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Abstract

The rough nature of the volatility process is now widely accepted in quantitative finance. Statis-
tical analysis like [1] and [2] shed light on rough volatility models, where the volatility process is
driven by a fractional Brownian motion with Hurst exponent of order 0.1, ignoring therefore the
long memory feature that motivated Comte and Renault to consider such dynamics in [3] more
than twenty years ago. Rough volatility models are able to capture and explain stylized facts
observed from historical market data in volatility time series and in the implied volatility of option
prices.

Throughout this paper, we study revisited pricing models under rough volatility dynamics and
their possible applications to the joint S&P 500/VIX smile calibration problem. But due to the
non-Markovian nature of the fractional Brownian motion, numerical implementations of those pric-
ing models are computationally more expensive.

The hybrid scheme introduced by Bennedsen in [4] was implemented to simulate efficiently the
rough Bergomi model, which provides good fits to the SPX implied volatility smiles, but it is not
consistent with the VIX options market. Then, regarding the generalized rough Heston model, we
used the Adams numerical scheme to simulate the characteristic function of the log-price which is
the solution of a fractional Ricatti equation. Afterwards, the inverse Fourier transform is applied
to get the price of European Call options. The fits to SPX and VIX smiles are good, but the joint
calibration was not possible. Finally, only the quadratic rough Heston simulated with the hybrid
scheme offers an acceptable joint calibration between SPX and VIX.
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Introduction

Over the last decade, volatility modeling has become a major challenge in quantitative finance.
Although volatility is not directly observed on financial markets, it is now the subject of many
research papers to estimate it and to use it for trading strategies.

In the financial world, log-prices are, most of the time, modeled as continuous semi-martingale.
Therefore, for a given asset with log-price process (Yt)t≥0, the dynamics could be written as follows:

dYt = νtdt+ σtdWt, (0.0.1)

with (σt)t≥0 the volatility process. In the well-known Black-Scholes pricing model, the volatility
process is constant and deterministic. But since the implied volatility surface observed from histor-
ical market data is not flat (see Figures (1.1) and (1.3) ), the assumptions regarding the volatility
process cannot be considered relevant any longer. So, a popular approach is to model volatility as
a stochastic process where the choice of the specific dynamics defines the model (like the Hull and
White model, the Heston model, the SABR model etc).

Since the publication of statistical analysis of realized volatility by Jim Gatheral et al. in [1]
and the theoretical results on implied volatility obtained by Elisa Alòs et al. in [2] and by Fukasawa
in [5], rough volatility models have gained in popularity. These models are characterized by the
presence of a stochastic process rougher than Brownian motion that drives the volatility process.
More precisely, this “rougher” stochastic process is a fractional Brownian motion with Hurst index
H ∈]0, 1[, see Appendix (E.1).

Such models were first introduced by Comte and Renault in [3]. They assumed the volatility
process to be not only stochastic but also to have long-memory features and properties. Then they
proposed to model log-volatility using a fractional Brownian motion with H > 1/2 to ensure that
volatility is a long-memory process.

Nevertheless, by considering a volatility process driven by a fractional Brownian motion with
H < 1/2, Jim Gatheral and Fukasawa with their respective paper [1] and [5] showed that rough
volatility models are able to capture and explain stylized facts observed from historical market
data in volatility time series and in the implied volatility of option prices. Furthermore, several
research papers demonstrate the ability of those models, under revisited classical pricing models, to
fit the implied volatility smiles in Equity markets for short maturities, where continuous Markovian
stochastic volatility models fail to describe. But numerical implementations of those pricing models
are computationally more expensive due to the non-Markovian nature of the fractional Brownian
motion. Hence, efficient pricing methods are required to perform calibrations and simulations.

Since the fits to implied volatility surfaces are promising, rough volatility models open the door
to calibration problems as well, including the most well-known and the most challenging problem
in volatility modelling, the joint S&P 500/ VIX smile calibration problem.

The volatility index, or VIX, is based on the S&P 500 index (SPX) options. It is also known
as the fear index and it represents a popular measure of the expected volatility over the next 30
days of the stock market.
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Figure 1: Log-returns of SPX (above) and VIX index (below) from 1st January 2005 to 1st January
2020. Data from Yahoo Finance.

VIX derivatives pricing formulas:

V IX2
T := E

[
1

∆

∫ T+∆

T

d < S, S >t
S2
t

|F0

]
, (0.0.2)

VIX Futures, V Tt := E [V IXT |Ft] , (0.0.3)

VIX Options, C(V IX0,K, T ) := E
[
(V IXT −K)+|F0

]
= E

[
(V Tt −K)+|F0

]
, (0.0.4)

with K the strike price and ∆ one month.

Figure (1) clearly shows that the VIX index reflects the volatility of SPX. Hence, the values
of options on SPX and options on VIX should be somehow related. Although VIX options are
among the most liquid financial derivatives in the world because they provide market participants
another tool to manage volatility, the bid-ask spreads in the VIX options market demonstrate that
financial institutions do not have a reliable pricing methodology for these products. Taking into
account that SPX and VIX are closely related to each other, any methodology designed to price
VIX options must be consistent with the pricing of SPX options. This suggests that researchers
must develop a model capable of jointly calibrating SPX and VIX option prices. It is the joint
S&P 500/VIX smile calibration problem.

This issue was briefly tackled thanks to jump models which have been proposed by Carr and
Madan in [6] and by Kokholm and Stisen in [7]. Nevertheless, those models do not really achieve
a satisfying accuracy for the joint calibration problem. Regarding this challenge, Julien Guyon
stated that “joint calibration seems out of the reach of continuous time models with continuous
SPX paths”. However, Jim Gatheral et al. found a counterexample to Guyon’s conjecture in [8].

The purpose of this paper is to introduce readers to the emerging class of rough volatility mod-
els and their possible applications to the pricing of VIX and SPX options.

The paper is structured as follows. Throughout the first chapter, we focus on the reasons
that motivate practitioners and researchers to consider rough volatility models. It focuses on the
properties of the historical time series of volatility. This chapter shows that the logarithm of
volatility behaves essentially as a fractional Brownian motion with Hurst exponent H of order 0.1,
unlike what stated Comte and Renault in [3]. Finally, given the observations made in the first
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chapter, chapter 2 tackles calibration with option implied volatility surface within three rough
volatility models: the rough Bergomi model, the rough Heston model and the quadratic rough
Heston model. All the calibrations are performed over real market data from Yahoo Finance.
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Chapter 1

Motivations

The rough nature of the volatility time series is now widely accepted within Equity markets. It has
been first discovered by Gatheral, Jaisson and Rosenbaum in [1] and then confirmed by Mathieu
Rosenbaum et al. in [9] and by Fukasawa in [10].

The objective of this first chapter is to understand how those authors shew that the volatility
time series presents a rougher trait than that of a Brownian motion.

1.1 Motivation I: The implied volatility surface

Recall that the implied volatility of an option is the value of the volatility parameter required in
the model we considered, to match the observed market price of that same option. Plotting the
implied volatility depending on the time to maturity and the strike price of the option gives the
implied volatility surface.

We first shed lights on the limits of the Black-Scholes model with respect to the implied volatility
surface. Consider a given probability space (Ω,F ,P) with a Brownian motion (Wt)t≥0. In the
Black-Scholes model, the stock price process (St)t≥0 has the following dynamics

dSt
St

= rdt+ σdWt, S0 > 0, (1.1.1)

where r and σ > 0 denote respectively the instantaneous risk-free rate and the spot volatility.
Note that σ is constant and deterministic and it is also the only unknown parameter of the model.
Therefore, if this model is completely correct, the implied volatility surface across strike price and
time to maturity should be flat. But Figure (1.1) clearly shows that the implied volatility surface
is not flat. Hence, the BS model does not give a correct approach of the volatility.

Note that Figure (1.1) displays the implied volatility derived by using the Newton’s method,
which is a root finding algorithm. Nevertheless, it could have been possible to use data provided
by the CBOE website as well. Figure (1.2) compares both implied volatility smiles. One can note
that both curves look similar.

Still about the Figure (1.1), it can be considered as stylized fact that the overall shape of the
volatility surface in Equity markets does not change over time, at least to a first approximation.
This observation suggests to consider volatility as a time homogeneous process, i.e. a process
whose parameters are independent of price and time.

However, even conventional time homogeneous model that consider the volatility as a stochastic
process (such as the Hull and White, Heston, and SABR models) also fail to properly fit the
volatility surface, in particular the at-the-money (when the strike price K equals the spot price)
volatility skew which is defined by

ψ(τ) :=

∣∣∣∣∂σ(K, τ)

∂K

∣∣∣∣
K=St

(1.1.2)

9



Figure 1.1: The AAPL Call options volatility surface as of May 18, 2020. Implied volatility derived
by using the Newton’s method.

