
Imperial College London

Department of Mathematics

Deep Reinforcement Learning and

Electronic Market Making

Author: Chenyu Liu (CID: 01203579)

A thesis submitted for the degree of

MSc in Mathematics and Finance, 2019-2020

Declaration

The work contained in this thesis is my own work unless otherwise stated.

2

Acknowledgements

I would like to thank my supervisor Dr Paul A. Bilokon for helping me with this thesis.

Abstract

Market making is a fundamental problem of modern algorithmic trading, where the market maker

has to continuously provide liquidity to the market by offering buy and sell prices. The main chal-

lenge of market making is to manage the inventory risk. Traditional market making formulae rely

on assumptions of the market, including modelling the arrival of orders with stochastic processes.

In this paper, I proposed a model-free approach with Reinforcement Learning, using real-world

crypto-currency data. A wide range of deep reinforcement learning algorithms are tested, and we

achieved a positive average profit over the data set, and also outperformed benchmarks.

Contents

Abstrct 1

1 Introduction and Background 6

1.1 Background of Deep Reinforcement Learning . 7

1.1.1 Markov Decision Process . 7

1.1.2 Bellman Equation . 10

1.1.3 Dynamic Programming . 11

1.1.4 Monte Carlo Methods . 13

1.1.5 Exploration vs Exploitation . 13

1.1.6 Temporal Difference Prediction . 14

1.1.7 Tabular Q-Learning . 14

1.1.8 Deep Q-Learning . 15

1.1.9 Extensions to Deep Reinforcement Learning 16

1.1.10 Policy Gradient . 17

1.1.11 Actor-Critic Method . 18

1.1.12 Continuous Action Spaces . 19

1.2 Background of Electronic Market Making . 20

1.2.1 Electronic Markets and the Limit Order Book 20

1.2.2 Grossman-Miller Market Making Model . 21

1.2.3 The Avellaneda-Stoikov Model . 23

2 Applications 27

2.1 Data and Environment . 27

2.1.1 Data Source . 27

2.1.2 Environment Steps . 27

2.1.3 Reward Function . 28

2.2 Observation Space . 29

2.2.1 Market State Observation . 29

2

2.2.2 LSTM observations . 30

2.2.3 Trading Agent Observation . 31

2.2.4 Observation memory . 32

2.3 Action Space . 33

2.4 Agent . 34

2.5 Computing Speed Analysis . 35

2.6 Training process and hyper-parameter tuning . 36

2.6.1 Hyper-parameters . 36

2.6.2 Training Process . 38

2.7 Performance . 44

2.8 Further Development . 46

A Source Codes 47

Bibliography 78

3

List of Figures

2.1 The LSTM-predicted probability distribution of midprice movement for 100 random

states . 30

2.2 The Architecture of the entire agent . 35

2.3 The PnL, Position, Reward and Market Price of an Environment, at early stage of

training . 38

2.4 The Actions of the Agent in this Environment, at early stage of training 38

2.5 The PnL, Position, Reward and Market Price of an Environment, at mid stage of

training . 38

2.6 The Actions of the Agent in this Environment, at mid stage of training 39

2.7 The PnL, Position, Reward and Market Price of an Environment, at mid-to-late

stage of training . 39

2.8 The Actions of the Agent in this Environment, at mid-to-late stage of training . . 39

2.9 The PnL, Position, Reward and Market Price of an Environment, at late stage of

training . 39

2.10 The Actions of the Agent in this Environment, at late stage of training 40

2.11 The Maximum of Gradient of Neural Network . 40

2.12 The Variance of Gradient of Neural Network . 40

2.13 The L2-norm of Gradient of Neural Network . 41

2.14 The Advantage Function . 41

2.15 The Predicted Values of States . 41

2.16 The average Rewards of 16 environments . 42

2.17 The Entropy Loss . 42

2.18 The Value Loss . 43

2.19 The Policy Loss . 43

2.20 The Total Loss . 43

2.21 The Distribution of PnL . 44

2.22 The Distribution of PnL, Given less than 10 . 44

4

2.23 The Distribution of PnL, Given more than 10 . 44

2.24 The Distribution of PnL, With random action . 45

5

Chapter 1

Introduction and Background

Reinforcement learning is a rapidly developing subfield of machine learning, which focuses on train-

ing an agent to participate in a complicated environment, make observations, take optimal actions

based on these observations and gain a maximal reward. The environment is usually a very large

space, and the agent can only navigate a tiny proportion of it, which is very different from other

machine learning problems. The environment may also have non-static input-output relation, but

rather a dynamic and stochastic one. Despite the difficulties, reinforcement learning has seen re-

peated successes in some problems like Atari 2600 games, GO, and DOTA. This success is drawing

the attention of both the general public and the researchers to this field.

In this chapter we will first introduce some basic concepts of deep reinforcement learning, as well

as some extensions and modifications to the original basic setup that will be used in our code. All

these variants of the algorithms are tested in our environment, but not all of them perform well

or even converge at all. They are included in the thesis to show how the theory of reinforcement

learning is developed over the past few years, and to show how certain algorithms solve the market

making environment better than the others.

Some theoretical works on electronic market making will also be reviewed. These equations are

based on the assumption of market orders and mathematical deductions instead of real market

data and computer-based tests, but they give a very good idea of how a good market maker should

perform.

6

1.1 Background of Deep Reinforcement Learning

1.1.1 Markov Decision Process

The foundation of reinforcement learning is the Markov Decision Process (MDP). However,

before talking about it, we must formalize the simplest child of Markov family: the discrete

Markov Process.

In a discrete Markov Process, the system has many different states, which can be observed. The

state this system is in changes after each time step, and forms a sequence of states, which is called

Markov Chain. However, the state has a restriction on how it evolves, which is a Markov

Property: The future dynamics of the system must depend only on the current state, not the

history of the evolution of the states. In the case that the state space is finite, we may write down

a Transition Matrix. In this matrix, the element in ith row and jth column, Tij , represents the

probability of transition from state i to state j.

The next member in the Markov family is the Markov Reward Process. On top of the Markov

Chain setup, after each state-to-state transition, a (random) reward is given to the observer. In

this case, instead of the transition matrix, we need a tensor to record this:

P(s′, r|s) = Probability of transition to state s’ from state s, while receiving reward r (1.1.1)

In some cases, we may be unable to observe the state directly. Instead we observe an observation

dependent on the state. This leads to an Observation Space, and Observation Matrix or

Emission Matrix:

P(o|s) = Observe o while the system is in state s (1.1.2)

This is called Partially Observable Markov Process, or Hidden Markov Model. There is

a lot of active research on HMMs, but we will now talk about them is this thesis.

Finally, we take into account the actions of the agent in this environment, to create a mathematical

formulation of environment, observation, agent, action and rewards.

In a Markov Decision Process:

• States are not directly observable, but some observations based on the state are known. The

observation space and state space may or may not have an explicit bijection between them.

• An agent is taking actions based on the observations, and the action changes the underlying

state of the environment, returning a different observation and a reward.

7

• How state transits depends on the last state of the system and the action of the agent, usually

in a probabilistic way.

• Given a state-action pair, the environment returns a possibly random reward to the agent.

• The agent’s goal is often to maximise the total reward received, with future rewards dis-

counted by a factor.

To formalize this process, we introduce the following symbols and notations:

• (Implicit) Time: t

• State : St

• Action : at

• Next state from state St following action at: St+1, with probability P(St+1|St, at)

• Reward given to the agent while it transits to St+1: rt, with probability P(St+1, rt|St, at)

• Policy of the agent: Probability of taking action at from state St: π(St, at)

• The objective is to maximise discounted return: Gt =
∑T−t−1
k=0 γkrt+k+1, including the

possibility of T = inf or γ = 1 but not both. The discounted total reward instead of the

direct next reward is maximised, such that the agent can learn to sacrifice the short-term

reward for a bigger long-term benefit.

The dynamics of MDP is described by the probability of each possible pair of reward r and state

s′, from state s, after action a:

p(s′, r|s, a) = P(St+1 = s′, Rt+1 = r|St = s,At = a)

= Probability of transition to state s’ with reward r, from state s, after action a

(1.1.3)

We can now define a policy:

π(a|s) = Pr(At = a|St = s) (1.1.4)

Given a policy, we can define the value of state:

vπ(s) = Eπ[Gt|St = s] = Eπ[

∞∑
k=0

γkrt+k+1|St = s] (1.1.5)

Notice that this value of state is dependent on the policy. It should not be considered as an intrinsic

property of the state.

8

Similarly, for a state-action pair, we can define its Q-value:

qπ(s, a) = Eπ[Gt|St = s,At = a] = Eπ[

∞∑
k=0

γkrt+k+1|St = s,At = a] (1.1.6)

We can also reverse this relation. Starting from a value function v(s), or a state-action function

q(s, a), we can directly obtain an optimal policy according to these functions:

πv(s) = arg max
a

∑
s′

p(s′|s, a)v(s′) (1.1.7)

πq(s) = arg max
a

q(s, a) (1.1.8)

We call any method that tries to learn the p-function P-Learning, and any method that tries to

learn to q-function Q-Learning

9

1.1.2 Bellman Equation

A useful property of the value functions is the recursive property:

vπ(s) = Eπ[

∞∑
k=0

γkrt+k+1|St = s]

= Eπ[Rt+1 +

∞∑
k=0

γkrt+k+2|St = s]

=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a)[r + γvπ(s′)] (1.1.9)

This is called Bellman Equation. Starting from this equation, if we consider an Optimal

State-value Function, denoted v∗, which is defined by:

v∗(s) = max
π

vπ(s) (1.1.10)

and similarly, Optimal Action-value Function q∗(s, a):

q∗(s, a) = max
π

qπ(s, a) (1.1.11)

Notice that v∗ is an optimal value function and its consistency condition can be written without

reference to any specific policy:

v∗(s) = max
a∈A(s)

qπ∗(s, a)

= max
a

Eπ∗ [Gt|St = s,At = a]

= max
a

Eπ∗ [Rt+1 +

∞∑
k=0

γk+1rt+k+2|St = s]

= max
a

E[Rt+1 + γv∗(St+1)|St = s,At = a]

= max
a∈A(s)

∑
s′,r

p(s′, r|s, a)[r + γv∗(s
′)] (1.1.12)

This equation is called the Bellman optimality equation. For an environment with finite states

and known dynamics, this linear system of equations may be solved with a variety of methods.

However, in real world problems, this approach has two major limitations. Firstly, the number of

states is often too large or even infinite for the system to be solved directly. Even a small system

with roughly 100 states could be computationally too expensive to solve. Another issue is that the

dynamics of the system is also usually not known. Without knowing the exact probabilities, it is

impossible to solve the equations and find a stable policy.

10

1.1.3 Dynamic Programming

Dynamic Programming is a collection of algorithms used to compute an optimal policy in a MDP.

The key idea of DP is to use the recursive property of Bellman optimality equation for P-values

and Q-values, to organize the search of optimal policy.

Policy Evaluation

Given the recursive property, we can turn the Bellman Equations into an update rule. Consider

a sequence of approximate value functions v0, v1, v2, . . . , with the successive update rule:

vk+1(s) = Eπ[Rt+1 + γvk(St+1)|St = s]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvk(s′)] (1.1.13)

This is called Iterative Policy Evaluation. Given any policy π, we can start with any value

functions and apply the updates, and the sequence of value functions should converge to the value

function corresponding to this policy. It is possible to prove this sequence will converge to the

“correct” value function associated with this policy.

The convergence may be slow, but we can often accept a close approximation of the “correct” value

function. We can track the maximum difference in the value of states after each step of update,

and terminate the process once the maximum difference is smaller than a threshold.

Policy Improvement

We will first introduce the definition of “a better policy”.

Let π and π′ be any pair of deterministic policies such that, for all s ∈ S:

qπ(s, π′(s)) ≥ vπ(s) (1.1.14)

Then the policy π′ must be better or as good as policy π, which gives greater expected rewards

for all states s:

vπ′(s) ≥ vπ(s) (1.1.15)

11

This is called the Policy Improvement Theorem. For example, we can easily prove that, from

an old policy π, if we compute the q values of this policy, and build a new greedy policy:

π′(s) = arg max
a

qπ(s, a) (1.1.16)

This greedy policy satisfies the condition of the Policy Improvement Theorem. This tells us that

the greedy policy is an improvement on the original one.

Policy Iteration

Value iteration effectively combines policy evaluation and policy improvement. Starting from any

simple policy, apply policy evaluation to obtain the state value function, and then apply policy

improvement to obtain a better policy. By repeating these two steps, our policy should converge

towards the optimal one.

π0
Policy Evaluation−−−−−−−−−−−→ vπ0

vπ0

Value Iteration−−−−−−−−−→ π1

π1
Policy Evaluation−−−−−−−−−−−→ vπ2

. . . (1.1.17)

Value Iteration

In policy iteration, each of its iterations involves policy evaluation, which is also an iterative pro-

cess that converges slowly. However, it is unnecessary to complete the policy evaluation process.

We may only take a few steps of policy evaluation and move on to the next step of value iteration,

without waiting for a full convergence.

12

1.1.4 Monte Carlo Methods

The policy evaluation process in the last section involves considering all possible state-action-

reward tuples, which is impractical in an environment with a huge state space. The idea of the

Monte Carlo Method is, given a policy π, generate a number of full episodes. Only for each

state-action pair in these generated episodes, update the values according to discounted rewards

from the full episode. This method is very useful when we have little knowledge about the dynamics

of the environment.

V (St)← V (St) + α[Gt − V (St)] (1.1.18)

where Gt is the actual discounted return from an episode. There are also two versions of Monte

Carlo Methods, the First-Visit Monte Carlo and the Every-Visit Monte Carlo. After generating

a full episode of game, in some cases, we may see the same (s, a, r, s′) tuple appears multiple times.

The First-Visit Monte Carlo believes that only the first one should be used for learning, while

the Every-Visit Monte Carlo methods uses all of them. Empirically,the performance of First-Visit

Monte Carlo is slightly better, but the difference is minor.

1.1.5 Exploration vs Exploitation

In the Monte Carlo Methods, we often need to generate an entire episode of game. However, if we

start from a very bad policy, or if we run into a policy that incorrectly favours certain actions, we

may never get to try and understand how some other actions perform. In other words, it is crucial

to let the agent explore a large part of the policy space, before converging to an optimal one. The

most basic method is call ε-greedy action selection.

In this method, whenever we select an action, there is a probability of ε that this selection is com-

pletely random, regardless of what our current policy/model outputs. The optimal action based

on our current learning is selected with only the probability of 1− ε. This parameter of ε is usually

decreased over time, start at 1 at the beginning of the training, such that the agent can fully

explore different actions. As the ε slowly decreases to 5% or even to 0, the agent can explore some

variations base on the current policy.

