


Hazard rate surface model and its application to

Southern European Sovereign bonds

by

Francois Cluzeau (CID: 01291527)

Department of Mathematics

Imperial College London

London SW7 2AZ

United Kingdom

Thesis submitted as part of the requirements for the award of the

MSc in Mathematics and Finance, Imperial College London, 2017-2018



Abstract

The purpose of this study is to create and caliber a model for the short-term hazard rate. The

introduction to hazard rates surface, generated as stochastic processes (CIR or Exponential Va-

sicek). Also, using numerical method schemes allow a new vision for short-term hazard rate. This

innovation allows the short-term hazard rate to fit the CDS curves, and the bonds market pricing,

under the risk neutral probability.

Moreover, I will discuss the necessity of adding a jump process to model the hazard rate as close

as possible to market reality; this thesis contains a discussion of the representation of this jump

process, as it could occurs during a crisis, and the consequences of using diverse scheme to deter-

mine the short-term hazard rate.

The simulation part is focused on Southern European Sovereign bonds, as in August 2018, the

Greek government has been allowed to come back on debt market, bringing some risk on economy

with similar structure.
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1 Introduction

As in August 2018, we saw the reintroduction of Greece in the debt market, I decided to focus my

thesis on how the default probability of Southern European countries could be modelled.

The probability of default have been a major problem for euro-zone bonds, as the last crisis in the

euro-zone was a sovereign debt crisis with its paroxysm the Greek debt. As countries with similar

economic environment have also suffered a surge in yield, denoting a mis-pricing and an arising

fear on the market.

The following thesis will explain my work about that particular topic, in which I will discuss

the pricing of risky bonds and their probability of default, and especially the pricing of sovereign

European bonds. As in the euro-zone the German Sovereign bonds are considered as the less risky,

I will consider them as risk-free bonds. Of course, you could use my work for any other risky

bonds, with another free-risky bond, for another currency.The advantage of my method is you

get a realistic hazard rate for any period, without any shifting to fit the market, of course such a

method needs more work for calibration.

The distribution of the default event time is also really important as the payment of the interest

are conditioned to the non-default of the issuer.

I will use stochastic models for those hazard rates and succeed to fit the CDS market and price

risky bonds while describing short-term hazard rate as uniquely stochastic. I will study the credit

event probability I will call default probability (a clear definition is given in the definition 1.1). As

you will notice my models will be less tractable than many other models in past studies, but as

you will see it succeed to describe hazard rates as purely stochastic thanks to the introduction of

hazard rates surface. This introduction of this surface comes from my perception of the default

risk priced by the market. The hazard rate implied by such a model will be a multiple factors

model, comparable to the models described in [16], which is a two parameters model.

The purpose is to fit the CDS market, as well as the past probability default priced by the market,

or at least try to understand how the market would price a CDS. In a non-arbitrage market, as it

could expect for the liquid European Sovereign CDS market, the probability of default should be

rated by the market with a higher yield (definition given in the definition 1.7).

A way to get the default probability valued by the market is studying the difference between, the

yield of the bonds, and the risk-free rate. With daily yield data, you can extract for everyday the

hazard rate implied by the bond market. As the model should reflect the pricing of the market,

this method seems to have legitimacy. In my opinion, there is no advantage to look at a shorter

interval, as the variation will be tiny, or captured on the next day.

The first observation anyone can make on CDS spread behaviour is that jumps occur because of

unexpected events, they occur for both single names (Companies) or for sovereign debt. Jump
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models have been many times discussed as in [2] for hazard rates, however adding a jump process

will generate much less tractability, as well as difficulties to estimate the parameters of the models.

Th reason of the jump are multiple, for instances: when there is a crisis or when an unexpected

election result comes up. Those movements have been explained in [9], [22], [23]. As the default

probability jumps, the bonds’ yield do the same, and the bond price varies as in [11]. In my study

you will follow an analysis of the probability of default under the risk neutral world, which is

not the real world, the one used to price financial assets, as the financial asset in a non-arbitrage

market we use the risk-neutral probability.

As a CDS spread tends to explode during stress periods named crises, as the risk of default esti-

mated by the market surges during some period designated as crisis. It is then logical to model

hazard rate, the parameter that will drive the default probability, will be variable, and will vary

with low volatility under a calm market, and a jump process to model the jumps that could occur.

As there exists economic differences between different geographic area I will study Southern Eu-

ropean Sovereign bonds, as southern Europe gives riskier sovereign bonds. I propose to study

sovereign risky bonds, inside the euro-zone to allow a homogeneity in the parameters, with high

correlation between the risk of default. Any news that can have a direct impact are political

elections and decision, or the economical context. The ECB monetary policy will lead to a high

correlation between those countries as they have the similar profile, and they will all have the same

monetary policy. Such a work has been done by M. Piazzesi in 2005 for US Treasuries in [13],

except that work was done uniquely for US Treasuries.

The main innovation of the paper is the idea of surface of equivalent hazard rate under the risk

neutral probability which is equivalent to the measure of the bonds, yield. I will create this surface

by linear combinations between the calibration points. To simulate such surface the equivalent

hazard rate will follow a CIR or Exponential Vasicek, with the same speed reversion, as two differ-

ent parameters would give an unwanted spread due to different speed of relaxation. In addition,

the key feature for those hazard rates is the mean reversion behaviour, meaning that the hazard

rate will come back to the mean reversion level if a shock moves their value.

Many papers have treated about stochastic hazard rates, with mean reversion model with one or

two parameters. The CIR model introduced in [10] allows such behaviour, as well as the Exponen-

tial Vasicek model.

I will also be base my study on those models as they both have a non-explosive variance. As cal-

ibration is thought, what should be a good parameter of volatility if the volatility explode as the

time goes to infinity. Moreover the hazard rates by its definition can’t be negative, as a negative

hazard rate will imply that the probability of default is negative, or that the risky bond is more

likely to be paid back than the risk-free bond. Both CIR and Exponential Vasicek models do not

allow negative values.
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In the previous paper, Brigo and El-Bachir [2] have modelled the short-term hazard rate (this is

not the equivalent hazard rate cited above) by a sum of a stochastic process, a jump process, and

a deterministic function to fit accurately the CDS curve implied by the market. The hazard rate

fit well the market, but it is not purely stochastic.

I will also try to caliber my model to fit the CDS curves, to do so the parameters, as mean rever-

sion level, mean reversion speed, variance, and then amplitude of the jump, will be estimated with

the past yield value for the bonds with maturity 1Y,2Y,3Y,4Y,5Y,10Y, when the data is available

and liquid. As with such models the hazard rate λ will have a lognormal or non-central -square

distribution, thanks to the estimation of their mean and variance, I could get an estimation of each

parameter.

A major problem to caliber the model is also to determine how long should be the period of ob-

servation, with the mean reversion level and variance to be determined. If the period is too long

I might consider data that is no longer relevant, the economic environment might have changed,

so the parameter µ will be badly caliber by considering data that should be excluded today. This

parameter µ is the mean reversion level, and this parameter is defined as: (definition of this 1.3).

lim
t→+∞

E(λn(t)) = µn for the CIR model for example. Same if we had a lot of moves due to a former

economic problem, if the situation is now better, I am likely to overvalue µn, and as the model is

mean reverting, the long-term expectation of hazard rate should converge to this value.

Of course, the same remark stands for the parameter υn. For such reason the calibration of this

model is hard, and some CDS spread data might be use-full. For example with 5Y bonds I can

get the different parameters, conditioning on good fitting for CDS with maturity 5Y, as a high

volatility will imply a high skew in the distribution.

The problem of the estimation of the volatility parameter could be solved by looking at the implied

volatility in the default swaptions market and using the Merton, Black and Scholes model [1] to

get the volatility of the CDS spread given the price of the default swaptions. The CDS spread is

proportional to the hazard rate, an estimation of the volatility of the hazard rate will be determined

by this method. Another issue raised by this paper is that the implied volatility depends on the

default swaptions. The volatility of the hazard rate seen today of the hazard rate on the period

[0;1Y] and [0;10Y] is not the same, as well as the parameter µn. That is why the one parameter

stochastic model with no deterministic function does not work or does not fit properly the market.