Figure 1.2: Comparison between the derived implied volatility (with Newton’s method) and the
implied volatility given by CBOE.
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To plot the ATM volatility skew, the latter derivative was approximated by the following
expression

ψ(τ) ≈
∣∣∣∣σ(St + ε, τ)− σ(St − ε, τ)

2ε

∣∣∣∣ , (1.1.3)

for ε small.

Existing time-independent stochastic volatility models generate ATM volatility skew constant
for short dates and inversely proportional to τ for long dates in contrast to the ATM skew observed
in the market, see Figure (1.3), that behaves as a power law of the form ψ(τ) = Aτ−0.4.

Figure 1.3: Estimates of the AAPL volatility skews as of May 18 2020 with the fitted power-law
ψ(τ) = Aτ−0.4.

Nonetheless, in [5, Section 3.3], Fukasawa demonstrates that a stochastic volatility model where
the volatility is driven by a fractional Brownian motion with Hurst index H leads to an ATM
volatility skew of the form ψ(τ) ∼ τH−

1
2 . Hence, for such a model, in order to be consistent with

the shape of the implied volatility surface, H < 1/2 is required. This yields in losing the long
memory property, widely accepted as a stylized fact, that motivated Comte and Renault to use
the fractional Brownian motion to model log-volatility.

Following this observation, Gatheral, Jaisson and Rosenbaum in [1] went further in the study
of the volatility time series modeling by focusing on its stylized facts.

1.2 Motivation II: Properties of the historical time series of
volatility

The procedure described in this section is mainly inspired by [1].
Throughout this section, since the spot variance is not directly observable in the market, daily

estimates of the realized variance from the Oxford-Man Institute are used as proxies instead.

1.2.1 Estimating the smoothness of the volatility process

In order to measure the roughness of the historical volatility time series, we look at the the qth

sample moment of log volatility increments at a given lag ∆ defined by

m(q,∆) :=
1

N

N∑
k=1

∣∣log(σk∆)− log(σ(k−1)∆)
∣∣q , (1.2.1)

11



where σ∆, ..., σN∆ are observations of the volatility process on a time grid with mesh ∆ on [0, T ]
with N = bT/∆c. Note that m(2,∆) is just the sample variance of the difference in log volatility
at the lag ∆. Moreover, we assume there exists sq > 0 and bq > 0 such that

m(q,∆) ∼
∆→0

bqN
−qSq . (1.2.2)

Although realized variance estimates are used as proxies of the instantaneous volatility, they
make it possible to derive and plot m(q,∆) vs log(∆), see Figure (1.4) for the S&P index.

Figure 1.4: log(m(q,∆)) as a function of log(∆), S&P 500 index.

One can easily note that for a given value of q, the points of m(q,∆) lies on a straight line.
Hence, a linear regression yields the following result

log(m(q,∆)) = ζqlog(∆) +Bq ⇐⇒ m(q,∆) = ∆ζqeBq , (1.2.3)

where ζq and Bq are two constants depending on q. Furthermore, by considering that the incre-
ments of the log-volatility are independent and stationary, i.e. log(σk∆)− log(σ(k−1)∆) ∼ log(σ∆)
in distribution, the Strong Law of Large Numbers gives the following convergence almost surely

m(q,∆) →
N→∞

E [|log(σ∆)− log(σ0)|q] . (1.2.4)

Finally we have
E [|log(σ∆)− log(σ0)|q] = ∆ζqeBq . (1.2.5)

And plotting ζq against q shows that ζq ∼ Hq with H ≈ 0.1133 for S&P, see Figure (1.5). H
denotes the smoothness of the volatility.

Figure 1.5: ζq (in red) and ζq ∼ Hq (in blue), S&P.
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1.2.2 Other indices

The study on every other index in the Oxford-Man Institute dataset leads to a universal scaling
behavior of m(q,∆). By repeating the exact same process on each index with q ∈ {0.5, 1, 1.5, 2, 3},
we obtain the estimates of H given in Table (A.1), see Appendix (A.1). From the latter table, we
conclude that H ≈ 0.1.

1.2.3 Distribution of the increments of the log-volatility

Andersen and al. demonstrated in [11] that the distribution of increments of log-volatility is close to
a Gaussian distribution. Figure (1.6) displays the histograms of the increments of the log-volatility
with the fitted normal density superimposed in red for the S&P index. It is clear that with the
latter figure, we retrieve the stylized fact stated in [11]. Added to the plots is the 1-day fit of the
normal density rescaling by ∆H (blue dashed curves). Note that these are very close to the red
fits of the normal density.

Figure 1.6: Histograms of the increments (log(σt+∆) − log(σt)) for various lags ∆ of the S&P
log-volatility.

1.2.4 Does H vary over the time ?

Is the smoothness parameter H constant over the time ? In order to answer to that question, we
first derived H for each half of the dataset from the Oxford-Man Institute. One can easily note in
Table (A.2) that, most of the time, the smoothness parameter is higher in the second period which
includes the 2008 financial Crisis.

To get a more precise idea of these variations, we consider the paper [12] which includes the
plot in Figure (1.7), of the variation of the estimator α̂ = H − 1/2 over the time. Several peaks
of smoothness seem to coincide with periods of market turmoil. The plot indicates the respective
dates of the onset of the subprime mortgage crisis of 2008, the Flash Crash of May 6 2010, the
Greek debt crisis in 2011 and finally the Brexit vote.

1.2.5 Elaboration of the model

We shew in the previous section that the distribution of increments of log-volatility is close to
Gaussian. This motivates us to model (σt)t≥0 as a log-normal random variable. Moreover, the
scaling property of variance of RV differences suggests the model:

log(σt+∆)− log(σt) = ν(WH
t+∆ −WH

t ), (1.2.6)

where WH is a fractional Brownian motion with Hurst index and ν a positive constant. For further
information regarding fractional Brownian motion, see Appendix (E.1).

Let us now relate the model described in equation (1.2.6) to the estimates we derived in the
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Figure 1.7: Half year rolling-window estimates of α on the realized variance measures of the daily
volatility. The pink area is the 95% confidence interval obtained by bootstrap method.

previous sections.

V [log(σt+∆)− log(σt)] = E
[
(log(σt+∆)− log(σt))

2
]

= ∆ζ2eB2

= ∆2HeB2 = eB2

[
|t+ ∆− t|2H

]
= eB2V

[
WH
t+∆ −WH

t

]
= V

[
eB2/2(WH

t+∆ −WH
t )
]
.

Finally, we observe that the Hurst parameter is equal to the measured smoothness of the
volatility and that the constant ν satisfies the following equality: ν = eB2/2. From the equation
(1.2.6), we could deduce the following expression of the volatility

σt = σeνW
H
t , (1.2.7)

where σ is another positive constant.

Figure 1.8: Spot Volatility of FTSE Index (above) and in the model described in (1.2.7) with
H = 0.13 derived empirically (below).

14



Although that the two plots in Figure (1.8) are not exactly the same, they appear to be as
rough as each other. Moreover they both presents persistent periods of low alternate with periods
of high volatility with the same order of magnitude.

However, the last model described by equation (1.2.7) does not imply stationary increment,
feature very useful for the sake of mathematical tractability. This fact suggests us to consider the
log-volatility as a fractional Ornstein-Uhlenbeck (fOU) process with a very long reversion time
scale to ensure stationarity.

A stationary fOU process (Xt) is the solution of the stochastic differential equation

dXt = νdWH
t − α(Xt −m)dt, (1.2.8)

with m ∈ R and α and ν two positive constants. There exists an explicit closed-form formula
of the solution of (1.2.8) given by

Xt = ν

∫ t

−∞
e−α(t−s)dWH

t +m. (1.2.9)

Finally, our rough fractional stochastic volatility model on the time interval [0, T ] becomes

σt = eXt , with t ∈ [0, T ], (1.2.10)

where (Xt)t∈R satisfies the equation (1.2.9) and H < 1/2 the measured smoothness of the volatility.
Note that for αT � 1, the log-volatility behaves locally as a fractional Brownian motion, feature
consistent with the observations made.

Jim Gatheral et al. in [1, Section 3.2] shew theoretically that the autocovariance function for
the model described in equation (1.2.10) is linear with respect to ∆2H . One can note in Figure
(1.9) that this result is satisfied empirically. Indeed, the empirical autocovariance function of the
log-volatility is indeed linear with respect to ∆2H for the FTSE Index.

Figure 1.9: Autocovariance of the log-volatility as a function of ∆2H , FTSE Index.

1.2.6 H < 1/2 or H > 1/2 ?

The fractional stochastic volatility model is said to be rough if H < 1/2. However Comte & Re-
nault used to consider H > 1/2 in the model (1.2.10) so as to ensure long memory property, i.e the
autocorrelation function is not integrable and it decays slowly as a power-law with exponent less
than 1. Nevertheless, we first saw, thanks to Fukasawa’s work, in [5, Section 3.3], that H > 1/2
conducts to an increasing volatility skew with respect to the time to maturity, which is completely
inconsistent with the observations made, see Figure (1.3). Hence Comte & Renault are forced to
take αT � 1 to generate a decreasing term structure of volatility skew for longer expirations in
the model described in (1.2.10). But for very short expirations (τ � 1/α) this implies a term
structure of volatility skew that is inconsistent with the observed one.