Other Exploration vs Exploitation techniques include Upper Confidence Bound etc., but they are

not as useful in the context of a complicated reinforcement learning problem.

13

1.1.6 Temporal Difference Prediction

In the Monte Carlo method, notice that the update is carried out only at the end of a full episode.

This may give rise to a large variance if the length of the episode is large.

In TD(0) methods, we reuse the existing knowledge of the value of the next time step:

V (St)← V (St) + α[Rt+1 + γV (St+1)− V (St)] (1.1.19)

In effect, the target of update for the Monte Carlo method is Gt, while the target for the TD(0)

method is Rt+1 + γV (St+1). Studies show that switching to the TD(0) method usually improves

performance.

If we apply TD(0) to the Q-Learning, we get the One-Step Q-Learning algorithm:

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)] (1.1.20)

We can easily extend this to n-step Q-Learning, as an extension to the original Deep Q-Learning

in the later chapters.

1.1.7 Tabular Q-Learning

We can apply the value iteration technique to Q-learning by tracking the value of all state-action

pairs:

1. Start with an empty table of Q(s, a) for all pairs of (s, a)

2. Obtain (s, a, r, s′) from the environment. Any Exploration vs Exploitation technique may be

used here.

3. Make a “blending” update according to the Bellman equation:

Qs,a ← (1− α)Qs,a + α(r + γ(maxa′∈AQs′,a′))

4. Check convergence condition and repeat from step 2.

14

1.1.8 Deep Q-Learning

The tabular Q-learning method iterates over the full set of states, while this is impossible in some

cases. The state space could be far too large or even continuous. The idea of deep Q-learning is to

build a neural network to approximate Q(s, a) ≈ Q(s, a, θ). The simplest form of deep Q-learning

is like this:

1. Initialize a neural network to approximate Q(s, a). The dimension of input and output of the

neural network should be the same as the dimension of state space and size of action space.

2. Interact with the environment and obtain tuple (s,a,r,s’).

3. Calculate the loss: L = (Qs,a − r)2 if episode ends, and L = (Qs,a − (r+ γmaxa′∈AQs′,a′))
2

if the episode has not ended. This is the same idea as in the TD(0) method.

4. Update Q(s, a, θ) using stochastic gradient descent

5. Repeat from step 2 until converged

However, this simple algorithm does not work very well. One reason is that we don’t have a clever

way to interact with the environment. If we take actions randomly, the chance of ever winning a

game and receiving the rewards is very small, thus the program learns very slowly. To solve that,

we apply the epsilon-greedy method: With probability ε, we act randomly. With probability

1− ε, we follow the greedy action. This parameter ε decreases from 1.0 to 0.01 over the course of

learning.

Two other modifications, Replay Buffer and Target Network, are mentioned in the paper Playing

Atari with Deep Reinforcement Learning[1] and they both are aiming at increasing learning

stability. The final version of the algorithm in that paper has the following steps:

1. Initialize neural networks Q(s, a, θ) and Q̂(s, a, θ̂) randomly. Set ε = 1.0. Build an empty

buffer.

2. With probability ε, select a random action a. Otherwise, select greedy action a = arg maxaQs,a.

3. Execute action a and observe reward r and next state s′.

4. Store (s, a, r, s′) into the buffer.

5. Sample a random minibatch from the buffer. Calculate target y = r if episode ends, and

y = r + γmaxa′∈A Q̂s′,a′ otherwise.

6. Calculate loss: L = (Qs,a − y)2. Update Qs,a using Stochastic Gradient Descent.

7. Repeat from step 2. For every N steps, copy weights from Q to Q̂.

15

1.1.9 Extensions to Deep Reinforcement Learning

In the paper Rainbow: Combining Improvements in Deep Reinforcement Learning[2], a

few improvements of the DQN are combined into a hybrid method. In this section, we will briefly

introduce these improvements.

N-step DQN

The first improvement was first introduced in the paper Learning to Predict by the Methods

of Temporal Difference[3]. From the Bellman Equation, we expand the recursive relation for

more steps, so the estimation of Q is more stable. For example, a 2-step DQN would have the

following update rule:

Q(st, at) = rt + γrt+1 + γ2 max
a′

Q(st+2, a
′) (1.1.21)

This requires saving the experience in the form of (st, at, rt, st+1, at+1, rt+1, st+2), instead of the

original (st, at, rt, st+1) tuple. Rolling out more steps means using more memory and calculation

time, but the experiments show that this method gives minor improvement when the step number

is more than 2. This is why the 2-step DQN is the most favourable one in most cases.

Double DQN

In the paper Deep Reinforcement Learning with Double Q-Learning[4], authors found a

methods to fix the overestimation of DQN. In the basic DQN, the target value for Q is:

Q(st, at)← rt + γmax
a

Q(st+1, at+1) (1.1.22)

This is changed to :

Q(st, at)← rt + γmax
a

Q′(st+1, arg max
a

Q(st+1, a)) (1.1.23)

The Q′ is called Target Network. We can see that the actual action for the next state is chosen by

the trained network, but the values used to estimate and update the parameters are taken from

the target network. The target network doesn’t get updated every time. Instead, its parameters

are copied from the original network once every fixed number of steps, usually 100.

Noisy Networks

The next improvement is about explorations of the environment. Instead of controlling the ε to

explore, in the paper Noisy Networks for exploration[5], noise is added to the weights of the

fully-connected layers of the network by adding a normally distributed noise to the output. The

16

size of the noise, i.e. the standard deviation of the normal distribution, is also adjusted using

back-propagation. Over the course of learning, if the Q-value for some state-action pair is stable,

the noise is automatically reduced, similar to a reduced ε value.

Prioritized replay buffer

In the paper Prioritized Experience Replay[6], a new method is introduced to increase learning

speed. After every interaction with the environment, the experience s, a, r, s′ is stored into a replay

buffer, together with a default weight of usually 1. Before adjusting the parameter of the network,

a batch of experiences are sampled from the buffer, according to its weight. After calculating

the losses of the network and the back propagation, the weights of these experiences are updated

according to the training loss. Experience tuples with high losses have a higher weight or priority;

thus it is more likely to be selected and learned again next time.

Dueling DQN

In the paper Dueling Network Architectures for Deep Reinforcement Learning[7], the

value of Qs,a is divided into two parts: V (s) and A(s, a), each approximated by a neural network..

The V (s) is the value function of the state, and A(s, a) aims to capture how much extra value an

action can bring to us. The A(s, a) is set to have an average of 0 over the action space, so the final

approximation of Q value is Q(s, a) = V (s) + A(s, a)− Ā(s), where Ā(s) is the average A(s) over

all actions.

Categorical DQN

Finally, the most complicated improvement is proposed in the paper A Distributional Perspec-

tive on Reinforcement Learning[8]. Instead of estimating a single Q-value for each state-action

pair, this methods is trying to predict the distribution of discounted reward. The Bellman Equa-

tion now takes a distributional form Z(x, a)
D
= R(x, a) + γZ(x′, a′). The loss is calculated by

Kullback-Leibler divergence.

1.1.10 Policy Gradient

Instead of training a neural network to learn the Q-values and than take action based on the largest

Q-value, it is more straightforward to train a neural network to directly return a policy in the form

of probabilities. Suppose there are n actions, we build a network with n outputs, apply a softmax

function on the outputs to turn them into a probabilistic policy, and finally train it with Cross

17

Entropy Loss, which is also called Policy Gradient:

LossPolicyGradient = −Q(s, a) ∗ log(π(a|s)) (1.1.24)

An algorithm called REINFORCE is developed based on this policy gradient:

1. Initialize the network randomly

2. Play N full episodes and save these experiences

3. Calculate the discounted total rewards for each state-action pairs in the experiences

4. Calculate the loss L = −
∑
k,tQk,tlogπ(sk,t, ak,t)

5. Perform SGD to update weights

6. Repeat from step 2

1.1.11 Actor-Critic Method

One way to improve the stability of PG is to reduce the variance. Suppose our rewards are always

positive, but only differ in magnitude. While applying the policy gradient, a positive reward means

we are pushing our agent to take all actions more often, instead of encouraging some actions and

discouraging the others. Thus, we train a separate network to learn the average values of the states,

and subtract it from the reward. This means total reward is called baseline. The policy part of

the network is called actor, and the value part of the network is called critic. The algorithm looks

like this:

1. Initialize network with random parameters

2. Play N steps in the environment using the current policy πθ, and save these experience.

3. Calculate the discounted accumulated reward.

4. Perform Policy Gradient update ∂θπ ← ∂θπ +∇θlogπθ(ai|si)(R− Vθ(si))

5. Perform Value update ∂θv ← ∂θv + ∂(R−Vθ(si))2
∂θv

6. Repeat from step 2

18

1.1.12 Continuous Action Spaces

In some cases, the action space could be continuous. This could be an angle of the robot arm, a

force applied to an object or a direction the agent is moving. The usual methods cannot deal with

a continuous action space.

Take A2C as an example, we will talk about how to change it to learn a continuous action space.

Suppose there are N continuous actions, we build a network that outputs:

• value: Dimension = 1

• µ: Dimension = N

• σ2: Dimension = N

The value part again serves as a baseline, and is trained by Mean Squared Error Loss. The action

the agent takes is now a N-dimensional normally-distributed variable, with mean µ and variance

σ2. More precisely:

logπθ(a|s) = − (x− µ)2

2σ2
− log

√
2πσ2 (1.1.25)

And the entropy for such a policy, ln
√

2πeσ2, is added to the final loss function.

19

1.2 Background of Electronic Market Making

1.2.1 Electronic Markets and the Limit Order Book

Most of the financial contracts are now traded in electronic markets today. From stocks, FX, to

bonds and derivatives, everything that is traded regularly with a large volume is now traded on

electronic markets, given how fast and accurate it is. In the most basic setup, an electronic market

has two types of orders: Market Orders and Limit Orders. A Market Order means a participant

of the market wants the order executed immediately, at the best price this market can offer at

this moment. This is a very aggressive order, in contrast to a Limit Order, which is considered

more passive. The Market Order only includes the quantity that someone wants to trade, but

the Limit Order also includes the worst price for this trade. Suppose someone is trying to buy

a certain quantity of security, a Limit Order will include the maximum price he is willing to pay

for this trade. For a sell order, this would be a minimum price. Such a Limit Order will not be

immediately executed.

Limit Orders are organized in a Limit Order Book. Ths LOB keeps track of all ongoing orders.

It records the accumulated quantity of Limit Orders at any price, and broadcast this data to all

market participants. The system then executes all possible trades with a defined algorithm. This

algorithm usually prioritizes Market Order and then Limit Orders, in a price-time priority. Market

Order is fullfilled by matching its quantity with the best price for this quantity on the market, and

earlier Limit Orders at these prices will be executed first. Limit Orders that don’t immediately

match anything will be kept on the LOB, to wait for further market price movements.

This is not the only setup for an Electronic Market. Some markets use a pro-rata rule, which

means Market Orders are shared among the Limit Orders at the same price, proportional to their

volume, instead of on a first-come-first-serve basis. Some markets even mix up the time-priority

and pro-rata rules.

Another difference between electronic markets is transparency. Large exchanges tend to be regu-

lated, and the information about the orders are shared openly to all market participants. However,

in some other exchanges, these information might not be all publicly available. Certain exchanges

make a profit by selling information of the order flow.

However, the advantage of these smaller exchanges is that they provide a wider range of types of

orders, for example, Hidden Order, Iceberg Order, Immediate-or-Cancel Order, Fill-or-Kill Order.

Exchanges also charge different prices for transactions and a direct feed of data.

20

1.2.2 Grossman-Miller Market Making Model

This is the model[9] provided by Frossman and Miller in 1988 to capture the behaviour of market

makers. We will look at a rephrased version[10] of it.

Consider n identical Market Makers for a single asset and three dates t ∈ {1, 2, 3}. At date 1, a

liquidity trader, LT1, sells i units of the asset at time 1, and another liquidity trader, LT2, buys i

units of the asset at time 2. The prices at time 3 is S3 = µ+ ε2 + ε3, where µ is constant, ε2 and

ε3 are independent normally distributed variables with mean 0 and variance σ2, representing the

price change between time 1 and 2 and price change between time 2 and 3. Assume all market

participants and risk-averse and have utility function U(X) = −exp(−γX).

At time 3, everything is settled in cash and all market participants should leave with 0 units of

asset. However, we want to know how much assets everyone is holding at time 2. Assume that at

time 2, the n MMs and the LT1 hold qMM
1 and qLT1

1 units of asset respectively.

We can now formulate the problem as a optimisation process: Agent j will choose qj2 to maximise

his expected utility given ε2 is realised and made public before t=2:

maxqj2
E[U(Xj

3)|ε2] (1.2.1)

subject to Xj
3 = Xj

2 + qj2S3 and Xj
2 + qj2S2 = Xj

1 + qj1S2 This problem is concave and it has a

solution of:

qj2 =
E[S3|ε2]− S2]

γσ2
(1.2.2)

for all agents.

From our assumptions on S3, we can show that:

E[U(Xj
3)|ε2] = −exp(−γ(Xj

2 + qj2E[S3|ε2]) +
1

2
γ2(qj2)2σ2) (1.2.3)

Thus the solution of the optimisation problem shoudl be:

qj2 =
E[S3|ε2]− S2

γσ2
(1.2.4)

We can now start to solve for equilibrium price S2.

0 = i+ qLT2
1 = nqMM

1 + qLT1
1 + qLT2

1 = nqMM
2 + qLT1

2 + qLT2
2 = (n+ 2)q2 (1.2.5)

Thus S2 = µ+ ε2.

21

Consider now what happens at time 1. We can solve a optimisation problem similarly:

maxqE[U(Xj
2)] (1.2.6)

subject to Xj
2 = Xj

1 + qj1S1 and Xj
1 + qj1S1 = Xj

0 + qj0S1.

The solution to this is also similar:

qj1 =
E[S2]− S1

γσ2
(1.2.7)

and the equilibrium price S1 is:

i = nqMM
0 + qLM1

0 = nqMM
1 + qLT1

1 = (n+ 1)
µ− S1

γσ2
⇐⇒ S1 = µ− γσ2 i

n+ 1
(1.2.8)

The difference between the expectation of future prices E(S3) = µ, and the price given by the

market makers to the liquidity traders, S1, equals γσ2 i
n+1 . We can immediately observe that:

• The more risk averse these market maker is (i.e. larger γ), the higher the trading cost.

• The more volatile the market is (i.e. larger σ), the higher the trading cost.

• Larger order size (i) implies a higher trading cost.

• Having more Market Makers (i.e. Larger n) decreases the trading cost.