Also, the primary purpose is to introduce hazard rate, λn(t) for different n, creating a surface to

find purely stochastic hazard rates. By allowing variable µn and υn the model will be less tractable,

but there is no need to add a deterministic function, that will maybe be wrong if the configura-

tion change, for instance, if the CDS spread curve is increasing with maturity, and then rapidly

change to decreasing as the hazard rate surges. It is difficult to know what kind of behaviour this

deterministic function should adopt.
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My thesis will solve some of the above questions, to do so I need to cover major mile stones, first I

will defined hazard rate models and the crucial assets to price it, then look at the simple stochastic

model without jumps. I will also look at the hazard rate surface to realize a close fitting to the

market. Finally, I will add jumps in this model to represent as close as possible the market.

During this thesis, the data used were at the beginning Italian, Greek, French, Portuguese, and

Spanish bonds, as Italy had an election that leads to a yield jump on June 2018; this jump has

propagated to the rest of Euro bonds.

My study will as well be an empirical one, as I will try to fit the CDS market from the bonds

historical data, previous empirical studies carried out on interest rates for example in [24] and [25].

1.1 Definition of the market model that will be used

As a beginning, we should define and agree on the environment of the study, thus I will give some

hypothesis about the market to use it in the following development.

The market is a non-arbitrage market, where the bonds are well priced, meaning that the price of

the bonds reflect correctly the default probability of the issuer, and when it should happen. On

the first hand the default probability implied by the market is not the real probability of default,

but it is the subjective opinion of the market of the company or the government to pay back the

debt it has contracted and will contract during the period. On the other hand, you could estimate

the cashflows of a risky bond under the risk-neutral probability, with numeraire the risk-free rate

bond.

The hypothesis of the bonds priced under realistic hazard rate can is most of the time true as I

will deal with Euro sovereign bonds, as Italian bonds, for non-exotic maturities.

As a consequence, the fair price of every asset in this paper will be the expectation under the

risk-neutral probability, and its numeraire, the risk-free bond which is for the euro-zone the yield

of German bonds.

Under the risk-neutral probability the price and so the yield of the bonds will directly reflect the

hazard rate, as it will be the parameter to describe the probability of default, as well as describe

it with respect to the time/maturity.

Using the argument of the risk-neutral pricing, the expected cashflow of the risk-free bonds with

coupon equals to the yield (for the Euro bonds the German Yield will be the risk-free yield) should

be the same as the risky bonds with coupon equals the market yield. Of course the expectation of

payment of the interest (yearly interest rate equals to the yield) and the nominal will be dependent

on the default or not.
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1.2 The Default Probability

Definition 1.1. The hazard rate λ is a parameter that estimates the probability of default event.

Definition 1.2. A default event could be a default, a restructuring, or any other events on the

debt issued. The hazard rate takes into consideration more events than the bankruptcy.

Moreover as stated before the default probability model used makes the probability of default

dependent on the hazard rate λ. I will use the notation τ as the time when the default occurs.

The probability of default of the risky bonds before time t can be expressed, under the risk-neutral

probability, with the following formula:

EQ[1[τ≤t]|τ > 0] = Q(τ ≤ t) (1.1)

The exponential hazard rate model is the model that determines this probability:

Q(τ ≤ t|τ > 0) = 1− e
∫ t
0
−λQ(u)du

Q(τ > t|τ > 0) = e
∫ t
0
−λQ(u)du

where λQ(u) is the hazard rate at time u as described in [27].

Remark 1.3. This hazard rate under the risk-neutral probability is not the same as the probability

in the real world, the probability P also, Q are not the same.

For the rest of the thesis, I will assume that both λPn(t) and λQn(t) follows the same model, close in

value but with different parameters as mentioned in [32] with the curve made by Lehman Brothers.

The default probability under the real probability P will be:

P (τ ≤ t|τ > 0) = 1− e
∫ t
0
−λP(u)du

P (τ > t|τ > 0) = e
∫ t
0
−λP(u)du

To go further, I need to add a small part on bond pricing that will be used get the value of the

constant λimplied for n Y ears implied by the market.

The λimplied from the bond market is of course not constant over the maturity of the bonds, but

with such information, no one could say the term structure of the hazard rate. This λimplied could

be considered as constant; the integral takes the simple form:

∫ n

0

λ(u)du = nλimplied for n years(0)

The bonds market could serve to determine the mean of the hazard rate until maturity, priced by

the market.
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Remark 1.4. There is no necessity to beginning the interval of default observation at 0, then:

To simulate a credit event, given a hazard rate, and given that the credit event didn’t occur before

the time of observation.

the following formula gives the probability under the risk-neutral probability of the default event

between ta and tb:

Q(ta ≤ τ ≤ tb| ta < τ) = 1− e−
∫ tb
ta
λQ(u)du

As I use daily hazard rate, then the probability of default on one day, considering the hazard rate

is constant over the day:

Q(ti ≤ τ ≤ ti+1| ti < τ) = 1− e− 1
252λ

Q(ti)

Remark 1.5. For the rest of the thesis, I will divide the year in 100 intervals where the λ(t) will

be constant. The λ(t) can take 100 different values during a year.

1.3 Hazard rate definitions and notations

In the next pages, it is important to be clear with the notations, as I will use other hazard rates

notations than the one used above (λQn):

•λi(t) is the average hazard rate for the period (t;t+i) seen at time t, so:

Q(t < τ < t+ i|τ > t) = 1− e−iλ
Q
i (t)

This is the probability of default of the risky bond from time t to time t+i.

•λQi−j(t) is the hazard rate seen at time t, for the period [i;j], then the default probability is:

Q(t+ i < τ < t+ j|τ > t+ i) = 1− e−(j−i)λQ
i−j(t)

• One can notice that there is a direct relation between the two hazard rates above. For example

if t=0, the relation is quite easy:

Q(τ < j|τ > 0) = 1− e−jλ
Q
j (0) = 1− e−jλ

Q
0−j(0)

So λQj (0) = λQ0−j(0)

Then 1− e−jλ
Q
0−j(0) = 1− e−

∑j
i=1 λ

Q
i−1−i(0)

For j=2, the equation is now: λQ2 (0) = 1
2 (λQ0−1(0) + λQ1−2(0))

Remark 1.6. for any ≤ t1 < t2:

Q(t1 ≤ τ < t2) = Q(τ ≤ t2)−Q(τ < t1)
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Q(t1 ≤ τ < t2) = 1− e−
∫ t2
0 λQ(u)du − 1 + e−

∫ t1
0 λQ(u)du

Q(t1 ≤ τ < t2) = −e−
∫ t2
0 λQ(u)du + e−

∫ t1
0 λQ(u)du

• The last notation is the surface hazard rate by abuse of language λQ(t) will be the λQ at time

t as we are now at 0, this notation referrers to the short-term daily hazard rate. If I write λQ(t),

it means the short-term hazard rate for the day number t, or for the day at time t.

1.4 Introduction to bond pricing

In this part, every hazard rate will be the hazard rate under the risk-neutral probability Q, if not

it is specified. First of all, let’s give the definition of the yield of a bond, the definition is from [21]:

Definition 1.7. The yield is the fixed coupon that would be needed to make the price of a bond

equals to its nominal, considering that the bond can’t default.

Of course the higher the yield, the lower the bond price, and the higher the risk of default before

maturity is. There exists many studies on European yield as they have jumped on the last Euro

bonds crisis [29], in this paper the author has his analysis on Irish bonds, which are now quite safe

with low default probability implied by the market.

Definition 1.8. The recovery rate R is the part of the nominal that will be paid by the issuer of

the bonds when a credit event occurs. Typically it is the part of the nominal of the bond that will

be paid back, by selling the assets of the issuer.

Most of the time the bonds are quoted thanks to their yield, here I need to compute the

discounted cash-flows given the yield. The topic of this thesis is not computing interest rates, but

find a representation of default probability, to do so you could take the German Sovereign bond’s

yield as a reference to discount the cash-flows, as it is mainly used so in the industry, to add some

weight to my choice I would like to cite the work done in [28]. Of course, my model could be

adapted with some other risk-free bonds, for another currency.

If the maturity is n years, interests i, risk-free rates r (in this simple case the interest rate is

constant, and the yearly equivalent rate). If the coupon is paid every year, a price for such bond

could be as in [21]:

P (0) =

( n∑
j=1

100 ∗ i
(1 + r)j

)
+

100

(1 + r)n

with a nominal of 100.

Of course, if the free risk rates is not constant you can adapt the formula:

P (0) =

( n∑
j=1

100 ∗ i
(r[j])

)
+

100

(r[n])
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r[h] = e
∫ h
0
r(u)du

Those formulas are for risk-free bonds, as there is no default. To add some risk, I need to add the

possibility of a default event. Let’s say the default time is τ .

