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Abstract

This thesis focuses on the financial application of the Algorithmic Differentiation method (AD)

to compute sensitivities of option prices and CVAs. The emphasis was put on Basket and Bermudan

options as there are no other fast methods to compute their Greeks and CVA sensitivities. All the

numerical results were obtained using an application built in C++ for the occasion.
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1 Introduction

Since the financial crisis, institutions can no longer neglect credit risk and as such, market

practices have considerably changed. Estimate first order derivatives of financial products’ prices

has become one of the biggest computational challenge. Therefore, discovering new ways to quan-

tify efficiently sensitivities of financial instruments has become the cornerstone of risk management

practices.

Additionally, institutions need to measure counterparty credit risk, leading to the notion of

Credit Valuation Adjustment (CVA). Pricing a derivative and quantifying a CVA are closely linked.

Indeed, CVA is obtained by pricing the counterparty risk of a deal using the same type of methods

as those used to price financial products [1]. As such, the notion of CVA’s sensitivities has emerged

and is also crucial for hedging purposes.

The most widespread pricing techniques on financial markets are undoubtedly Monte-Carlo

based methods as they are often the only way to price complex financial products. In parallel,

sensitivities are mostly estimated using finite-differences methods. Even though these methods can

be used where no other numerical methods would work, their main drawback is that they are very

computationally expensive. In addition to this, the more sensitivities one wants to compute the

longer the computation time will be.

In this context, the Algorithmic Differentiation (AD) method has become a hot topic in Fi-

nance as it enables to compute price and greeks of complex options saving computational time

and without any loss in precision. Indeed, with AD, results are computed with no theoretical

approximation: the only barrier is the machine precision level. The speed of this method is also

very impressive as it enables to compute the function value and all its first order derivatives

using only the time needed to compute 3 or 4 function values [19]. This result is all the more in-

teresting that it is true no matter the number of derivatives computed (only one or ten thousands) !

However, the AD method is not free of drawbacks. Indeed, even if it enables to decrease im-

pressively the time of computation, the method is memory consuming. Indeed, the technique is

very expensive in terms of memory used as one needs to keep track of a lot of variables to com-

pute efficient adjoint differentiations. Therefore the coding part of this method is quite challenging.
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We make the choice to perform all the coding part in C++. While we could have used any

object oriented programming language, C++ has features very powerful when computing the AD

method. Indeed, C++ is known to be extremely fast and enables to manage memory allocation

manually (which is not the case of Java for example). As memory management is the main chal-

lenge while coding the AD method, we have chosen to use C++ for all the simulations. Moreover

the use of operator overloading often makes the AD coding part easier.

Again, as the price of financial products and their CVA are closely linked, the AD method

applies very similarly to options and CVAs. Nevertheless, credit valuation adjustments are more

complex instruments and thus require more simplifications and assumptions. This is why it is

essential to have a good understanding of the Algorithmic Differentiation framework on option’s

prices before being able to apply it on CVAs.

Finally, we organize this thesis along four axis. First, we will describe the mathematical frame-

work underlying the AD method. This step is crucial as the AD method is not only used in Finance

and can be applied to compute the derivatives of any function. Secondly, we will explain how the

AD method operates on financial products especially on European vanillas, Basket and Bermudan

options, and their CVAs. The numerical results obtained with this method will be provided as

well as relevant benchmarks. Then, we will highlight axis of research to apply the AD method

under less assumptions to cope with the reality observed on financial markets (to take into account

Wrong Way Risk on CVA for example). Finally, the last section will focus on the architecture of

the C++ code. The design of this code was thought to be easily customizable so that new payoffs

and dynamics of underlyings can be added as time goes.
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2 Literature review

This thesis relies on many papers and books which give very important insights to perform the

AD method on both derivatives and CVAs. It is important to note that what we call AD method

in this thesis is also referred as AAD method in the literature. However, the AAD denomination

is unclear and can both stand for Automatic Algorithmic Differentiation or Adjoint Algorithmic

Differentiation.

In principle, the two denominations are not equivalent and what is treated in this thesis (and

referenced as AD method) is closer to the Adjoint Algorithmic Differentiation definition. Indeed,

Automatic Algorithmic Differentiation should refer to algorithms where all intermediate deriva-

tives are also computed using AD while Adjoint Algorithmic Differentiation is more flexible and

authorizes to compute intermediary quantities using finite differences for example. Authors of-

ten do not specify what they call AAD method as the difference is very thin. Nevertheless, it is

worth noting that a proper Automatic Algorithmic Differentiation algorithm is extremely binding

and needs special ”manual” treatments. Therefore, although faster, proper Automatic Algorithmic

Differentiation is rare in the literature.

Mark Henrard’s book entitled Algorithmic Differentiation in Finance explained [19] gives pre-

cious explanations regarding the AD method on simple financial instruments such as European call

options. Therefore this book has been of great help to understand the basic concepts underlying

the AD method. Moreover, this publication details good practices while coding the AD method

with an object oriented programming language. Hence, it was used as inspiration to write the

Mathematical Preliminaries (Section 3) and many coding concepts developed in it were used in

the coding process of this thesis.

The work performed on Basket and Bermudan options in this thesis relies on Mr. Capriotti’s

publications (see [11] and [12]). In one of his paper [11], Mr. Capriotti gives a framework to

compute price and greeks of Bermudan options with the AD method using Monte-Carlo based

algorithms. Moreover, he explains in detail how to perform the AD method on CVA for Bermudan

options. This paper has been a great source of inspiration for this thesis and has been used to

write the sections 4.2 and 5.2.

Finally, this thesis relies a lot on Mr Brigo’s guidance and lecture notes (see [1]). The vast

majority of concepts and notations used, especially regarding CVA, stem from Mr Brigo’s work.

These lecture notes give a recipe for the calculation of CVA and thus many concepts discussed in

it were used in this dissertation.
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Even if this thesis focuses mainly on the application of the AD method on options’ prices and

XVAs under strong assumptions (especially under independence between the time of default and

options’ payoff), we have undertaken further research. Indeed, the framework to quantify CVA’s

sensitivities is often too simplistic and one should take into account collateralization and Wrong

Way Risk (WWR).

The reference [4] should be cited as it explains what happens to CVA under full collateralization

but with instantaneous contagion at default, leading to sizeable gap risk CVA even in absence of

explicit jumps in the dynamics.

Moreover, previous works on WWR should be cited as they were of great help to understand

this more realistic XVA framework. We give a short list here:

• WWR on CDS without collateral: [8];

• WWR on Credit products (CDS) with collateral and gap risk: [4];

• WWR on rates: [6];

• WWR on rates with collateral: [5];

• WWR on commodities (Oil): [7];

• WWR on equity: [2].
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3 Mathematical preliminaries

At first, the Algorithmic Differentiation (AD) method was not created directly for financial

applications. Indeed, this is a very general method that can be applied on any function in order

to compute its partial derivatives. Therefore, it is crucial to understand how the method can

be applied on an arbitrary function in order be able to use it in more complex contexts such as

Finance.

3.1 Mathematical framework

The AD method is meant to provide the partial derivatives of any function and is based on a

very simple mathematical concept: the chain rule for the composition of functions.

Definition 3.1 (Chain rule). Let f : R→ R and g : R→ R be C1 functions. Then,

(fog)
′

= (f
′
og)g

′
.

There are two ways to apply the AD method, which only differ according to the manner the

chain rule is performed. We call these two versions of the Algorithmic Differentiation: forward

and backward/adjoint accumulations (or modes).

Definition 3.2 (Forward mode). Let n be an integer and fn : R→ R be C1 functions.

∀n, fn(xn) = xn+1.

The Algorithmic Differentiation’s forward mode describes the following recursive relation:

δxi
δx0

=
δxi
δxi−1

δxi−1

δx0
=

δxi
δxi−1

δxi−1

δxi−2

δxi−2

δxi−3
...
δx2

δx1

δx1

δx0
. (3.1)

Definition 3.3 (Adjoint mode). Let n be an integer and fn : R→ R be C1 functions.

∀n, fn(xn) = xn+1.

The Algorithmic Differentiation’s adjoint mode describes the following recursive relation:

δxi
δx0

=
δxi
δx1

δx1

δx0
=
δxi
δx2

δx2

δx1

δx1

δx0
=
δxi
δx3

δx3

δx2

δx2

δx1

δx1

δx0
= ... (3.2)

Remark 3.4 (Notations). Let f : R→ R be a C1 function and x in R.

In the following sections we will use the notations below:

ḟ =
δf

δx
x =

δf

δx
.
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3.2 Application of the forward and backward modes

The AD method is highly visual and therefore can be easily understood on a simple example.

Hence, this section highlights how the two modes would apply to a simple function. As they stem

from the same underlying concept (a.k.a chaine rule), the two versions are of course equivalent.

3.2.1 Application of the forward accumulation

Consider the following function:

z = f(x, y) = log(cos(y) + exp(x+ 1)).