15



Nonetheless choosing H < 1/2 allows us to reproduce both the observed smoothness of the
volatility process, see Figure (1.8), and generate a consistent volatility skew with observed volatil-
ity data under the physical measure P. Moreover, taking H < 1/2 ensures mean reversion: if the
volatility is unusually high, it tends to decline. The opposite is true as well.

Furthermore, the model (1.2.10) allows us to demonstrate the incompatibility of the long mem-
ory property, i.e H > 1/2, with real market data. Indeed, with Figure (1.10), one can note that
for small lags, the slope of the regression line is driven by H. Afterwards, the curve begins to
flatten at a time scale of order 1/α. Hence to fit to market data, we must take H equal the slope
of the yellow regression line (H ≈ 0.14, see Appendix (A.1)) and α small enough to prevent the
curve from flattening. Thanks to [1, Section 3.2], we had the following formulas to plot the curves
in Figure (1.10):

m(2,∆) = E
[
(log(σt+∆)− log(σt))

2
]
,

= 2 (V ar(log(σt))− Cov [log(σt), log(σt+∆)]) ,

with

V ar(log(σt)) =
H(2H − 1)ν2

α2H
Γ(2H − 1), (1.2.11)

and

Cov [log(σt), log(σt+∆)] =
H(2H − 1)ν2

2α2H

(
e−α∆Γ(2H − 1) + e−α∆

∫ α∆

0

eu

u2−2H
du+ eα∆

∫ ∞
α∆

e−u

u2−2H
du

)
.

(1.2.12)

Figure 1.10: Blue crosses are empirical estimates of m(2,∆) from historical data of S&P 500 Index.
The three other curves are obtained from the model (1.2.10).

Hence, we have shown that the log-volatility process behaves essentially as a fractional Brownian
motion with Hurst exponent H of order 0.1 . Such model is remarkably consistent with historical
data since it reproduces all the main stylised facts of historical volatility time series and it provides
promising fits to implied volatility surfaces, see Figure (1.3).
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Chapter 2

Stochastic Volatility Models

We previously shed light on the rough nature of the spot log-volatility. We shew that the latter
process behaves as a fractional Brownian motion with Hurst index H < 1/2. Such dynamics of the
log-volatility reproduces the properties of the historical time series of the volatility and provide a
good fit to implied volatility surface as well.

From now, we focus on rough stochastic volatility models for derivatives pricing. Our objective
is to implement and calibrate those rough volatility models with real market data. Finally, we will
test them to see whether or not they can calibrate jointly SPX and VIX implied volatility smiles.

2.1 The Rough Bergomi Model

2.1.1 Pricing under the physical measure P
Following the previous chapter, we concluded that the logarithm of realized variance, denoted by
(vt)t>0 (used as proxy for the instantaneous variance), of the underlying price process behaves
essentially as a fractional Brownian motion, with Hurst index H. Hence this yields the following
the model

log(vt+∆)− log(vt) = 2ν(WH
t+∆ −WH

t ), (2.1.1)

with WH a fractional Brownian motion and H the Hurst index.

Let us now consider the Mandelbrot-Van Ness representation of fractional Brownian motion
WH in terms of Wiener integrals (see also in Appendix (E.1)) given by

WH
t = CH

{∫ t

−∞

dW P
s

(t− s)γ
−
∫ 0

−∞

dW P
s

(−s)γ

}
, (2.1.2)

with γ = 1/2−H and CH =
√

2HΓ(3/2−H)
Γ(H+1/2)Γ(2−2H) .

The equation (2.1.1) applied to the time u > t > 0 with the Mandelbrot-Van Ness representation
gives

log(vu)− log(vt) = 2νCH

(∫ u

−∞

dW P
s

(u− s)γ
−
∫ t

−∞

dW P
s

(t− s)γ

)
,

= 2νCH

(∫ u

t

dW P
s

(u− s)γ
+

∫ t

−∞

[
1

(u− s)γ
− 1

(t− s)γ

]
dW P

s

)
,

=: 2νCH (Mt(u) + Zt(u)) , (2.1.3)

where Mt(u) is a Gaussian centred distribution independent of Ft and Zt(u) is adapted to the
filtration (Ft)t>0.

Furthermore, we introduce W̃ P
t (u) :=

√
2H
∫ u
t

dW P
s

(u−s)γ , a Volterra fractional Brownian motion,

and the deterministic parameter η := 2νCH/
√

2H.
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Definition 2.1.1 (Volterra process, definition from [13]). A Volterra process is given by

M(t) =

∫ t

0

F (t, s)dXs, (2.1.4)

with (Xt)t≥0 a semimartingale and F a bounded deterministic real-valued function of two variables
which sometimes is called a kernel.

Remark 2.1.2. W̃ P is said to be a Volterra fractional Brownian motion since the kernel function
is of the form F (t, s) = (t − s)−γ with γ ∈ [0, 1/2], similar to the kernel function found in the
Mandelbrot-Van Ness representation of the fractional Brownian motion, see Appendix (E.1).

So finally, (2.1.3) becomes:

vu = vtexp
{
ηW̃ P

t (u) + 2νCHZt(u)
}
. (2.1.5)

Since EP [vu|Ft] = vtexp
{

2νCHZt(u) + 1/2η2E|W̃ P
t (u)|2

}
, one can note that the instantaneous

variance can be written as
vu = EP [vu|Ft] E

(
ηW̃ P

t (u)
)
, (2.1.6)

with E the (Wick) stochastic exponential, given by E(Ψ) = exp
(
Ψ− 1/2EP|Ψ|2

)
. The equation

(2.1.6) highlights that the distribution of vu depends on Ft only through the forward variance curve,
EP [vu|Ft], also denoted by ξt(u). Therefore, if somehow we can observe the forward variance curve
in the market, it is giving us all the information about the history of the Brownian motion that
we need to be able to compute the price of the options.

2.1.2 Pricing under Q
In order to price under Q, we need to do a change of measure. In general a change of measure
could depend on anything. In our case, we consider a change of measure of the form

dW P
s = dWQ

s + λ(s)ds, (2.1.7)

where λ(s) is deterministic and can be interpreted as the price of volatility risk.
Some algebras give

vu = EP [vu|Ft] E
(
ηW̃Q

t (u)
)
exp

{
η
√

2H

∫ u

t

λ(s)

(u− s)γ
ds

}
,

= ξt(u)E
(
ηW̃Q

t (u)
)
,

= ξt(u)exp

{
ηW̃Q

t (u)− 1

2
η2u2H

}
, (2.1.8)

with, by definition,

ξt(u) = EQ [vu|Ft] = EP [vu|Ft] exp
{
η
√

2H

∫ u

t

λ(s)

(u− s)γ
ds

}
. (2.1.9)

The latter equation defines the so-called forward variance curve. One can note that the equation
(2.1.8) is actually a non-Markovian generalization of the Bergomi model, also called rough Bergomi
model.

2.1.3 Specifications of the rough Bergomi model

Following the deterministic change of measure written in the previous section, the model turns out
to be a non-Markovian extension of the well-known Bergomi model, which we called the Rough
Bergomi model. This model, under the pricing measure Q, is given by

dSt = St
√
vtdZt,

dZt = ρdWt +
√

1− ρ2dW⊥t ,

vu = ξ0(u)E
(
η
√

2H
∫ u

0
1

(u−s)γ dWs

)
= ξ0(u)E

(
ηW̃u

)
,

ξt(u) = EP [vu|Ft] exp
(
η
√

2H
∫ u
t

λ(s)
(u−s)γ ds

)
.

(2.1.10)
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with W and W⊥ two independent Brownian motion. S and v denote respectively the price and
the spot variance process of the underlying. ρ is the correlation between volatility moves and price
moves. W̃ is a Volterra process that satisfies for any v > u > 0:cov

[
W̃uW̃v

]
= u2HG(uv ),

V ar
[
W̃u

]
= u2H ,

(2.1.11)

where

G(x) =
1− 2γ

1− γ
xγ2F1(1, γ, 2− γ, x), (2.1.12)

with 2F1 the confluent hypergeometric function. As mentioned above, this rough Bergomi model
is non-Markovian in the instantaneous variance vt since EQ [vu|Ft] 6= EQ [vu|vt].

Unlike in the conventional Bergomi model, there is no exponential kernel in the exponent of
the forward variance curve given in (2.1.10). Note that the latter is replaced by a power-law kernel
which generates a volatility skew of the form ψ(τ) ∼ τ−γ (see [5, Section 3.3]), this time consistent
with the observations from the market. We may therefore expect that the rough Bergomi model
will generate a realistic term structure of ATM volatility skew.