P (0) = EQ[Discounted Cashflows|F0]

with:

Cashflows =

( n∑
j=1

100 ∗ i
r[j]

1(τ > ti)

)
+

100 ∗ i
r[tk, τ ]

1(tk+1 ≥ τ > tk) +
100

r[n]
+
R ∗ 100

r[τ ]
1(τ < tn)

As I add the hypothesis of Independence between default event, and so the default intensity, and the

interest rates used for discounting. By changing the measure and using the risk-neutral probability

Q, the numeraire is now the German bond with the adequate maturity.

The rate r is now the yield of German bonds.

As I add the hypothesis of independence between the default event, and so the default intensity

as the function exponential is a bijection, and the interest rates used for discounting.

P (0) = EQ
(( n∑

j=1

(tj − tj−1) ∗ 100 ∗ i
r[j]

1{τ>tj}+
(τ − tk) ∗ 100 ∗ i

r[τ ]
1{tk+1≥τ>tk}

)
+

100

r[n]
1{τ>tn}+

RQ ∗ 100

r[τ ]
1{τ<tn}

)

P (0) =

n∑
j=1

(
(tj − tj−1) ∗ 100 ∗ i

r[j]
Q(τ > tj)

)
+

n∑
j=1

∫ tj

tj−1

(u− tj−1) ∗ 100 ∗ i
r[u]

dQ(tj−1 < τ ≤ u)

+
100

r[n]
Q(τ > tn) +

RQ ∗ 100

r[τ ]
Q(τ < tn)

dQ(u) = λQ(u)e−λ
Q(u)du

P (0) =

n∑
j=1

(
(tj − tj−1) ∗ 100 ∗ i

r[j]
Q(τ > tj)

)
+

n∑
j=1

∫ tj

tj−1

(u− tj−1) ∗ 100 ∗ i
r[u]

λ(u)
(
1−Q(τ ≤ u)

)
du

+
100

r[n]
Q(τ > tn) +

RQ ∗ 100

r[τ ]
Q(τ < tn)

For the discounting factor r[t], in the next pages, I will use the discounting rate r[t] = 1
(1+r)t

the constant r in this fraction will also be yn,in this section, the German bonds’ yield, seen as

discounting rate.

The rates are now computed discretely, and not continuously, as the coupon is paid at a fixed

date. I can also argue that the market gives a price for coupon paid quarterly, semi annually, or
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annually, so there is no need to use the continuous discounted rates, as it will only add difficulties,

without any advantage.

In addition, the hazard rate λn constant on the nY period could be determined with the CDS

market, as we are looking at the price of the bond at a fixed time 0.

Of course in this particular case, the German bond yield is used as r(u) this rate is constant over

the time, however, varies from maturity to another.

Is the independence between risk-free rates and implied hazard rate exact? The following table

show the result of the Italian bonds.

The independence hypothesis is questionable, as shown by the correlation results, done with 2500

days:

Maturity (n) Correlation between λn and the yield of German bonds with maturity n

1 0.1670

2 0.1756

3 0.1585

4 0.1195

5 0.0620

10 0.0002

To get the market implied λ the way I have used is to price the bonds at their yield and with the

risk-free yield, as the price of a bond which pays a coupon equals to its yield should be 100. The

hazard rate implied by the bonds market could be estimated as below:

P (0) =

n∑
j=1

(
100i

(1 + yn)j
e−jλ

Q
n(0)

)
+

100e−nλ
Q
n(0)

(1 + yn)n
+ 50λQn(0)

(
1− e−nλ

Q
n(0)

(1 + yn)n

)
1

λQn(0) ln (1 + yn)

Using a parameter RQ=0.5, definition 1.8. For the proof you could refer to the appendix A.

This analysis gives the equivalent constant hazard rate at time 0 (time of issuing of the bond) till

the maturity of the bond.

As this is the equivalent to the mean of the hazard rate on the period of study, the formula can

now be adapted for the probability of default under the risk-neutral probability.

Q[The counterparty default before nY ears](t) = Q[t < τ < nY ear+t](seen at time t) = 1−e−nλ
Q
n(t)

Q[The counterparty default before nY ears](t) = 1− e−nλ
Q
n(t)

This equivalent hazard rate λQn(t) will be considered as stochastic in the following part.

For each past days, you can get the equivalent yearly hazard rate, and so get the historical mean

and the historical volatility.

There is no closed form for λQn the way, a dichotomy method will be applied to determine the past



1.5 Debt introduction 16

λQn , as this method convergences quickly from my results for European bonds, even with a large

set of data, I will take a small error parameter.

1.5 Debt introduction

At the beginning of my thesis, I have explained how you could fine an approximation of the hazard

rate through the bonds market. But some entities could have CDS on their debt, but very illiquid

bonds market. Using the hypothesis of non-arbitrage market , the yield of the new bonds, and so

their price could be determined by this method. This is useful in case were only few bonds are on

the market, or if the maturity of the new bonds is not quoted.

Remark 1.9. The hazard rate is unchanged if the new debt issued is minimal. Such a method

could be inapplicable for large debt issued, and a more developed model with the impact of debt

issued could be used, looking at the previous impact on similar companies.

Remark 1.10. In the situation the entity is issuing a large amount of debt, the default event has

a higher probability to happen at the maturity of the bonds. The fresh cash raised with the debt

will be added to the treasury, to invest the short-term hazard rate should decrease, but the hazard

rate at the maturity should increase. The CDS curve is likely to steep.

Remark 1.11. Even if the curve is likely to be steeper, it is impossible to be sure that the short-

term hazard rate will go down, as it depends for what the debt is raised, if the company is in

difficulties, or investing, the investors could see a higher risk for the debt, the hazard rate even in

the short rate could raise if the money is spent immediately, but the remark on the steepness of

the market is still valid.

As seen in chapter 5 the price of the bonds could be express as:

P

100
=
(
1 +

y

m

)−mT
+
c

y

(
1 +

y

m

)−mT
with P the clean price of the bond, m the number of payment of interest per year, T the maturity,

y is the yield.

Using a Newton-Rapson scheme to find the fair yield, then for the (n+ 1)th iteration the yield is:

yn+1 = yn −
P (yn)− 100

P ′(yn)

You can continue the iterations till |yn+1 − yn| is small enough for you.

With P(yn) obtained by Monte Carlo method, using the λQ(t) simulated, and estimated the ex-

pectation under the risk-neutral probability.

Remark 1.12. To get P ′(yn), you could use this formula: P ′(yn) = ∂P
∂y (yn) = limh→0

P (yn+h)−P (yn−h)
2h
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2 Hazard rate surface and its use

2.1 λQn (t) implied from the market

The main point to design such an algorithm is to understand that the excess yield compared to

the German bonds’ yield is due to the risk of default, as the liquidity is high, there is no problem

of illiquidity effect, or to be accurate I will not into account those factors, however such a problem,

if it exists, could appear in crisis, when the hazard rate bounces, and liquidity drops.

Here is how I did make my dichotomy algorithm to find the equivalent yearly past hazard rate:

Given a hazard rate λQn(t) you could get the price of the bond with maturity nY at the time t:

• If the hazard rate is adapted the expectation of the discounted cashflows under the risk-neutral

measure is 100. A bond pays interest while there is no default. If there is a default it pays

Rnominal.

• By setting the limits of λQn(t) to 0 and 1, the looping algorithm is looking at the price of the

bond with a coupon equal to the yield at time t, and with a probability of default is at each time

T equals Q(τ > T ), the fair value of the payment of interest at time 1Y is for example given that

the issuer didn’t default yet,
100∗ybonds I am looking at∗Q[τ>1Y ]

1+yGerman bonds

with Q[τ > 1Y ] = 1− e−λQ
n

• If my price is too high (P>100) then I should increase the value of λQn and if the price is to low

(100>P) then I should decrease the value of λQn . if the price is too high, then I should increase the

value of λQn .

• As the algorithm was fast, a few seconds for about 5000 different λQn , I decided to take a minimal

value for the error, meaning the interval where the really λQn belongs is small, for my study I

took 0.00001, while a classical value of hazard rate belongs to a few bips (0.0001), to some hun-

dreds/thousand bips (0.01-0.1).

• At the ith iteration lambda belongs to [x;y] if the price of the bond with the hazard rate x+y
2

gives a bond price too high, the next interval will be [x+y
2 ;y], on the contrary, the next interval

will be [x;x+y
2 ] until the interval is too small.