We are interested in the partial derivative of f with respect to x. Hence, we apply the AD

method in forward mode to obtain it. First, we need to decompose the function in order to write

z = f(x, y) as the composition of several functions (step 1). Then, we can apply the Forward

Algorithmic Differentiation according to the recursive relation 3.1 as explained in step 2:

1) Function decomposition 2) Forward accumulation

a = x+ 1 ȧ =
δa
δx = 1.0

b = y ḃ =
δb
δx= 0.0

c = exp(a) ċ =
δc
δx=

δc
δa
δa
δx= ȧc = c

d = cos(b) ḋ =
δd
δx=

δd
δb ḃ = 0.0

e = c+ d ė =
δe
δc
δc
δx+

δe
δd
δd
δx= ċ+ ḋ = c

f = log(e) ḟ =
δf
δe

δe
δx=

ė
e=

c
e

Table 1: Forward Algorithmic Differentiation on a multivariate function

3.2.2 Application of the adjoint accumulation

Consider again the following function:

z = f(x, y) = log(cos(y) + exp(x+ 1)).

The same way as before, we apply the AD method in adjoint mode on f to obtain δf
δx . Again,

we need to decompose the function and apply the Adjoint Algorithmic Differentiation on this

segmentation according to the recursive relation 3.2:
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1) Function decomposition 2) Adjoint accumulation

a = x+ 1 f = 1.0

b = y e =
f
e=

1
e

c = exp(a) d = e =
1
e

d = cos(b) c = e =
1
e

e = c+ d b = −d sin(b)

f = log(e) a = cc =
c
e

Table 2: Adjoint Algorithmic Differentiation on a multivariate function

3.2.3 Equivalence between the two modes

The two previous computations give the same results, giving a good intuition of the equivalence

between the two modes. In both cases, the derivative of z with respect to x is given by:

δz

δx
=

exp(x+ 1)

exp(x+ 1) + cos(y)
.

Remark 3.5 (Equivalence). Even if the two modes are mathematically equivalent, the adjoint

mode is often preferred in financial applications. Therefore, in what follows we only use the AD

method in its adjoint version. It explains why, on financial markets, this technique is often referred

as Adjoint Algorithmic Differentiation.

3.3 A simple financial application

Now that the general AD framework has been introduced for any multivariate function, we

present on a simple option how this method applies in finance. The main idea is simple: regard

payoffs (or directly prices if a closed-form exists) as multivariate functions of their parameters (e.g

their volatility, strike, time to maturity, etc ...)

The use of the AD method on a basic European Call option in Black-Scholes settings is likely

to be the simplest financial application of this technique. This example closely follows the work of

Marc Henrard in his book Algorithmic Differentiation in Finance explained [19]. European Call

option, as often, is the best way to familiarize with the AD method in a financial framework and

understand the mathematical concepts underlying Algorithmic Differentiation.
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3.3.1 Mathematical development

Definition 3.6 (Black-Scholes Model). Consider a probability space (Ω,F ,P) and let (Wt)t≥0

be a Brownian motion. In the Black-Scholes model, the stock price process (St)t≥0 is the unique

strong solution to the following stochastic differential equation:

dSt
St

= rdt+ σdWt, S0 > 0, (3.3)

where r ≥ 0 denotes the instantaneous risk-free interest rate and σ > 0 the instantaneous volatility.

A European call price Ct(S0,K, σ) with maturity T > 0 and strike K > 0 pays at maturity

(ST −K)+ = max(ST −K, 0). When the stock price follows the Black-Scholes SDE (3.3), there is

a closed form for the price of such option, given by:

C0(S0,K, σ) = S0N (d+)−Ke−rTN (d−),

where

d+ :=
log (S0/K) + (r + σ2

2 )T

σ
√
T

, d− := d+ − σ
√
T .

and where N denotes the cumulative distribution function of the Gaussian random variable.

The AD method on a European call option under Black and Scholes dynamic consists in two

steps. First, we perform a forward sweep and decompose the closed form of the price of a call

option. Then, we work backward using the adjoint mode on this decomposition.

This example gives a very fast way to compute greeks and price of European options as we

do not work on the payoff but directly on the closed form of the price. Thus, no Monte Carlo

simulations are needed and the price and greeks are directly obtained after the backward sweep.

We denote by φ the probability density function of a Gaussian random variable and get a

pseudo-code close to the one given in Mark Henrard’s book [19, page 32-33]:

Price closed-form decomposition Adjoint accumulation

periodV olatility = σ
√
T price = 1.0

d+ =
log(S0/K)+rT
periodV olatility+ 1

2periodV olatility N− = −Ke−rT price

d− = d+ − periodV olatility N+ = S0

N+ = N (d+) d− = φ(d−)N−

N− = N (d−) d+ = φ(d+)N+ + d−

price = S0N+ −Ke−rTN− periodV olatility = (
− log(S0/K)+rT
periodV olatility2 +0.5)d+ − d−

Table 3: Adjoint Algorithmic Differentiation on European call
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We can then access to the Greeks by computing the adjoint of model parameters using a scheme

similar to the one stated by Mr. Henrard [19, page 34]:

Sensitivities AAD method result

δC0

δσ (vega) σ =
√
TperiodV olatility

δC0

δT (-theta) T = re−rTKN−price+ σ
2
√
T
periodV olatility + r

periodV olatilityd+

δC0

δK K = −e−rTN−price− 1
KperiodV olatilityd+

δC0

δr (rho) r = KT e−rTN−price+ T
periodV olatilityd+

δC0

δS0
(delta) S0 = N+price+ 1

S0periodV olatility
d+

Table 4: Greeks using AAD on European call

Remark 3.7 (optimised AD algorithm). An expert eye, would see (running the code) that d+

always equals 0 as highlighted in Algorithmic Differenciation in Finance Explained by M. Henrard

[19]. Therefore we can simplify the previous algorithm, setting d+ = 0. Hence, we get an optimised

AD algorithm (see [19, page 34]).

3.3.2 Computation and results

All the previous mathematical development have been coded in C++. In addition to the im-

plementation of the simple and optimised AD method, we reused a previous algorithm to compute

price and greeks closed forms as well as Monte-Carlo and Likelihood Ratio methods (see Simulation

Methods for Finance coursework [14]). In the table below, we give the price and greeks obtained

with each methods and the computation time needed to estimate all these quantities.

Closed Form AAD method Optimized AAD Likelihood Ratio Method

Price 19.9077 19.9077 19.9077 19.9009

Delta 0.702412 0.702412 0.702412 0.701676

Vega 48.9911 48.9911 48.9911 49.0197

Rho 100.667 100.667 100.667 100.697

Theta -3.56528 -3.56528 -3.56528 -3.6345

Computation Time (s) 0.002 0.003 0.002 3.254

Table 5: European Call Price and Greeks for S0 = 100, r = 0.01, T = 2, σ = 0.25, K = 90 and

NMC = 106 simulations for Likelihood Ratio Method

Even if there exist closed forms for the greeks in this case (and therefore there is no need to

use AD to have accurate and fast results), we can already see with this example the precision and

speed of such method. A more complex payoff would involve more work but the idea remains the

same: first decompose the payoff of the option, then compute the adjoint of each variable involved

in the decomposition to get estimates.



16

4 AD method on financial derivatives

In most of the cases, there are no closed-form formulae for the price of an option. Therefore, the

AD procedure is slightly different and involves a Monte-Carlo simulation on the estimates that

stem from the application of the AD method on the option’s payoff.

4.1 AD method on basket option

In this section we consider a basket option as described in L. Capriotti’s paper [12, page 19].

Definition 4.1 (Simple basket call option). Let’s consider a basket of n stocks S1, ... , Sn with

respective weights ω1, ... , ωn. The payoff for a simple basket call option is given by:

e−rT (

n∑
i=1

ωiS
i
T −K)+.

4.1.1 Payoff decomposition and application of the AD method

In his paper, L. Capriotti provides a pseudo code to compute the AD method on a basket option

([12, page 20]). Nevertheless, this pseudo-code focuses on the payout function which, in general,

has no notion of how the underlyings have been derived (e.g. what SDE was used) and in particular

their possible dependence on interest rate, dividend yield and volatilities etc.

In our framework, whatever model one chooses, the drift will always be the risk free rate r, so

it is model independent to some extent. Hence, under the risk pricing measure, the underlyings

Si depend on r and therefore an additional term has to be added to the computation of r and T

performed in Mr. Capriotti’s paper [12].

Hence we suggest the following application of the AD method on a basket option:

Payoff decomposition AAD method

B = 0.0 price = 1.0

B =
∑n
i=1 ωiS

i
T D = max(x, 0.0) ∗ price

x = B −K x = D ∗ 11{x>0} ∗ price

D = e−rT B = x

price = D ∗max(x, 0.0) SiT = ωiB

Table 6: Adjoint Algorithmic Differentiation on Basket option
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Then we get the following expression for rho, -thetha and vega:

r = −TDD +

n∑
i=1

ωi
δSiT
δr

B,

T = −rDD +

n∑
i=1

ωi
δSiT
δT

B,

σ =

n∑
i=1

ωi
δSiT
δσi

B.

