̄t(xt+1, πt(xt+1)) . For off-policy learning
3: Initialize θ0 and ϑ0

4: for all i = 0, 1, · · · , n or until convergence do
5: Start new episode ei under ψ . ψ is called a behavior policy

6: Initialize ∆Q← 0

7: for all t = 0, 1, · · · , T do
8: Grow episode ei under ψ
9: ∆Q← λ∆Q+∇θtQ̄t(xt, at)

10: θt+1 ← θt + αθ(T̂offQ̄t(xt, ei)− Q̄t(xt, at))∆Q . TD update for Critic
11: ϑt+1 ← ϑt + αϑ∇ϑπt(xt)∇aQ̄t(xt, at)|a=πt(xt) . Policy Gradient ascent

12: θ0 ← θT

13: ϑ0 ← ϑT

Algorithm 6 On-Policy Deterministic Actor-Critic
1: Q̄t ≡ Q̄[θt;φ]

2: T̂onQ̄t(xt, ei) ≡ R(xt, at, xt+1) + γQ̄t(xt+1, at+1) . For on-policy learning
3: Initialize θ0 and ϑ0

4: for all i = 0, 1, · · · , n or until convergence do
5: Start new episode ei
6: Initialize ∆Q← 0

7: for all t = 0, 1, · · · , T do
8: Grow episode ei under πt
9: ∆Q← λ∆Q+∇θtQ̄t(xt, at)

10: θt+1 ← θt + αθ(T̂onQ̄t(xt, ei)− Q̄t(xt, at))∆Q . TD update for Critic
11: ϑt+1 ← ϑt + αϑ∇ϑπt(xt)∇aQ̄t(xt, at)|a=πt(xt) . Policy Gradient ascent

12: θ0 ← θT

13: ϑ0 ← ϑT

4.2.7 Actor-critic algorithm under HJBQVI conditions

We should note that the HJBQVI conditions can be considered a continuous time version
of the Bellman residual, and thus we could devise a residual-based actor-critic method to
approximate a near-optimal policy while approximating a solution to V ∗ using the HJBQVI
conditions (10) instead of the Bellman equations. We can illustrate this method using the



4.2 Reinforcement Learning 49

following linear architectures

δ̄a[θa](x) = θa · φa(x)

δ̄b[θb](x) = θb · φb(x)

ξ̄[θξ](x) = θξ · φξ(x)

V̄ [θv](x) = θv · φv(x)

(23)

which will be used as our approximations. It is worth noting that the ξ̄[θξ](x) may return
0, which indicates no intervention is to be made. We also define (θai )i∈N, (θbi )i∈N, (θξi )i∈N and
(θvi )i∈N the sequence of parameters for δ̄a, δ̄b, ξ̄ and V̄ respectively, and for short notation,
this implies a sequence of approximations (δ̄ai ≡ δ̄a[θai ])i∈N, (δ̄bi ≡ δ̄b[θbi ])i∈N, (ξ̄i ≡ ξ̄[θξi ])i∈N and
(V̄i ≡ V̄ [θvi ])i∈N . The outline of our algorithm starts with initializing θa0 , θb0, θξ0 and θv0 , and
defining the rest of the sequence recursively by iterating a two-phase procedure. In a first
phase, we learn new policies by updating θai , θbi and θξi using θvi . On the following phase, we
learn a new value function by updating θvi+1 using the θai , θbi , θ

ξ
i and θvi learned on the previous

phase.
The main difference now is regarding the use of the HJBQVI conditions instead of the

Bellman equations. For the problem at hand, what really matters is to learn a policy, not the
value function. The HJBQVI conditions help up establish estimates for the controls that can
be used to form a policy estimate:

ûi(x) ≡

δ̂ai (x)

δ̂bi (x)

 ≡ argmax
u

LV̄i(x, u)

ξ̂i(x) ≡ argmax
ξ
MV̄i(x, ξ)

where the operators L andM are defined as follows

LV̄i(x, u) = AR(x, u) +AV̄i(x, u)− ρV̄i(x)