22

1.2.3 The Avellaneda-Stoikov Model

Model Framework

This is a model proposed by Avellaneda and Stoikov for market making in the stock market. It

focuses on the quote-driven markets, and gives a framework to analyse the optimal strategy for a

market maker under its assumptions.

Assume that the market price of an asset follows a Brownian Motion:

dSt = σdWt (1.2.9)

The market maker aims to continuously propose bid and ask prices for everyone else to buy or sell

the asset. These prices are denoted by two stochastic processes (Sbt)t and (Sat)t.

To model the incoming transactions that happen randomly on the timeline, we denote them by

two point processes (N b
t)t and (Na

t)t. We assume that every time a transaction happens, the size

of the transaction is always one unit. Thus, the inventory of the market maker is:

qt = N b
t −Na

t (1.2.10)

The intensity of the point processes is assumed to be a function of the price skews:

λbt = Λb(δbt)1qt−<Q (1.2.11)

and

λat = Λa(δat)1qt−>−Q (1.2.12)

where δbt = St−Sbt is the bid skew, δat = Sat −St is the ask skew, and Q is the maximum inventory

the market maker is allowed to hold on to. This means when we hit the hard limit of inventory size,

we would immediately stop providing liquidity on one side, to decrease the size of the inventory

we have.

In the paper by Avellaneda and Stoikov, they focused on the case where

Λb(δ) = Λa(δ) = Ae−κδ (1.2.13)

with A > 0 and κ > 0.

The amount of cash on the market maker’s hand is denoted by a process (Xt)t, which has the

following dynamics:

23

dXt = Sat dN
a
t − Sbt dN b

t = (St + δat)dNa
t − (St − δbt)dN b

t (1.2.14)

And finally, the utility function that market makers try to optimise is the CARA uitility:

E[−exp(−γ(XT + qTST − l(qT)))] (1.2.15)

where the l(qT) is a risk-liquidity premium.

24

The Hamilton-Jacobi-Bellman equation and its solution

The Hamilton-Jacobi-Bellman equation is a method to turn an optimisation problem into equiva-

lent a partial derivative equation.[11] Consider a deterministic optimal control over the time period

[0, T]

VT (x(0), 0) = min
u

(

∫ T

0

C[x(t), u(t)]dt+D[x(T)]) (1.2.16)

where C[·] is the scalar cost rate function and D[·] is a function that gives the bequest value at

the final state, x(t) is the system state vector, x(0) is assumed given, and u(t) for 0 ≤ t ≤ T is the

control vector that we are trying to find.

The system must also be subject to:

ẋ(t) = F (x(t), u(t)) (1.2.17)

where F [·] gives the vector determining physical evolution of the state vector over time.

If we apply this to our CARA utility function, and perform an expansion of V (Xt, t) according to

Ito’s rule, we are left with the following equation to solve:

0 = ∂tu(t, x, q, S) +
1

2
σ2∂2SSu(t, x, q, S)

+1q<Q sup
δb

Λb(δb)[u(t, x− S + δb, q + 1, S)− u(t, x, q, S)]

+1q>−Q sup
δa

Λa(δa)[u(t, x+ S + δa, q − 1, S)− u(t, x, q, S)] (1.2.18)

for q ∈ {−Q · · ·+Q} and (t, S, x) ∈ [0, T]× R2, with the terminal condition

u(T, x, q, S) = −exp(−γ(x+ qS − l(q))) (1.2.19)

In the case of exponential intensities, this can be solved by considering the following anastz:

u(t, x, q, S) = exp(−γ(x+ qS))vq(t)
− γκ (1.2.20)

We plug this into the HJB PDE, and we can show that (vq)|q|<Q must satisfy:

d

dt
vq(t) =

κ

2
γσ2vq(t)−A(1 +

γ

κ
)−(1+

κ
γ)(1q<Qvq+1(t) + 1q>−Qvq−1(t)) (1.2.21)

This is a linear system of ODEs, and it can be solved with appropriate terminal conditions.

Finally, the solution to our optimisation problem is:

25

Sb
∗
(t, S, q) = S − 1

κ
ln(

vq(t)

vq+1t
)− 1

γ
ln(1 +

γ

κ
) (1.2.22)

Sa
∗
(t, S, q) = S +

1

κ
ln(

vq(t)

vq+1t
) +

1

γ
ln(1 +

γ

κ
) (1.2.23)

This optimal solution has three parts:

• The current reference price S

• Static part 1
γ ln(1 + γ

κ), which is to do with the intensity of orders (κ) and how risk-averse

the market maker is (λ)

• A stochastic part 1
κ ln(

vq(t)
vq+1t

) that depends on the current position of the market maker’s

inventory.

The market maker is risk averse, so it will try to lower the size of its position by keeping the spread

of its quotes while shifting them towards one direction slightly, such that there is a greater chance

to have a trade on one side than the other, effectively lowering its position.

This solution qualitatively tells us how a good market maker should quote. We would like to see

the agent we trained to have these properties as well.

26

Chapter 2

Applications

2.1 Data and Environment

2.1.1 Data Source

The data in this project is collected from a Bitcoin exchange between 2019.05.21 – 2019.06.12. We

have an order book of depth 10. We only use the rows where either the best bid price or the best

ask price has changed from the last rows.

2.1.2 Environment Steps

Our agent will make a decision on its market-making price and volume, and the environment will

step forward to the next time when either the best bid price or the best ask price has changed. If

the new bid/ask price matched the bid/ask price offered by the agent, a trade is made.

The total number of steps within one environment is controlled by a variable, environment length.

This start from 3000, which equals 1-3 hours of data. As the training continues, this length in-

creases to 20000, which equals 24 hours.

The reason to start from a short environment length is that at the beginning of the training, the

agents sometimes accumulate a huge positive or negative position, which magnifies the reward.

The value part of the network has a lot of trouble learning the correct value of these states.

A second reason to start with a short environment length is that our A2C agent is gathering data

from 16 environments simultaneously. A long environment length means the data of these 16 en-

vironments has a huge chance to overlap, which increases over-fitting.

However, it is also important to increase the environment length over training. The data towards

the end of each environment has nothing to discount and add to them from future, which alters

the value of these states and decreases the importance of the actions taken based on these states.

27

2.1.3 Reward Function

The natural choice of reward is the change in PnL. More precisely:

Reward = PnLt − PnLt−1

= Casht + Positiont ∗ (MidPricet −MidPricet−1) (2.1.1)

Without discount (γ = 1), the total reward the agent learns to maximise is just the final PnL.

With a γ closer to 1, the agent learns to optimise a longer-term PnL, instead of a shorter-term

PnL. However, a γ very close to 1 gives a larger impact of the effect of end of environment, and also

more over-fitting. I chose gamma to be 0.999, which means a half-life of −ln(2)/ln(1000) ≈ 700.

In reality, we do not just maximise the expectation of return. We want to take into account the

risk of having a huge variance, and maximise a utility function. Thus, we want to give a penalty

for having a large variance or a large position.

The first method attempted is to directly subtract a function of position from the reward. For

example, the following functions are tried:

Peanlty = f(position)

f(x) = αx2

f(x) = α|x|

f(x) = αln(1 + x) (2.1.2)

In my experience, the logarithmic penalty gives the best result.

However, [12] presented an approach called Asymmetrically dampened PnL. If the reward is posi-

tive, it is multiplied by a factor smaller than 1. If the reward is negative, it is unchanged. Suppose

we have a large position, the market moves (roughly) in either direction with equal probability in

the long term, so the expected reward will be negative is we keep a large position in our hand.

Thus the agent can learn to lower its position without directly giving a penalty.

A combination of the logarithmic penalty and the asymmetrical dampened PnL is used in my code.

28

2.2 Observation Space

2.2.1 Market State Observation

Market observations are the observables derived from the order book.

• Bid/Ask Price: PriceiDirection for both directions and i = 1 . . . 10

• Midprice:
Price1Bid+Price

1
Ask

2

• Bid/Ask Skew: PriceiDirection −Midprice for both directions and i = 1 . . . 10

• Spreads: PriceiAsk − PriceiBid for i = 1 . . . 10

• Price Level Distance to Midprice:
PriceiDirection
Midprice − 1 for both directions and i = 1 . . . 10. This

observation is proposed in [13]

• Bid/Ask Size: V olumeiDirection for both directions and i = 1 . . . 10

• Bid/Ask Size: V olumeiDirection for both directions and i = 1 . . . 10

• Cumulative Bid/Ask Size:
∑i
j=1 V olume

j
Direction for both directions and i = 1 . . . 10

• Order Imbalance Ratio:
CumulativeV olumeiAsk−CumulativeV olume

i
Bid

CumulativeV olumeiAsk+CumulativeV olume
i
Bid

• Delta time: Time from last step

• Relative Strength Index (30/90/270) on midprice

The Relative Strength Index is an indicator used in technical analysis of the market, measuring

the momentum of price. It is defined by splitting the price movement into two parts: positive and

negative. The moving averages of these two parts are calculated, and RSI is defined by:

RSI = 100− 100

1 +RS
RS =

SMMA(U, n)

SMMA(D,n)
(2.2.1)

where SMMA is the smoothed moving average function, U and D are the upward and downward

price change processes.

29

2.2.2 LSTM observations

Origin of Idea of LSTM

In the paper [14], the author suggests that we can pre-train a LSTM with supervised learning on

the market observations, and take the LSTM outputs as observables for reinforcement learning.

This is exactly what I did here.

The LSTM architecture

The LSTM in my code has 1 layer, 100 hidden cells. Its output is then connected to a linear layer.

The majority of price movements between two successive ticks have a magnitude of less than or

equal to 3. The market tick size is 0.5, which means the price movement is always a multiple

of 0.25, since it is possible for only one side of the price moves. The midprice movement data is

clipped by [−3, 3], which gives 25 possibilities. Thus the output size of the linear layer has to be

25.

The output from the linear layer will pass a softmax function and will be treated as a discrete

probability distribution. A cross-entropy loss is used to train the LSTM.

Performance of LSTM

Figure 2.1: The LSTM-predicted probability distribution of midprice movement for 100 random
states

A output of 100 randomly selected states are plotted. We can see that the LSTM model cor-

rectly understands that the price movement is +− 0.25 in most cases, and the price movement is

never zero.

For some states, the LSTM can predict the price movement with a degree of certainty, up to 40%

confidence in the price will move up by 0.25 in the next tick. However, for some other states, the

LSTM is a lot less confident.

To better understand the performance of this LSTM, I dropped the size of the price movement,

leaving only +1 and −1 of direction. I compared the sign of the correct direction of price move-

ment, and the sign of the most probable price movement predicted by the LSTM. The final LSTM

30

has a 69.3% probability of correctly predicting this direction, which is very impressive.

2.2.3 Trading Agent Observation

These are the observations of the trading agent’s own records.

• Cash: The agent starts with 0 cash, but it can gain/borrow cash with 0 cost for the purpose

of providing liquidity. This is a valid assumption because we’re working with just a few days

of data.

• Position: The agent knows its long/short position in bitcoin. No explicit upper limit for

the position is set, but we used Asymmetrically dampened PnL to tell the agent not to

accumulate a large position.

• PnL: This is the mark-to-market PnL of the agent in one environment, calculated by Cash+

Position ∗MidPrice.

• Unrealized PnL: Within one environment, The agent can return to a state of nearly 0 position

multiple times. The Unrealized PnL is the PnL since the last time the agent clears all its

positions.

31

2.2.4 Observation memory

We’re dealing with is a time-series, and the usual model to deal with time series is a recurrent

neural network. However, in our case of either deep Q-learning or A2C, we perform one training

step after receiving one (s, a, r, s′) tuple, while for a recurrent neural network setup, we need the

entire episode or the entire chain of state-action-reward to perform one training. This means we

need to gather a lot more experience from the environment to perform the same level of training,

which is very slow.

As a result, our network for estimating Q-value or deciding the policy has a simple feed-forward

architecture, with no recurrent part in it. However, it is still important for our agent to remember

the last few observations and be able to make decisions based on a brief piece of history, not just

the current state.

This is done by a wrapper outside the environment, recording the observations. The dimension of

the observation space before this wrapper is 94. I want the agent to make decisions based on the

last 5 observations. After the wrapper, the observation space has a dimension of 5 ∗ 94.

32

2.3 Action Space

After each observation, the agent has to decide 4 things: the Bid/Ask price it is willing to provide

liquidity at, and the volume it is willing to buy/sell.

The first attempt is to consider the Bid/Ask price actions as discrete, but the volume actions as

continuous. The neural network must decide on which pair of Bid/Ask skew it wants to take, and

also pick 2 volumes for them from a normal distribution. However, the volume has a hard lower

limit of zero, and the normally distributed normal action often hits the boundary, and the agent

eventually decides to frequently not provide any liquidity to the market. This is not what we want.

I tried a slightly different setup where the volume number of drawn from a log-normal distribution

instead of a normal distribution. This time, the volume that agent is willing to quote is often

larger than the entire market, which doesn’t do anything because nobody on the market can take

such volume, and the agent is not learning anything.

Finally, I decided to simplify the situation by setting a constant bid/ask volume, and the Bid/Ask

prices are from a discrete set of choices, with fixed distances from the last midprice.

Ask Skew Bid Skew Ask Size Bid Size
Action 0 0.5 0.5 100 100
Action 1 1 1 100 100
Action 2 2 2 100 100
Action 3 0.5 2 100 100
Action 4 2 0.5 100 100
Action 5 1 1.5 100 100
Action 6 1.5 1 100 100

If we look at the table, the first 3 actions have the same skew on both sides, which means the

agent is willing to take equal amount of orders from both directions. For action 3-6, the skews are

different for bid and ask, which gives the agent the option to have a greater chance to trade on

one side than the other.

Some special actions, for example an action to clearing all positions with a market order, or an

action to do nothing, are considered and tested. However, including these actions dramatically

decreases the performance of the learning process, and I excluded them in this thesis.

33

2.4 Agent

A lot of agents are implemented and tried. I spent a long time testing different extensions of the

deep Q-learning.

The first attempt is to combine all the extensions, just like the rainbow paper. However, categor-

ical DQN is causing a lot of problems. In the original setup for the categorical DQN, there are

only two actions. While in our case, there are often more than 5 actions. We also have a very

wide range of possible discounted total reward, from -100 to +50. If we set the support of the

distribution smaller than this, once the agent receives rewards outside this range, the estimation

of the Q-values becomes incorrect and unstable.

The natural huge noise from our data also makes the noisy network method inappropriate. The

standard deviation of the noise never managed to reduce to zero, which means any estimation of

the Q-value will have a huge uncertainty, and the network doesn’t converge to a well-defined policy.