2.2 Pertinence of stochastic processes to represent hazard rate

In the previous definition of hazard rate, the equivalent yearly hazard rate λQn implied by the

bonds market is highly correlated to the yield of the bonds, as yield is often modelled as stochastic

processes, it could be appropriate to try find a model for the hazard rates.

For those wondering why the correlation is not perfect between yield for nY maturity bonds and

λQn , I would say that the yield can be constant, but if the risk-free rates is moving then the spread

between the risk-free rates, and the yield of the bond changes, and so the value of the hazard rate
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λQn changes, as the spread between risk-free rate and yield of a risky bond is a direct consequence

of its default probability.

To determine a feasible model, I have to look at the distribution of the past hazard rates obtained

by the bond yield on the market, as in [30].

Here is the distribution of the equivalent hazard rate for the next 3Y for the Italian bonds, for the

past 10 years, meaning this is the hazard rates implied by the yield of the 3Y maturities Italian

bonds:

Figure 1: Historical implied λ3Y for Italy

And its distribution with Chi-square(blue) and lognormal(red) estimate distributions:

Figure 2: Historical distribution of implied λ3Y for Italy

One could notice, that such a distribution could be simulated with a stochastic process, more-
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over using this data I can conclude that it is possible to use a CIR model, or an Exponential

Vasicek to models the constant hazard rates. The equivalent hazard rate could be considered as

a yield or an interest rate, as they are often model as stochastic processes by the industry with

Vasicek, CIR or exponential Vasicek. On the contrary to euro-zone interest rates, the hazard rates

can’t be negative; there is no point to use a Vasicek model, even if this model is highly tractable.

The distribution of the latter model is Normal, so that the rates can be negative. In addition the

distribution has a positive skewness, you will find in the appendix the same property about the

two models remaining.

Another essential feature of the graph appears, sometimes a jump happens. The jumps process

can be justified because of a special event, for example, an election, with unexpected results, as it

has occurred in Italy in June 2018. The jump is evident on the graph( around the abscissas point

2400). I will logically add a jump process to describe as close as possible the market behaviour.

Of course, adding a jump process causes difficulties as the models become less or not tractable. I

will also look at the influence of the jump process and at its necessity in the models.

The ideal model would be an Exponential Vasicek, or a CIR with a pure jumps process. The main

problem is to find the frequency of those jumps, and the amplitude of those jumps.

The last observation I want to mention is that the distribution of hazard rates is fat-tailed, com-

pared to the fitted data χ2-distribution, or lognormal distribution. A possible modelling would be

adding the now famous jump process, and by mean-reversion, the hazard rate will go back near

the mean, whereas the volatility part of the diffusion process causes the variations around the mean.

Remark 2.1. This explanation for fat-tailed distribution is highly questionable, as the fat tail is

caused, for this particular example, by multiple small jumps, and steady growth from the point 500

to the point 600, after those high values the value of λQ3Y came back down with a slow relaxation

to the mean reversion level. Of course, multiple jumps can occur in a short time, however, it looks

like the volatility on λQ3Y for Italian bonds is clustered, with long calm periods(point 1000 to point

2300).

The jumps can also decrease the hazard rate λQn , as in the following graph of the Greek bonds

crisis in 2010 when euro-zone countries/bondholders agreed to reduce and restructure the debt of

Greece. The jump was big, expected by the market, as Greece default on some bonds, there were

no arbitrage, but the remaining bonds were more likely to be paid back as the debt was much

lower and sustainable, the hazard rate for the next few years was so much lower.

Here is the yield of German bonds and Greek bonds, as the hazard rates and the difference of yield

between German bonds (risk-free rate) and the Greek bonds are directly correlated.

Here is the Yield implied by those past data:
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The highest the yield the highest the hazard rate is, as the Greek bonds are riskier than Italian

bonds. Also the volatility of the Greeks hazard rates λQn is higher than for the Italian one. The

jump of the Greek bonds was the Euro-zone crisis that happened in 2011, it ended with the pay-

ment by a part of the debt by the others countries of the zone as well as restructuring. Then the

debt was more sustainable according to the investors that lead to a lower yield. Of course the

German bonds have a lower yield than the Greek bonds as no bond could have a lower yield than

the risk-free yield in a non-arbitrage market.

Finally the idea of a purely stochastic model to fit correctly the market could be implemented by

modelling stochastic equivalent hazard rate over the time, then finding the short-term hazard rate,

that will be strictly stochastic.

Remark 2.2. This idea comes from the fact that shifted the stochastic hazard rate model and

the shifting was hard to define, I decided to try to do a purely stochastic process, without any

deterministic term. The paper from Brigo and El-Bachir [2] gives explanation with details.
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2.3 Market implied λQi,i+1(t)

The main idea is first to get the yields of the bonds on the market, and to price the risk-free bond

with a coupon equals to its yield, and the discounting rates will be the yield of the German bonds

as I am dealing with euro-zone bonds.

I use the yield data, as in a non-arbitrage market the excess of yield is the result of the default

risk, so the difference between the German yield (risk-free bond, as if Germany default, your euros

are worthless). By pricing others bonds at their yield, I get an estimation of the value that the

issuer of the bond will not paid back.

Then using the past values of λQn , for each limit of interval, I can generate the stochastic λQn and so

get the hazard rate λQn,(n+1). Depending on the scheme and model that I choose for the short-term

hazard rate.

As I already mentioned before it is hard to know what should be the mean reversion level, depend-

ing on the data I take, is the 10-year-old data relevant, or does the market as change, and at the

same time if I take only a few days as data, there is no way I could capture the mean reversion

phenomenon. It is the same for the volatility of the λQn .

Of course, the interval should be determined with a liquid market, that is why I will decompose

the timeline as follows:

[0Y ; 1Y ]; [1Y ; 2Y ]; [2Y ; 3Y ]; [3Y ; 4Y ]; [4Y ; 5Y ]; [5Y ; 10Y ]

It could be important to mention that for t belonging to [0Y;1Y] is:

λQ(t) = λQ0,1Y (t)

2.4 The different models for λQn (t) and their impacts on λQn,n+1(t)

As you could have figured it out by the statements above the short-term hazard rate λQ(t) will be

describe a bit differently that in many other articles. In those papers the hazard rate is stochastic,

with a shift or with multiple parameters, but no article has created a model where the equivalent

hazard rate λQn(t) defined as above will be stochastic. For the short-term hazard rates many simpler

stochastic models exist, however, this approach needs calibration with a deterministic function to

force the model to take the market value, so here I ask for a pure stochastic model, with no

deterministic function to caliber the model. From the different λQn I will define schemes to get the

λQ(t).

As the deterministic function might not work when the market conditions change, and it could

lead to a different shift each day. A excellent study would be to get the evolution depending on the

value a short-term hazard rates of the deterministic function, and if there is patterns or at least

some repetition behaviours.

Before to find the short-term hazard rate λQi,i+1, I will first look at the hazard rate on a year
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period. The idea is to determine the hazard rate λQi,i+1 for the next year, and the forward hazard

rate for the 1 year. For instance, the hazard rate priced by the market for one year in 2 years, so

the hazard rate for the period (2Y-3Y). By simulating the equivalent hazard rate under the chosen

model, then by using the following theorems.

2.5 CIR model, and its impact on λQi,(i+1)(t)

Let’s say the hazard rates λQn follow a Cox Ingold R PDE, for the two first years here is what I found:

2kµ1 > υ2
1 and 2kµ2 > υ2

2

dλQ1 (t) = k(µ1 − λQ1 (t)) + υ1

√
λQ1 (t)dW1(t)

dλQ2 (t) = k(µ2 − λQ2 (t)) + υ2

√
λQ2 (t)dW2(t)

Then by analyzing the moves of bonds’ yield, for the bonds with maturities 1Y and 2Y once can

get the correlation between the hazard rates, the PDE for the second hazard rate is:

dλQ2 (t) = k(µ2 − λQ2 (t)) + υ2

√
λQ2 (t)

(
ρ1−2dW1(t) +

√
1− ρ2

1−2dW
′

1(t)

)
Here I estimate the parameter ρ1−2 with the past values of the bonds, and the risk-free rates.

The standard Brownian motion W
′

1 is independent from the standard Brownian motion W1.