MV̄i(x, ξ) = V̄i(Γ(x, ξ))− V̄i(x)

Then the first phase resumes to learning new policies using those estimates

θai = argmin
θa

∑
x∈X∗

‖δ̂ai (x)− δ̄a[θa](x)‖2

θbi = argmin
θb

∑
x∈X∗

‖δ̂bi (x)− δ̄b[θb](x)‖2

θξi = argmin
θξ

∑
x∈X∗

‖ξ̂i(x)− ξ̄[θξ](x)‖2

which can be solved by projection or by gradient methods by sampling X ∗ from X , with the
similar considerations as discussed in the previous sections. The second phase defines an
estimate for V again using the HJBQVI conditions, which is a continuous time version of the
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Bellman equation
V̂i(x) ≡ V̄i(x) + max

[
LV̄i(x, ūi(x)),MV̄i(x, ξ̄i(x))

]
where ūi(x) ≡

δ̄ai (x)

δ̄bi (x)

, and learning a new value function

θvi+1 = argmin
θv

∑
x∈X∗

‖V̂i(x)− V̄ [θv](x)‖2

.

Proposition 2. The estimates û and ξ̂ are equivalent to a continuous-time look-ahead policy

with value function approximation V̄ .

Proof. We prove this by simplifying the expressions for û and ξ̂ as follows

δ̂ai (x) = argmax
δa

LV̄i

= argmax
δa

AR(x,

δa
δb

) +AV̄i(x,

δa
δb

)− ρV̄i(x)

= argmax
δa

AR(x,

δa
δb

) +AV̄i(x,

δa
δb

)

= argmax
δa

λa(E∆aR+ E∆aV̄i) + λb(E∆bR+ E∆bV̄i)

= argmax
δa

λa(E∆aR+ E∆aV̄i)

= argmax
δa

E∆aR+ E∆aV̄i

= argmax
δa

E [R(x+ ∆a(x, δa, ra))−R(x)] + E
[
V̄i(x+ ∆a(x, δa, ra))− V̄i(x)

]
= argmax

δa
ER(x+ ∆a(x, δa, ra)) + E V̄i(x+ ∆a(x, δa, ra))

δ̂bi (x) = argmax
δb

ER(x+ ∆b(x, δ
b, rb)) + E V̄i(x+ ∆b(x, δ

b, rb))

where we just eliminated the terms that do not depend on δa or δb and

∆a(x, δa, ra) ≡ γ(a) =



s1ra≥δa(1 + δa)

sra

sra

−1ra≥δa

0



∆b(x, δ
b, rb) ≡ γ(b) =



−s1rb≥δb(1− δa)

−srb

−srb

1rb≥δb

0
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are the impact of a jump in Na and N b to the state x. These expressions for δ̂a and δ̂b means
they are infinitesimal-step look-ahead policies with value approximation V̄ . We can also sim-
plify ξ̂i(x) as follows

ξ̂i(x) = argmax
ξ
MV̄i(x, ξ)

= argmax
ξ

V̄i(Γ(x, ξ))− V̄i(x)

= argmax
ξ

V̄i(Γ(x, ξ))

and since the intervention is instantaneous, no reward is immediately gained, and thus ξ̂ is
basically a policy based the value function approximation V̄ .

The estimate ξ̂ is deterministic and can be solved by simple search over the space Ξ or by
gradient methods if the architecture V̄ is made of differentiable functions and by the fact that
Γ is differentiable in ξ.