After removing these 2 extensions, a version of DQN with the other 5 extensions managed to con-

verge to a sub-optimal solution: The agent managed to learn to reduce the risk of losing a lot of

money, but mean PnL is negative, which means we still losses money slowly over time.

Thus, I switched to an Advantages Actor-Critic agent with the following architecture.

The market observations, LSTM observations and the agent observations are combined and fed

into a layer that remembers the last 5 observations. All these 5 observations are treated as input of

the main neural network. These inputs are first sent to a common linear layer of size 256, followed

by a activation function of Leaky ReLU. This output of the common part is sent to the policy part

and the value part separately. Policy is trained by the policy gradient, with a baseline of the value

output; Value is trained by Mean Square Error; Exploration is encouraged by adding entropy of

the output policy to the total loss function.

34

Figure 2.2: The Architecture of the entire agent

2.5 Computing Speed Analysis

This project runs on a Google Colab with a Tesla V100-SXM2-16GB GPU. The training of the

neural network is computed with this GPU using PyTorch, while the simulation of the trading

environment is performed by the CPU. The structure of the reinforcement agent is build upon a

package called PTAN, which is proposed in this book.[15] Without any training of the Network,

the CPU can generate experiences at the speed of 130 frames per second, or 1 frame per 7.6 mil-

liseconds. I tested using parallel processing to simulate multiple environments at the same time,

35

but the overall speed has not changed.

With the GPU training of the neural network, the speed drops to 110 frames per second, which

is 9 milliseconds per frame. A few line profilers in this book[16], including lprun, are used, and

they show that the bottleneck of the speed is on the CPU side, where the simulation of trading

environment is slow.

2.6 Training process and hyper-parameter tuning

2.6.1 Hyper-parameters

A2C agent parameters

• NUM ENV S: 16. This is the number of environments that are running and collecting data

in a synchronized way. A larger NUM ENV S may make the learning process more stable

and robust, but 16 is chosen because of the memory limit on my computer.

• REWARD STEPS: 16. This is the number of steps the A2C agents uses to compute the

advantage function, by rolling out the Bellman Equation. It is usually between 10-20.

Learning rate: Lambda

• LEARNING RATE: 0.00003. This is the initial learning rate. What is a good learning

rate depends on the architecture of the network. A wide range of learning rates are tested,

and the I found the agent learns most stably at around 0.00003.

• LEARNING RATE DECAY : 0.99999. The learning rate follows an exponential decay.

Since my ENV IRONMENT LENGTH is different in each epoch, it makes more sense to

adjust the learning rate after each step of the optimiser, instead of after each epoch.

Exploration: Epsilon and Beta

• EPSILON : 1 → 0.03 → 0.02 as the STEP INDEX increases from 0 → 1000000 → 2000000.

This is the probability of the agent will take a completely random action regardless of the

neural network output. This is especially important at the early stages of training. Over

the early period of learning, it is very easy for the network to decide to take one action with

100% probability, which could lead to the agent gathering a very large position of bitcoin.

The rewards become negative and volatile, and the value network fails to learn anything.

Having an EPSILON parameter makes it possible for the agent to take random actions and

keep learning in such a situation.

36

• BETA: 0.01 → 0.0001 as the STEP INDEX increases from 0 → 2000000. This is the

coefficient of the entropy loss. A larger BETA means our agent will focus more on trying

out all actions, thus increases exploration. The action space has 7 actions, and the entropy is

minimised when we select all actions with equal probability. In this case, the entropy loss is

−ln7 ≈ −1.9. In comparison, the loss for MSE and Policy is about 0.1 after a certain amount

of training. In order to have a sensible policy, the β is chosen such that all these losses have

a similar magnitude. Thus, β is chosen to be 0.01 at the beginning of the training. It is than

linearly reduced to 0.0001, so the agent is able to focus on learning the policy.

Gradient Clip

• CLIP GRAD: 0.1. At the beginning of the training, the gradient along some dimension

could be very large, and the learning will be very unstable. Thus, we limit all the gradients

to between -0.1 and 0.1.

37

2.6.2 Training Process

The training process is tracked and monitored by looking at the actions and PnLs of the a single

environment. Some key parameters are also recorded and plotted by using a Tensorboard.

PnLs and Actions in Sample Environments

At the beginning of the training, the agent is basically taking random actions. A large negative

position is allowed to build up, and the final PnL passively mostly depends on the market move-

ment.

Figure 2.3: The PnL, Position, Reward and Market Price of an Environment, at early stage of
training

Figure 2.4: The Actions of the Agent in this Environment, at early stage of training

As we keep learning, the model occasionally runs into a sub-optimal policy, where it always

quotes evenly on both sides, with a large spread. Again, large positions are allowed to built up,

and the final PnL mainly depends passively on the market price movement.

Figure 2.5: The PnL, Position, Reward and Market Price of an Environment, at mid stage of
training

Later, the agent learns to limit its position. Its position alternates between positive and nega-

tive. All actions have some probability to be selected in some states. The PnL is negative, but it

has little direct correlation to the market price.

38

Figure 2.6: The Actions of the Agent in this Environment, at mid stage of training

Figure 2.7: The PnL, Position, Reward and Market Price of an Environment, at mid-to-late stage
of training

Figure 2.8: The Actions of the Agent in this Environment, at mid-to-late stage of training

Eventually, the agent manages to bring its PnL to very close to zero, and even positive. By

looking at the actions, we can see that action 2, which corresponds to a large even quote (2 on

both sides), is the most common action. This makes sense because when the agent is uncertain

about the direction of market movement, this is the safe action to take.

From time to time, the agent also takes actions of 3-6, which are the one with uneven skews.

This means our agent is now actively controlling its position based on its observations. This is a

characteristics of a trained market making agent.

Figure 2.9: The PnL, Position, Reward and Market Price of an Environment, at late stage of
training

39

Figure 2.10: The Actions of the Agent in this Environment, at late stage of training

Gradients

After each back propagation, the maximum, variance and L−2 norm of the gradients are calculated.

The gradients are very small but don’t decrease to 0. This is very much expected because of the

randomness in data. Each state should have a distribution of value instead of a single number.

Unfortunately, categorical DQN requires a huge output dimension, and it is computationally too

expensive to use.

Figure 2.11: The Maximum of Gradient of Neural Network

Figure 2.12: The Variance of Gradient of Neural Network

40

Figure 2.13: The L2-norm of Gradient of Neural Network

Neural Network Outputs

The batch rewards and the values of states are also tracked. Notice that the rewards are never

positive despite having positive mean PnL at the later stages of the training. This is because

we are using positional penalty and asymmetrically damped PnL, which takes away some PnL in

the reward. Notice that the length of our environment is also increasing, which mean a constant

slightly-negative rewards actually implies positive mean PnL.

Figure 2.14: The Advantage Function

Figure 2.15: The Predicted Values of States

41

Figure 2.16: The average Rewards of 16 environments

Losses

Finally, we look at the losses. The entropy loss tells how certain the agent is while selecting ac-

tions. An entropy of -1.9 means the agent is taking a random policy, while an entropy of 0 means

the agent has 100 percent confidence to take a certain action. At the beginning of training, the

entropy quickly decreases to -1.7, which is a result of out large BETA. The entropy gradually

decreases towards a final value of -0.6, meaning the agent now understands the difference between

different states, and it can return a policy with confidence. It makes sense that the final entropy is

non-zero. Our actions are very similar to each other. It is impossible to guarantee that one action

is definitely better than the others given a state, because of the randomness of the market data.

Figure 2.17: The Entropy Loss

The value loss and policy loss have large spikes in them. One reason is that the data is not uniform.

The nature of the data is different when there is no large market order or important sudden market

information, compared to the normal time period while only market makers and small traders are

involved. Another reason could be because of the effect of end-of-environment, which shifts the

value of the states away from the normal region.

42

Figure 2.18: The Value Loss

Figure 2.19: The Policy Loss

The total loss is plotted on a logarithmic scale. It is decreasing, but not converging to zero, as

the data has huge randomness.

Figure 2.20: The Total Loss

43

2.7 Performance

The performance is evaluated with the following method: A piece of data of length 10000, which

represents roughly 10 hours, is randomly selected. The agent take action based on the neural

network output, and the final PnL is calculated. Repeat 100 times to plot a distribution of final

PnL.

We achieved a Mean PnL of 0.51 and standard deviation of 10.1. I repeated this 4-hour perfor-

Figure 2.21: The Distribution of PnL

mance evaluations process multiple times, and they all give positive PnL.

By looking at the graph, we can see that the distribution of PnL is skewed. The agent learned to

avoid any huge losses, with a maximum loss of less than 10. But it can occasionally gain a huge

amount of money, with a profit up to 50. We can look at the distribution more closely by looking

at the part with profit less than 10 and the part with profit greater than 10 separately.

Looking at the part with PnL between -10 and +10, we can observe that the PnL is more likely to

Figure 2.22: The Distribution of PnL, Given less than 10

Figure 2.23: The Distribution of PnL, Given more than 10

be negative than positive. This is the cost of actively trying to keep a low magnitude of position.

However, when the agent is confident with the direction of market movement, it allows itself to

take a large position and make a huge profit from it. This is how the overall average PnL becomes

positive.

44

The performance is compared with a benchmark, where the agent takes random action from

the action space. In this case, the distribution is very even, with frequent loss of over 50. The

mean PnL is slightly negative, and the standard deviation of PnL is at a much larger 30.

If we consider our goal as to maximise a utility function that is risk-averse, it is obvious that this

agent outperforms the benchmark.

Figure 2.24: The Distribution of PnL, With random action

45

2.8 Further Development

There are a few areas that the result of this thesis may be further developed on:

• Testing these agents on a larger data set could potentially dramatically improve the perfor-

mance. In some other papers in this field, the agents are trained with up to 3 years of data,

across multiple assets, while I only have 1 month of data on bitcoin. With such a short span

of data, the agent we trained may not be able to cope with certain tail events of market

movement.

• More computational power would also be great. The size of our model is limited by the

speed. It takes about 24 hours for the program to run 10 million frames.

• Quoting prices in a volume space. In real world high-freq trading, instead of directly quoting

the prices, people sometimes quote with a volume number that is translated to a price

according to the current cumulative bid/ask volume. For example, instead of directly saying

the price of my limit order is 0.5 above the midprice, I can say I want my price to be at the

place where the market cumulative ask volume is 10 million. This means a market order of

10 million has the impact of moving the market such that my order becomes the best ask

price. Any market order larger than 10 million means my order will be executed.

46

Appendix A

Source Codes

−∗− coding : u t f−8 −∗−

”””StockEnv−v7 . ipynb

Automat ica l l y generated by Colaboratory .

Or i g ina l f i l e i s l o c a t e d at

h t t p s :// co l ab . re search . goog l e . com/ dr i v e /1 i−ZQPN6zjcgZdlJ3isb−WiC82G0CZFzp

Deep Reinforcement Learning and E l e c t r on i c Market Making

”””

! pip i n s t a l l ptan==0.3

! pip i n s t a l l PyDrive

Commented out IPython magic to ensure Python c ompa t i b i l i t y .

import gym

from gym . u t i l s import s eed ing

import enum

import numpy as np

import pandas as pd

from f u n c t o o l s import reduce

import matp lo t l i b . pyplot as p l t

%ma t p l o t l i b i n l i n e

%l o a d e x t t ensorboard

47

import seaborn as sns

import time

import c o l l e c t i o n s

from c o l l e c t i o n s import namedtuple , deque

import math

import s c ipy

import torch

import torch . nn as nn

import torch . nn . u t i l s as n n u t i l s

import torch . nn . f u n c t i o n a l as F

import torch . optim as optim

from torch import autograd

from torch . u t i l s . tensorboard import SummaryWriter

from IPython import d i s p l a y

from s k l e a rn . ensemble import RandomForestRegressor

from s k l e a rn . p r e p r o c e s s i n g import StandardSca ler

from IPython . d i s p l a y import c l e a r o u t p u t

import sys

import ptan

import warnings

from datet ime import datet ime

from goog l e . co lab import f i l e s

from pydr ive . auth import GoogleAuth

from pydr ive . d r i v e import GoogleDrive

from goog l e . co lab import auth

from o a u t h 2 c l i e n t . c l i e n t import Goog leCredent ia l s

warnings . f i l t e r w a r n i n g s (” i gnore ” , category=UserWarning)

print (torch . cuda . get dev ice name (0))

dev i c e=”cuda”

p l t . rcParams [” f i g u r e . f i g s i z e ”] = (20 ,3)

! rm −r f . / runs /

import os

l o g s b a s e d i r = ” runs ”

os . makedirs (l o g s b a s e d i r , e x i s t o k=True)

48

HYPERPARAMS = {

’ s tockenv ’ : {

’ s top reward ’ : 200 ,

’ run name ’ : ’ StockEnv ’ ,

’ l e a r n i n g r a t e ’ : 0 .00003 ,

’ l e a r n i n g r a t e d e c a y ’ : (1−1/100000) ,

’ m i n l e a r n i n g r a t e ’ : 0 ,

’gamma ’ : 0 . 999 ,

” e p s i l o n s t a r t ” : 0 . 3 ,

” e p s i l o n f i n a l ” : [0 . 0 3 , 0 . 0 2] ,

” e p s i l o n f i n a l f r a m e ” : [500000 ,1000000] ,

’ENV TRAIN COUNT ’ : 1 ,

” p o s i t i o n p e n a l t y ” : 0 ,

” p o s i t i v e r e w a r d r e d u c t i o n ” : 0 . 1 ,

” t i c k s t o l o o k b a c k ” : 5 ,

” order book depth ” : 6 ,

”ENTROPY BETA” : [0 . 0 1 , 0 . 0 0 5 , 0 . 0 0 1 , 0 . 0 0 0 1 , 0] ,

”ENTROPY BETA FRAME” : [0 ,500000 ,1000000 ,2000000 ,3000000] ,

”NUM ENVS” : 16 ,

”REWARD STEPS” : 16 ,

”CLIP GRAD” : 0 . 1 ,

”DATALENGTH INCREASE FREQ” : 4 ,

} ,

}

params=HYPERPARAMS[” stockenv ”]

”””## 1. Data and Feature S e l e c t i o n

1.1 Data Co l l e c t i o n

From QPython . Connection

p r i n t (” S t a r t : ” , time . ct ime ())