2.1.4 Numerical scheme

Considering what it is written in the previous section, it is possible to simulate the rough Bergomi
model by using Riemann scheme that relies on the approximation of the kernel function using step
functions. However, given that 0 < γ < 1/2, such method fails to capture the explosion of the
kernel function near zero within the Volterra process.

Figure 2.1: Simulation of the Volterra process through the hybrid scheme and the Riemann sum.
H = 0.1 for both plots.

Hence, the work of Jim Gatheral et al [1] conducts to the quest for efficient pricing method for
this model. It is Bennedsen, Lunde and Pakkanen in [4, Section 2.3] who first introduced an hybrid
scheme for Brownian semistationay (BSS) processes that enables us to capture the explosion of
the kernel function near zero. First, let recall what a BSS process is:

Definition 2.1.3 (Brownian semistationay process). Let (Ω,F , (F)t∈R,P) be a filtered probability
space, satisfying the usual conditions, supporting a (two-sided) standard Brownian motion W . We
consider a Brownian semistationary process

X(t) :=

∫ t

−∞
g(t− s)σ(s)dWs, t ∈ R. (2.1.13)

where σ is an {Ft}t∈R-predictable process with locally bounded trajectories, and g is a positive
Borel measurable kernel function. To make sure that the integral (2.1.13) is finite, we assume that
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the kernel function g is square integrable, so
∫∞

0
g(x)2dx <∞. Futher assumptions are needed to

develop this scheme, see [4, Section 2].

Within the hybrid scheme, the kernel function is approached by a power function near zero
and by a step function elsewhere. The resulting approximation of the process is a combination of
Wiener integrals of the power function and a Riemann sum, hence hybrid scheme. This scheme
is only slightly more demanding to implement than the Riemann sum scheme and the schemes
have the same computational complexity as the number of discretization cells tends to infinity.
Furthermore, one can note in Figure (2.1) that the hybrid scheme outputs very close results to the
theoritical ones. Switching from the Riemann sum to the hybrid scheme reduces the asymptotic
root mean square error as well, see [4, Section 2.4].

Definition 2.1.4 (Hybrid scheme). As explained in [4, Section 2.3], the hybrid scheme applied to
the BSS process in (2.1.13) gives

X(t) =

∞∑
k=1

∫ t−k/n+1/n

t−k/n
g(t− s)σ(s)dWs ≈

∞∑
k=1

σ(t− k

n
)

∫ t−k/n+1/n

t−k/n
g(t− s)dWs. (2.1.14)

if k is small, we consider

g(t− s) ≈ (t− s)αLg
(
k

n

)
, (t− s) ∈

[
k − 1

n
,
k

n

]
\ {0}, (2.1.15)

with Lg that varies less than the power function y 7→ yα near zero. Otherwise, if k is large, or at
least k ≥ 2, then taking bk ∈ [k − 1, k] provides an adequate approximation

g(t− s) ≈ g
(
bk
n

)
, (t− s) ∈

[
k − 1

n
,
k

n

]
. (2.1.16)

So finally, (2.1.14) becomes

X(t) ≈
κ∑
k=1

Lg

(
k

n

)
σ(t− k

n
)

∫ t−k/n+1/n

t−k/n
(t− s)αdWs +

∞∑
k=κ+1

g

(
bk
n

)
σ(t− k

n
)

∫ t−k/n+1/n

t−k/n
dWs.

(2.1.17)

From now, the hybrid scheme is used to simulate the Volterra process instead of the Riemann
sum method. To simulate the Volterra process W̃t :=

√
2H
∫ t

0
(t − s)αdWs with γ = −α to stay

consistent with the previous notations, we implemented the first-order variant (κ = 1) of the hybrid
scheme given by

W̃ti ≈
√

2H

(∫ i
n

i−1
n

(
i

n
− s
)α

dWs +

i∑
k=2

(
bk
n

)α (
W i−(k−1)

n
−W i−k

n

))
, (2.1.18)

with

bk :=

(
kα+1 − (k − 1)α+1

α+ 1

) 1
α

. (2.1.19)

The latter discretization (bk) is the one that minimizes the asymptotic mean square root, see [4,
Proposition 2.8].

Once the price process (Sit)t>0,1≤i≤M is simulated within the rough Bergomi model by using

St = S0exp
{∫ t

0

√
vudZu − 1

2

∫ t
0
vudu

}
, we introduce implied volatility estimators

σ̂MBS(k, t) = BS−1
(
ĈM (k, t)

)
, (2.1.20)

with

ĈM (k, t) =
1

M

M∑
i=1

(
Sit − ek

)+ ≈ E
[
(St −K)+

]
, (2.1.21)
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Figure 2.2: Implied volatility smiles simulated by using the hybrid scheme, for maturities going
from 1 week to 1 year. The number of paths simulated is 300 000 paths, each over a time interval
discretised on a 300-point grid.

where k denotes the log-strike.

Recall that the implied volatility is the right value of σ in Black-Scholes such that the two option
prices (the one derived from the rough Bergomi model and the other one from Black-Scholes) are
equal.

The latter method makes it possible to study the impact of the three time-homogeneous pa-
rameters (H,η,ρ) over implied volatility smiles.

1. H controls the decay of the ATM skew ψ(τ) for short expirations.

2. η : the product ρη sets the level of the ATM skew for longer expirations.

3. Decreasing ρ pushes the minimum of each smile towards higher strikes.

Then, an intuitive way to rename those paramaters with respect to their influence would be smile
for η, skew for ρ and finally roughness for H. Note that the smoothness parameter H and η stay
unchanged under P and Q. Moreover both of them can be estimated from historical data.

Figures (2.2) and (2.3) show implied volatility smiles obtained within the rough Bergomi model.
The values of η = 1.9 and ρ = −0.9 are demonstrated to be consistent with the SPX market on
4 February 2010 in [1, Section 5.3]. Moreover, we assumed throughout the simulation that the
forward variance curve is flat, i.e ξ0(u) = ξ. The two figures highlight the influences of the three
time-homogeneous parameters mentioned above. Note that the case H = 0.5 is similar to classical
stochastic volatility models in the absence of time-dependent or randomised parameters, or jump
processes.

2.1.5 Fits to one trading day

Implied volatility smiles

In order to examine the performance of the rough Bergomi model, we used SPX historical data
from Yahoo Finance website as of June 15, 2020. To fit rough Bergomi smiles with historical
market data, we consider the following objective function, which represents the distance between
the targeted implied volatilities and the ones from the rough Bergomi model

∑
k

(
σBergk (H, η, ρ)− σY ahook

)2

, (2.1.22)
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Figure 2.3: Implied volatility smiles simulated by using the hybrid scheme, for maturities going
from 1 month to 1 year. The number of paths simulated is 300 000 paths, each over a time interval
discretised on a 300-point grid.

subject to the following constraints 
H ∈ (0, 1/2] ,

η ≥ 0,

ρ ∈ [−1, 1],

where σBergk (H, η, ρ) and σY ahook are respectively the implied volatilities from the rough Bergomi
model and the Yahoo Finance dataset.

With calibrated parameters H, η and ρ, we obtain the plots in Figure (2.4). We took H ≈ 0.11,
obtained from the regression of the second moment of the log-volatility differences, η = 2.3 and
finally ρ = −0.9. The plots highlight the impressive fit to the SPX implied volatility smiles.

Figure 2.4: Volatility smiles as of July 8, 2020: red dots represent SPX implied volatilities and all
the blue lines, coming from the same three parameters, are from the rough Bergomi model. T is
time to expiry in years. The IV from the Yahoo finance dataset is actually the mean between the
bid and ask implied volatilities.
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At-the-money volatility skew

Let us now check whether or not the rough Bergomi model matches with the empirical at-the-money
volatility skews obtained from the Yahoo finance dataset. First, recall that the term structure of
the at-the-money volatility skew is given by

ψ(τ) :=
∂σiv(K, τ)

∂K

∣∣∣∣
K=St

, (2.1.23)

where K is the strike price. Since the dataset does not include any at-the-money volatility skew,
the finite difference method was used to estimate it. So, for ε small, we have

ψ(τ) :=
∂σiv(K, τ)

∂K

∣∣∣∣
K=St

≈ σiv(St + ε, τ)− σiv(St − ε, τ)

2ε
. (2.1.24)

Moreover, thanks the presence of a power-law kernel in the exponent of the forward variance curve,
the rough Bergomi model generates a volatility skew of the form ψ(τ) ∼ τ−γ . Finally, one can
note in Figure (2.5) how well the rough Bergomi fits the ATM volatility skew, as expected.

Figure 2.5: ATM Volatility skews as of June 15, 2020: red dots represent empirical SPX ATM
volatility skew and the blue line is from the rough Bergomi model. We keep H ≈ 0.11. τ is time
to expiry in years.

2.1.6 The rough Bergomi model and calibration to VIX smiles

Although the rough Bergomi model offers a good fit to the SPX implied volatility surface, it is not
consistent with the VIX options market.