Algorithm 7 Continuous time actor-critic
1: δ̂ai (x) ≡ argmaxδa ER(x+ ∆a(x, δa, ra)) + E V̄i(x+ ∆a(x, δa, ra))

2: δ̂bi (x) ≡ argmaxδb ER(x+ ∆b(x, δ
b, rb)) + E V̄i(x+ ∆b(x, δ

b, rb))

3: ξ̂i(x) ≡ argmaxξ V̄i(Γ(x, ξ))

4: V̂i(x) ≡ V̄i(x) + max
[
LV̄i(x, ūi(x)),MV̄i(x, ξ̄i(x))

]
5: Initialize θv0 and θw0
6: for all i = 0, 1, · · · , n or until convergence do
7: θai ← argminθa

∑
x∈X∗ ‖δ̂ai (x)− δ̄a[θa](x)‖2

8: θbi ← argminθb
∑
x∈X∗ ‖δ̂bi (x)− δ̄b[θb](x)‖2

9: θξi ← argminθξ
∑
x∈X∗ ‖ξ̂i(x)− ξ̄[θξ](x)‖2

10: θvi+1 ← argminθv
∑
x∈X∗ ‖V̂i(x)− V̄ [θv](x)‖2

4.3 Convergence

While the traditional numerical schemes to solve the HJBQVI have nice convergence prop-
erties (Azimzadeh et al. 2017, Azimzadeh 2017) , that cannot be taken for granted regarding
function approximation approaches. Boyan & Moore (1995) raises concerns about the lack of
convergence guarantees for general value approximations, showing that such methods do not
automatically inherit the convergence properties of table lookup RL methods. The authors
classify convergence in the following four categories

(i) Good convergence: The function approximations converges to the correct solution.
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(ii) Lucky convergence: The approximation converges to the wrong value function in absolute
terms, but the relative value between the states are correct and thus the implied greedy
policy is near-optimal.

(iii) Bad convergence: The approximation converges to the wrong solution, and the implied
policy is also wrong.

(iv) Divergence: The approximation never converges.

and study the convergence of various approximation architectures by solving simple problems
where the value function is known analytically or numerically. Boyan & Moore then propose
the Grow-Support algorithm which is claimed to be robust and convergent. Although compu-
tationally expensive for stochastic problems (our case) due to the need to perform simulations,
its usage of support states can improve the convergence of other algorithms. They define sup-

port as the set of states for which the optimal value is known, starting with a set of goal states.
For the market maker infinite-horizon problem, we can, for example, establish goal states like[
y s 0 0 0

]T
and, although we cannot say their absolute value (because we are actually

trying to learn them), we can assume that the value of that state is time-independent and can
be defined as y pounds plus the value of the null state

[
0 s 0 0 0

]T
, thus making sure

that the relative value of our support are correct according to the wealth utility function. In
Grow-Support, the support grows by adding more states using a rollout procedure.

Perhaps the most relevant convergence result on VFA is for the Temporal Differences meth-
ods, as demonstrated in Sutton (1988) and Gordon (1995). Gordon (1996) proves convergence
of VFA for architectures that are non-expansion in the max-norm. Another relevant work is
Lizotte (2011), which introduces a regularization method called Expansion-Constrained Ordi-

nary Least Squares, guaranteeing converge for linear approximation architectures. Regarding
convergence of Policy Gradient methods, the major results are Sutton et al. (1999) and Silver
et al. (2014), which guarantee convergence to locally optimal policies.

Zang et al. (2010) introduces a new method called Expanding Value Function Approxima-

tion (EVFA) with probabilistic convergence guarantees and also proposes a human interaction
scheme called training regimen, which allows a human to guide the learning process of the
RL algorithm. This concept is highly important for training and supervision of high-frequency
trading AI algorithms, which we argue must not be allowed to trade without proper human

supervision and coaching.
In this aspect, we propose the use the model discussed in section 2 for the ETF limit order

book as a type of training regimen. Although the jump-diffusion model we proposed is far from
being the true representation of reality, it is a starting point that helps an ETF market maker
by speeding up the learning of their RL algorithms, which is important for trading desks,
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where not even humans are given much room for mistakes in their learning processes. Once
the RL algorithm offline training is done with the assistance of the theoretical model (which
we call training bootstrap), it is then allowed to trade in the markets with strict limits so it
can perform online learning, with convergence to the near-optimal robust policies is guided
on a day-by-day basis by human traders.