49

d a t e l i s t =[”2019.05.”+”{ :02d }”. format (x) f o r x in range (22 ,32 ,1)]+[”2019.06.”+”{ :02 d }”. format (x) f o r x in range (1 ,12 ,1)]

da tada te =”2019.05.21”

q = qpython . qconnect ion . QConnection (hos t = ’3 .9 .195 .248 ’ , por t =41822 , pandas=True)

q . open ()

a l l d a t a=q (” s e l e c t from orderBook where date=”+datadate+”, time wi th in 00 :00 :00 .000 24 :00 :00 .000 , (bid1<>prev b id1) or (ask1<>prev ask1)”)

p r i n t (”Done :” , datadate ,” at ” , time . ctime ())

f o r da tada te in d a t e l i s t :

tempdata=q (” s e l e c t from orderBook where date=”+datadate+”, time wi th in 00 :00 :00 .000 24 :00 :00 .000 , (bid1<>prev b id1) or (ask1<>prev ask1)”)

a l l d a t a=a l l d a t a . append (tempdata)

p r i n t (”Done :” , datadate ,” at ” , time . ct ime ())

q . c l o s e ()

p r i n t (” Fin i sh : ” , time . ct ime ())

”””

#a l l d a t a . t o c s v (’ data . csv ’)

#f i l e s . download (’ data . csv ’)

”””#### From Google Drive ”””

auth . a u t h e n t i c a t e u s e r ()

gauth = GoogleAuth ()

gauth . c r e d e n t i a l s = Goog leCredent ia l s . g e t a p p l i c a t i o n d e f a u l t ()

d r i v e = GoogleDrive (gauth)

downloaded = dr ive . Crea t eF i l e ({ ’ id ’ : ”1ceUD9i8UVZkj2CY9−LrtXEHvrM1Bg4Rn” })

downloaded . GetContentFi le (’ data . csv ’)

a l l d a t a = pd . r ead c sv (’ data . csv ’)

a l l d a t a . drop (columns=[”Unnamed : 0”] , i n p l a c e=True , a x i s =1)

”””#### Data Inspec t i on ”””

a l l d a t a . r e s e t i n d e x ()

50

a l l d a t a . shape

a l l d a t a . head ()

a l l d a t a . p l o t (x=” time ” , y=” bid1 ”)

”””### 1.3 Data PreProcess ing ”””

a l l d a t a c o p y=a l l d a t a . copy ()

a l l d a t a c o p y . s o r t v a l u e s (by=[” date ” , ” time ”] , i n p l a c e=True)

a l l d a t a c o p y . columns

def convertt ime (t imes t r) :

return datet ime . s t rpt ime (t imes t r [7 : −3] , ’%H:%M:%S.% f ’)

def RSI (p r i c e s e r i e s , n) :

d e l t a = p r i c e s e r i e s . d i f f ()

dUp , dDown=d e l t a . copy () , d e l t a . copy ()

dUp [dUp<0]=0

dDown [dDown>0]=0

RolUp=dUp . r o l l i n g (n) . mean ()

RolDown=dDown . abs () . r o l l i n g (n) . mean ()

RS = RolUp / RolDown

r s i= 100 .0 − (100 . 0 / (1 . 0 + RS))

return r s i

orderbookdepth=params [” order book depth ”]

t i c k s t o l o o k b a c k=params [” t i c k s t o l o o k b a c k ”]

a l l d a t a c o p y [” time ”]= a l l d a t a c o p y [” time ”] . apply ((lambda row : convertt ime (row)))

a l l d a t a c o p y . drop ([x+str (y) for x in [” bid ” , ” ask ” , ” b idS i z e ” , ” a skS i z e ”] for y in range (orderbookdepth +1 ,11)] , i n p l a c e=True , a x i s =1)

a l l d a t a c o p y [” de l ta t ime ”]=(a l l d a t a c o p y [” time ”]− a l l d a t a c o p y [” time ”] . s h i f t (1))

a l l d a t a c o p y [” de l ta t ime ”]= a l l d a t a c o p y . apply (lambda row : row [” de l ta t ime ”] . t o t a l s e c o n d s () , a x i s =1)

a l l d a t a c o p y [” midpr ice ”]=(a l l d a t a c o p y [” ask1 ”]+ a l l d a t a c o p y [” bid1 ”]) / 2

a l l d a t a c o p y [”RSI 30”]=RSI (a l l d a t a c o p y [” midpr ice ”] , 3 0)

a l l d a t a c o p y [”RSI 90”]=RSI (a l l d a t a c o p y [” midpr ice ”] , 9 0)

51

a l l d a t a c o p y [”RSI 270”]=RSI (a l l d a t a c o p y [” midpr ice ”] , 2 7 0)

for j in range (orderbookdepth) :

a l l d a t a c o p y [”PLDM Ask”+str (j +1)]=(a l l d a t a c o p y [” ask ”+str (j +1)]/ a l l d a t a c o p y [” midpr ice ”]−1)∗100

a l l d a t a c o p y [”PLDM Bid”+str (j +1)]=(a l l d a t a c o p y [” bid ”+str (j +1)]/ a l l d a t a c o p y [” midpr ice ”]−1)∗100

a l l d a t a c o p y [” CumulativeAskSize ”+str (j +1)]=np .sum(pd . concat ([a l l d a t a c o p y [” a skS i z e ”+str (k+1)] for k in range (j +1)] , a x i s =1) , a x i s =1)

a l l d a t a c o p y [” CumulativeBidSize ”+str (j +1)]=np .sum(pd . concat ([a l l d a t a c o p y [” b idS i z e ”+str (k+1)] for k in range (j +1)] , a x i s =1) , a x i s =1)

a l l d a t a c o p y [” o i r ”+str (j +1)]=(a l l d a t a c o p y [” CumulativeBidSize ”+str (j +1)]− a l l d a t a c o p y [” CumulativeAskSize ”+str (j +1)])/(a l l d a t a c o p y [” CumulativeBidSize ”+str (j +1)]+ a l l d a t a c o p y [” CumulativeAskSize ”+str (j +1)])

a l l d a t a c o p y [”Spread”+str (j +1)]= a l l d a t a c o p y [” ask ”+str (j +1)]− a l l d a t a c o p y [” bid ”+str (j +1)]

a l l d a t a c o p y [” bid ”+str (j +1)]−= a l l d a t a c o p y [” midpr ice ”]

a l l d a t a c o p y [” ask ”+str (j +1)]−= a l l d a t a c o p y [” midpr ice ”]

a l l d a t a c o p y [” midpr ice −1”]= a l l d a t a c o p y [” midpr ice ”]− a l l d a t a c o p y [” midpr ice ”] . s h i f t (1)

#for i in range (t i c k s t o l o o k b a c k) :

fo r j in range (orderbookdepth) :

fo r d in [” b id ” ,” ask ” ,” b i dS i z e ” ,” a s kS i z e ” ,” o i r ”] :

a l l d a t a c o p y [d+s t r (j+1)+” ”+s t r (− i −1)]= a l l d a t a c o p y [d+s t r (j +1)] . s h i f t (i +1)

a l l d a t a c o p y [” d e l t a t ime ”+s t r (− i −1)]= a l l d a t a c o p y [” d e l t a t ime ”] . s h i f t (i +1)

a l l d a t a c o p y . drop (a l l d a t a c o p y . head (2 7 1) . index , a x i s =0, i n p l a c e=True)

a l l d a t a c o p y . drop (a l l d a t a c o p y . t a i l (1) . index , i n p l a c e=True)

a l l d a t a c o p y=a l l d a t a c o p y . r e s e t i n d e x ()

for index in a l l d a t a c o p y . columns :

try :

print (index , ” : Avg : ” ,np . mean(a l l d a t a c o p y [index] [: 1 0 0 0 0]) , ”+−” ,np . std (a l l d a t a c o p y [index] [: 1 0 0 0 0]))

except :

print (index , ” : Min : ” ,np .min(a l l d a t a c o p y [index] [: 1 0 0 0 0]) , ”Max : ” ,np .max(a l l d a t a c o p y [index] [: 1 0 0 0 0]))

”””### 1.4 Recurrent Neural Network

Define Network

”””

l s tmrange=3

lstmclassnum=lstmrange∗8+1

class LSTM(nn . Module) :

52

def i n i t (s e l f , i n p u t s i z e =1, h i d d e n l a y e r s i z e =100 , o u t p u t s i z e =1):

super () . i n i t ()

s e l f . h i d d e n l a y e r s i z e = h i d d e n l a y e r s i z e

s e l f . num layers=1

s e l f . lstm = nn .LSTM(i n p u t s i z e , h i d d e n l a y e r s i z e , num layers=s e l f . num layers)

s e l f . l i n e a r = nn . Linear (h i d d e n l a y e r s i z e , o u t p u t s i z e)

s e l f . h i d d e n c e l l = (torch . z e r o s (s e l f . num layers , 1 , s e l f . h i d d e n l a y e r s i z e) . cuda () , torch . z e r o s (s e l f . num layers , 1 , s e l f . h i d d e n l a y e r s i z e) . cuda ())

def forward (s e l f , i nput s eq) :

l stm out , s e l f . h i d d e n c e l l = s e l f . lstm (input s eq . view (len (i nput s eq) ,1 , −1) , s e l f . h i d d e n c e l l)

s e l f . h i d d e n c e l l [0] . detach ()

s e l f . h i d d e n c e l l [1] . detach ()

p r e d i c t i o n s = s e l f . l i n e a r (l s tm out . view (len (i nput s eq) , −1))

return p r e d i c t i o n s

columns=[x+str (y+1) for x in [” bid ” , ” ask ” , ” b idS i z e ” , ” a skS i z e ” , ” o i r ”] for y in range (6)] + [” de l ta t ime ”]

nnsoftmax = nn . Softmax (dim=1)

lstmmodel = LSTM(i n p u t s i z e=len (columns) , o u t p u t s i z e=lstmclassnum)

lstmmodel . cuda ()

print (lstmmodel)

”””#### Train Network

torch . autograd . s e t d e t e c t anoma l y (True)

l o s s f u n c t i o n = nn . CrossEntropyLoss ()

op t imi ze r = torch . optim .Adam(lstmmodel . parameters () , l r =0.01)

l o s s l i s t =[]

l o s s l i s t x =[]

l o s s=np . i n f

s t a r t f r ame=0

l s tmda t a l en g t h=1000

epoch count=0

l r s=torch . optim . l r s c h e d u l e r . ExponentialLR (opt imizer , 0 .995)

wh i l e l o s s >0.1 and epoch count <500:

s t a r t f r ame+=100

53

l s tmda t a l en g t h+=200

l s tminpu t=a l l d a t a c o p y . i l o c [s t a r t f rame : s t a r t f rame+l s tmda ta l eng th , :] [columns] . to numpy (dtype=np . f l o a t 6 4)

l s tminpu t=torch . t ensor (l s tm inpu t) . view (l s tmda ta l eng th , 1 , l en (columns)) . f l o a t () . cuda ()

l s tm t a r g e t=a l l d a t a c o p y . i l o c [s t a r t f rame+1: s t a r t f rame+l s tmda t a l en g t h +1 , :] [” midprice −1”]. to numpy (dtype=np . f l o a t 6 4)

l s tm t a r g e t=np . r i n t (np . c l i p (l s tm ta r g e t ,− l s tmrange ,+ ls tmrange)∗4)+ ls tmrange ∗4

l s tm t a r g e t=np . array (l s tm ta r g e t , d type=np . i n t)

l s tm t a r g e t=torch . t ensor (l s tm t a r g e t) . view (l s tmda ta l eng th , 1) . cuda () . view (−1)

#pr in t (l s tm t a r g e t . s i z e ())

epoch count+=1

l s tmoutpu t=lstmmodel (l s tm inpu t)

#pr in t (l s tmoutpu t . s i z e ())

op t imi ze r . z e ro g rad ()

l o s s v=l o s s f u n c t i o n (l s tmoutput , l s tm t a r g e t)

l o s s=l o s s v . item ()

l o s s v . backward ()

l o s s l i s t . append (l o s s v . item ())

i f l o s s v . item()<=min(l o s s l i s t) :

to rch . save (lstmmodel . s t a t e d i c t () , ’ ls tmmodel . pth ’)

#pr in t (”Model Saved ”)

l o s s l i s t x . append (epoch count)

op t imi ze r . s t ep ()

l r s . s t e p ()

p l t . f i g u r e ()

i f epoch count%10==0:

c l e a r ou t p u t (wai t=True)

p l t . s c a t t e r (x=l o s s l i s t x [−50:] , y= l o s s l i s t [−50:])

p l t . show ()

sns . d i s t p l o t (torch . argmax (l s tmoutpu t . detach () . cpu () , a x i s =1))

sns . d i s t p l o t (l s tm t a r g e t . detach () . cpu ())

p l t . y l im ((0 , 4))

p l t . x l im ((8 ,17))

p l t . show ()

#pr in t (”Epoch : { :2 d} , l r : { :2 f } , Loss : { : . 4 f }”. format (epoch count , op t imi ze r . param groups [0] [” l r ”] , l o s s v . item ()))

torch . save (lstmmodel . s t a t e d i c t () , ’ ls tmmodel . pth ’)

54

f i l e s . download (’ lstmmodel . pth ’)

Load Network From Drive

”””

downloaded = dr ive . Crea t eF i l e ({ ’ id ’ : ”1cbShBw1hcusAIiUjVpdcaJuPnEIT8KBt” })

downloaded . GetContentFi le (’ lstmmodel . pth ’)

s t a t e d i c t = torch . load (’ lstmmodel . pth ’)

lstmmodel . l o a d s t a t e d i c t (s t a t e d i c t)

”””

l s tmda t a l en g t h=a l l d a t a c o p y . shape [0]−1

l s tminpu t=a l l d a t a c o p y . i l o c [0 : l s tmda ta l eng th , :] [columns] . to numpy (dtype=np . f l o a t 6 4)

l s tminpu t=torch . t ensor (l s tm inpu t) . view (l s tmda ta l eng th , 1 , l en (columns)) . f l o a t () . cuda ()

l s tm t a r g e t=a l l d a t a c o p y . i l o c [1 : l s tmda t a l en g t h +1 , :] [” midprice −1”]. to numpy (dtype=np . f l o a t 6 4)

l s tm t a r g e t=np . r i n t (np . c l i p (l s tm ta r g e t ,− l s tmrange ,+ ls tmrange)∗4)+ ls tmrange ∗4

l s tm t a r g e t=np . array (l s tm ta r g e t , d type=np . i n t)

l s tm t a r g e t=torch . t ensor (l s tm t a r g e t) . view (l s tmda ta l eng th , 1) . cuda () . view (−1)

l s tmoutpu t=lstmmodel (l s tm inpu t)

l s tmou tpu t s i gn=torch . s i gn (torch . argmax (nnsoftmax (l s tmoutpu t) , a x i s =1). detach () . cpu ()−12).numpy ()

l s tm t a r g e t s i g n=torch . s i gn (l s tm t a r g e t . detach () . cpu ()−12).numpy ()

np . sum(l s tmou tpu t s i gn==l s tm t a r g e t s i g n)/ l s tm t a r g e t s i g n . shape [0]