Then the resultant hazard rate for the time 1Y-2Y is λQ1−2(t) for this period under this model

verifies the following PDE:

dλQ1−2(t) = 2

(
k(µ2−λQ2 (t))+υ2

√
λQ2 (t)

(
ρ1−2dW1(t)+

√
1− ρ2

1−2dW
′

1(t)

))
−
(
k(µ1−λQ1 (t))+υ1

√
λQ1 (t)dW1(t)

)
−2ρ1−2υ2υ1

√
λQ1 (t)λQ2 (t)dt

as:

λQ1−2(t) = 2λQ2 (t)− λQ1 (t)

I can now deduct the following theorem:

Theorem 2.3. If equivalent hazard rate over the maturities iY, and (i+1)Y follow CIR PDE the

equivalent hazard rate λQi (t) and λQi+1(t) for the the period [iY;(i+1)Y] follow the following PDE:

dλQi,(i+1)(t) = (i+ 1)dλQi+1(t)− idλQi (t)

Theorem 2.4. If equivalent hazard rate over the maturities iY, and (i+1)Y follow CIR PDE the

equivalent hazard rate λQi (t) and λQi+1(t) for the the period [iY;(i+1)Y] follows the following PDE:

dλQi,(i+1)(t) = (i+1)

(
k(µi+1−λQi+1(t))dt+υi+1

√
λQi+1(t)

(
ρi,(i+1)dWi(t)+

√
1− ρ2

i,(i+1)dW
′

i (t)

))
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−i
(
k(µi − λQi (t)) + υi

√
λQi (t)dWi(t)

)
Theorem 2.5. If equivalent hazard rates λQi (t) and λQi+1(t) over the maturities iY, and (i+1)Y

follow CIR PDE the equivalent hazard rate for the the period [iY;(i+1)Y] follows the following PDE:

dλQi,(i+1)(t) = A(i, t)dt+B(i, t)dW (t) + C(i, t)dW ′(t)

with W and W’ two independent Brownian motions under the risk-neutral probability.

with A(i, t) = (i+ 1)k(µi+1 − λQi+1(t))− ik(µi − λQi (t))

B(i, t) = (i+ 1)(υi+1ρi,(i+1)

√
λQi+1(t))− i(υi

√
λQi (t))

C(i, t) = (i+ 1)υi+1

√
(1− ρ2

i,(i+1))λ
Q
i+1

2.6 Exponential Vasicek model, and its impact on λQi,(i+1)(t)

Let’s assume the yearly equivalent hazard rates follow Exponential Vasicek models, then the PDEs

which describe their behaviour are:

λQi (t) = eyi(t)

λQi+1(t) = eyi+1(t)

with initial conditions: yi(0) = log(λQi (0)) ; yi+1(0) = log(λQi+1(0)), λQi+1(0) and λQi (0) are implied

by the spot yield of the bonds.

Moreover:

dyi(t) = ki(µi − yi(t))dt+ υidWi(t)

dyi+1(t) = ki+1(µi+1 − yi+1(t))dt+ υi+1dWi+1(t)

dyi+1(t) = ki+1(µi+1 − yi+1(t))dt+ υi+1

(
ρi,(i+1)dWi(t) +

√
1− ρ2

i,(i+1)dW
′
i+1(t)

)
where W ′i+1 and Wi are independent standard Brownian motions.

If equivalent hazard rate λQi,(i+1) over the maturities iY, and (i+1)Y follows Exponential Va-

sicek PDE the equivalent hazard rate for the period [iY;(i+1)Y] follows the following PDE:

λQi,(i+1)(t) = (i+ 1)λQi+1(t)− iλQi (t) = (i+ 1)eyi+1(t) − ieyi(t)

dλQi,(i+1) =
∂λQi,(i+1)

∂yi
dyi +

∂λQi,(i+1)

∂yi+1
dyi+1 +

∂2λQi,(i+1)

∂yi∂yi+1
d < yi, yi+1 > +

1

2

∂2λQi,(i+1)

∂2yi
d < yi, yi >

+
1

2

∂2λQi,(i+1)

∂2yi+1
d < yi+1, yi+1 >

dλQi,(i+1) = −iλQi dyi + (i+ 1)λQi+1dyi+1 +

(
− i

2
λQi υ

2
i +

i+ 1

2
λQi+1υ

2
i+1

)
dt
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Concatenating all the developments, I can get the following theorem.

Theorem 2.6. If λQi+1(t) and λQi (t) are modeled under the Exponential Vasicek model, then

λQi,(i+1)(t) is defined by the following PDE:

dλQi,(i+1) = −iλQi
(
ki(µi − yi(t))dt+ υidWi(t)

)
+(i+ 1)λQi+1

(
ki+1(µi+1 − yi+1(t))dt+ υi+1

(
ρi,(i+1)dWi(t) +

√
1− ρ2

i,(i+1)dW
′
i+1(t)

))
+

(
− i

2
λQi υ

2
i +

i+ 1

2
λQi+1υ

2
i+1

)
dt

dλQi,(i+1) = −iλQi υidWi(t) + (i+ 1)λQi+1υi+1

(
ρi,(i+1)dWi(t) +

√
1− ρ2

i,(i+1)dW
′
i+1(t)

)
+

(
− i

2
λQi υ

2
i +

i+ 1

2
λQi+1υ

2
i+1 + (i+ 1)λQi+1(t)ki+1(µi+1 − yi+1(t))− iλQi (t)ki(µi − yi(t))

)
dt

2.7 λQi,(i+1)(t)’s volatility

With the hypothesis of stochastic λQn(t), the hazard rate λQi,(i+1)(t) is stochastic. But the pa-

rameters are different between two different intervals [i;i+1] and [j;j+1]. By this method I get a

λQi,(i+1) as an equivalent two parameters model, as the difference between two Exponential Vasicek

processes. In fact you could transform the PDE in a more readable one:

dλQi,(i+1)(t) = d(x(t) + y(t))

With x(t) and y(t) are stochastic with the same kind of PDE than λQn , as x(t)=(i+ 1)λQi+1(t) and

y(t)=-iλQi (t). First let’s try for the Exponential Vasicek model:

dλQi,(i+1) = −iλQi υidWi(t) + (i+ 1)λQi+1υi+1

(
ρi,(i+1)dWi(t) +

√
1− ρ2

i,(i+1)dW
′
i+1(t)

)
+

(
− i

2
λQi υ

2
i +

i+ 1

2
λQi+1υ

2
i+1 + (i+ 1)λQi+1(t)ki+1(µi+1 − yi+1(t))− iλQi (t)ki(µi − yi(t))

)
dt

dλQi,(i+1) =

(
− iλQi υi + (i+ 1)λQi+1υi+1ρi,(i+1)

)
dWi(t) + (i+ 1)λQi+1υi+1

√
1− ρ2

i,(i+1)dW
′
i+1(t)

+

(
− i

2
λQi υ

2
i +

i+ 1

2
λQi+1υ

2
i+1 + (i+ 1)λQi+1(t)ki+1(µi+1 − yi+1(t))− iλQi (t)ki(µi − yi(t))

)
dt

• The same can be done for the CIR model.

With such behaviour I can adapt the volatility, and the mean of the process λQi,i+1(t) as you

can see on the section 3.7.
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2.8 Default Probability under λQi,i+1(t) representation

I have defined the hazard rate for a 1 year period, but you could also have longer or shorter inter-

vals. I can get this hazard rate λQi,i+1(t) for 1Y period, and then the market will price at the time

t=0 the probability of default as constant over this year time. The default probability could now

be found with this theorem.

Theorem 2.7. For any fixed time of observation t smaller than the maximal time of the study, I

calculate λQi,(i+1)(t) with the λQi (t) and λQi+1(t) and will be the hazard rate for the period [i;i+1].

Q(τ < T ) = 1− e
∫ T
0
−λQ(u)du As λQ is constant for yearly period the probability Q is now:

Q[τ < T |τ > 0](t) = e−
∑j
i=1 λ

Q
i−1,i(t)−αλ

Q
j,j+1(t) = e−Tλ

Q
T (t)

where j < T < j + 1, and α = T − j

In the following parts, I will explain that I can consider the short-term hazard rate as stochastic

with the same increment as λQi,(i+1)(t) for t belonging to [iY;(i+1)Y]. In this particular case the

probability of default is now:

Q[τ < T |τ > 0] = e−
∑j
i=1

∫ i
i−1

λQ
i−1,i(t)dt−

∫ j+α
j

λQ
j,j+1(t)dt

If the short-term hazard rate λQ(t) is generated as above with the same PDE as λi,(i+1)(t), the

short-term hazard rate will be mean reverted, but its volatility will change depending on the time.