Indeed, by using (0.0.2) and the dynamics of the price process S in (2.1.10), we have

V IX2
T = E

[
1

∆

∫ T+∆

T

vtdt|F0

]
. (2.1.25)

Hence the latter integral written in the expectation above can be approached with a sum of
log-normal distributions (Riemann method) because the instantaneous variance is log-normally
distributed in the model, see equation (2.1.8). Therefore we can write

V IX2
T ≈ E

[
1

∆

N−1∑
i=0

eZi
∆

N

]
, (2.1.26)
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with (Zi)0≤i≤N−1 normally distributed. We consider Xi := eZi ∆
N = eX̃i where (X̃i)0≤i≤N−1

are independant normal distributions. This notation is acceptable since Xi is log-normal ∀i ∈
{0, ..., N − 1}. One can note that (Xi)0≤i≤N−1 is small because of the multiplying factor ∆ that
represents only one month.

By using the Taylor expansion of the exponential function, we have

V IX2
T ≈

1

∆
E

[
N +

N−1∑
i=0

X̃i

]
=

1

∆
E

[
N − 1 + exp

{
N−1∑
i=0

X̃i

}]
, (2.1.27)

Finally, taking the square root of (2.1.27) combined with the Taylor expansion of the square root
function yield

V IXT ≈
√
N − 1

∆

(
1 +

1

2(N − 1)
E

[
exp

{
N−1∑
i=0

X̃i

}])
. (2.1.28)

Equation (2.1.28) demonstrates that the VIX itself is almost log-normal in the model because∑N−1
i=0 X̃i is normally distributed.

This generates a flat implied volatility surface, which is not consistent with the market obser-
vations, see Figure (2.6) that exhibits a pronounced positive skew. Finally, the rough Bergomi
model fits accurately index option smiles but it fails to calibrate VIX smiles.

Figure 2.6: VIX volatility smiles as of July 14 2020, from Yahoo Finance website. T is time to
expiry in years. The IV from the Yahoo finance dataset is actually the mean between the bid and
ask implied volatilities.
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2.2 The Generalized Rough Heston Model

Following the observations made in the first chapter, we consider the rough version of the well
known Heston model. Our main goal is to implement an efficient pricing methodology that enables
us to perform calibration over market data. Note that Monte-Carlo methods conduct to very long
simulations due to the non-Markovian nature of the fractional Brownian motion.

The pricing method used within this model, relies on the simulation of the characteristic func-
tion expression of the log-price which is now the solution of a fractional Ricatti equation where a
fractional derivative appears instead of a classical one within the Heston model.

Once values of the characteristic function over an equidistant partition are obtained, we apply
the Lewis’ approach that is based on the inverse Fourier transform to get the price of European
Call options.

2.2.1 Specifications of the generalized rough Heston model

Although the Heston model reproduces several important stylised facts of low frequency price data,
namely leverage effect, time-varying volatility and fat tails, and generates reasonable shapes and
dynamics for the implied volatility surface, the first chapter of this paper suggests that the spot
log-volatility process behaves like a fractional Brownian motion.

To introduce the rough Heston model, first recall the Mandelbrot-van Ness representation of a
fractional Browian motion

WH
t =

1

Γ(H + 1/2)

∫ 0

−∞

(
(t− s)H−1/2 − (−s)H−1/2

)
dWs +

1

Γ(H + 1/2)

∫ t

0

(t− s)H−1/2dWs,

(2.2.1)
where Γ denotes the Gamma function. Note that the kernel (t− s)H−1/2 has an important impact
on the rough dynamics of the fractional Brownian motion for H < 1/2. So in order to maintain
a rough behaviour of the volatility in the Heston model, we introduce the kernel (t − s)α−1 in
a Heston-like stochastic volatility process, with α = H + 1/2. This yields to consider the rough
generalization of the Heston model, called the rough Heston model which was first introduced by
El Euch and Rosenbaum in [14] and [15].

This model satisfies the following dynamics for (St)t≥0, the underlying price process

dSt = St
√
vtdWt, (2.2.2)

where W is a Brownian motion and v is the instantaneous variance.

Moreover, the instantaneous variance process (vt)t≥0 is defined as follows

vt = v0 +

∫ t

0

(t− s)α−1 λ

Γ(α)
(θ0(s)− vs) ds+

∫ t

0

(t− s)α−1 λν

Γ(α)

√
vsdBs, (2.2.3)

with 〈W,B〉t = ρdt. Hence ρ is the correlation between spot prices and volatility moves, so
ρ ∈ [−1, 1]. ν is the volatility of volatility, so it is positive as well as λ. The mean reversion level
parameter θ0(.) is allowed to be an Ft-measurable function which makes the model time consistent
as explained in [16]. For the rest of the study, we consider θ0 to be constant over the time for the
sake of simplicity.

Furthermore, one can note that for such values of α, the rough Heston model is not Markovian
and the variance process is no longer a semi-martingale. Finally it is straightforward to check
that equation (2.2.3) leads to the classical Heston model with time-dependent mean reversion level
when H tends to 1/2.

The expression of the characteristic function of Xt := log(St/S0) within the generalized rough
Heston model, which is the main result of [14, Section 4.2, Theorem 4.1], is as follows

E
[
eiaXt

]
= exp

{∫ t

0

h(a, t− s)
(
λθ +

V0s
−α

Γ(1− α)

)
ds

}
. (2.2.4)
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Using a changement of variable of the form u := t− s in the second term gives

E
[
eiaXt

]
= exp

{
θλI1h(a, t) + V0I

1−αh(a, t)
}
, (2.2.5)

where h is the unique continuous solution of the fractional Riccati equation

Dαh(a, t) := F (a, h(a, t)) and I1−αh(a, 0) = 0, (2.2.6)

and

F (a, x) := −1

2
(a2 + ia) + λ(iaρν − 1)x+

(λν)2

2
x2, (2.2.7)

with Dα and I1−α the fractional derivative and integral operators defined by

Irf(t) :=
1

Γ(r)

∫ t

0

(t− s)r−1f(s)ds and Drf(t) :=
1

Γ(1− r)
d

dt

∫ t

0

(t− s)−rf(s)ds. (2.2.8)

The main inconvenient is that such fractional Riccati equation does not have any explicit
solution. However, it can be solved numerically.
But, why is the characteristic function of the log-price so important ? The knowledge of the
characteristic function of such stochastic process allows us to determine Call prices by using Fourier
inversion methods.

2.2.2 Numerical Scheme

One can demonstrate that the Riccati differential equation (2.2.6) can be transformed into the
non-linear Volterra integral equation given by

h(a, t) =
1

Γ(α)

∫ t

0

(t− s)α−1F (a, h(a, s))ds. (2.2.9)

To perform simulation we follow the numerical scheme explained in [17, Section 2] which de-
scribes the Adams-Bashforth method. For the sake of clarity, we note g(a, t) = F (a, h(a, t)). Given
the time interval [0, T ] and an equidistant partition 0 = t0 ≤ t1 < ... < tn = T with time increment
∆, we approximate h(a, tk+1) by

h(a, tk+1) ≈ 1

Γ(α)

∫ tk+1

0

(tk+1 − s)ĝ(a, s)ds, (2.2.10)

and

ĝ(a, t) =
tj+1 − t
tj+1 − tj

ĝ(a, tj) +
t− tj

tj+1 − tj
ĝ(a, tj+1), t ∈ [tj , tj+1) with 0 ≤ j ≤ k. (2.2.11)

One can see that the latter equation is only a trapezoidal discretization of the fractional integral.
This gives the following scheme

ĥ(a, tk+1) =
∑

0≤j≤k

aj,k+1F
(
a, ĥ(a, tj)

)
+ ak+1,k+1F

(
a, ĥ(a, tk+1

)
, (2.2.12)

with

a0,k+1 :=
∆α

Γ(α+ 2)

(
kα+1 − (k − α)(k + 1)α

)
, (2.2.13)

aj,k+1 :=
∆α

Γ(α+ 2)

(
(k − j + 2)α+1 + (k − j)α+1 − 2(k − j + 1)α+1

)
, 1 ≤ j ≤ k, (2.2.14)

ak+1,k+1 :=
∆α

Γ(α+ 2)
. (2.2.15)

Note that ĥ(a, tk+1) is present on both sides of the equation (2.2.12), making that scheme implicit.