”””

l s tminput=a l l d a t a c o p y [columns] . to numpy (dtype=np . f l o a t 6 4)

l s tminput=torch . t enso r (l s tminput) . view (a l l d a t a c o p y . shape [0] , 1 , len (columns)) . f loat () . cuda ()

lstmoutput=lstmmodel (l s tminput)

lstmoutput=nnsoftmax (lstmoutput) . detach () . cpu () . numpy()

for in range (1 0 0) :

p l t . p l o t (lstmoutput [np . random . rand int (lstmoutput . shape [0])] , a lpha =0.7)

for i in range (lstmoutput . shape [1]) :

a l l d a t a c o p y [”LSTM ”+str (i)]= lstmoutput [: , i]

55

for index in a l l d a t a c o p y . columns :

try :

print (index , ” : Avg : ” ,np . mean(a l l d a t a c o p y [index] [: 1 0 0 0 0]) , ”+−” ,np . std (a l l d a t a c o p y [index] [: 1 0 0 0 0]))

except :

print (index , ” : Min : ” ,np .min(a l l d a t a c o p y [index] [: 1 0 0 0 0]) , ”Max : ” ,np .max(a l l d a t a c o p y [index] [: 1 0 0 0 0]))

”””## 2. Market Making Environment”””

class StocksEnv (gym . Env) :

metadata = { ’ r ender . modes ’ : [’human ’]}

def i n i t (s e l f , data , randomdata=False) :

s e l f . data=data

s e l f . d a t a t o t a l l e n g t h=data . shape [0]

s e l f . t i c k s t o l o o k b a c k=params [” t i c k s t o l o o k b a c k ”]

s e l f . orderbookdepth=params [” order book depth ”]

s e l f . randomdata=randomdata

s e l f . outputp lot=True

s e l f . datas ta r t f rame=0

s e l f . data length =5000

s e l f . s e l e c t d a t a ()

s e l f . a c t i o n s p a c e=gym . spaces . Box(low=np . z e ro s ((4 ,)) , high=np . array ([10 , 10 , 1000000 , 1000000]) , dtype=np . f l o a t 6 4)

obs space dim=s e l f . data . shape [1]+3

s e l f . ob s e rva t i on space=gym . spaces . Box(low=np . z e r o s ((obs space dim ,)) , high =((np . z e r o s ((obs space dim ,))+ np . i n f)) , dtype=np . f l o a t 6 4)

s e l f . seed ()

s e l f . envcount=0

def s e t d a t a l e n g t h (s e l f , data length) :

s e l f . data length=data length

#pass

def s e l e c t d a t a (s e l f) :

i f s e l f . randomdata :

s e l f . da tas ta r t f rame=np . random . rand int (low=0, high=s e l f . da ta to ta l l eng th−s e l f . datalength −10)

#s e l f . da ta s t a r t f rame+=2000

56

#s e l f . d a t a l eng t h+=1000

s e l f . d a t a s l i c e=s e l f . data . i l o c [s e l f . da tas ta r t f rame : (s e l f . datas ta r t f rame+s e l f . data length) , :]

def r e s e t (s e l f) :

i f s e l f . envcount==0:

s e l f . s e l e c t d a t a ()

s e l f . p o s i t i o n p e n a l t y=params [” p o s i t i o n p e n a l t y ”]

s e l f . envcount=(s e l f . envcount+1)%(params [”ENV TRAIN COUNT”])

s e l f . t i m e s i n c e l a s t c l e a r p o s=0

s e l f . timestamp=0

s e l f . va lue=0

s e l f . l a s t v a l u e=0

s e l f . cash=0

s e l f . p o s i t i o n=0

s e l f . v a l u e l i s t =[0]

s e l f . p o s i t i o n l i s t =[]

s e l f . r e w a r d l i s t =[]

s e l f . da ta t i ck=s e l f . d a t a s l i c e . i l o c [s e l f . timestamp , :]

s e l f . l a s t t i m e=s e l f . da ta t i ck [” time ”]

s e l f . midpr ice=s e l f . da ta t i ck [” midpr ice ”]

s e l f . de l ta t ime=s e l f . da ta t i ck [” de l ta t ime ”]

return pd . concat ([pd . S e r i e s ({ ” de l ta t ime ” : s e l f . de l tat ime , ” midpr ice ” : s e l f . midprice , ” cash ” : s e l f . cash , ” p o s i t i o n ” : s e l f . po s i t i on , ” va lue ” : 0 , ” u n r e a l i z e d v a l u e ” : 0 }) , s e l f . da ta t i ck . drop ([” time ” , ” midpr ice ” , ” de l ta t ime ”])])

def s tep (s e l f , a c t i on) :

BidSpread , AskSpread , BidVolume , AskVolume=act i on

s e l f . timestamp+=1

i f s e l f . timestamp>=s e l f . data length :

raise RuntimeError (”Done”)

i f s e l f . timestamp>=s e l f . d a t a s l i c e . shape [0] −10 :

return s e l f . c a l c p o s i t i o n (−100,−100,−min(s e l f . p o s i t i o n ∗ s e l f . midprice , 0) ,max(s e l f . p o s i t i o n ∗ s e l f . midprice , 0) , True)

else :

return s e l f . c a l c p o s i t i o n (BidSpread , AskSpread , BidVolume , AskVolume , Fa l se)

def c a l c p o s i t i o n (s e l f , BidSpread , AskSpread , BidVolume , AskVolume , done) :

BidPrice=s e l f . midprice−BidSpread

57

AskPrice=s e l f . midpr ice+AskSpread

s e l f . da ta t i ck=s e l f . d a t a s l i c e . i l o c [s e l f . timestamp , :]

da ta t i ck=s e l f . da ta t i ck

s e l f . midpr ice=data t i ck [” midpr ice ”]

#pr in t (BidPrice , AskPrice)

MarketBidPrices=s e l f . midpr ice+data t i ck [[” bid ”+str (x+1) for x in range (s e l f . orderbookdepth)]]

MarketAskPrices=data t i ck [[” ask ”+str (x+1) for x in range (s e l f . orderbookdepth)]]+ s e l f . midpr ice

MarketBidVolumes=data t i ck [[” b idS i z e ”+str (x+1) for x in range (s e l f . orderbookdepth)]]

MarketAskVolumes=data t i ck [[” a skS i z e ”+str (x+1) for x in range (s e l f . orderbookdepth)]]

#pr in t (MarketBidPrices)

#pr i n t (MarketAskPrices)

BidCount=(MarketAskPrices<=BidPrice) .sum()

#pr in t (BidCount)

for i in range (BidCount) :

BidVolume−=s e l f . Deal (”Bid” , MarketAskPrices [i] ,min(BidVolume , MarketAskVolumes [i]))

AskCount=(MarketBidPrices>=AskPrice) .sum()

#pr in t (AskCount)

for i in range (AskCount) :

AskVolume−=s e l f . Deal (”Ask” , MarketBidPrices [i] ,min(AskVolume , MarketBidVolumes [i]))

u n r e a l i z e d l a s t v a l u e=s e l f . va lue

s e l f . va lue=s e l f . cash+s e l f . p o s i t i o n ∗ s e l f . midpr ice

s e l f . v a l u e l i s t . append (s e l f . va lue)

s e l f . p o s i t i o n l i s t . append (s e l f . p o s i t i o n)

i f s e l f . t i m e s i n c e l a s t c l e a r p o s >100 and abs (s e l f . p o s i t i o n)<0.01:

s e l f . reward=(s e l f . value−s e l f . l a s t v a l u e)−max((s e l f . value−s e l f . l a s t v a l u e) , 0)∗ params [” p o s i t i v e r e w a r d r e d u c t i o n ”]

s e l f . t i m e s i n c e l a s t c l e a r p o s=0

s e l f . l a s t v a l u e=s e l f . va lue

else :

s e l f . reward=0

s e l f . t i m e s i n c e l a s t c l e a r p o s+=1

s e l f . reward=s e l f . value−u n r e a l i z e d l a s t v a l u e−max((s e l f . value−u n r e a l i z e d l a s t v a l u e) , 0)∗ params [” p o s i t i v e r e w a r d r e d u c t i o n ”]− s e l f . p o s i t i o n p e n a l t y (s e l f . p o s i t i o n)

i f np . i snan (s e l f . reward) :

s e l f . reward=0

print (”Nan Reward”)

s e l f . r e w a r d l i s t . append (s e l f . reward)

58

s t a t e s e r i e s=pd . S e r i e s ({ ” de l ta t ime ” : da ta t i ck [” de l ta t ime ”] , ” midpr ice ” : s e l f . midprice , ” cash ” : s e l f . cash , ” p o s i t i o n ” : s e l f . po s i t i on , ” value ” : s e l f . value , ” u n r e a l i z e d v a l u e ” : s e l f . value−s e l f . l a s t v a l u e })

obs=pd . concat ([s t a t e s e r i e s , da ta t i ck [[c for c in data t i ck . index i f not c in [” time ” , ” midpr ice ” , ” de l ta t ime ”]]]])

return obs , s e l f . reward , done ,{}

def p o s i t i o n p e n a l t y (s e l f , p o s i t i o n) :

return s e l f . p o s i t i o n p e n a l t y ∗np . l og (1+np . abso lu t e (p o s i t i o n))

def Deal (s e l f , d i r e c t i o n , dea lp r i c e , dealvolume) :

i f d i r e c t i o n==”Bid” and dealvolume >0:

#pr in t (”Deal : Bid ” , dealvolume ,”At” , d e a l p r i c e)

s e l f . p o s i t i o n+=dealvolume / d e a l p r i c e

s e l f . cash−=dealvolume

i f d i r e c t i o n==”Ask” and dealvolume >0:

#pr in t (”Deal : Ask” , dealvolume ,”At” , d e a l p r i c e)

s e l f . po s i t i on−=dealvolume / d e a l p r i c e

s e l f . cash+=dealvolume

return dealvolume

def render (s e l f , mode=’human ’ , c l o s e=False) :

pass

def seed (s e l f , seed=None) :

s e l f . np random , seed1 = seed ing . np random (seed)

seed2 = seed ing . hash seed (seed1 + 1) % 2 ∗∗ 31

return [seed1 , seed2]

def p l o t v a l u e s (s e l f) :

i f s e l f . outputp lot :

try :

print (” Fina l Value : ” , s e l f . value , ” Sharpe Value : ” , s e l f . va lue /np . std (s e l f . v a l u e l i s t))

except :

pass

59

f i g , ax=p l t . subp lo t s ()

l n s1=ax . p l o t (s e l f . v a l u e l i s t , l a b e l=”Value”)

ln s2=ax . p l o t (np . array (s e l f . p o s i t i o n l i s t)∗100 , l a b e l=” Pos i t i on ”)

ln s3=ax . p l o t (np . array (s e l f . r e w a r d l i s t)∗10 , l a b e l=”Reward”)

p l t . l egend (l o c=” u p p e r l e f t ”)

ax2=ax . twinx ()

ln s4=ax2 . p l o t (s e l f . d a t a s l i c e [” midpr ice ”] . to numpy () , ”r−” , l a b e l=” Pr i ce ”)

l n s = ln s1+lns2+ln s3+lns4

l ab s = [l . g e t l a b e l () for l in l n s]

ax . l egend (lns , l ab s)

p l t . show ()

#envcolumns=[”midprice ”]+[” time ” ,” de l t a t ime ”]+[” midprice −”+s t r (x+1) f o r x in range (t i c k s t o l o o k b a c k)]+[x+s t r (y+1) f o r x in [” b id ” ,” ask ” ,” b i dS i z e ” ,” a s kS i z e ” ,” o i r ”] f o r y in range (orderbookdepth)]+[”LSTM ”+s t r (x) f o r x in range (ls tmclassnum)]+[” o i r1 −”+s t r (x+1) f o r x in range (t i c k s t o l o o k b a c k)]

envcolumns=a l l d a t a c o p y . columns . drop ([” index ” , ” date ” , ”sym”]+[”LSTM ”+str (j) for j in range (25) i f (j<=9 or j >=15)])

#envcolumns=[”midprice ”]+[” time ” ,” de l t a t ime ”]+[” midprice −”+s t r (x+1) f o r x in range (t i c k s t o l o o k b a c k)]+[x+s t r (y+1) f o r x in [” b id ” ,” ask ” ,” b i dS i z e ” ,” a s kS i z e ” ,” o i r ”] f o r y in range (orderbookdepth)]+[”LSTM 11” ,”LSTM 13”]

params = HYPERPARAMS[’ stockenv ’]

env=StocksEnv (data=a l l d a t a c o p y [envcolumns])

env . r e s e t ()

env . s tep ((0 . 5 , 0 . 5 , 1 0 0 , 1 0 0)) [0]

env . ob s e rva t i on space

class ChangeObsWarpper (gym . Wrapper) :

def i n i t (s e l f , env=None) :

super () . i n i t (env)

s e l f . s i ng l e ob s shape=s e l f . ob s e rva t i on space . shape [0]−1

s e l f . ob s e rva t i on space=gym . spaces . Box(low=np . z e r o s ((s e l f . s i ng l e ob s shape ∗params [” t i c k s t o l o o k b a c k ”] ,)) , high =((np . z e r o s ((s e l f . s i ng l e ob s shape ∗params [” t i c k s t o l o o k b a c k ”] ,))+ np . i n f)) , dtype=np . f l o a t 6 4)

def updateobs (s e l f , obs) :

obs . drop ([” midpr ice ”] , i n p l a c e=True)

obs [[x for x in obs . index i f ” S i z e ” in x]]/=100000

obs [[x for x in obs . index i f ”RSI” in x]]−=50

return np . array (obs , dtype=np . f l o a t 6 4)

60

def r e s e t (s e l f) :

s e l f . obsarray=np . z e r o s ((params [” t i c k s t o l o o k b a c k ”] , s e l f . s i ng l eob s shape))

obs=s e l f . updateobs (s e l f . env . r e s e t ())

s e l f . obsarray=np . concatenate ((obs . reshape (1 ,−1) , s e l f . obsarray [: −1]))

return s e l f . obsarray . reshape (−1)

def s tep (s e l f , a c t i on) :

obs , reward , done , i n f o=s e l f . env . s tep (ac t i on)

obs=s e l f . updateobs (obs)

s e l f . obsarray=np . concatenate ((obs . reshape (1 ,−1) , s e l f . obsarray [: −1]))

return s e l f . obsarray . reshape (−1) , reward , done , i n f o

class DiscreteActionWrapper (gym . Wrapper) :

def i n i t (s e l f , env=None) :

super () . i n i t (env)

s e l f . a c t i o n s p a c e=gym . spaces . D i s c r e t e (7)

def r e s e t (s e l f) :

obs=s e l f . env . r e s e t ()

s e l f . a c t i o n l i s t =[]

return obs

def s tep (s e l f , a c t i on) :

a c t i on=np . c l i p (act ion , 0 , 6)

s e l f . a c t i o n l i s t . append (ac t i on)

i f ac t i on ==0:

obs , reward , done , i n f o= s e l f . env . s tep ((0 . 5 , 0 . 5 , 1 0 0 , 1 0 0))

e l i f ac t i on ==1:

obs , reward , done , i n f o= s e l f . env . s tep ((1 , 1 , 100 , 100))

e l i f ac t i on ==2:

obs , reward , done , i n f o= s e l f . env . s tep ((2 , 2 , 100 , 100))

e l i f ac t i on ==3:

obs , reward , done , i n f o= s e l f . env . s tep ((0 . 5 , 2 , 1 0 0 , 1 0 0))

e l i f ac t i on ==4:

obs , reward , done , i n f o= s e l f . env . s tep ((2 , 0 . 5 , 1 0 0 , 1 0 0))

e l i f ac t i on ==5:

61

obs , reward , done , i n f o= s e l f . env . s tep ((1 , 1 . 5 , 1 0 0 , 1 0 0))

e l i f ac t i on ==6:

obs , reward , done , i n f o= s e l f . env . s tep ((1 . 5 , 1 , 1 0 0 , 1 0 0))

#e l i f ac t i on==9:

obs , reward , done , i n f o= s e l f . env . s t ep ((−100,−100,−min(s e l f . p o s i t i o n ∗ s e l f . midprice , 0) ,max(s e l f . p o s i t i o n ∗ s e l f . midprice , 0)))

i f done :

s e l f . p l o t v a l u e s ()

return obs , reward , done , i n f o

def p l o t v a l u e s (s e l f) :

i f s e l f . env . outputp lot :

s e l f . env . p l o t v a l u e s ()

p l t . s c a t t e r (range (len (s e l f . a c t i o n l i s t)) , s e l f . a c t i o n l i s t , alpha =0.5 , marker=”∗”)

p l t . show ()

params = HYPERPARAMS[’ stockenv ’]

env=StocksEnv (data=a l l d a t a c o p y [envcolumns])

env=DiscreteActionWrapper (env)

env=ChangeObsWarpper (env)

env . s e t d a t a l e n g t h (1000)

obs=env . r e s e t ()

done=False

ct=time . time ()

o b s l i s t =[obs]

while not done :

obs , reward , done , =env . s tep (np . random . rand int (env . a c t i o n s p a c e . n))

o b s l i s t . append (obs)

print (”Speed : ” , env . data length /(time . time ()− ct) , ” F/ s ”)

obst rans former=StandardSca ler ()

obst rans former . f i t (np . array (o b s l i s t))

class ObsTransformWarpper (gym . Wrapper) :

def i n i t (s e l f , env=None , obst rans former=None) :

super () . i n i t (env)

62

s e l f . obs t rans former=obstrans former

def updateobs (s e l f , obs) :

return obst rans former . trans form ([o b s l i s t [0]]) [0]

def r e s e t (s e l f) :

return s e l f . updateobs (s e l f . env . r e s e t ())

def s tep (s e l f , a c t i on) :

obs , reward , done , i n f o=s e l f . env . s tep (ac t i on)

return s e l f . updateobs (obs) , reward , done , i n f o

env=ObsTransformWarpper (env , obst rans former)

env . ob s e rva t i on space

try :

del env

del a l l d a t a

except :

pass

”””#3. DQN Agent”””

class NoisyLinear (nn . Linear) :

def i n i t (s e l f , i n f e a t u r e s , o u t f e a t u r e s , s i g m a i n i t =0.017 , b i a s=True) :

super (NoisyLinear , s e l f) . i n i t (i n f e a t u r e s , o u t f e a t u r e s , b i a s=b ia s)

s e l f . s igma weight = nn . Parameter (torch . f u l l ((o u t f e a t u r e s , i n f e a t u r e s) , s i g m a i n i t))

s e l f . r e g i s t e r b u f f e r (” e p s i l o n w e i g h t ” , torch . z e r o s (o u t f e a t u r e s , i n f e a t u r e s))

i f b ia s :

s e l f . s i gma b ia s = nn . Parameter (torch . f u l l ((o u t f e a t u r e s ,) , s i g m a i n i t))

s e l f . r e g i s t e r b u f f e r (” e p s i l o n b i a s ” , torch . z e r o s (o u t f e a t u r e s))

s e l f . r e s e t pa ramet e r s ()

def r e s e t pa ramet e r s (s e l f) :

s td = math . s q r t (3 / s e l f . i n f e a t u r e s)

s e l f . weight . data . uni form (−std , std)

63

s e l f . b i a s . data . uni form (−std , std)

def forward (s e l f , input) :

s e l f . e p s i l o n w e i g h t . normal ()

b i a s = s e l f . b i a s

i f b ia s i s not None :

s e l f . e p s i l o n b i a s . normal ()

b i a s = b ia s + s e l f . s i gma b ias ∗ s e l f . e p s i l o n b i a s . data

return F. l i n e a r (input , s e l f . weight + s e l f . s igma weight ∗ s e l f . e p s i l o n w e i g h t . data , b i a s)

class A2CNetwork(nn . Module) :

def i n i t (s e l f , input shape , n a c t i o n s) :

super (A2CNetwork , s e l f) . i n i t ()

l i n e a r l a y e r=nn . Linear

s e l f . common = nn . Sequent i a l (

l i n e a r l a y e r (input shape [0] , 256) ,

nn . LeakyReLU () ,

)

s e l f . p o l i c y = nn . Sequent i a l (

l i n e a r l a y e r (256 , 128) ,

nn . LeakyReLU () ,

l i n e a r l a y e r (128 , n a c t i o n s)

)

s e l f . va lue = nn . Sequent i a l (

l i n e a r l a y e r (256 , 64) ,

nn . LeakyReLU () ,

l i n e a r l a y e r (64 , 1)

)

def forward (s e l f , x) :

64

fx = torch . t enso r (x . f loat ()) . to (torch . dev i c e (dev i c e))

common out = s e l f . common(fx) . view (fx . s i z e () [0] , −1)

return s e l f . p o l i c y (common out) , s e l f . va lue (common out)

def unpack batch (batch , net , dev i c e=dev i c e) :

s t a t e s = []

a c t i o n s = []

rewards = []

not done idx = []

l a s t s t a t e s = []

for idx , exp in enumerate(batch) :

s t a t e s . append (np . array (exp . s ta te , copy=False))

a c t i o n s . append (int (exp . a c t i on))

rewards . append (exp . reward)

i f exp . l a s t s t a t e i s not None :

not done idx . append (idx)

l a s t s t a t e s . append (np . array (exp . l a s t s t a t e , copy=False))

s t a t e s v = torch . FloatTensor (s t a t e s) . to (dev i c e)

a c t i o n s t = torch . LongTensor (a c t i o n s) . to (dev i ce)

handle rewards

rewards np = np . array (rewards , dtype=np . f l o a t 3 2)

i f not done idx :

l a s t s t a t e s v = torch . FloatTensor (l a s t s t a t e s) . to (dev i c e)

l a s t v a l s v = net (l a s t s t a t e s v) [1]

l a s t v a l s n p = l a s t v a l s v . data . cpu () . numpy () [: , 0]

rewards np [not done idx] += params [”gamma”] ∗∗ params [”REWARD STEPS”] ∗ l a s t v a l s n p

r e f v a l s v = torch . FloatTensor (rewards np) . to (dev i ce)

return s t a t e s v , a c t i o n s t , r e f v a l s v

class LRSchedualr (object) :

def i n i t (s e l f , opt imize r) :

s e l f . opt imize r = opt imize r

65

s e l f . i n i t i a l l r=s e l f . opt imize r . param groups [0] [” l r ”]

s e l f . l r=s e l f . i n i t i a l l r

s e l f . framecount=0

def s tep (s e l f , l o s s , epoch=None) :

s e l f . framecount+=1

current = f loat (l o s s)

s e l f . l r=max(s e l f . l r ∗params [’ l e a r n i n g r a t e d e c a y ’] , params [’ m i n l e a r n i n g r a t e ’])

for j , param group in enumerate(s e l f . opt imize r . param groups) :

param group [’ l r ’]= s e l f . l r

def g e t l r (s e l f) :

return [s e l f . l r]

def d e f a u l t s t a t e s p r e p r o c e s s o r (s t a t e s) :

i f len (s t a t e s) == 1 :

n p s t a t e s = np . expand dims (s t a t e s [0] , 0)

else :

n p s t a t e s = np . array ([np . array (s , copy=False) for s in s t a t e s] , copy=False)

return torch . t enso r (n p s t a t e s)

class P r o b a b i l i t y A c t i o n S e l e c t o r (ptan . a c t i o n s . Ac t i onSe l e c to r) :

def c a l l (s e l f , probs , e p s i l o n) :

a s s e r t isinstance (probs , np . ndarray)

a c t i o n s = []

for prob in probs :

prob=np . nan to num (prob)

p=prob∗(1− e p s i l o n)+ e p s i l o n /(prob . shape [0])

try :

a c t i o n s . append (np . random . cho i c e (len (prob) , p=p))

except :

a c t i o n s . append (np . random . cho i c e (len (prob)))

#pr in t (”Bad P r o b a b i l i t y ” , prob)

return np . array (a c t i o n s)

66

class ActorCr i t i cAgent (ptan . agent . BaseAgent) :

def i n i t (s e l f , model , a c t i o n s e l e c t o r=P r o b a b i l i t y A c t i o n S e l e c t o r () , dev i c e=device ,

apply softmax=False , p r ep roc e s s o r=d e f a u l t s t a t e s p r e p r o c e s s o r) :

s e l f . model = model

s e l f . a c t i o n s e l e c t o r = a c t i o n s e l e c t o r

s e l f . dev i c e = dev i c e

s e l f . apply softmax = apply softmax

s e l f . p r ep ro c e s s o r = prep ro c e s s o r

s e l f . p r o b s l i s t =[]

s e l f . e p s i l o n=params [” e p s i l o n s t a r t ”]

@torch . no grad ()

def c a l l (s e l f , s t a t e s , a g e n t s t a t e s=None) :

i f s e l f . p r ep ro c e s s o r i s not None :

s t a t e s = s e l f . p r ep roc e s s o r (s t a t e s)

i f torch . i s t e n s o r (s t a t e s) :

s t a t e s = s t a t e s . to (s e l f . dev i c e)

probs v , va lue s v = s e l f . model (s t a t e s)

i f s e l f . apply softmax :

#probs v = F. softmax (torch . clamp (probs v ,−10 ,20) , dim=1)

probs v = F. softmax (probs v , dim=1)

probs = probs v . data . cpu () . numpy()

s e l f . p r o b s l i s t . append (probs)

a c t i o n s = s e l f . a c t i o n s e l e c t o r (probs , s e l f . e p s i l o n)

a g e n t s t a t e s = va lue s v . data . squeeze () . cpu () . numpy () . t o l i s t ()

return np . array (a c t i o n s) , a g e n t s t a t e s

def updateeps (s e l f , s t e p i d x) :

s e l f . e p s i l o n=np . i n t e r p (s t ep idx , [0] + params [” e p s i l o n f i n a l f r a m e ”] , [params [” e p s i l o n s t a r t ”]]+ params [” e p s i l o n f i n a l ”])

def p lo tprobs (s e l f) :

s e l f . p r o b s l i s t=np . array (s e l f . p r o b s l i s t)

for i in range (s e l f . p r o b s l i s t . shape [2]) :

67

for j in range (params [”NUM ENVS”]) :

i f j==params [”NUM ENVS”]−1:

p l t . p l o t (s e l f . p r o b s l i s t [: , j , i] , a lpha =0.9 , l a b e l=”Env”+str (j)+” , ”+” Action ”+str (i))

else :

p l t . p l o t (s e l f . p r o b s l i s t [: , j , i] , a lpha =0.9)

p l t . l egend ()

p l t . show ()

s e l f . p r o b s l i s t =[]

class TBMeanTracker :

”””

TensorBoard va lue t r a c k e r : a l l ow s to batch f i x e d amount o f h i s t o r i c a l va l u e s and wr i t e t h e i r mean in to TB

Designed and t e s t e d wi th pytorch−t ensorboard in mind

”””

def i n i t (s e l f , wr i te r , b a t c h s i z e) :

”””

: param wr i t e r : w r i t e r wi th c l o s e () and add s ca l a r () methods

: param b a t c h s i z e : i n t e g e r s i z e o f ba tch to t rack

”””

a s s e r t isinstance (ba t ch s i z e , int)

a s s e r t w r i t e r i s not None

s e l f . w r i t e r = w r i t e r

s e l f . b a t c h s i z e = b a t c h s i z e

def e n t e r (s e l f) :

s e l f . ba tches = c o l l e c t i o n s . d e f a u l t d i c t (l i s t)

return s e l f

def e x i t (s e l f , exc type , exc va l , exc tb) :

s e l f . w r i t e r . c l o s e ()

@staticmethod

def a s f l o a t (va lue) :

a s s e r t isinstance (value , (f loat , int , np . ndarray , np . gener i c , torch . autograd . Var iab le)) or torch . i s t e n s o r (va lue)

t e n s o r v a l = None

68

i f isinstance (value , torch . autograd . Var iab le) :

t e n s o r v a l = value . data

e l i f torch . i s t e n s o r (va lue) :

t e n s o r v a l = value

i f t e n s o r v a l i s not None :

return t e n s o r v a l . f loat () . mean () . item ()

e l i f isinstance (value , np . ndarray) :

return f loat (np . mean(value))

else :

return f loat (va lue)

def t rack (s e l f , param name , value , i t e r i n d e x) :

a s s e r t isinstance (param name , str)

a s s e r t isinstance (i t e r i n d e x , int)

data = s e l f . ba tches [param name]

data . append (s e l f . a s f l o a t (va lue))

i f len (data) >= s e l f . b a t c h s i z e :

s e l f . w r i t e r . a dd s c a l a r (param name , np . mean(data) , i t e r i n d e x)

data . c l e a r ()

class RewardTracker :

def i n i t (s e l f , s top reward) :

s e l f . s top reward = stop reward

def e n t e r (s e l f) :

s e l f . t s = time . time ()

s e l f . t s f r ame = 0

s e l f . t o t a l r e w a r d s = []

return s e l f

69

def e x i t (s e l f , ∗ args) :

pass

def reward (s e l f , reward , frame , l r , eps) :

s e l f . t o t a l r e w a r d s . append (reward)

speed = (frame − s e l f . t s f r ame) / (time . time () − s e l f . t s)

s e l f . t s f r ame = frame

s e l f . t s = time . time ()

mean reward = np . mean(s e l f . t o t a l r e w a r d s [−25 :])

print (”%d : done %d epochs , l a s t reward %.3 f , mean reward %.3 f , l e a r n i n g ra t e %.8 f , eps %.2 f , speed %.2 f f /s , Time : %s ” % (

frame , len (s e l f . t o t a l r e w a r d s) , s e l f . t o t a l r e w a r d s [−1] , mean reward , l r , eps , speed , time . ctime ()