4.4 Robustness

The proposed algorithms are not useful if the approximated functions do not meet a mini-
mum threshold of quality demanded from robust market making systems. Any pricing model,
regardless of how of its implementation, must exhibit the following necessary conditions:

(i) Policy validity: Policy functions must respect financially responsible bound constraints
on their outputs. It makes no sense to trade infinite number of shares or even traded
above established limits. If hedging is necessary, the impulse ξ(x) must decrease risk,
and not increase or revert it. The quoting spreads δa(x) and δb(x) must not be negative,
since continuously cross the spread leads to bankruptcy.

(ii) Policy feasibility: Policy functions with discretized outputs improves the feasibility of
the policy by the trading engines responsible for carrying out the execution of the policy.
On all trading exchanges, order prices are multiples of a tick size. A policy δa(x) that
suggests quoting 0.015 away from the reference price when the tick size is 0.01 forces the
execution layer to decide between quoting 0.01 or 0.02, when that is not supposed to be its
responsibility. Actually, the difference between 0.01 and 0.02 is huge when the ETF price
is small: one cent for a $1 asset is actually 1%! Hence we believe classification policies
are more robust. However, we believe value functions should remain real valued, since
we must be able to compare the relative value between a huge number of states, and this
is done by picking an utility function.

(iii) Policy stability: We require that tiny perturbations in the state do not cause the value
or policy function outputs to change radically. Many states are similar, and the presence
of noise in the state should not render fundamentally distinct policies. Policy stability is
fundamental: any instability or oscillatory behavior in the signals δa(x), δb(x) and ξ(x)

will not only generate excessive number of messages, but also pose serious doubt about
the correctness of the prices, increasing the risk of erroneous and unnecessary trading.

(iv) Monotonicity in wealth utility: The approximated value function must be monotone in
the utility of the wealth. This means, for example, that the state [y = 100, s = 100, p =

0, q = 0, h = 0] is logically preferable to [y = 0, s = 100, p = 0, q = 0, h = 0], as the former is
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precisely the later with an additional $100 in cash. We refer to wealth utility instead of
just wealth because the preference between states like [y = 100, s = 100, p = 0, q = 0, h =

0] and [y = 0, s = 100, p = 0, q = 1, h = 0] are mostly determined by the chosen utility
function. If no alpha signal is available, a risk-averse investor would prefer $100 in cash
to an ETF position marked to market at $100. However, if an alpha signal indicates a
strong probability of appreciation to ETF prices, even a risk-averse investor would prefer
to be long the ETF.

(v) Meaningful utility: The utility function greatly determines how the policy will behave,
and hence it needs to make sense to the dealer responsible for the algorithm. A robust
choice of utility will lead to superior and desirable policies, and this means not choosing
an utility just because of nice mathematical tractability, but because it actually reflects
the inteded risk-reward preferences. We also understand that the risk-reward preference

may not only be time dependent but also a function of variables like covariance matri-
ces23, funding and carry rates and alphas, hence the robust calibration of the parameters
is an equally important matter.

The suggested use of classification policies trivially solves the first two conditions above.
Ensuring the monotonicity in the wealth utility also helps satisfying the policy stability, and
we believe the former to be a necessary although not a sufficient condition for the later. We
postulate monotonicity in wealth utility as a very important guideline to achieve robust policies
because it is essentially a necessary and sufficient condition to obtain near-optimal relative

value as opposed to the absolute value approximation already mentioned so far. For a good
policy, what is important is knowing the relative value between two distinct states, not their
absolute value, because then the policy is able to suggest actions that maximize the probability
of ending up in superior states, in relative terms. By being monotonic in the wealth utility,
our value function approximation is able to learn the relative value between states from the
wealth utility function, thus respecting the chosen risk-reward preferences.

Nevertheless, a range of other approaches are also available to improve policy stability,
and one does not necessarily exclude the others. In (Zheng et al. 2016), a technique called
stability training is proposed to improve the robustness of image classification, and which can
be applied to our classification policies as well. Stability training intuition resides on the idea
that if x′ is a small perturbation of the state x, then we also desire that δ(x′) and δ(x) be close
enough. The authors propose an auxiliary stability objective function that depends on a metric
on the policy output space, thus forcing the classification of close states to be close as well. In
the market maker problem, we suggest using the metric implied by the wealth utility function
for the purposes of formulating this stability objective.