Remark 4.2 (Model dependence). In the previous application of the AAD method,
δSiT
δr ,

δSiT
δT and

δSiT
δσi

depend on the dynamics of the inherent underlying.

In our implementation, we assume that the risk free rate r and the volatility σ are constant.

We consider only two possible dynamics for the underlying stocks (a basket can possibly contain

stocks in different models). The underlying can follow a Bachelier or a Black and Scholes model:

Bachelier model:

dSit = rdt+ σidW
i
T , SiT = Si0 + rT + σi

√
TZi, (4.1)

δSiT
δr

= T,
δSiT
δT

= r +
σiZi

2
√
T
,

δSiT
δσi

=
√
TZi. (4.2)

Black and Scholes:

dSit = rSitdt+ σiS
i
tdW

i
T , SiT = Si0 exp((r − σ2

i

2
)T + σi

√
TZi), (4.3)

δSiT
δr

= TSiT ,
δSiT
δT

= [(r − σ2
i

2
+
σiZi

2
√
T

)]SiT ,
δSiT
δσi

= [
√
TZi − σiT ]SiT . (4.4)

where Z1, ... , Zn are iid standard normal variables.

Remark 4.3 (Computation of delta). The decomposition of the payoff using the AD method

gives SiT = δprice
δSiT

. We would like to have delta (i.e δprice
δSi0

) instead. To get it, we use the following

property:
δprice

δSi0
=
δprice

δSiT

δSiT
δSi0

= SiT
δSiT
Si0

.

We just have to replace the quantity
δSiT
δSi0

(which is model dependent) by the relevant expression

given by:
SiT
Si0

in the Black and Scholes model and 1.0 in the Bachelier model.
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Remark 4.4 (Monte-Carlo methodology). As we work on the option’s payoff and no longer on

the price as in 3.3, we need to perform Monte-Carlo simulations on this previous decomposition to

have the price and greeks of the option.

• 1. Simulate the n underlying stocks S1
T , ... , SnT feeding the basket.

• 2. Decompose the payoff of the inherent basket option as explained before.

• 3. Repeat M times 1. and 2. and average the parameter obtained on these M simulations

i.e parameter = 1
M

∑M
i=1 parameter

i.

4.1.2 Closed-form formulae in the normal case

As a benchmark, we compute the closed-form obtained for a basket option where all underlyings

follow independent Bachelier models (ie independent normal laws).

Let assume that underlyings S1
t , ... , Snt follow respectively independent normal laws with

mean S0 + rt and variance σ2
i t under the pricing measure (see 4.1). Then, using the fact that the

sum of independent normals is a normal variable, we have:

Y =

n∑
i=1

ωiS
i
T  N (

n∑
i=1

ωi(rT + Si0),

n∑
i=1

ω2
i σ

2
i T ).

We define the following quantities:

µy =

n∑
i=1

ωi(rT + Si0), σy =

√√√√ n∑
i=1

ω2
i σ

2
i T , x =

K − µy
σy

.

Then the price of the basket option is given by:

C0 = EQ[e−rT (

n∑
i=1

ωiS
i
T −K)+]

= EQ[e−rT (Y −K)+]

= EQ[e−rT (σyZ − (K − µy))+], where Z is a standard normal random variable,

= e−rT
∫ inf

x

σye
−z2
2 z√

2π
− e−rT (K − µy)N (−x)

= e−rTσyφ(−x)− e−rT (K − µy)N (−x),

where N denotes the cumulative distribution function of the Gaussian random variable and φ

denotes the probability density function of the Gaussian random variable.
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4.1.3 Greeks using pathwise derivatives

Following the methodology given in Simulation Methods Lectures for Finance (SMF) [22], we have

a recipe to compute delta with respect to the ith underlying:

δC0

δSi0
= EQ[e−rT

δ(Y −K)+

δSi0
]

= EQ[e−rT
δ(Y −K)+

δY

δY

δSi0
]

= EQ[e−rT 11{Y >K}ωi] under Bachelier
′smodel.

We can also compute rho as follows:

δC0

δr
= EQ[e−rT

δ(Y −K)+

δr
]− TEQ[e−rT (Y −K)+]

= EQ[e−rT
δ(Y −K)+

δY

δY

δr
]− TEQ[e−rT (Y −K)+]

= EQ[e−rT 11{Y >K}

n∑
i=1

ωi
δSiT
δr

]− TEQ[e−rT (Y −K)+]

= e−rTEQ[11{Y >K}

n∑
i=1

ωiT − T (Y −K)+] under Bachelier′smodel.

We can then apply Monte-Carlo framework to have a good benchmark for our greeks’ compu-

tations.

4.1.4 Numerical results

We performed NMC = 1.000.000 Monte-Carlo simulations to compute the price and greeks of a

basket option with expiry T = 2.0 and strike price K = 88 built on 3 stocks following independent

Bachelier’s model under a constant risk free rate r = 0.01. We give the volatility and initial price

of each underlying stocks:

σ1 = 0.25 σ2 = 0.3 σ3 = 0.1,

S1
0 = 100.0 S2

0 = 82.0 S3
0 = 97.0.

The results are presented in the table next page and highlight the strength of the AD method: no

loss in precision and a speed which does not depend on the number of Greeks computed !
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AAD method Closed Form

Price 478.453 478.455

Sensitivity wrt 1th stock in Basket 2.9406 2.9406

Sensitivity wrt 2nd stock in Basket 0.980199 0.980199

Sensitivity wrt 3rd stock in Basket 1.9604 1.9604

Rho -945.143 -945.141

Theta 4.72615 not computed

Vega -0.00810242 not computed

Computation Time (s) 8.046 10.127

Table 7: Basket Price and Greeks

In this simulation we see that the AD method is very accurate and extremely fast. Indeed, to

compute the price and 6 Greeks, the AD method is faster than the Pathwise Derivative approach

to compute only 2 Greeks !

4.2 AD method on Bermudan option

Luca Capriotti ([11]) gives a framework to understand the computation of the AD method on any

Bermudan option. We recall that a Bermudan option can be exercised at several fixed dates deter-

mined in the contract. The idea is similar to what we have done previously on basket options but

the optimality of the boundary makes the decomposition of the payoff and therefore the Monte-

Carlo computation far more complicated. The balance between computation time and memory

management is also very challenging and will be discussed.

Hence, this section follows Mr Capriotti’s work and we use mostly the notations introduced in

his paper [11, page 38-42]. Nevertheless, we try to highlight simplifications that can be performed

and particular choices that are made in our case.

As always, when using AD method, there are two steps: the payoff decomposition and then the

backward induction.

As in the previous section, the code inherent to this section enables to choose the dynamic

of the underlying. For sake of clarity, we only detail here the particular case of an underlying

following a Black-Scholes model.



4.2 AD method on Bermudan option 21

4.2.1 Forward sweep: pricing techniques

Let’s consider an arbitrary Bermudan option built on an underlying asset St following a Geometric

Brownian motion

dSt = rStdt+ σStdWt, X0 = x > 0.

We consider that this option expires at time T . The option can be exercised at M discrete

times T1, ... , TM which constitute our discretized time grid of [0, T ].

In what follows, Em denotes the payoff of the function at time Tm. We also denote by V nm the

price of the Bermudan option at time Tm for the nth Monte-Carlo simulation.

Remark 4.5. We work under a constant risk free rate r. Therefore the numeraire Ni at time Ti

does not depend on the simulation nor the time grid i.e:

Nn
1 = ... = Nn

M = e
−rT
M .

The main idea to price Bermudan option is simple (and is developed in greater details in the

literature [22]). One has to find the hold value at all times Tm i.e the continuation value if the

Bermudan option is not exercised at time 0. Then, the option is exercised at time Tm only if the

exercise value Em is greater than the hold value Hm. Therefore, the price of the option at time

Tm is only the maximum between the hold value Hm and the exercise value Em.

Regression based algorithms are meant to estimate the hold value Hm at any time Tm rather

than finding its exact value. As stated in Capriotti’s paper [11], the hold value is estimated

by a regression on a vector of basis functions ψ(x). Therefore, β being the vector of regression

coefficients, the estimate of the hold value will be:

Hm(x) = βTψ(x).

The main challenge of such method is to find basis functions giving accurate results on a large

range of assets. This topic will be discussed later in 4.2.2. Below, we state the methodology to

price such Bermudan option, following Mr. Capriotti’s paper [11].

1. We first simulate NMC independent paths of an underlying following a GBM [11, step (R1)

page 38]. To do this, we use the Euler Method to generate paths i.e:

∀m ∈ [0,M ], Snm+1 = Snm + rSnmh+ σSnm
√
hZnm,

where h = T/M , n is the nth Monte-Carlo simulation, Znm are iid standard normal random vari-

ables.
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2. We then work backward for every simulated paths (ie for every n=1, ..., NMC) [11, steps

(R2) and (R3) page 38].

• We first set V nM = EnM .