))

i f mean reward > s e l f . s top reward :

print (” Solved in %d frames ! ” % frame)

return True

return False

def s e t s e e d (seed , envs=None , cuda=False) :

print (”Seed : ” , seed)

np . random . seed (seed)

torch . manual seed (seed)

i f cuda :

torch . cuda . manual seed (seed)

i f envs :

for idx , env in enumerate(envs) :

env . seed (seed + idx)

try :

del Trainer

print (” Deleted Last Trainer ”)

except :

70

pass

def make env (outputp lot=False) :

env=StocksEnv (data=a l l d a t a c o p y [envcolumns] , randomdata=True)

env . outputp lot=outputp lot

env=DiscreteActionWrapper (env)

env=ChangeObsWarpper (env)

#env=ObsTransformWarpper (env , obs t rans former)

env . s e t d a t a l e n g t h (3000)

#env=gym .make(” CartPole−v1 ”)

return env

class dqnAgentTrainer :

def i n i t (s e l f) :

s e l f . envs = [make env () for in range (params [”NUM ENVS”]−1)]+[make env (True)]

s e t s e e d (int (time . time ()∗17)%1013 , s e l f . envs , cuda=True)

s e l f . do t e s t=False

s e l f . net = A2CNetwork(s e l f . envs [0] . ob s e rva t i on space . shape , s e l f . envs [0] . a c t i o n s p a c e . n) . to (dev i ce)

print (s e l f . net)

s e l f . agent= ActorCr i t icAgent (s e l f . net , apply softmax=True , dev i c e=dev i ce)

s e l f . exp source = ptan . expe r i ence . Exper i enceSourceRo l louts (s e l f . envs , s e l f . agent , gamma=params [’gamma ’] , s t ep s count=params [’REWARD STEPS’])

s e l f . opt imize r = optim .Adam(s e l f . net . parameters () , l r=params [’ l e a r n i n g r a t e ’])

s e l f . l r s=LRSchedualr (s e l f . opt imize r)

s e l f . l o s s l i s t =[]

def t r a i n (s e l f) :

print (” Traing Star t Time : ” , time . ctime ())

print (”−−−−−−−−−−−−−−−−−−−−”)

s t e p i d x = 0

s e l f . w r i t e r = SummaryWriter (comment=”−stockenv−v7−”)

with TBMeanTracker (s e l f . wr i te r , b a t c h s i z e =10) as t b t r a c k e r :

with RewardTracker (params [’ s top reward ’]) as t r a ck e r :

for mb states , mb rewards , mb actions , mb values in s e l f . exp source :

#pr in t (mb states , mb rewards , mb actions , mb values)

71

new rewards = s e l f . exp source . pop to ta l r ewards ()

i f new rewards :

s e l f . t o t a l r e w a r d s=t r a c k e r . t o t a l r e w a r d s

#i f l en (s e l f . t o t a l r ewa r d s)%10==0:

d i s p l a y . c l e a r ou t p u t ()

i f len (s e l f . t o t a l r e w a r d s)%params [”DATALENGTH INCREASE FREQ”]==0:

for env in s e l f . envs :

env . s e t d a t a l e n g t h (env . data length +1000)

print (” Total Loss : { : . 4 f } , Po l i cy Loss : { : . 4 f } , Entropy Loss : { : . 4 f } ∗ { : . 4 f } = { : . 4 f } Value Loss : { : . 4 f }” . format (l o s s v . item () , l o s s p o l i c y v . item () , entropy beta , e n t r o p y l o s s v . item () , entropy beta ∗ e n t r o p y l o s s v . item () , l o s s v a l u e v . item ()))

s e l f . p l o t l o s s ()

try :

print (”Mean PnL : ” ,np . mean(e n v v a l u e l i s t) , ”Std PnL : ” ,np . std (e n v v a l u e l i s t))

#s e l f . agent . p l o t p r o b s ()

except :

pass

s e l f . agent . p r o b s l i s t =[]

i f t r a c ke r . reward (np . mean(new rewards) , s t ep idx , s e l f . l r s . l r , s e l f . agent . e p s i l o n) :

break

print (”−−−−−−−−−−−−−−−−−−−−”)

else :

try :

e n v v a l u e l i s t =[env . va lue for env in s e l f . envs]

except :

pass

s e l f . opt imize r . z e ro g rad ()

i f np . any(np . i snan (mb rewards)) or np . any(np . i snan (mb values)) :

continue

with autograd . detect anomaly () :

s t a t e s v = torch . FloatTensor (mb states) . to (dev i c e)

mb adv = mb rewards − mb values

adv v = torch . FloatTensor (mb adv) . to (dev i c e)

a c t i o n s t = torch . LongTensor (mb act ions) . to (dev i ce)

72

v a l s r e f v = torch . FloatTensor (mb rewards) . to (dev i ce)

l o g i t s v , va lue v = s e l f . net (s t a t e s v)

l o s s v a l u e v = F. mse l o s s (va lue v . squeeze (−1) , v a l s r e f v)

l og prob v = F. log so f tmax (l o g i t s v , dim=1)

l o g p r o b a c t i o n s v = adv v ∗ l o g p rob v [range (len (mb states)) , a c t i o n s t]

l o s s p o l i c y v = − l o g p r o b a c t i o n s v . mean ()

prob v = F. softmax (l o g i t s v , dim=1)

e n t r o p y l o s s v = (prob v ∗ l o g p rob v) .sum(dim=1).mean ()

app ly entropy and va lue g r ad i en t s

entropy beta=np . i n t e r p (s t ep idx , params [”ENTROPY BETA FRAME”] , params [”ENTROPY BETA”])

l o s s v = l o s s p o l i c y v + entropy beta ∗ e n t r o p y l o s s v + l o s s v a l u e v

l o s s v . backward ()

n n u t i l s . c l i p g rad norm (s e l f . net . parameters () , params [”CLIP GRAD”])

s e l f . opt imize r . s tep ()

s e l f . l r s . s t ep (l o s s v . item ())

s e l f . l o s s l i s t . append ([l o s s v . item () , l o s s p o l i c y v . item () , entropy beta ∗ e n t r o p y l o s s v . item () , l o s s v a l u e v . item ()])

s t e p i d x += params [”NUM ENVS”] ∗ params [”REWARD STEPS”]

s e l f . agent . updateeps (s t e p i d x)

grads = np . concatenate ([p . grad . data . cpu () . numpy () . f l a t t e n ()

for p in s e l f . net . parameters ()

i f p . grad i s not None])

t b t r a c k e r . t rack (” advantage ” , adv v , s t e p i d x)

t b t r a c k e r . t rack (” va lue s ” , value v , s t e p i d x)

t b t r a c k e r . t rack (” batch rewards ” , v a l s r e f v , s t e p i d x)

t b t r a c k e r . t rack (” l o s s e n t r o p y ” , e n t r op y l o s s v , s t e p i d x)

t b t r a c k e r . t rack (” l o s s p o l i c y ” , l o s s p o l i c y v , s t e p i d x)

t b t r a c k e r . t rack (” l o s s v a l u e ” , l o s s v a l u e v , s t e p i d x)

t b t r a c k e r . t rack (” l o s s t o t a l ” , l o s s v , s t e p i d x)

t b t r a c k e r . t rack (” g r a d l 2 ” , np . s q r t (np . mean(np . square (grads))) , s t e p i d x)

73

t b t r a c k e r . t rack (”grad max” , np .max(np . abs (grads)) , s t e p i d x)

t b t r a c k e r . t rack (” grad var ” , np . var (grads) , s t e p i d x)

print (time . ctime ())

def p l o t l o s s (s e l f) :

l o s s l i s t=np . array (s e l f . l o s s l i s t [1 :])

s e l f . l o s s l i s t =[]

f i g , ax=p l t . subp lo t s ()

l n s1=ax . p l o t (l o s s l i s t [: , 1] , l a b e l=” Po l i cy Loss (l e f t) ”)

ln s2=ax . p l o t (l o s s l i s t [: , 2] , l a b e l=”Entropy Loss (l e f t) ”)

q u a n t i l e s=np . q u a n t i l e (l o s s l i s t , [0 . 1 , 0 . 9] , a x i s =0)

#pr in t (q u an t i l e s)

ax . s e t y l i m ((min(q u a n t i l e s [0 , 1] , q u a n t i l e s [0 , 2]) −0 . 1 ,max(q u a n t i l e s [1 , 1] , q u a n t i l e s [1 , 2]) + 0 . 1))

ax2=ax . twinx ()

ln s3=ax2 . p l o t (l o s s l i s t [: , 3] , ”r−” , l a b e l=”Value Loss (r i g h t) ”)

ax2 . s e t y l i m ((0 , q u a n t i l e s [1 , 3]))

l n s = ln s1+lns2+ln s3

l ab s = [l . g e t l a b e l () for l in l n s]

ax . l egend (lns , l ab s)

p l t . show ()

params = HYPERPARAMS[’ stockenv ’]

try :

del Trainer

print (” Deleted Last Trainer ”)

except :

pass

Trainer=dqnAgentTrainer ()

Tra iner . do t e s t=False

print (params)

#downloaded = dr i v e . Crea teF i l e ({ ’ i d ’ :”1KH9Oulw MyR4bT74uymA0mqQvAdVxN5t”})

#downloaded . GetContentFi le (’ TrainedNet . pth ’)

74

uploaded = f i l e s . upload ()

s t a t e d i c t = torch . load (l i s t (uploaded . keys ()) [0])

Tra iner . net . l o a d s t a t e d i c t (s t a t e d i c t)

Commented out IPython magic to ensure Python c ompa t i b i l i t y .

! rm −r f . / runs /

! k i l l 6481

os . makedirs (l o g s b a s e d i r , e x i s t o k=True)

%tensorboard −− l o g d i r { l o g s b a s e d i r }

params = HYPERPARAMS[’ stockenv ’]

Tra iner . t r a i n ()

params

p r o b s l i s t =[]

v a l u e l i s t =[]

a c t i o n s e l e c t o r=P r o b a b i l i t y A c t i o n S e l e c t o r ()

for envcount in range (1 0 0) :

print (”Env No . ” , envcount)

env=make env (True)

env . s e t d a t a l e n g t h (10000)

obs=env . r e s e t ()

done=False

while not done :

probs , va lue s=Trainer . net (torch . FloatTensor ([obs]))

probs=sc ipy . s p e c i a l . softmax (probs . detach () . cpu () . numpy ())

p r o b s l i s t . append (probs)

ac t i on=a c t i o n s e l e c t o r (probs , 0)

obs , reward , done , i n f o=env . s tep (ac t i on)

v a l u e l i s t . append (env . va lue)

for i in range (p r o b s l i s t [0] . shape [1]) :

p l t . p l o t (s c ipy . s p e c i a l . softmax (np . array (p r o b s l i s t) , a x i s = 2) [: , 0 , i] , l a b e l=” Action ”+str (i))

p l t . l egend ()

75

p l t . show ()

p r o b s l i s t =[]

del env

sns . d i s t p l o t (v a l u e l i s t)

print (”Mean PnL : ” ,np . mean(v a l u e l i s t) , ” , Std PnL : ” ,np . std (v a l u e l i s t))

torch . save (Trainer . net . s t a t e d i c t () , ’ TrainedNet . pth ’)

f i l e s . download (’ TrainedNet . pth ’)

s c ipy . s p e c i a l . softmax (probs . detach () . cpu () . numpy ()) [0]

probs . shape [0]

76

Bibliography

[1] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan

Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning, 2013.

[2] Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dab-

ney, Daniel Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow:

Combining improvements in deep reinforcement learning. CoRR, abs/1710.02298, 2017.

[3] Richard S. Sutton. Learning to predict by the methods of temporal differences.

10.1007/BF00115009.

[4] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double

q-learning, 2015.

[5] Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex

Graves, Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell, and

Shane Legg. Noisy networks for exploration, 2017.

[6] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay,

2015.

[7] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and Nando de Fre-

itas. Dueling network architectures for deep reinforcement learning, 2015.

[8] Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforce-

ment learning, 2017.

[9] Merton Miller Sanford Grossman. Liquidity and market structure. The Journal of Finance,

Vol 43, No. 3.

[10] Jose Penalva Alvaro Cartea, Sebastian Jaimungal. Algorithmic and High-Frequency Trading.

Cambridge University Press.

[11] Olivier Gueant. The Financial Mathematics of Market Liquidity. CRC Press.

77

https://doi.org/10.1007/BF00115009

[12] Rahul Savani Andreas Koukorinis Thomas Spooner, John Fearnley. Market making via rein-

forcement learning. Preprint, arXiv:1804.04216.

[13] Jonathan Sadighian. Deep reinforcement learning in cryptocurrency market making. Preprint,

arXiv:1911.08647, 2019.

[14] Jianfeng Gao Xiaodong He Jianshu Chen Li Deng Ji He Xiujun Li1, Lihong Li. Recurrent

reinforcement learning: A hybrid approach. Preprint, arXiv:1509.03044.

[15] Maxim Lapan. Deep Reinforcement Learning Hands-On. Packt Publishing.

[16] Fernando Doglio. Mastering Python High Performance. Packt Publishing.

78

https://arxiv.org/pdf/1804.04216.pdf
https://arxiv.org/pdf/1911.08647.pdf
https://arxiv.org/pdf/1509.03044.pdf

	Abstrct
	Introduction and Background
	Background of Deep Reinforcement Learning
	Markov Decision Process
	Bellman Equation
	Dynamic Programming
	Monte Carlo Methods
	Exploration vs Exploitation
	Temporal Difference Prediction
	Tabular Q-Learning
	Deep Q-Learning
	Extensions to Deep Reinforcement Learning
	Policy Gradient
	Actor-Critic Method
	Continuous Action Spaces

	Background of Electronic Market Making
	Electronic Markets and the Limit Order Book
	Grossman-Miller Market Making Model
	The Avellaneda-Stoikov Model

	Applications
	Data and Environment
	Data Source
	Environment Steps
	Reward Function

	Observation Space
	Market State Observation
	LSTM observations
	Trading Agent Observation
	Observation memory

	Action Space
	Agent
	Computing Speed Analysis
	Training process and hyper-parameter tuning
	Hyper-parameters
	Training Process

	Performance
	Further Development

	Source Codes
	Bibliography