Such a model could fit more appropriately the CDS spread market, with no need for determin-

istic shifting function. An explanation could be that expectation of economical conditions drives

the long-term hazard rate. Moreover the equivalent hazard rate is much less volatile for larger

maturity, as attenuation for the extreme events will dilute large hazard rates over the period (the

number of default is maximum 1).

2.9 Adding a jumps process J(t)

As it could happen with the rates, I will add a jump process to the λQn(t) the amplitude will depend

on n the maturity, but on the contrary to the work of G. Chacko and S. Das [15] the jump can be

up or down with the same variance no matter the direction of the hike.

2.10 Short-term hazard rates schemes

In this section, I will explain the different way to describe the short-term hazard rate λQ(t), mean-

ing the daily hazard rate for the day at time t, seen with the information at time 0.
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As seen in the previous sections the hazard rate will profoundly influence the pricing of bonds.

There are different ways to express the hazard rates:

ΛQ(t) the estimation of 1
t

∫ t
0
λQ(u)du so the average of yearly hazard rate on the period, for exam-

ple for one year maturity: Q[τ < 1Y |τ > 0](t) = 1− e−
∫ 1
0
λQ(u)du = 1− e−λ

Q
1 = 1− e−λ

Q
0,1 . So for

every model the the short-term hazard rate for t belonging to [0;1Y] will be defined as the hazard

rate λQ1 (t)=λQ0,1Y (t). But then there could be many different model to defined it. In the followings

paragraphs, I will explain the different schemes I use to define the hazard rate λQ(t).

2.10.1 First scheme for he short-term hazard rate λQ(t)

Once I have the equivalent hazard rate λQn(t) I could then get the hazard rate at each point by linear

extension between the points, creating a kind of surface. For example, λQj (t) is purely stochastic, as

well as λQj−1(t), then the hazard rate between those point for t belongs to [tj ; tj+1] are obtained like:

λQ(t) = λQj,(j+1)(t) =
1

tj+1 − tj

(
tj+1λ

Q
j+1(t)− tjλQj (t)

)
Q[iY < τ < jY |F〉] = 1− e−

∫ j
i
λQ(u)du

Q[iY < τ < jY |F〉] = 1− e−
∑j−1
k=i

∫ k+1
k

λQ
k,k+1(u)du

The interval could also be such that i and j are non-integer, let’s define a as the integer just greater

than i, and b the integer just greater than j, such that |i− a| < 1 and |j − b| < 1, the probability

of default under the risk-neutral probability is then:

Q[iY < τ < jY |F〉] = 1− e−
[∑b−1

k=a

∫ k+1
k

λQ
k,k+1(u)du+

∫ a
i
λQ
a−1,a(u)du+

∫ j
b
λQ
b,b+1(u)du

]

Q[τ < jY |F′] = 1− e−iλi(0)−
∫ j
i
λ(u)du

For each step (i.e, 100 per year), the volatility of λQ(t) is different as λQj (t) and λj+1(t) have

different parameters.

2.10.2 Second scheme for the short-term hazard rate λQ(t)

For the details of the proof please refer to the appendix C. In this paper I consider 100 points per

year, so there will be 100 different values of λQ(t) per year.

The main idea for this scheme is to express the probability Q(τ < ti+ 1
100

):

Q
[
τ < ti+ 1

100
|τ > 0

]
= 1− e−tiλ

Q
i (t)−

∫ ti+ 1
100

ti
λQ(u)du = 1− e

−t
i+ 1

100
λQ
i+ 1

100
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with:

λQ
i+ k

100

=
100− k

100
λQi (t) +

k

100
λQi+1(t)

Theorem 2.8. Under this model, the probability of default under the risk-neutral probability Q is:

λQ
(
i+

j

100

)
=

(
ij+

j2

100

)
λQi+1

(
i+

j

100

)
+

((
i+

j

100

)
(100−j)−100i

)
λQi

(
i+

j

100

)
−s
(
i+

j

100

)
wih:

s

(
i+

j

100

)
= 100

(
i+
j − i
100

)(
j − 1

100
λQi+1

(
i+

j

100

))
+

100− j + 1

100
λQi

(
i+

j

100

)
−100iλQi

(
i+
j − 1

100

)
The proof of this theorem is in appendix C.

Remark 2.9. The main problem of this scheme is the time of computation as it takes much time

to get s at each point, as this method need to calculate all the past points again.

2.10.3 Third and last scheme for the short-term hazard rate λQ(t)

This scheme is highly inspired by the first one, but here the discretisation will go further(proves

are given in appendix C).

Q
[
τ < i+

j + 1

100

]
(0) = 1− e

−(i+ j+1
100 )λQ

i+
j+1
100

(i+ j+1
100 )

Q
[
τ < i+

j + 1

100

]
(0) = 1− e

−(i+ j
100 )λQ

i+
j

100

(i+ j+1
100 )− 1

100λ
Q
(i+

j
100

),(i+
j+1
100

)
(i+ j+1

100 )

Theorem 2.10. for t belonging to [i+ j
100 ; i+ j+1

100 ], then λQ(t) = λQ
(i+ j

100 ),(i+ j+1
100 )

(t)

Then I obtain:

λQ(t) =

(
i

100
+

2j + 1

1002

)
λQi+1(t)−

(
i

100
+

2j + 1− 100

1002

)
λQi (t)

with t = i+ j
100 and 0 < j < 100.

Remark 2.11. The theorem 7.3 gives the hazard rate if I have the yearly equivalent hazard rates

λQn and λQn+1, but in case the data is unavailable and the only available yearly equivalent hazard

rate are separate by multiple year.

Theorem 2.12. for t belonging to [i+ j
100 ; i+ j+1

100 ], and to [i;i+k] then λQ(t) = λQ
(i+ j

100 ),(i+ j+1
100 )

(t)

Then I obtain:

λQ(t) =

(
i

100k
+

2j + 1

1002k

)
λQi+k(t)−

(
i

100k
+

2j + 1− 100

1002k

)
λQi (t)

with t = i+ j
100 and 0 < j < 100k.

Remark 2.13. As the time to compute the second scheme could be large, I will not study it.
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2.11 Creation of the surface of λQn (t)

I have explained how and why I consider λQn(t) as a stochastic process, but if for n not market

data is available, the λQn(t) will be obtained with a surface of λQi (t) for each i, integer or not, and

for each t as I can simulate as long as I need the stochastic processes, with numerical methods.

The idea is to get a surface of equivalent hazard rate λQn over the period till the maturity, implied

by the market value of the bonds’ yield.

Here is the past hazard rate surface of λQn that we have for Italian bonds:

Figure 3: Historical implied λnY surface for Italy

2.12 CDS pricing

2.12.1 Portfolio Replication

To get a free risk bond, we already have the formula for such bond In a non-arbitrage market, so

I could make a portfolio that could replicate the same payoff. The risk-free bond can is replicated

by buying a risky bond and a protection on that particular bod, by paying the protection leg of

credit default swap (then called CDS, definied ) with the same maturity as the bond.

From that assumption, I should be able to price the CDS knowing λQ(t) in the previous subsection,

and so I will be able to find the spread of the CDS. I could then compare the results with the price

on the market.
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2.12.2 CDS pricing under rsik neutral probability

Many papers have treated about CDS valuation; I would cite [19] and [30].

Definition 2.14. A CDS is a contract in which two counterparties agree to exchange protection

on credit event of an obligor against fixed cashflows. One counterparty is paying a fixed amount

at fixed dates while there is no credit event from the obligor (the entity on which the contract

is) and the protection leg pays (1-R)*Nominal when the default happens. R is the recovery rate.

Of course the payment of (1-R)*Nominal occurs if the default time is before the end of the CDS

contract. The one buying protection will get what it should have lost because of the default while

holding a bond with the same maturity, on this particular issuer.

The following formulas come from [19], [30], [21]. To replicate a risk-free bond, you can buy a

CDS and a risky bond with the same maturity. For more tractability and as I have the data for

the old style CDS, I will look at the CDS spread without any upfront.