Then working backward for m = M − 1, .., 1, we do the following:

Ψm =
1

NMC

NMC∑
i=1

ψnm(ψnm)T ,

Ωm =
e
−rT
M

NMC

NMC∑
i=1

ψnmV
n
m+1,

where ψnm denotes the value of the vector of basis functions used to perform the regression

evaluated at Smm i.e at time Tm and for the nth simulation.

• We then compute the regression coefficients:

βm = Ψ−1
m Ωm.

• And estimate the hold value:

Hn
m = βTmψ

n
m.

3. Finally, we have to choose one of the 3 following estimates of the option’s value [11, step

(R4) page 38]):

• Longstaff and Schwartz [11]:

V nm =

E
n
m if Enm > Hn

m

V nm+1e
−rT
M otherwise.

Then the Monte-carlo estimate of the option price is given by:

V0 =
1

NMC

NMC∑
n=1

V n1 e
−rT
M .

• Classic Regression based Monte-Carlo [11]:

V nm = max(Enm, H
n
m).

Then the Monte-carlo estimate of the option price is given by:

V0 =
1

NMC

NMC∑
n=1

V n1 e
−rT
M .
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• Lower bound algorithm for Bermudan-style options [11]:

Compute the path-wise estimator for the discounted cashflows of the option:

Pn =

M∑
m=1

[(

m−1∏
m=1

11Hni >Eni )11Hnm<Enme
−mrT
M Enm].

Then the Monte-carlo estimate of the option price is given by:

V0 =
1

NMC

NMC∑
n=1

Pn.

4.2.2 Choice of basis functions

We use regression based methods in order to price Bermudan-style options. The first issue trig-

gered by such methods is the choice of the basis functions denoted by the vector ψ. One needs to

take an orthogonal polynomial basis in order to be able to price complicated options.

An Hermite polynomials basis was chosen as it fulfills all requirements. We constructed the

basis as follows:

H0(x) = 1.0 H1(x) = 2x Hn(x) = 2xHn−1(x)− 2(n− 1)Hn−1(x)

One needs to be careful when choosing the number of basis functions to find the best fit. On

the one hand, a lack of basis function triggers underfitting issues and therefore lead to inaccurate

regression results. On the other hand, too many basis functions brings overfitting problems. More-

over, the more basis functions the slower the algorithm will be.

Therefore, an analysis had been performed separately on every options treated in order to find

the right balance between goodness of fit and reasonable computation time. In the Bermudan

vanilla case, the best trade-off is obtained with 3 basis functions while for the best of two assets

case 13 basis functions are needed.

Results which led us to the choice of 3 basis functions are given in the table below for the

Bermudan Put case using a Binomial tree as benchmark [14]:

2 basis 3 basis 5 basis 10 basis Binomial Tree

Price 12.3294 13.0096 11.5158 11.3083 13.0676

Table 8: Bermudan Put price for S0 = 100.0, r = 0.05, T = 1.0, σ = 0.4, K = 100.0
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4.2.3 Comparison of the different pricing techniques on Bermudan put

We consider the previous framework and work on a Bermudan put option with payoff Enm =

(K − Snm)+.

We have implemented the 3 methods explained previously [11] for this option and compared the

results. We have chosen 3 basis functions as it appeared to be the best balance between accuracy

and computation time.

In our simulations, the expiry date is three years (T = 3.0) and we can exercise the option

every 3 months (M = 12). We consider also that S0 = 1.0, σ = 0.2, r = 0.15.

We then run simulations for K = 0.9, K = 1.0, K = 1.1 and for NMC = 500.000 Monte Carlo

simulations.

Option Value Computation Time

K = 0.9 0.0195459 50.721 seconds

K = 1.0 0.0434925 51.521 seconds

K = 1.1 0.0907178 52.862 seconds

Table 9: Classic Regression Based-Monte Carlo

Option Value Computation Time

K = 0.9 0.0159796 50.531 seconds

K = 1.0 0.0410524 51.611 seconds

K = 1.1 0.0894568 52.141 seconds

Table 10: Longstaff and Schwartz

Option Value Computation Time

K = 0.9 0.0162559 51.81 seconds

K = 1.0 0.0410968 53.767 seconds

K = 1.1 0.0893994 54.998 seconds

Table 11: Lower-bound algorithm

Option Value

K = 0.9 0.0157926

K = 1.0 0.0421816

K = 1.1 0.1

Table 12: Binomial tree

We used the implementation of the Binomial Tree method from the coursework submitted in

SMF [14] in order to benchmark our results. If the number of nodes is not too important, the

Binomial Tree method is of course faster than Monte-Carlo based methods. Therefore on this

example with 12 exercise dates, comparing the computation time of Monte-Carlo methods to the

Binomial Tree is totally irrelevant.

The previous tables highlight that Longstaff and Schwartz estimate seems to give slightly more

accurate results than the other methods. Therefore we use this technique in our implementation

of the forward sweep in the AD method.
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4.2.4 Backward sweep

Even if all the previous pricing techniques can be used in the AD method (and have been imple-

mented), as the Longstaff and Schwartz is the most accurate method, we will only develop in this

section the backward sweep on this estimate of the option value to obtain the Greeks.

To have further details regarding the methodology underlying the use of the two other esti-

mates in the backward sweep of the AD method (especially using the Lower-Bound algorithm),

please refer to Mr. Capriotti’s paper [11, pages 42-44]. The three resulting AD methods have been

implemented and the code architecture enables to choose which method the user wants to use.

The following steps have been also largely inspired by Capriotti’s paper [11, page 44] and give

the methodology to obtain the adjoint of models parameters.

• First, we initialize the adjoint of the option value, models parameters and regression coeffi-

cients. Their values are given by: V0 = 1.0, σ = 0, S0 = 0 and βm = 0 for m = 1, ...,M − 1.

[11, step (R4) page 44]

We then set for n = 1, ..., NMC :

V
n
1 = V0

NMC
e
−rT
M

Nn
1 = − V0

NMC
V n1 e−

2rT
M .

• For m = 1, ...,M − 1, we compute [11, step (R3) page 44]:

∀n,

E
n
m = V nm11Enm>Hnm

Hn
m = V nm11Enm<Hnm ,

Snm = Enm
δEnm
δSnm

.

Remark 4.6. The quantity
δEnm
δSnm

depends on the payoff of the option considered. In the

numerical examples, we will explain how we obtain this quantity using the AD method on

the payoff Enm.

• We then compute, as in [11, (R3) page 44], the adjoint the basis functions ψnm and update

the adjoint of β as follows:

β̄m+ =

NMC∑
n=1

ψnmH
n
m,

ψnm = βmHn
m.
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Finally we compute the adjoint of the variables Ωm and Ψm setting:

Ωm = Ψ−Tm βm, Ψm = −Ωmβ
T
m.

• For n = 1, ..., NMC , as in [11, (R3) page 44] compute or update:

ψnm+ =
1

NMC
e
−rT
M V nm+1Ωm,

V nm+1 =
1

NMC
e
−rT
M (ψnm)TΩm,

ψnm+ =
1

2NMC
(Ψm + (Ψm)T )ψnm,

Snm+ = Ψm
δΨm

δSnm
.

Remark 4.7. Computing efficiently the quantity δΨm
δSnm

is quite challenging if we want to save

memory. We decided to compute it as follow:

δΨm

δSm
=

δΨm

δVm+1

δVm+1

δEm+1

δEm+1

δSm+1

δSm+1

δSm
,

δVm+1

δEm+1
= 11Em+1>Hm+1

,

δΨm

δVm+1
=

1

NMC
e
−rT
M Ωm,

δSm+1

δSm
= 1.0 + rh+ σ

√
hZm+1.

Again the quantity δEm+1

δSm+1
depends on the payoff of the option and is treated in numerical

examples. Note that the quantity
δSnm+1

δSnm
will in general depend on the dynamic of the

underlying (and therefore of the Euler Path expression).

• Finally, as in [11, (R3) page 44] we compute:

SnM = V nM
δEnM
δSnM

.

• We then get the greeks [11, (R1) page 44], by differentiating the Euler path with respect to

the desired parameter as follows:

∀m ∈ [|0,M |], Snm+ = Snm+1[1.0 + rh+ σ
√
hZnm].

Then,

S0 =
1

NMC

NMC∑
n=1

Sn0 ,

Similarly,

∀m ∈ [|0,M |], σ+ =
1

NMC

NMC∑
n=1

Sm+1
n[
√
hSnmZ

n
m].
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4.2.5 Example of a Bermudan put

We coded carefully the general steps developed above, the only step ”specific” to the option’s

payoff being the computation of δEm+1

δSm+1
. We computed this quantity using the AD method on the

payoff (to cope with the rules of Automatic Algorithmic Differentiation) as follows:

Payoff decomposition AAD method

u = Snm p = 1.0

v = K − u v = 11{v>0}p

p = max(v, 0) u = δEm
δSm

= −v

Table 13: Adjoint Algorithmic Differentiation on Put payoff

In our simulations, the expiry date is 3 years (T = 3.0) and we can exercise the option every

three months (M = 12). We consider also that S0 = 1.0, σ = 0.2, r = 0.15, K=0.9. Moreover we

have used an extended binomial tree as a benchmark of our results [14]:

AD method Extended binomial tree

Price 0.0159705 0.0157926

Delta -0.191629 -0.195008

V ega 0.285818 0.293983

Table 14: AD method on Bermudan Put with 50.000 Monte-Carlo simulations

4.2.6 Example of a Bermudan best of two assets (put/call)

We also considered a Bermudan call best of two assets option [11, page 44] built on two underlyings

S1 and S2. The payoff of this option at exercise date Tm is given by:

(max(S1(Tm), S2(Tm))−K, 0.0)+.