23Copulas may also be used to model a non-linear dependence structure
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Fundamentally, stability training reinforces local stability, but not local consistency, i.e.,
the state x′ might be marginally better than x, but the policy might still recommend an action
that will mostly likely end up in x than the marginally better x′. In this respect, the mono-

tonicity in the wealth utility help us achieve global consistency, because it is able to enforce the
risk-reward preferences not only locally but also globally, for example, between widely ‘distant
states’.

4.4.1 Monotonicity in wealth utility

The problem of calibrating a value function while enforcing monotonicity in the wealth

utility for a given architecture defined on the basis functions φ can be described as

θv = argmin
θ

∑
x

‖V̂ (x)− V̄ [θ, φ](x)‖2 (24)

subject to the following variational inequality constraint

dV̄ (x)dU(x) ≥ 0 for all x ∈ X (25)

where V̂ is some estimate we want to calibrate V̄ to, and dV̄ (x) and dU(x) are the total differ-
entials of the approximation architecture V̄ and the wealth utility function U respectively

dV̄ (x) =
∂V̄

∂y
dy +

∂V̄

∂s
ds+

∂V̄

∂p
dp+

∂V̄

∂q
dq +

∂V̄

∂h
dh

dU(x) =
∂U

∂y
dy +

∂U

∂s
ds+

∂U

∂p
dp+

∂U

∂q
dq +

∂U

∂h
dh

(26)

where we assume V̄ and U are differentiable and continuous in each of the state variables y,
s, p, q and h.24

The idea of such constraint is that we want the total derivative of U and V̄ to have the
same sign when evaluated at the same state x: if we move the state x is any fixed direction,
then monotonicity in the wealth means that if U increases (decreases) in that direction, then
V̄ must also increase (decrease) in that same direction.

The above problem can be reduced to a PDE-constrained non-linear program formulation.
In order to see this, if we multiply expressions (26), then the variational inequality condition
(25) can be expressed as follows:

dxT



∂V̄
∂y

∂U
∂y

∂V̄
∂y

∂U
∂s

∂V̄
∂y

∂U
∂p

∂V̄
∂y

∂U
∂q

∂V̄
∂y

∂U
∂h

∂V̄
∂s

∂U
∂y

∂V̄
∂s

∂U
∂s

∂V̄
∂s

∂U
∂p

∂V̄
∂s

∂U
∂q

∂V̄
∂s

∂U
∂h

∂V̄
∂p

∂U
∂y

∂V̄
∂p

∂U
∂s

∂V̄
∂p

∂U
∂p

∂V̄
∂p

∂U
∂q
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∂p
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∂V̄
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∂U
∂y
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∂U
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∂p

∂V̄
∂q
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∂q

∂V̄
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∂U
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∂h

∂U
∂y

∂V̄
∂h

∂U
∂s

∂V̄
∂h

∂U
∂p

∂V̄
∂h

∂U
∂q

∂V̄
∂h

∂U
∂h


dx ≥ 0 (27)

24Choosing a non-differentiable or discontinuous function as one of the basis functions in φ implies that we no longer
can propose this form of strong monotonicity,and must resort to a more complex and/or weaker form of monotonicity
conditions



4.4 Robustness 56

for all vectors of differentials dx =
[
dy ds dp dq dh

]T
, i.e., the above matrix must be

positive semi-definite.
Note, for example, that on a change in the y direction only (varying the cash while fixing

the rest of the state variables), we have dx =
[
dy 0 0 0 0

]T
and the positive semi-definite

condition resumes to ∂V̄
∂y

∂U
∂y ≥ 0. Thus by varying each state variable while fixing the others,

we consequentially obtain the following elementary first order conditions:

∂V̄

∂xi

∂U

∂xi
≥ 0

for i = 1, 2, · · · , 5, where xi represents the i-th state variable. Now if we vary, for example, the
state variables xi and xj while fixing the rest, the positive definite condition become second
order cross conditions:

∂V̄

∂xi

∂U

∂xi
+
∂V̄

∂xj

∂U

∂xj
± (

∂V̄

∂xi

∂U

∂xj
+
∂V̄

∂xj

∂U

∂xi
) ≥ 0

where the± comes from the fact that dxi and dxj may have opposite signs. Further constraints
can be obtained in this fashion, and a weaker form of monotonicity can also be formulated by
choosing only a subset of all those conditions derived from the positive semi-definiteness of
the matrix in (27).