Bo(T ) will be the zero coupon bond, so the discount factor, so 1
(1+y)T

The expected payoff of the

coupon leg under the Q probability, with Bo(T ) as numeraire and so the fair value of the legs seen

now:

s is the CDS spread then,

Π∗(T ) =
∑
j

(
α(Tj − Tj−1)Bo(Tj)Q(Tj) +

∫ Tj

t=Tj−1

α(t− Tj−1)Bo(Tj)[−dQ(t)]

)
The risky PV01 is sΠ∗ The default leg pays (1 − R)*Nominal is there is a credit event the fair

value under the probability Q:

Ξ(T ) = −(1−RQ)

∫ T

t=0

Bo(t)dQ(t)

In the model I am using in the following part:

Q(T ) = 1− e−
∫ T
0
λQ(u)du

dQ(t) = λ(t)e−
∫ t
0
λQ(u)du

Ξ(T ) = λ(t)(1−RQ)

∫ T

0

Bo(t)e−
∫ t
0
λQ(u)dudt

Π∗(T ) =

∫ T

0

Bo(t)e−
∫ t
0
λQ(u)dudt

As in the way I calculated the λQ that will be calculated are constant for the maturity of the

CDS. Of course two CDS with different maturities will have different λQn .
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so Ξ and Π∗ could be written:

Ξ(T ) = λQT (1−RQ)

∫ T

0

Bo(t)e−tλ
Q
T dt

Π∗(T ) =

∫ T

0

Bo(t)e−tλ
Q
T dt

The fair spread will be s = λQn(1−RQ) with nY the maturity of the CDS.

In a non-arbitrage market, buying protection thanks to a CDS with CDS spread s and risky bonds

with yield y, should be the same as buying/holding a risk-free bond. The resultant yield y-s is

the coupon paid till the credit event. The risky free bond pays a risk-free rate. The price, so the

expectation of the risk-free bond under the probability Q 1, as the numeraire is this particular

bond.

Then the expectation of payoff of this replication portfolio under the probability Q is at time 0:

100 = P (0) + CDS(0)

CDS(0) is the value of the expectation under the risk-neutral probability of the protection leg

minus the expectation the coupon leg.

If the coupon of the risky bond is equal to the bond coupon, the price of this portfolio is 1, as the

bond price is 1, and the CDS price is 0 if the spread is the fair spread. No matter if the credit

event happening before the maturity my discounted payoff will be 1, for both free risk bond and

portfolio. The above portfolio is a replication portfolio; this strategy will not make any money, as

I could have bought the risk-free bond, that will for sure not default before maturity.

There is one point that I will not look at; it is the restructuring event that could happen. For

example, the Greek debt has been restructured after the sovereign debt crisis in the euro-zone,

but the CDS protection will pay the due part during the restructuring. The hazard rate is not a

default parameter, but a parameter that encloses a more significant problem, as it takes to account

the default, and all the other credit event. By abusive language, I called it default parameter.

Many papers about hazard rates refer to the distinction to the different event, but the dissociation

between the different parameters is a tough task.

λQ(t) is in fact the sum of different specific parameter of credit events. The probability of

bankruptcy and restructuring are not the same for two different entities, as well as there part

on the global λQ(t) could differ. bankruptcy and a restructuring will not have the same impact on

the amount of debt paid back, so it might be great to make some difference to estimate R with

precision. In my thesis, I don’t make any difference, as λ(t) and RQ will capture those details, as

global parameters.
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2.12.3 Using a hazard rate surface

As the hazard rate is not constant, I cannot use the same simplification as before:

Ξ(t) = λQ(t)(1−RQ)

∫ T

0

Bo(t)e−
∫ t
0
λQ(u)dudt

Π∗(t) =

∫ T

0

Bo(t)e−
∫ t
0
λQ(u)dudt

Taking the expectation under the measure Q and its numeraire Bo(T ):

E[Ξ(T )] = E
[

1

Bo(T )
λQ(t)(1−RQ)

∫ T

0

Bo(t)e−
∫ t
0
λQ(u)dudt

]

E[Π∗(T )] =
1

Bo(T )
E
[ ∫ T

0

Bo(t)e−
∫ t
0
λQ(u)dudt

]

If the hazard rate is independent from the risk-free rate:

Fair Default Swap Spread =
E[Ξ(t)]

E[Π∗(t)]

For any time t, the hazard rate λQn(t) follows this relationship:

λQn(t) =
CDS Spread for nY CDS

1−RQ

2.13 Using a Monte Carlo method and the previous schemes

As a computation experimentation, I will use 1000 paths of λ(t) and estimate the fair CDS spread:

nλQn(0) =

∫ T

0

λQ(t)dt =

n−1∑
i=0

∫ i+1
r

i
r

λQ(u)du

The hazard rate can takes 100 values per year in my hypothesis, I could set n=100T, then the

integral is now the integral of a constant over this period.∫ T

0

λQ(t)dt =
1

100

n−1∑
i=0

λQ
( i

100

)
I will then set X = 1

100

∑100T−1
i=0 λQ( i

100 ). Then using the strong law of large number:

lim
N→∞

1

N

N∑
i=1

Xi = E[X]

where the Xi are generating independently. For the rest of the thesis I will use 1000 simulations.
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Proposition 2.15. With X defined above, and under a exponential hazard rate model, the following

property holds:

E[X] = T
Fair CDS Spread

(1−RQ)

lim
N→∞

1

T

1

N

∑
i=1

NXi =
Fair CDS Spread

(1−RQ)
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3 Theory and Calibration with market data

3.1 Calibration of the volatility parameter under both models (CIR and

Exponential Vasicek)

As I have already written it in the introduction 1 the estimation of the parameters is a sensitive

question. As the mean reversion level and volatility parameters of the different λQi are not the

mean over a past period. In the paper [2], the volatility of the CDS spread and so of the λQi (t)

could be determined using a simplistic Black and Scholes model. I will slightly change the volatility

parameters to fit the market at time 0 (now).

I will use the market data from the default Swaptions market, to get the implied volatility of the

CDS spreads, using a Black and Scholes model.

The paper [26] made by Y. At-Sahalia, Y. Wang, F. Yared. are explaining why such default market

implied volatility could be used as it reflect the view of the market on the CDS spread volatility,

also, in my thesis, I specifically focus my work on fitting the market.

Remark 3.1. The Black and Scholes model is simple and it seems questionable as on this particu-

lar thesis, I use a CIR or Exponential Vasicek model for λQn(t), knowing that λQn(t)(1−RQ) = ŝ(t)

with ŝ(t) the fair CDS spread at time t for a nY maturities CDS.

Proposition 3.2. The study of default swaption market, you can determine the volatility of hazard

rate, as once you have the implied volatility of the cds spread, then the volatility of the hazard rate

λQn(t) where the maturity of the cds you are looking at is nY, with the following formula:

Var[λQn(t)] = 1
(1−RQ)2

V ar[CDS spread]

3.2 Market Variance to estimate the volatility parameter

If there is one parameter that changes a lot with the time It is volatility, it is known from [?], that

the volatility is clustered and highly persistent. I have observed such a behaviour for CDS spread

as well, making it hard to evaluate the volatility parameters. As seen above the default swaption

could provide a fair estimation, but does the past volatility could give a good value to generate

the hazard rate λQn to create the surface I have written about?

Let’s look at the past volatility for the Italian CDS spread:
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((a)) Italian CDS Spread Volatility on a rolling

period of 50 points

((b)) Italian CDS Spread Volatility on a rolling

period of 50 points, closest data

Figure 4: Italian CDS Spread rolling Volatility

From those figures, it is clear that excluding large Volatility values, due to jumps on the CDS

values, as the rolling windows are 50 points long, and the volatility is reminiscent for 50 points.

The fair value for the CDS should be lower than the mean over the period if you add a jump

process that will capture sizeable rolling volatility surge. Without any jump process, the volatility

of the mean reversion process should be the average of the volatility, but that will lead to a poor

representation of the hazard rate (λQn) process.

Remark 3.3. The higher the maturity, the lower the volatility is during the surge of volatility,

during the jumps. During the low volatility period, the volatility for the 10Y CDS spread seems

higher, but the normalized volatility is in fact smaller than the other maturity (the normalized

volatility is the value of the volatility divided by the mean value of the CDS over the period the

volatility is estimated).

Remark 3.4. In the first sentence of the previous remark explains why the jump process should

not be reverberated the same way on all the maturities.

As a jump occurs on unexpected events, which will affect the short-term solvency, whereas the

long-term CDS spread are also affected, but with a smaller unexpected event effect.

3.3 Black and Scholes for default swaption

Definition 3.5. A default swaption is an option on CDS spread. This asset gives the right, but

not the obligation to enter a CDS to seek protection or to protect the counterparty against a credit

event of the obligor.

In Black and Scholes paper [1] the evolution of the underlying of an option is driven by an Ito

drift-diffusion process and given by:
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dX(t) = µX(t)dt+ υX(t)dZ(t)

where W(t) is a standard Brownian motion under the real world probability P.