The method previously detailed is very general and therefore can be applied to such payoff.

Only two steps should be modified to take into account the fact that this payoff implies the use of

two underlyings.

First, Hermite polynomials cannot be used anymore as basis for the regression, therefore, we

decided to use the following polynomial basis as in [11, page 45]:

1, S1, S2, S1S2, S
2
1 , S

2
2 , S

3
1 , S

3
2 , S1S

2
2 , S2S

2
1 .
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And we added to this basis the following polynomial functions of the payoff [11, page 45]:

(max(S1, S2)−K, 0.0)+, ((max(S1, S2)−K, 0.0)+)2, ((max(S1, S2)−K, 0.0)+)3.

Finally, we needed to adapt the computation of δEm
δSm

using AD as follows:

Payoff decomposition Adjoint method

u = S1
m p = 1.0

v = S2
m y = 11y>0p

w = max(u, v) w = y

y = w −K v = δEm
δS2
m

= 11{v>u}w

p = max(y, 0) u = δEm
δS1
m

= 11{u>v}v

Table 15: Adjoint Algorithmic Differentiation on Put payoff

Similar work (modulo a change of basis and of sign in the computation of δEm
δSm

) has been

performed on the Bermudan put best of two assets option. We performed our simulations with the

following parameters: S1
0 = 90, S2

0 = 100, K = 100, r = 0.04, T = 1, σ = 0.4, M = 50 and 13 basis

functions. The results obtained with these two options after 100.000 Monte-Carlo simulations are

given in the tables below:

AD method Monte-Carlo/FD

Price 7.98615 8.04129

δPrice
δS1

0
-0.207099 -0.202373

V ega 18.0393 18.18032

Table 16: Bermudan Best of two Put

AD method Monte-Carlo/FD

Price 26.1643 26.1464

δPrice
δS1

0
0.155386 0.158404

V ega 47.3297 47.1026

Table 17: Bermudan Best of two Call

To benchmark our results, we also simulate the Bermudan best of two assets put with S1
0 =

S2
0 = 1.0, and using the same random numbers to simulate both paths. Hence, the paths generated

for S1 and S2 are identical. Therefore, in this settings we get a Bermudan put option built on S1

for example. The following table gives the results obtained:

Best of two Assets Put Bermudan Put Extended Binomial Tree

Price 0.0157612 0.0157905 0.0157926

Delta -0.188449 -0.191629 -0.195008

V ega 0.300706 0.285818 0.293983

Table 18: Comparison of the different methods with S1
0 = 1.0, S2

0 = 1.0, K = 0.9, r = 0.15,

T = 3.0, σ = 0.2, M = 12 and 13 basis functions.
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Results are accurate and stable. The computation time needed to compute the price and the

greeks is approximatively equivalent to 3 times the time needed to just price the option. This fact

remains true if we increase the number of greeks computed as the only limit is the memory of your

computer ! Therefore, AD is extremely powerful when one wants to compute more than 10 greeks:

the computation time involved remains the same when computing one or ten thousands greeks.

We worked on Bermudan vanilla options in one or two dimensions. One should notice that

the framework created would remain the same for more complex Bermudan options and the AD

method would become the only reasonable way to price and quantify sensitivities of such options

as Finite Difference algorithms would involve hours of computations.

We extend our work on options’ prices in the next sections, using similar AD framework on

Credit Valuation Adjustments (CVA). To be able to perform AD computations under such financial

instrument, we will work on strong assumptions namely:

• Unilateral counterparty risk: only one counterparty is risky, the other is default-free.

• Independence between the time of default and the equity payoff.

Even if one could argue that this framework is not realistic while applied to ”real” financial

markets, it enables to obtain interesting theoretical results and convincing numerical computations.
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5 AD method on CVA

The AD method can be applied very similarly to CVA. However, the complex structure of this

financial instrument makes the decomposition of the CVA expression for the forward sweep more

challenging than for options’ payoff. Therefore, we first begin with the simplest case of a non-

Bermudan option with a positive payoff giving birth to many simplifications in our calculations.

Then, we will treat the general Bermudan case. In this section, we always consider a unilateral

CVA setting.

5.1 CVA of non-Bermudan options with positive payoff

5.1.1 Hypothesis and notations

The notations used in this section stem from D. Brigo lectures notes [1]. As in the latter, we will

call the ”default-free” inverstor ”B” and ”C” the risky counterparty who may default. Therefore,

we decide to work in an unilateral counterparty risk setting.

πB(t, T ) will denote the discounted payoff without default risk seen by ”B”. Therefore it will

be the sum of all future cashflows between t and T discounted back to t (see [1]).

In what follows, we consider European call or Basket options with maturity T so that πB ≥ 0.

Indeed,

πB(t, T ) = e−r(T−t)(ST −K)+ or πB(t, T ) = e−r(T−t)(

n∑
i=1

SiT −K)+.

Hence we write πB(t, T ) = e−r(T−t)Payoff+.

We model the default time of ”C” using a stochastic intensity model (without jumps) and

assume independence between the counterparty default time and the contract underlying.

5.1.2 Intensity model used

We make the assumption that the default time τ is exponentially distributed. We denote the

default intensity at time t by λt and the associated cumulated intensity by Λt =
∫ t

0
λsds.

Then, as defined in [1, slide 666], τ is the inverse of the cumulated intensity on an exponential

random variable ξ with mean 1 and independent of λ.

τ = Λ−1(ξ).
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We also recall that:

Q(ξ > x) = e−x and Q(ξ < x) = 1− e−x. (5.1)

5.1.3 Useful property

The following property will be of great help in our computations and stem from [1, slide 669]:

Q(τ > t) = Q(Λ−1(ξ) > t)

= Q(ξ > Λ(t))

= E[Q(ξ > Λ(t)|Λ(t)] using Tower and independence properties

= E[e−Λ(t)]

= E[e−
∫ t
0
λsds].

5.1.4 Default intensity SDE

We assume that λ follows a CIR process without jumps (to ensure positiveness of λt as it can be

seen as the local probability of defaulting around t).

dλt = k(µ− λt)dt+ ν
√
λtdωt with 2kµ > ν2. (5.2)

Therefore, we discretize [0, T ] and, using Euler scheme to simulate paths on the discrete time grid

T1, ... , TM , we simulate the intensity process as follows:

λti+1
= λti + k(µ− λti)h+ ν

√
λti
√
hZi,

where h = T
M and Zi are iid standard normal variables.

5.1.5 Default Bucketing approximation

The default bucketing technique will enable to benchmark our CVA results. Again, this technique

relies on our discretization of the interval [0,T ] into M segments of equal length determined by the

following times: T1, ... , TM = T . Then we proceed following Mr. Brigo’s guidance [1, slide 860]:

CV A(0) = LGDE0[11τ<T e−rτ (Eτ [π(τ, T )])+]

= LGDE0[

M∑
j=1

11τ∈(Tj−1,Tj ]e
−rτEτ [π(τ, T )]] , as π(τ, T ) ≥ 0

≈ LGD
M∑
j=1

E0[11τ∈(Tj−1,Tj ]e
−rTjETj [π(Tj , T )]]

= LGD

M∑
j=1

E0[ETj [11τ∈(Tj−1,Tj ]e
−rTPayoff+]]
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CV A(0) = LGD

M∑
j=1

E0[11τ∈(Tj−1,Tj ]e
−rTPayoff+]

= LGD

M∑
j=1

E0[11τ∈(Tj−1,Tj ]]E0[e−rTPayoff+], τ |= Payoff+

= LGD

M∑
j=1

Q(τ ∈ (Tj−1, Tj ])PriceOption0.

Therefore we just need to estimate Q(τ ∈ (Tj−1, Tj ]) = Q(τ > Tj−1) − Q(τ > Tj). This is

straightforward as,

∀m ≤M, Q(τ > Tm) = E0[e−
∫ Tm
0

λsds]

≈ E0[e−
∑m−1
j=0 λj(Tj+1−Tj)]

≈ 1

NMC

NMC∑
i=1

e−
∑m−1
j=0 λij(Tj+1−Tj).

Hence using the relevant value for PriceOption0 we get easily the CVA of Call, Basket or other

options with positive payout.