Hence, a preliminary estimation of ĥ(a, tk+1) through Riemann sum is required in the righ-hand
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side in order to determine a better approximation so that we can then use. It is denoted by
ĥP (a, tk+1) and defined as follows

ĥP (a, tk+1) =
1

Γ(α)

∫ t

0

(t− s)α−1g̃(a, s)ds, with g̃(a, t) = ĝ(a, tj), for t ∈ [tj , tj+1) , 0 ≤ j ≤ k,

(2.2.16)
Therefore, we approach the integral in (2.2.16) by the product rectangle rule. So we have:

ĥP (a, tk+1) =
∑

0≤j≤k

bj,k+1F
(
a, ĥ(a, tj)

)
, (2.2.17)

and

bj,k+1 :=
∆α

Γ(α+ 1)
((k − j + 1)α − (k − j)α) , 0 ≤ j ≤ k. (2.2.18)

Finally, the explicit numerical scheme is

ĥ(a, tk+1) =
∑

0≤j≤k

aj,k+1F
(
a, ĥ(a, tj)

)
+ ak+1,k+1F

(
a, ĥP (a, tk+1)

)
, ĥ(a, 0) = 0. (2.2.19)

Convergence reasons are provided by Li and Tao in [18, Section 3.2, Theorem 3.4]. Moreover, we
have the following properties

max
tj∈[0,t]

|ĥ(a, tj)− h(a, tj)| = o(∆), (2.2.20)

max
tj∈[ε,t]

|ĥ(a, tj)− h(a, tj)| = o(∆2−α), ∀ε > 0. (2.2.21)

Then, the Lewis’ method, based on the inverse Fourier transform and explained in Appendix
(F.1), is applied to get the price of a European Call option given by

C (S0, T,K) := EP [(ST −K)+|F0

]
,

where K and T are respectively the strike price and the maturity date.

2.2.3 Fits to one trading day

In this section, we present the fits obtained with the generalized rough Heston model on both SPX
and VIX implied volatility smiles.

Fits to the SPX implied volatility surface

In order to calibrate the parameter (H, ν, ρ), we consider the objective function given by∑
k

(
σHestk (H, ν, ρ)− σY ahook

)2
, (2.2.22)

subject to the following constraints 
H ∈ (0, 1/2] ,

ν ≥ 0,

ρ ∈ [−1, 1],

where σHestk (H, ν, ρ) and σY ahook are respectively the implied volatilities from the rough Heston
model and the Yahoo Finance dataset. Our aim is to minimize (2.2.22) which corresponds to the
distance between the targeted implied volatilities and the ones from the generalized rough Heston
model.

Figure (2.7) displays calibration results on the S&P implied volatility surface as of July 10,
2020. The following calibrated parameters are obtained

H = 0.012, λ = 0.88, ρ = −0.7, V0 = 0.148, ν = 0.96, θ = 0.016. (2.2.23)
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Figure 2.7: Volatility smiles as of July 10, 2020: red dots represent SPX implied volatilities and
all the blue lines, coming from the same parameters, are from the rough Heston model. T is time
to expiry in years. The IV from the Yahoo finance dataset is actually the mean between the bid
and ask implied volatilities. H = 0.012.

However, note that it is very unlikely that the objective function admits a unique global mini-
mum and may have several global minimums. Thus, this set of parameters could not be unique.

One can see that the generalized rough Heston model provides a good fit to the implied volatility
surface. However, this fit is not as good as the one derived within the rough Bergomi model.
Moreover, on this chosen day, H is close to zero, meaning that the volatility is particularly rough.
But is it consistent with the value of H we observed when we studied stylized facts of the realized
variance time series ? Recall that we shew that the behavior of historical log-volatility of the SPX
index is similar to a fractional Brownian motion with small Hurst parameter of order 0.1. On both
studies, we retrieve that the calibrated values of H are small.

Figure (2.8) presents curves coming from the rough Heston model as well, but the calibration
was this time performed with the value of H equals to the SPX Hurst index derived when we
studied stylized facts of the realized variance time series.

Regarding the at-the-money volatility skew, recall that it is defined to be the first derivative
of the implied volatility with respect to the strike price K. Moreover, throughout the study, we
estimated it by using the finite difference method, see equation (2.2.24).

ψ(τ) :=
∂σiv(K, τ)

∂K

∣∣∣∣
K=St

≈ σiv(St + ε, τ)− σiv(St − ε, τ)

2ε
. (2.2.24)

Based on the paper [19] by Fukasawa, Omar El Euch demonstrated in [15, Section 4, Theorem
3] that the asymptotic expansion of the ATM volatility skew is given by

∂σiv(K, τ)

∂K

∣∣∣∣
K=St

= g(θ)θH−1/2 + o
(
θ2H−1/2

)
(2.2.25)

where g is a bounded function. Such asymptotic expansion allows us to compare the term structure
of the ATM volatility skew to empirical ATM volatility of the SPX, see Figure (2.9).

Finally, Figure (2.7) and Figure (2.9) display that the generalized rough Heston model, de-
veloped in [15], is consistent with historical implied volatility data. However, one main concern
remains: Does the generalized rough Heston model allow us to calibrate jointly SPX and VIX
smiles ?
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Figure 2.8: Volatility smiles as of July 10, 2020: red dots represent SPX implied volatilities and
all the blue lines, coming from the same parameters, are from the rough Heston model. T is time
to expiry in years. The IV from the Yahoo finance dataset is actually the mean between the bid
and ask implied volatilities. H = 0.11.

Figure 2.9: ATM Volatility skews as of June 15, 2020: red dots represent empirical SPX ATM
volatility skew and the blue line is from the rough Heston model. τ is time to expiry in years.
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Fits to the VIX implied volatility surface

Following the fits obtained previously to the SPX smiles, we now check whether or not it is possible
to jointly calibrate SPX and VIX smiles. To do so, we first calibrate the rough Heston model to
VIX implied volatility surface. We got the following parameters

H = 0.04, λ = 0.96, ρ = −0.6, V0 = 2.2, ν = 0.96, θ = 3.0. (2.2.26)

Figure 2.10: Volatility smiles as of July 10, 2020: red dots represent VIX implied volatilities and
the blue line, coming from the same parameters, are from the rough Heston model. T is time to
expiry in years. The IV from the Yahoo finance dataset is actually the mean betweenthe bid and
ask implied volatilities.

Finally, Figure (2.10) shows that the rough Heston model does not reproduce extreme left tails.
Furthermore, one can note that the parameters obtained for this plot are very different from the
ones used to fit the model to the SPX smiles. Nevertheless, this set of parameters in (2.2.26) can
somehow be close to a global minimum of the objective function applied to SPX historical data.
Therefore, those parameters from (2.2.26) were used to fit SPX smiles, but the result is far from
being acceptable. The parameters obtained from the SPX calibration do not provide a good fit to
the VIX smiles either. Hence, the rough Heston model fails to calibrate jointly the two implied
volatility surfaces.
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2.3 The Quadratic Rough Heston Model

Although the rough volatility models tested so far fit the volatility surface remarkably well with
very few parameters, they fail to fit jointly SPX and VIX implied volatility surfaces. Actually,
designing a model that simultaneously calibrates SPX and VIX options prices is known to be
extremely challenging and complex. However, Jim Gatheral et al. in [8, Section 3] introduced a
model with continuous SPX and VIX paths that enables us to fit SPX and VIX options smiles
simultaneously.

2.3.1 Specification of the Quadratic Rough Heston model

Julien Guyon, an active researcher in rough volatility modeling, stated that calibrating jointly
SPX and VIX with a continuous sample-paths model may not be possible. However, in March
2019, he introduced a necessary condition for a continuous model to fit simultaneously SPX and
VIX smiles: The inversion of convex ordering between volatility and the local volatility implied by
option prices, see [20] and [21].

This led Jim Gatheral and his coauthors in [8] to consider super-Heston rough volatility models,
developed in [22], that present the particular feature of being consistent with the strong Zumbach
effect. It characterizes models where the conditional dynamics of volatility with respect to the past
depend not only on the past volatility trajectory but also on the historical price path. Therefore,
such effect could be seen as the required condition formulated by Julien Guyon to fit simultane-
ously SPX and VIX smiles.

That’s why the quadratic rough Heston model that we consider from now, is a special case of
the super-Heston rough models of [22].

The dynamics of the underlying price process (St)t≥0 and its instantaneous variance (vt)t≥0

are defined as follows

dSt = St
√
vtdWt, (2.3.1)

vt = a(Zt − b)2 + c, (2.3.2)

with W a standard Brownian motion and a, b, c three positive constants which can be interpreted
the following way:

• a represents the sensitivity of the volatility to the feedback of price returns. Therefore, the
greater a is, the higher is the volatility of volatility.

• b is related to the asymmetry of the feedback effect. Note that the same absolute value of
Z, volatility is higher when Z is negative. Such asymmetry enables us to better estimate the
empirical behavior of the VIX.

• c is the minimal instantaneous variance used to shift upward or downward simulated volatility
smiles.

Finally, the process (Zt)t≥0 follows a rough Heston model

Zt =

∫ t

0

(t− s)α−1 λ

Γ(α)
(θ0(s)− Zs)ds+

∫ t

0

(t− s)α−1 λ

Γ(α)
η
√
vsdWs, (2.3.3)

with α ∈ (1/2, 1), λ > 0, η > 0 (which is the volatility of volatility) and θ0 a deterministic function.
Note that the only source of randomness comes from W . Thus the volatility is driven only by the
price dynamics, making that model a pure-feedback model.