To perform this optimization, we use the First-order Augmented Lagrangian method, by
changing the objective (24) as follows:

θv = argmin
θ

∑
x

‖V̂i(x)− V̄ [θ](x)‖2 − λx · (f(θ, x)− z) +
ci
2
‖f(θ, x)− z‖2 (28)

where f(θv, x) ≥ 0 are the PDE-constrains derived from the monotonicity conditions, λx is the
vector of Lagrange multipliers (also known as adjoint state),
ci
2 ‖f(θ, x) − z‖2 is a regularization term and z ≥ 0 are some slack variables. It is valid to
note that the conditions must hold for every point x in the sample X∗. The method works
by fixing the adjoint state λ and performing the minimization by gradient descent using the
gradient of the Lagrangian Augmented objective (28). Once the minimum θv is found, then
the adjoin is updated:

λxi+1 ← λxi − cif(θv∗, x)

and the process is repeated until convergence. For more on subject of PDE-constrained non-

linear optimization, we suggest Bartholomew-Biggs (2005), Diwekar (2008), Ito & Kunisch
(2008), Haber & Hanson (2007), Hinze (2009) and De Los Reyes (2015).
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5 Preliminary results

Given the diversity of approaches and the fact that training models is a time-consuming
task, we cannot present here a full analysis of all algorithms discussed or presented. We in-
stead provide a qualitative analysis derived from preliminary results and pitfalls found while
trying to implement them. A more complete analysis is deserved, and , and practitioners
applying reinforcement learning to market making should focus on the following aspects:

(i) Convergence stability: Run each of the algorithms a number of times under different
initial guesses for θv0 and verify if they all converge to the same solution, or if there is any
divergence. Compare the solutions of those convergent algorithms.

(ii) Convergence speed: Analyze how quickly the algorithms converge, on average.

(iii) Simulation analysis: Simulate the expected total reward for each learned policy by run-
ning them against Monte Carlo simulations of the limit order book model proposed.

(iv) Backtesting analysis: Perform cross validation by backtesting the policies. Replaying
historical tick data not only helps to identify behavior around news or major economic
events, but also helps understanding in which circumstances each policy is the best.

(v) Qualitative analysis: Investigate the learned the policies under a few basic scenarios for
which rational judgments can be made.

In our implementations, we have used a risk-neutral utility function, U(x) = v(x) in order
to make qualitative judgments on the various approaches. We made use of the Julia language
(Bezanson et al. 2017) alongside the packages ForwardDiff (Revels et al. 2016) and Flux (Innes
2018), which proved incredible flexible and productive. ForwardDiff provides automatic dif-
ferentiation, which helped us derive gradients and jacobians without having to resort to finite
element methods. Flux is a Machine Learning framework entirely developed in Julia, which
although on its early stages, it already offers impressive functionality.

For quick results, the value iteration methods performed better, as it is easy to train only
one model, when compared to actor-critic models, where we need to train both actor and critic.
Value functions approximations had about the same qualitative characteristics of Action-Value
function approximations, but the former is faster to train: the extra degree of freedom of the
action-value function Q(xt, at) makes their training slower. Between the VFA methods, the
one that rendered the best results was the TD(λ) methods - their convergence is proved by
Sutton (1988). The TD method proved quick to detect trends in the price and the greedy
policies generated take this opportunity to generated P&L.
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Also, gradient methods provided better convergence and stable results, when compared
to projection methods. Most of the projection methods we implemented and tested failed to
convergence, with some convergence when using supports.