5.1.6 Application on the CVA of an European call option

We start with the following expression obtained while computing CVA using default bucketing

method:

CV A(0) = E0[LGD

M∑
j=1

11τ∈(Tj−1,Tj ]e
−rT (ST −K)+].

Before being able to perform the AD method on this expectation, we need a little bit of work

to obtain an adequate form to perform the forward decomposition (first step of the AD method).

First, we need to exhibit the dependence of 11τ∈(Ti−1,Ti] to λ in order to compute δCV A
δλ .

First note that,

11{τ∈(Ti−1,Ti]} = 11{τ>Ti−1}11{τ<Ti}.

Moreover,

11{τ>Ti−1} = 11{Λ−1(ξ)>Ti−1}

= 11{ξ>Λ(Ti−1)}

= 11
{ξ>

∫ Ti−1
0 λsds}

≈ 11{ξ>
∑i−1
j=1(Tj−Tj−1)λj} = 11{ξ>bi}.
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Similarly,

11{τ<Ti} = 11{ξ<ai}

with ai =
∑i
j=1(Tj − Tj−1)λj and bi =

∑i−1
j=1(Tj − Tj−1)λj .

Remark 5.1 (Simulation of exponential variable). We simulate the exponential variable ξ using

the inverse transform method. First, we simulate a uniform random variable on [0,1] called U .

Then,

ξ = F−1(U) = − log(U).

Hence we can estimate 11ξ>bi and 11ξ<ai for every i.

The idea behind this decomposition of the indicator function is to exhibit its dependence to

λ. Then, we will be able to calculate the adjoint of ai and bi in order to get the adjoint of λ and

therefore δCV A
δλ .

The AD method applies as follows to compute δCV A
δλ :

u = ST

v = u−K

w = max(v, 0.0)

p = e−rTw

ai =

i∑
j=1

(Tj − Tj−1)λj ∀i

bi =

i−1∑
j=1

(Tj − Tj−1)λj ∀i

x =

M∑
i=1

11ξ<ai11ξ>bi

y = LGDxp

y = 1.0

x = LGDpy

bi =


−1
2δ 11ξ<aix if bi ∈ [ξ − δ, ξ + δ]

0 otherwise

ai =


1
2δ11ξ>bix if ai ∈ [ξ − δ, ξ + δ]

0 otherwise

λ0 =

M∑
i=1

(T1 − T0)[ai + bi]
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with δ the regularization parameter to approximate the indicator function by the following:

11ai>ξ ≈


0 if ai ≤ ξ − δ

ai
2δ + c if ai ∈ [ξ − δ, ξ + δ]

1 if ai ≥ ξ + δ

and similar work have been done for 11bi<ξ

5.1.7 CVA closed-form

Limitation of the method previously used

To compute ai and bi we had to smoothen the indicator function so that it becomes continuous

and we can somehow differentiate it.

The main concern with this approach is that we have to choose the regularization parameter δ

so that the function is ”continuous enough” but choices of ”big δ” would not represent an indicator

function anymore. Therefore the result is very dependent on the choice of δ and thus not really

satisfactory.

Even though the AD method is very fast compared to the use of the finite difference method

to compute δCV A
δλ , it is very dependent on the choice of the regularization parameter δ and a good

choice of δ seems purely qualitative.

To get rid of this dependence on the regularization factor, one could suggest to approximate

the Dirac function by a gaussian with very little variance but again the results are very dependent

on the variance chosen and therefore results are not satisfactory.

The idea is to change the filtration under which we compute the CVA in order to get rid of the

indicator function in the expression of the CVA.

Change of filtration and closed-form computation

Let’s denote the filtration of default-free market variables by Ft and assume:

Gt = Ft ∪ (∪iσ(τi ≤ u, u ≤ t)

with i indexing the default times of the system [1, slide 837].
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Hence, following the notations from Mr. Brigo’s lecture notes [1] and using the same type of

intensity model 5.1.2, we get the following expression for the CVA by using the tower property:

CV A(0) = LGDE0[11τ<T e−rτ (Eτ [π(τ, T )])+]

= LGDE0[11τ<T e−rτ (Eτ [e−r(T−τ)Payoff+])+]

= LGDE0[Eτ [11τ<T e−rτe−r(T−τ)Payoff+]]

= LGDE0[11τ<T e−rTPayoff+].

We then use the immersion hypothesis meaning that we switch from filtration G to filtration

F. Indeed switching to the filtration F will transform 11τ>t into its F expectation e−Λ(T ) as explain

in 5.1.3 [1].

CV A(0) = LGDE0[E[11τ<T e−rTPayoff+|FT ]]

= LGDE0[E[11τ<T |FT ]e−rTPayoff+]

= LGDE0[(1− e−Λ(T ))e−rTPayoff+]

= LGDE0[(1− e−
∫ T
0
λsds)e−rTPayoff+]

≈ LGDE0[(1− e−
∑M
i=0 λi(Ti−Ti−1))e−rTPayoff+].

We can then apply the AD method on this new form (in the case of a European Call to fix

ideas) and get the following pseudo code:

u = ST

v = u−K

w = max(v, 0.0)

P = e−rTw

x = 1− e−
∑M
i=0 λi(Ti−Ti−1)

y = LGD P x

y = 1.0

x = LGD y P

λ0 = (T1 − T0)e−
∑M
i=0 λi(Ti−Ti−1)x.

Again, this formulation is not good enough as the result for the sensitivity with respect to λ0

would be dependent on the discretization step while approximating the integral.
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Nevertheless, as the default intensity is independent of the option’s discounted payoff and

follows a CIR process, we can obtain the following closed-form solution:

CV A(0) = LGDE0[(1− e−
∫ T
0
λsds)e−rTPayoff+]

= LGDE0[(1− e−
∫ T
0
λsds)]E0[e−rTPayoff+] , as λ |= ST .

We then use the fact that E0[e−
∫ T
0
λsds] = A(0, T )e−B(0,T )λ0 with:

A(0, T ) = (
2he(k+h)T2

2h+ (k + h)(ehT − 1)
)

2kµ

ν2 , B(0, T ) =
2h(ehT − 1)

2h+ (k + h)(ehT − 1)
, h =

√
k2 + 2ν2. [20]

Finally we obtain the following closed-form expression:

CV A(0) = LGDE0[(1− e−
∫ T
0
λsds)]Price0

= LGD(1−A(0, T )e−λ0B(0,T ))Price0.

This expression enables to compute δCV A
δλ0

and all other sensitivities using the relevant decom-

position of Price0 to perform the AD method on it as detailed in 3.3 for European vanilla options or

4.1 for Basket options. Therefore we get a proper Automatic Algorithmic Differentiation algorithm

for CVAs on options with positive payoffs, given by the following pseudo code:

u = 1−A(0, T )e−B(0,T )λ0

p = LGDPrice0u

p = 1.0

u = LGDPrice0p

λ0 = A(0, T )B(0, T )e−B(0,T )λ0u.

5.1.8 Numerical results

We compare the two approaches on an European Call option using the following parameters for

the underlying stock: S0 = 100.0, r = 0.01, T = 2.0, σ = 0.25 and K = 90.0.

In our simulations we use the following intensity model parameters (using 5.2 notations) for

the time of default: λ0 = 1.0, k = 0.5, µ = 1.0, ν = 0.25 and a LGD = 0.6.
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To benchmark our results, we calculate CVA values using default bucketing method and CVA’s

sensitivities using a finite difference approach (FD). We also use a regularization parameter for the

inherent method which value is given by δ = 0.001. Hence, we get the following table:

AD with reg. AD with change of filt. Default bucketing/FD FD on closed-form

CVA 10.24 10.2608 10.2734 10.2608

δCV A
δλ0

1.8278 2.07621 1.976 2.07626

Computation Time 405 seconds 0.001 seconds ≥ 45 minutes 398 seconds

Table 19: AD method on European Call CVA with 500.000 Monte-Carlo simulations

Even optimizing ”manually” the choice of the best regularization parameter δ for the first

method, we obtain poor results for δCV A
δλ0

. However, with the closed-form obtained under the im-

mersion hypothesis we get perfectly accurate and instantaneous results (less than one second to

get all the sensitivities !). Indeed, the fact that we apply AD on a closed form enables to have a

computation time below 0.001 seconds.

To highlight the power of this change of filtration, we present further computations using the

AD method on this CVA closed-form for options with positive payoff. This time, we only use a

finite difference approach (FD) to benchmark our results for δCV A
δλ0

(as in the 4th column of Table

19). We start with the same parameters as those used above. We only specify the value of the

parameter which has changed compared to Table 19.