The paper [8] presents additional interesting features of this model. Indeed, it highlights the
path-dependent trait of the process Z, which suggests that the volatility depends on recent price
changes. Furthermore, it is also shown that Z is highly sensitive to recent returns meaning that
long periods of trends or sudden upwards or downwards moves of the price generate large values
for |Z| and so high volatility, above all when Z is negative.
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2.3.2 Numerical Scheme

Monte-Carlo Scheme

In order to perform simulation, we first consider θ0 equals to the following function

θ0(s) =
Z0

λΓ(1− α)
s−α. (2.3.4)

Although this restriction reduces the complexity of the simulation, it also prevents us from reaching
better fits.

Inserting this expression of θ0 into (2.3.3) simplifies the definition of the process Z. The latter
becomes

Zt = Z0 −
∫ t

0

(t− s)α−1 λ

Γ(α)
Zsds+

∫ t

0

(t− s)α−1 λ

Γ(α)
η
√
vsdWs, t ≥ 0. (2.3.5)

Furthermore, by applying Ito’s formula to the process S, we have

St = S0exp

{∫ t

0

√
vsdWs −

1

2

∫ t

0

vsds

}
, t ≥ 0. (2.3.6)

Before introducing the numerical scheme, we first need to consider the following equidistant
partition 0 = t0 < t1 < ... < tn = T with ∆ the time increment. The integer M denotes the
number of paths generated. Finally our simulation procedure is as follows:

1. We first generate the covariance matrix of the Brownian motion W over the partition t0 <
t1 < ... < tn.

2. We then use the Cholesky decomposition of this covariance matrix to get the matrix (Wti,m)0≤i≤n,1≤m≤M
of the realisations of W . Thus, one column of this matrix corresponds to one path of the
Brownian motion.

3. Given the latter matrix, we can then construct the matrix of the processes Z and v by using
Riemann sums to estimate the integrals. So we have:

Zti,m = Z0 −
λ∆

Γ(α)

i−1∑
j=0

(ti − tj)α−1Ztj ,m +
λη

Γ(α)

i−1∑
j=0

(ti − tj)α−1√vtj ,m
(
Wtj+1,m −Wtj ,m

)
,

(2.3.7)
with

vtj ,m = a(Ztj ,m − b)2 + c, 1 ≤ m ≤M, (2.3.8)

and ∆ the time increment.

4. Given the matrix of the volatility process, we can compute the stock prices (ST,m)1≤m≤M
by using

ST,m = S0exp

{
n−1∑
i=0

√
vti,m

(
Wti+1,m −Wti,m

)
− ∆

2

n−1∑
i=0

vti,m

}
. (2.3.9)

Once the latter step is implemented, then we are now able to derive the Call price C(S(0), t,K) :=
E [(St −K)

+
]

Hybrid Scheme

Otherwise, the Riemann sum approach does not take into account the explosion near zero of the
kernel function in the following stochastic Volterra process (introduced in 2.3.5):

V αt :=

∫ t

0

(t− s)α−1 λ

Γ(α)
η
√
vsdWs. (2.3.10)

Hence, we recommend to use the hybrid scheme introduce in [4, Section 2.3], and already used
in the implementation of the rough Bergomi model.
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So as to simulate the process (V αt )t≥0 efficiently and accurately, we consider the first-order
variant (κ = 1) of the hybrid scheme which is based on the approximation

Ṽ αti :=

∫ i∆

(i−1)∆

(i∆− s)α−1 λ

Γ(α)
η
√
vsdWs +

i∑
k=2

(∆bk)α−1 λ

Γ(α)
η
√
V(i−k)∆

(
W(i−k+1)∆ −W(i−k)∆

)
,

(2.3.11)
with

bk :=

(
kα − (k − 1)α

α

) 1
α−1

. (2.3.12)

2.3.3 Fits to one trading day

Fits to the SPX volatility smiles

We first calibrate our model with the SPX implied volatility surface of the 20th July 2020 and
of the 10th August 2020 by using respectively Riemann sum approach and the hybrid scheme ap-
proximation, see Figures (2.11) and (2.12). We considered the same objective function used to
calibrate the generalized rough Heston model.

Considering the Riemann scheme approximation, we obtain the following parameters

H = 0.04, λ = 1.1, η = 1.1, Z0 = 0.05, a = 0.384, b = 0.095, c = 0.020. (2.3.13)

Recall that it is very unlikely that the objective function admits a unique global minimum and
may have several global minimums. Thus, this set of parameters could not be unique.

Figure 2.11: Volatility smiles as of July 20, 2020: red dots represent SPX implied volatilities and
all the blue lines, coming from the same parameters, are from the quadratic rough Heston model
(with Riemann sum). T is time to expiry in years. The IV from the Yahoo finance dataset is
actually the mean between the bid and ask implied volatilities.

Regarding the implementation of the quadratic rough Heston model with the hybrid scheme,
the parameters are as follows

H = 0.04, λ = 1.1, η = 1.1, Z0 = 0.05, a = 0.384, b = 0.095, c = 0.013. (2.3.14)

Note that only the parameter c has changed over the two plots.
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Figure 2.12: Volatility smiles as of August 10, 2020: red dots represent SPX implied volatilities
and all the blue lines, coming from the same parameters, are from the quadratic rough Heston
model (with Hybrid scheme). T is time to expiry in years. The IV from the Yahoo finance dataset
is actually the mean between the bid and ask implied volatilities.

Figures (2.11) and (2.12) highlight that the calibrated model reproduces very well the overall
shape of the SPX implied volatility surface even though we restricted the expression of θ0 for the
sake of simplicity.

In order to make the calibration algorithm faster, note that we can always consider η = 1 up
to a rescaling of the other parameters.

Fits to the VIX volatility smiles

To fit the VIX implied volatility smiles, all the parameters stay unchanged, except c. Recall that c
is only the minimal instantaneous variance used to shift upward or downward simulated volatility
smiles. We illustrate the performances of the model by considering the two dates mentioned in the
previous section and the two methods, Riemann sum and hybrid scheme, to simulate the Volterra
process.

Figure (2.13), with c = 1.8, shows that the fits are quite impressive apart from the plot with
the lowest expiration time T . Regarding Figure (2.14), with c = 2.3, the fits are good as well. Note
that we did not plot fits for T > 0.0635 because the dataset from Yahoo finance did not provide
acceptable curves.

One can observe on (2.13) and (2.14) that the model still struggles to fit extreme left tails.

Given that the same parameters (except c) are used to plot VIX and SPX smiles from the
quadratic rough Heston model, one could suggest that the quadratic rough Heston model is almost
able to calibrate jointly the SPX and VIX implied volatility surfaces.
However Jim Gatheral et al. shew that the quadratic rough Heston model can fit jointly both
volatility surfaces with the same set of parameters (H,λ, Z0, a, b, c). Hence, one question remains,
to what extent is a model said to be able to fit jointly SPX and VIX implied volatility smiles
? Should every parameter stay unchanged across the underlyings although the smiles are very
different ?

In our situation, with the datasets used above to perform calibrations, the VIX and SPX smiles
are clearly different in terms of y-axis range, hence shifting upward or downward the smiles, then
changing c is necessary to fit both implied volatility surfaces.
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Figure 2.13: Volatility smiles as of July 20, 2020: red dots represent VIX implied volatilities and
all the blue lines, coming from the same parameters, are from the quadratic rough Heston model
(with Riemann sum). T is time to expiry in years. The IV from the Yahoo finance dataset is
actually the mean between the bid and ask implied volatilities.

Figure 2.14: Volatility smiles as of August 10, 2020: red dots represent VIX implied volatilities
and all the blue lines, coming from the same parameters, are from the quadratic rough Heston
model (with Hybrid scheme). T is time to expiry in years. The IV from the Yahoo finance dataset
is actually the mean between the bid and ask implied volatilities.
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Conclusion

In this master thesis, we explored the rough nature of the spot log-volatility and the calibration of
rough stochastic volatility pricing models using historical market data from Yahoo Finance.

By studying the sample moments of log-volatility increments, we shew that the spot log-
volatility process behaves as a fractional Brownian motion with Hurst index 0 < H < 1/2. Such
dynamics of the log-volatility reproduces the properties of the historical time series of the volatility
and provide a good fit to implied volatility surface for a wide range of different underlying assets
as well.

The calibrations of rough stochastic volatility models show that such models outperform con-
ventional Markovian model, even though they have very few parameters. Although the rough
Bergomi model cannot fit VIX smiles, it provides impressive fits to SPX implied volatility surface
by using the hybrid scheme method. Calibration plots from the rough Heston model obtained
thanks to the Adams numerical scheme combined to the Lewis’ approach are good as well, but
this model does not allow us to simultaneously calibrate VIX/SPX smiles. Finally, unlike the two
previous models, the quadratic rough Heston model enabled us to almost calibrate jointly both
underlying assets. However, Jim Gatheral et al. in [8, Section 4] were able to calibrate jointly
VIX and SPX smiles with the exact same set of parameters. Does this difference between our
observations and the results from [8] come from the datasets used ? The VIX smiles from Yahoo
Finance that we considered in this report are much higher than the ones used for calibrations in
[8]. Hence, changing the parameter c in our case seems relevant and necessary to fit jointly both
implied volatility surfaces. This issue raises the following questions: to what extent could we say
that a model is able to calibrate jointly SPX and VIX smiles ? Could this property depend on the
dataset considered ?