With respect to Policy iteration, they are more sophisticated but slower to train. Stochastic
policy gradient hardly complies with our requirement for policy stability. Deterministic Policy
Gradients are simple to implement, but the policy produced by linear architectures generated
negative quoting spreads δa and δb, thus not complying with policy validity requirements. We
tried to use Deep Neural Networks for both actor and critic with the Deep Deterministic Policy

Gradients (DDPG) method (Lillicrap et al. 2016) using activator functions that constrain δa

and δb between 1 and 20 basis points and ξ between -5 and 5 shares, but the model proved ex-
tremely slow to train in the commodity hardware available, and the policy parameters moved
very slowly. The first models generated this way produced a ‘cheating’ policy by quoting 20 ba-
sis points (the farther possible from the reference price, thus effectively not adding liquidity)
while hedging constantly according to the detected trend. Since algorithmic trading problems
are highly constrained, we might consider constrained policy gradient methods as in Achiam
et al. (2017) and Geibel & Wysotzki (2005), Geibel (2006). It is also worth to investigate design-
ing reinforcements that generate market making policies that actually add liquidity instead
of just speculative policies.

One thing that we note here is that, in practice, the utility function U , which coincides with
the reward function R, are also constantly evolving - investor preferences are directly affected
by parameters like alphas, volatilities. They must be calibrated simultaneously alongside the
value function.

Example of Bad Convergence The following figures illustrate the bid and offer proposed
for different configurations of constant wealth positions, per quantity in the ETF q and in the
underlying h. As we can see, bad convergence leads to clearly wrong policies.



59

−2,000−1,000 0
1,000 2,000−2,000

0

2,000

8

1

5

·10−4

−2,000−1,000 0
1,000 2,000−2,000

0

2,0001

8

·10−4

Figure 1: Bid-Offer spreads from policy implied by value function approximation (bad conver-
gence)

The resulting value function display tendency to favor extreme positions, clearly display-
ing lack of equilibrium - greedy policies derived from such policy would actual rogue trading
algorithms.
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Figure 2: Value function approximation for constant wealth (bad convergence)

Example of Good Convergence The following figures display the value of a null position
and a hedged position, as the learning progresses, under TD(0.3). Over the long term, the
value tends to roughly the same values, regardless of initial conditions, and any differences
would account for a preference between being hedging (by crossing the spread on the under-
lying) or liquidating (unwinding the position by trading the ETF itself).
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Figure 3: Convergence of the value V ∗ for the null position [0,100,0,0,0] and a hedged position
[0,100,0,2000,-2000]
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Figure 4: Convergence of the value V ∗ for $1000 null position [1000,100,0,0,0]

Next, we can observe that the TD(0.3) policies recommend a constant spread of 1 basis
point for both the bid and the offer, while opportunistically hedging any downside in order to
maximize profits.
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Figure 5: Bid-Offer spreads from TD(0.3) policy for constant wealth case
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Figure 6: Bid-Offer spreads from TD(0.3) policy for zero cash case
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Figure 7: Hedging in TD(0.3) policy for constant wealth and the zero cash cases
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Conclusion
The goal of this thesis was to provide the reader with the step-by-step thought process around
the complexity of market making problems grounded on a solid mathematical and computa-
tional framework, and how to solve them using Reinforcement Learning methods. In parallel,
we tried to foment a formal discussion on mathematical models for ETFs, usually treated
pragmatically but in a somewhat limited way by the industry, while inviting academics to
contemplate other surprisingly interesting financial products. Reinforcement Learning has
been a very solid area of research with many decades of published works, which are now
seeing successful practical applications in diverse areas, thanks in large scale to the continu-
ous increasing of computational power and the availability of massive datasets. There many
promises but also many pitfalls due to the very particular nature of algorithmic trading prob-
lems. Understanding convergence and robustness of the obtained policies are essential to the
successful applicability of RL in high frequency trading and electronic market making. We
hope that the arguments and directions that we provided are able to help paving the way for
future applications in finance.
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