FD on the closed form AD with change of filtration

CVA (S0 = 100) 10.2608 10.2608

δCV A
δλ0

(S0 = 100) 2.07626 2.07621

CVA (S0 = 110) 14.113 14.113

δCV A
δλ0

(S0 = 110) 2.85566 2.85574

CVA(S0 = 90) 6.91399 6.91399

δCV A
δλ0

(S0 = 90) 1.399 1.39903

CVA(K = 100) 7.68221 7.68221

δCV A
δλ0

(K = 100) 1.55444 1.55448

CVA(σ = 0.4) 14.0955 14.0955

δCV A
δλ0

(σ = 0.4) 2.8522 2.85212

CVA(T = 1.0) 5.97897 5.97897

δCV A
δλ0

(T = 1.0) 2.74747 2.74744

Table 20: AD method on European Call CVA with 500.000 Monte-Carlo simulations
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5.2 AD method on CVA of Bermudan options

In this section we follow carefully the work made by Luca Capriotti and use his notations [11,

page 40-43]. As in section 5.1, we only work in a unilateral counterparty risk framework, assuming

that the default time τ of the risky counterparty is independent of the portfolio values V(τ).

5.2.1 Forward sweep: CVA computation using Least-Square Monte-Carlo

We start from the following well-known form of CVA under default-bucketing assumption and with

the same notations introduced in 4.2 and 5.1 [11, page 38]:

CV A(0) = E0[LGD

M∑
i=1

(Q(τ > Ti−1)−Q(τ > Ti))e
−rTi(V (Ti))

+] (5.3)

The computation of CVA values using regression based algorithm is very similar to the method

introduced to price Bermudan options. Here we consider that the option can be exercised p times

at time T1, ... , Tp and its payoff is given by ETm at time Tm.

One has to be careful as many indices are involved. Indeed, using the default bucketing as-

sumption we discretize [0, T ] according to the discretization time-grid T1, ..., TM where Ti is not

necessarily one of the exercise dates T1, ... , Tp. Thus, the two discrete time grids can be different

and this fact needs to be taken into account while performing the computations.

The following steps stem from Luca Capriotti’s paper [11, page 43] and enable to compute CVA

values. They constitute the forward sweep of the AD method. We use the index n = 1, ... , NMC

to denote each Monte-Carlo simulations and proceed as follows:

1. We first simulate the paths Snm of the underlying asset (respectively λnm of the counterparty

default intensity) for all time horizon T1, ... Tm, ... , TM . Note that the code created enables to

choose the dynamic of the underlying and therefore to choose between the normal or lognormal

dynamic for the underlying stock while using Euler paths approximation. However, for the sake of

clarity (and without loss of generality), we here discuss the lognormal case (where the underlying

follows a Black Scholes model).

∀m ∈ [0,M − 1], Snm+1 = Snm + rSnmh+ σSnm
√
hZnm,

∀m ∈ [0,M − 1], λnm+1 = λnm + k(µ− λnm)h+ ν
√
λnm
√
hZi,

with obvious notations [11, (X1) page 40].

2. Then, we compute the paths of the survival probabilities [11, (X2) page 40] for m ∈ [0,M ].

Qn(τ > Tm) = e−
∑m−1
j=0 λnj (Tj+1−Tj).
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3. Following exactly the same steps as in 4.2.1, we get the following estimate of the hold value:

∀m ∈ [1,M − 1], Hn
m = βTmψm Hn

M = 0.

Then, we get the estimate of the value of the option [11, (X3) page 40] as follows:

∀m ∈ [1,M ], V nm =

max(Enm, H
n
m) if Tm is an exercise date

Hn
m otherwise,

with Enm the exercise value of the value for the nth MC simulation at Tm.

4. The estimator of the CVA value for the nth simulation [11, (X4) page 40] is then given by:

CV An(0) =

M∑
m=1

LGD(Q(τ > Tm−1)−Q(τ > Tm))e−rTm(V nm)+.

5. Finally, we get the MC estimate as follows:

CV A(0) =
1

NMC

NMC∑
n=1

CV An(0).

5.2.2 Backward sweep: Computation of CVA’s sensitivities

Exactly as in 4.2, the backward sweep enables to compute CVA sensitivities with respect to model

parameters and especially with respect to λ0, ... , λM .

In what follows, we denote model parameters by θ and are interested in computing δCV A
δθi

. As

always, the backward sweep consists in the adjoint of the steps involved in the forward sweep. This

methodology fully relies on Mr. Capriotti’s paper [11, page 43].

1. First, the initialization step [11, (X5) page 43] states CV A = 1 and θi = 0, and finally sets:

CV An =
CV A

NMC
.

2. Then for m = M, ..., 1, we proceed backward and get:

V nm = CV Ane−rTm [LGD(Qn(τ > Tm − 1)−Qn(τ > Tm))11V nm>0],

Nn
m = CV Ane−2rTm [LGD(Qn(τ > Tm−1)−Qn(τ > Tm))(V nm)+],

Qn(τ > Tm) = CV An[V nme−rTm(1− δm,0)− V nm+1e−rTm+1 ]11V nm>0,
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with δm,0 the Kronecker symbol, Nn
m = e−rTm the nominal at time Tm, and using the conven-

tion V nM+1 = 0 [11, (X4) page 43].

3. Next, we compute adjoints of the hold and exercise values for m = M, ..., 1 [11, (X3) page 43]:

If Tm is an exercise date we get:

Hn
m = V nm11Hnm>Enm ,

Enm = V nm11Hnm<Enm

Otherwise, we set Hn
m = V nm and Enm = 0.

4. Then, we initialize the adjoint of the underlying by:

Snm = Enm
δEnm
δSnm

.

We also initialize the adjoints of the regression coefficients β and of basis functions ψnm as in

4.2.4 and 4.2.4, and we get the following update of the underlying adjoint:

Snm+ = (ψ̄nm)T
ψnm
Snm

.

5. We can therefore update the adjoint of the discretized default intensities as follows [11, (X2)

page 43]:

λnm+ = −(Tm+1 − Tm)

M∑
j=m+1

Qn(τ > Tm)Qn(τ > Tm).

6. Finally, we again update the adjoint of the discretized default intensities and get the adjoint

of the model parameters.

λnm+ = λnm+1

δG

δλnm
(Tm, λ

n
m, θ),

θ+ = λnm+1

δG

δθ
(Tm, λ

n
m, θ).

with G the function generating the paths of the default intensity process [11, (X1) page 43].

In our case, λ follows a CIR process which enables the simplifications below:

δG

δλnm
(Tm, λ

n
m, θ) = 1.0− kh+

µZnm
√
h

2
√
λnm

. (5.4)
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5.2.3 Numerical results

We present our numerical results on both Bermudan put and Bermudan best of two put. For

clarity and in order to have a simple benchmark, we again will display results for a Bermudan

best of two put where the two underlyings are simulated using the same random numbers start-

ing from S1
0 = S2

0 . Hence, we get an option equivalent to a simple Bermudan put built on one stock.

It is worth noting that while we still use 13 basis functions for our regression on Best of two

Bermudan put as in 4.2, due to the more complex structure of the CVA, we need 7 Hermite poly-

nomials in our regression basis to have accurate results on Bermudan put CVA.

In our simulations, the expiry date is 3 years (T = 3.0) and we can exercise the option ev-

ery 3 months (M = 12). We consider also that S0 = 1.0, σ = 0.2, r = 0.15, K = 0.9. We

use as benchmarks an extended binomial tree [14], a default bucketing computation for the CVA

and finite differences algorithms for the CVA sensitivities. Finally, we use the following intensity

model parameters 5.2 for the time of default: λ0 = 1.0, k = 0.5, µ = 1.0, ν = 0.25 and a LGD = 0.6.

The table below displays the results obtained:

Price CVA δCV A
δλ0

Computation Time

AD method on Bermudan Put 0.0157905 0.00252039 -0.00256843 249 seconds

AD method on Best of two Put 0.00157121 0.00254705 -0.00266047 328 seconds

Benchmarks 0.0157926 0.00253147 -0.00259147 ≥ 45 minutes

Table 21: AD method on Bermudan Put CVA with 500.000 Monte-Carlo simulations

The time of computation is again quite impressive as one obtains the price, CVA and CVA

greeks in a time equivalent to 3 times the time needed to only price the option (and this remains

true no matter the number of greeks !). More than 45 minutes are needed to perform finite difference

with this number of Monte-Carlo simulation while the computation time involved using AD is only

few seconds ! Again, as we increase the number of sensitivities, the computation time increases

dramatically in the case of finite difference while it remains the same with the AD method.



42

6 Further research on CVA

Our approach regarding CVAs was mainly based on strong assumptions which led to interesting

results but often not in line with the ”reality” observed on financial markets. It is worth-noting

that we worked under the following simplifications:

• Independence between the default’s intensity, the interest rate and the option’s underlying.

• Unilateral counterparty risk: we only worked in a framework where one counterparty was

default-free i.e without the notion of DVA for example.

These hypothesis enabled to obtain good results with the AD methods both on equities with

positive payoff and Bermudan options. In the case of options with positive payoff we also obtained

a closed form (assuming a CIR dynamic for the intensity of default).

Nevertheless, on financial markets one should introduce Wrong Way Risk (WWR) and collat-

eralization to have a more realistic framework. Therefore, we decided to perform further research

on their influence especially regarding the closed form obtained in 5.1.7 when changing filtration

on options with positive payoff.