Continuous sample-paths models under rough volatility remain a major challenge in quantita-
tive finance, and there is still a lot of room for exploration and improvements, especially in terms
of fast and joint calibration approach.
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Appendix A

Estimations of H

A.1 On different indices

Index Estimates of H Estimates of ν
SPX2.rk 0.117594 0.341476

FTSE2.rk 0.139819 0.266099
N2252.rk 0.095530 0.338894

GDAXI2.rk 0.137016 0.282929
RUT2.rk nan nan

AORD2.rk 0.079685 0.359848
DJI2.rk 0.114622 0.336430
IXIC2.rk 0.120033 0.299165
FCHI2.rk 0.124703 0.290940
HSI2.rk 0.099976 0.282359
KS11.rk 0.116545 0.283993
AEX.rk 0.131631 0.292246
SSMI.rk 0.154811 0.235868

IBEX2.rk 0.123253 0.285950
NSEI.rk 0.115257 0.315873
MXX.rk 0.092918 0.307996
BVSP.rk 0.099532 0.306327

GSPTSE.rk nan nan
STOXX50E.rk 0.118323 0.312451

FTSTI.rk 0.105314 0.230195
FTSEMIB.rk 0.122902 0.303811

Table A.1: Estimates of H and ν for all indices in the Oxford-Man Institute dataset.
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A.2 On different time intervals

Index H (first half) H (second half)
SPX2.rk 0.091954 0.123571

FTSE2.rk 0.110710 0.164393
N2252.rk 0.099650 0.091936

GDAXI2.rk 0.121706 0.145583
RUT2.rk 0.079832 nan

AORD2.rk 0.056900 0.100327
DJI2.rk 0.100371 0.112462
IXIC2.rk 0.083168 0.132130
FCHI2.rk 0.109327 0.132300
HSI2.rk 0.100327 0.091861
KS11.rk 0.126736 0.095671
AEX.rk 0.111820 0.139942
SSMI.rk 0.137252 0.163870

IBEX2.rk 0.108333 0.131766
NSEI.rk 0.115666 0.115225
MXX.rk 0.075540 0.103705
BVSP.rk 0.075484 0.114195

GSPTSE.rk nan 0.140437
STOXX50E.rk 0.102180 0.128748

FTSTI.rk 0.059519 0.136346
FTSEMIB.rk 0.102633 0.134533

Table A.2: Estimates of H over two different time intervals for all indices in the Oxford-Man
Institute dataset.
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Appendix B

Simulation of the Volterra process

(a)

(b)

Figure B.1: (a) H = 0.3 (b) H = 0.6
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Figure B.2: H = 0.9
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Appendix C

Underlying price process within
the rough Bergomi model

(a)

(b)

Figure C.1: (a) S&P 500 index from simulation of the rough Bergomi model (b) S&P 500 index
from 1 January 2005 to 1 January 2020.
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Appendix D

Spot volatility process within the
rough Bergomi model

(a)

(b)

Figure D.1: (a) Spot volatility from simulation of the rough Bergomi model (b) Volatility index
(VIX) from 1 January 2005 to 1 January 2020.

42



Appendix E

Fractional Brownian motion

E.1 Properties

Definition E.1.1 (Fractional Brownian Motion). A fractional Brownian motion
{
WH
t , t ≥ 0

}
is

the generalisation of a Brownian motion. It is a continuous and centered Gaussian process with
stationary increments, however, its increments are not independent, unlike the usual Brownian
motion. Its covariance matrix is given by

E
[
WH
t W

H
s

]
=

1

2

(
|t|2H + |s|2H − |t− s|2H

)
, (E.1.1)

where t ≥ 0, s ≥ 0 and 0 < H < 1 is the Hurst index.

Remark E.1.2. Note that the definition written above is enough to define the distribution of a
Gaussian process since it is uniquely determined by its mean and covariance function.

Proposition E.1.1. A fractional Brownian motion is said to be self-similar, i.e WH
aT

L
≈ aHWH

T

for any positive constant a.

Corollary E.1.3. Given the definition of a FBM, one can see that:

• For H = 1/2: E
[
W

1
2
t W

1
2
s

]
= t ∧ s, hence W

1
2 = B, with B a Brownian motion.

• For H < 1/2: The increments are negatively correlated.

• For H > 1/2: The increments are positively correlated.

Proposition E.1.2 (Mandelbrot-Van Ness representation). Let 0 < H < 1/2 and γ = 1/2 −H.
The Mandelbrot-Van Ness representation of fractional Brownian motion (WH

t )t∈R in terms of
Wiener integrals is given by

WH
t = CH

{∫ t

−∞

dW P
s

(t− s)γ
−
∫ 0

−∞

dW P
s

(−s)γ

}
, (E.1.2)

For an in-depth introduction to fractional Brownian motions we refer the readers to [23].

E.2 Simulation of FBM

In order to simulate the values of a FBM (WH
t )t≥0 at the grid points t1 < ... < tN , the Cholesky

decomposition is implemented.

1. We create the covariance matrix Σ following the equation (E.1.1).

2. Using the Cholesky decomposition, we got the lower triangular matrix L such that Σ = LLT .
Recall that this decomposition is possible if and only if Σ is positive definite.

3. Generate Z, a N-dimensional standard Gaussian vector.
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4. Set Ẑ = ΣZ, where Ẑ is a sample path of the FBM WH .

Figure (E.1) clearly shows that the higher the Hurst parameter is, the smoother the curve will
be.

Figure E.1: Simulation of a fractional Brownian motion, using Cholesky decomposition.

Remark E.2.1. Although the Cholesky decomposition leads to an exact simulation, such method
is expensive in terms of computation. It has a complexity of order O(N3).
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Appendix F

Pricing method

F.1 Lewis’ approach

We present now a method based on the inverse Fourier transform applied on the characteristic
function of the log-price process, explained in [24, Section 4.5] to derive Call prices in the specific
case of the generalized rough Heston model. Let the function g be defined as follows:

g(x) = (x− ek)+ with x = log(St). (F.1.1)

The Fourier transformation of g, denoted by F [g(x)], is given by

F [g(x)] =

∫ +∞

−∞
eizxg(x)dx =: ĝ(z). (F.1.2)

However, since g is an unbounded function, the latter integral can not be finite. This issue can be
bypassed by considering an exponential damping factor. Hence for some appropriate zi we have
g(x)e−zix = o

(
1
x2

)
. This justifies the existence of the Fourier transform along a line in the complex

plane where the path of integration is parallel to the real axis. Some algebras give

ĝ(z) :=

∫ +∞

−∞
eizxg(x)dx,

=

∫ +∞

ln(K)

eizx(x− ek)dx,

= − Kiz+1

z2 − iz
, (F.1.3)

with z a complex.
The inverse Fourier transform allows us to recover the payoff function:

g(x) =
1

2π

∫ izi+∞

izi−∞
e−izxĝ(z)dz. (F.1.4)

Plugging (F.1.4) in the expression of the Call option yields

C (S(0), T,K) := e−rTEQ [g(x)] ,

=
e−rT

2π
EQ
[∫ izi+∞

izi−∞
e−izxĝ(z)dz

]
,

=
e−rT

2π

∫ izi+∞

izi−∞
EQ [e−izx] ĝ(z)dz,

=
e−rT

2π

∫ izi+∞

izi−∞
φT (−z)ĝ(z)dz. (F.1.5)

Applying the payoff transform of a Call option in (F.1.5), we have

C (S(0), T,K) = −Ke
−rT

2π

∫ izi+∞

izi−∞
φT (−z) eizk

z2 − iz
dz, with k = log

(
K

S0

)
. (F.1.6)
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By moving the integration contour to zi ∈ (0, 1) and according to the Residue Theorem, the Call
option value must equal the integral along =(z) = zi minus 2πi times the residue at z = i which
is S0. This gives the following formula:

C (S(0), T,K) = S0 −
Ke−rT

2π

∫ izi+∞

izi−∞
φT (−z) eizk

z2 − iz
dz. (F.1.7)

A convenient choice is to shift the contour by zi = 1/2, because then the path of integration is
symmetrically located between the two poles. The change of variables z = u + i

2 and employing
the symmetry property for real valued functions give

C (S(0), T,K) = S0 −
√
KS0e

−rT/2

π

∫ +∞

0

<
(
e−iukφT

(
u− i

2

))
du

u2 + 1/4
. (F.1.8)
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