First, introducing correlation between the intensity of default λ and the equity payoff makes

computations far more complicated and the existence of a closed-from is not guaranteed. Fur-

thermore, if the intensity of default does not follow a CIR or any other chi-squared dynamic, the

closed-form is not applicable anymore. Therefore, even if theoretically the result is extremely in-

teresting, under a more realistic framework, things become more complicated.

One should however notice that under the framework created in 5.1.7, we have a closed-form

not only for CVA but also for δCV A
δλ0

. Hence, we can access to second order sensitivities, such as

the very important quantity δCV A
δλ0δS0

. Therefore, the application of the AD method on this second

closed-form is again extremely powerful and leads to interesting theoretical calculations.

Lastly, WWR should be introduced and constitutes a very interesting axis to go beyond the

work performed on CVAs in this thesis. Most of the computations performed on Bermudan options’

CVA will remain the same but the simulation of default’s intensity and underlying assets will involve

correlation and hence, modeling and programming difficulties.



43

7 C++ code architecture

The purpose of this thesis was also to create an application where the user would be able to choose

all the parameters of the option of interest i.e to choose the option payoff, the dynamics of the

underlyings involved. Therefore, the user is able to fully design the option and then get its price,

Greeks, CVA and CVA sensitivities (computed using the AD method).

The goal was to create a code easy to customize by adding more and more modules over time

(ie more underlying dynamics or options’ payoff). Indeed, the main challenge with the AD method

was the coding part: this method was memory consuming and we often needed some manual

treatments on the payoff. Therefore, a strong emphasis was placed on the coding part during this

thesis and thus, will be detailed in this section.

7.1 Simulation of the behaviour of the options underlyings

The application should enable the user to choose the dynamic of the underlying(s) of the option of

interest in order to be able to apply the AD method on options built on any kind of underlyings.

As it was impossible to code all the models an underlying could follow, the code needed to be easy

to customize.

Therefore, we created an interface called ModelPathGenerator meant to be a template that

gives all the functions that a class (used to simulate a special type of underlyings model) needs to

have. Then, we created two abstract classes which implement this interface: SVMPathGenerator

and NonSVMPathGenerator.

SVMPathGenerator is meant to simulate the dynamic of an underlying following a stochastic

volatility model (such as Heston, SABR or CEV) but these models are not treated in this thesis so

no implementations have been done. However, the interface has been created in order to provide

a recipe for future implementations of such models.

NonSVMPathGenerator is meant to simulate (using for example Euler or Milstein Schemes)

the dynamic of an underlying which has constant volatility σ and constant risk free rate r. We

implemented two subclasses of it called LognormalModel and NormalModel which respectively

simulate underlyings following lognormal and normal model. Both can whether simulate the entire

path of the underlying using a Euler scheme or give directly the value of the underlying at maturity

using the closed form for ST as a function of S0 (which is of course faster).
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Figure 1: Interface to simulate the behaviour of an underlying

7.2 Choice of the option’s payoff

The application should enable to compute the AD method on any payoff. Again, we had to restrict

ourselves to some option types as it is impossible to code ”every” existing payoffs. However, the

framework to easily add new payoffs exists and enables to customize very quickly the application.

Indeed, the interface OptionType is meant to be the contract that every class (used to compute

AD method on a particular type of option) needs to fill. As part of this thesis, three types of options

have been implemented: European and Bermudan vanilla options (in one and two dimensions) as

well as Basket options. Hence, three subclasses inherit OptionType.
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First, EuropeanVanilla provides the framework for European vanilla options. It is a class which

contains lot of modules: first it possesses all functions required to compute the closed form for

vanilla options (greeks and price). It also contains a module to compute every Greeks using the

likelihood ratio method (basically a Monte Carlo on path-wise derivative). Finally, based on the

book of Marc Henrard [19], it holds modules to compute Price and Greeks using the AD method

and an optimized AD method.

Then, Basket is a class which enables to compute price and greeks of a basket option with

stocks following NormalModel or LognormalModel dynamics (the user can create mixed basket).

The AD method originally [12] gives the sensitivity with respect to ST (final value of each stocks

in the basket) so we implemented functions to have the derivative with respect to S0 instead of ST

(delta). These functions differ according to which underlying model we are using.

Figure 2: Interface to choose the option on which the AD is applied
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Finally, the interface BermudanOptions gives the framework (parameters and methods) that

every type of Bermudan options share. This interface is implemented by two abstract classes

BermudanOptions1D and BermudanOptions2D which provide all methods to compute the AD

methods on any Bermudan Option (i.e on an abstract payoff E) built respectively on 1 or 2 un-

derlyings.

The subclasses BermudanCall, BermudanPut, BestOfTwoCall, BestOfTwoPut then define the

payoff of their associated option and how the AD method applies on this payoff. Therefore, it is

very easy to add new Bermudan options to the application. Indeed, one just needs to redefine

2 functions: GetPayoff() (which returns the option payoff) and AD on payoff() (which computes

the AD method on the associated payoff function by performing a ”manual” decomposition of the

latter).

Figure 3: Interface to apply AD on Bermudan Option
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7.3 CVA computation

The architecture of the code regarding CVA computation is similar to the one used to price op-

tions. Again, everything has been thought so that the code is easily customizable (in order to add

more features over time). The diagram explaining the design of the inherent code can be found in

Appendix A (8) but we briefly describe here the role of every classes.

First, the interface CVAcomputer is the recipe which provides all the functions needed to apply

the AD method on CVA built on any kind of payoff. Two classes implement this interface, respec-

tively OptionWithPositivePayoff and BermudanPayoff. OptionWithPositivePayoff again defines

the framework to apply AD method on non-Bermudan options with a positive payoff (such as Euro-

pean vanilla or Basket options) while BermudanPayoff does the same job but for Bermudan Payoff.

Then, BasketCVA and EuropeanVanillaCVA derive from OptionWithPositivePayoff and only

specify the payoff to be considered while applying OptionWithPositivePayoff functions to perform

AD.

Similarly, BermudanPayoff is implemented by two subclasses which specify the number of

underlyings to be considered in our AD computations (namely Bermudan1DPayoff and Bermu-

dan2DPayoff ). Again, these two interfaces are implemented by classes specifying the exact payoff

on which the AD is applied (i.e Bermudan Put, Call, Best of two Call, Best of two Put, etc ...).

7.4 Additional helpful modules

In this section, we detail quickly the additional modules used in the application. Some other mod-

ules were implemented to benchmark our results (such as Finite Differences algorithms or Binomial

Trees) but are not part of the final application created and hence are not cited here.

To have an efficient C++ code, it is necessary to stock in memory many quantities and therefore

we used the open source C++ library Eigen [18] to keep track of relevant values in vectors and ma-

trix. We also reused a library called RandomNumbersGeneration created for the SMF coursework

[22]. This module enables to generate random variables (gaussian, exponential, etc...).
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Finally, we created some helpful modules that provided objects needed in our AD computations.

The main classes are:

• Polynomials: This class enables creating polynomials to be used as basis functions for our

regressions.

• Hermite: This class enables to create an orthogonal basis of a given number n of Hermite

polynomials.

• IntensityModel: This class enables simulating the time of default from an intensity model

where the intensity of default follows a CIR model (useful while computing CVAs).

• ComputationTime: This class enables to estimate the computation time.

• AadDerivatives: This class creates objects which contains the output of the AD method

[19].

Figure 4: Additional Modules
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Conclusion

The AD method gives a very powerful way to price options, obtain their greeks, quantify their

CVAs and CVAs sensitivities. One can easily verify that this method gives accurate and very fast

results. Indeed, the computation time needed to estimate all the sensitivities of a function (price

or CVA) is only 3 times the duration required to evaluate this function.

While Monte-Carlo simulations and Finite Difference algorithms are often the only alterna-

tives to the AD method on complex products (such as Bermudan options), these techniques are

extremely time-consuming to obtain precise results. However, the AD method has the drawback

to require a clever memory management as the decrease of the computation time necessitates to

keep in memory lot of variables.

On simple instruments sush as Basket options, results are already impressive but the real power

of the AD method can be observed on Bermudan options and CVA sensitivities computations. In-

deed, these financial products imply to take into account the optimality of the exercise boundary

and therefore Finite Difference algorithms are the most widespread frameworks to evaluate their

sensitivities. Nevertheless, the complexity of such products often triggers unreasonable computa-

tion times.

In this context, the AD method seems to be one of the best solution to access sensitivities of

complex financial instruments. In this thesis, very strong assumptions were made especially re-

garding CVA computations and therefore the results obtained here are not meant to overthrow the

established order on financial markets. One should consider more complex underlying dynamics

with SVM models for example, bilateral counterparty risk in CVA computations, Wrong Way Risk,

collateralization, etc ... In a more realistic context, AD method is likely to trigger more modeling

and programing problems.

However, no matter the simplifications made in this dissertation, the AD method appears to be

one good research axis in a financial world where a precise and fast estimation of the sensitivities

of financial instruments is becoming a priority.
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8 Appendix A

Figure 5: Interface to apply AD on CVA
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