The easiest way to estimate υ is to set the drift at 0. Let’s consider a call on cds spread:

dX(t) = X(t)υdW (t)

s is log-normal which will be great for the CIR model, but here there is no mean reversion.

As European swaption prices are often approximated by a Black-Scholes formula, which arises

from approximating the stochastic forward swap rate volatility by a specific deterministic volatil-

ity function. The fair value of the option on CDS spread as in [31] is:

V Default Swaption(t) = 1{τ>t}V a(t)[ŝ(t)N (d1)− s∗N (d2)]

where

V a(t) = EQ
[∑N

n=1

1

b(Tn)
δn1{Tn≤τ} +

1
(τ)

δ∗1{T0≤N}|Ft
]

d1 =
log
( ŝ(t)
s∗

)
υ2
n

+
υ2
n

2

d2 =
log
( ŝ(t)
s∗

)
υ2
n

− υ2
n

2

3.4 λQn ’s parameters

There is two schemes that I will use in this part, 2.10.1 and 2.10.3, to get the hazard rate for each

time t, as there are 100 points per year. I use a Euler scheme as a numerical method to generate

the λQn(t) for each n and each t (for the explanation about this scheme go to appendix C). For the

first model the CIR, the hazard rate is stochastic such that:

with 2kµn > υ2
n

dλQn(t) = k(µn − λQn(t))dt+ υn

√
λQn(t)dWt

Here the Euler scheme will be:

λQn(t+ h) = λQn(t) + k(µn − λQn(t))h+ υn

√
hλQn(t)Zl+1

with λQn(t+ h) the (l + 1)th λQn

here h is the interval of time between t and t+h. Here the Miller scheme will be, from [34]:

λQn(t+ h) = k(µn − λQn(t))h+ υn

√
hλQn(t)Zl+1 +

1

2
υ2
n

√
h

2λQn(t)

√
hλQn(t)[Z2

l+1 − 1]
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You can’t apply this Miler scheme as λQn(t) can potentially go to 0.

Remark 3.6. As we get the data everyday for a long period, the bonds’ yield on so the implied

λn on a long historical period; Moreover We get the hazard rate ΛQ (as defined above) for multiple

maturities. The volatility of hazard rates can be done through the default swaptions.

Here is the past hazard rate surface that we have for Italian bonds:

Figure 5: Italy past hazard rates λQi implied by the bond market

Figure 6: Italy past CDS spread

From this past values, anyone could determine the value of the parameters µn and the value of

λn at time 0.

3.5 Term Structure

With the extracted data, I decided to caliber the correlation between the hazard rate for each

maturity, by merely looking at the correlation between the historical hazard rates λQn obtained.
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From the market past values of CDS spread (knowing the risk-free yield for the same points), you

can also estimate the correlation between the CDS spread and the hazard rate λn(t), assuming the

recovery rate R constant.

Remark 3.7. If the correlation matrices are positive definite, I can factorise this matrix υ = LLT ,

with L triangular inferior with positive coefficients.

In many cases you can do so, but for some entities, especially for single names, the correlation

matrix is not positive definite.

Remark 3.8. If the correlation matrix is not positive definite, you can’t do such factorization,

however, you can get an estimate of the matrix L, and continue the following algorithm.

The easiest way to compute the matrix L is given in the appendix. For the Italian bonds, the

matrix L is:

1 0 0 0 0 0

0.975 0.2222 0 0 0 0

0.96 0.2520 0.1220 0 0 0

0.934 0.2972 0.1569 0.1211 0 0

0.9195 0.2965 0.1865 0.1312 0.1209 0

0.8608 0.3048 0.2363 0.2027 0.2041 0.1660

You can find the data needed to find it in the appendix G.1.

3.6 Simulation algorithm for λQn (t)

The purpose of this section is to explain how to simulate the different λQn(t) where the parameters

as the mean reversion level, mean reversion speed, and the volatility parameters would already

have been chosen. The key of the algorithm is retaining the correlation between the λQn(t) while

keeping all the other properties.

You need to keep in mind that as the λQn(t) have been generated, you have now famous surface of

λQn(t), for any n and t, by linear interpolation.

To formalize the algorithm, you could use a matrix representation as the correlation is naturally

under matrix representation.
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3.6.1 Under CIR model

Λ(t) =



λQ1 (t) 0 0 0 0 0

0 λQ2 (t) 0 0 0 0

0 0 λQ3 (t) 0 0 0

0 0 0 λQ4 (t) 0 0

0 0 0 0 λQ5 (t) 0

0 0 0 0 0 λQ10(t)


Mµ = (µ1, µ2, µ3, µ4, µ5, µ10)T

L is the lower triangular matrix defined as above, as the matrix which multiplied by its transpose

gives the correlation matrix.

By generating at each step of the scheme a vector a independent random normal variables, which

will represent the random shock:

Z = (Z1, Z2, Z3, Z4, Z5, Z6)T

Proposition 3.9. Under a CIR model, and the simulation under an Euler scheme is:

Λt+h = Λt + kh(Mµ − Λt) +
√
hΓΛ′tLZ

For my example with the λQn(t) calibrated for the Italian example:

Z
′

1(t) = Z1(t)

Z
′

2(t) = 0.975Z1(t) + 0.2222Z2(t)

Z
′

3(t) = 0.96Z1(t) + 0.252Z2(t) + 0.122Z3(t)

Z
′

4(t) = 0.934Z1(t) + 0.2972Z2(t) + 0.1569Z3(t) + 0.1211Z4(t)

Z
′

5(t) = 0.9195Z1(t) + 0.2965Z2(t) + 0.18648Z3(t) + 0.1312Z4(t) + 0.12089Z5(t)

Z
′

6(t) = 0.8608Z1(t) + 0.3048Z2(t) + 0.2363Z3(t) + 0.2027Z4(t) + 0.2041Z5(t) + 0.166Z6(t)

All those Z ′i are random variables with standard normal distribution, but the correlation between

between each of them is given by the matrix L.

It follows that:

λQi (t+ 1) = λQi (t) + k(µi − λQi (t))dh+ υi

√
hλQi (t)Z

′

i(t)

Then by a simple transformation the hazard rate for the period [iY;(i+1)Y]:

λQi,i+1(t+ 1) = (i+ 1)λQi+1(t)−
i−1∑
j=0

λQj,j+1(t)
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Remark 3.10. The PDE of λQi,(i+1)(t) is not a straightforward sum difference between the λQi+1(t)

and the PDE of λQi (t) as they are correlated, and the quadratic variation of Z ′i+1(t) and Z ′i(t) is

not zero. I will prove it later in this thesis.

3.6.2 Under Exponential Vasicek model

Under the Exponential Vasicek model, the derivation of the PDE with a Euler scheme is a bit

harder as you will need the correlation of the yi(t), where λQi (t) = e−yi(t) and that yi(t) is modeled

by as Vasicek process:

Introducing the matrix Y and using L’ as the lower triangular which multiplied by its transpose

will give the correlation matrix between the yi(t), Γ is the volatility parameter matrix for the yi(t)

the equation for the Euler scheme is now:

Yt+h = Yt + kh(Mµ − Yt) +
√
hΓL′Z

The matrix L’ is given in the appendix G.

3.7 The Variance of the hazard rate λQ(t) for this first model

With this model I can get any short-term hazard rate λQ(t) with t belonging to the interval [0;imax],

for this thesis imax=10Y.

Then for any t ∈ [i+ j
100 ; i+ j+1

100 ]:

V ar[λQi+1(t)] = λQi+1(0)
υ2
i+1

ki+1

(
e−ki+1t − e−ki+1t

)
+

µi+1

2ki+1
υ2
i+1

(
1− e−ki+1t

)2

V ar[λQi (t)] = λQi (0)
υ2
i

ki

(
e−kit − e−kit

)
+

µi
2ki

υ2
i

(
1− e−kit

)2

as in the thesis I take ki = 1
2 for every i.

V ar[λQi,(i+1)(t)] = (i+ 1)2

(
λQi+1(0)2υ2

i+1

(
e−

t
2 − e−t

)
+ µi+1υ

2
i+1

(
1− e− t2

)2)

−i2
(
λQi (0)2υ2

i+1

(
e−

t
2 − e−t

)
+ µiυi

2

(
1− e− t2

)2)

−2ρi,(i+1)i(i+ 1)

√(
e−

t
2 − e−t

)
2(λQi (0)υ2

i + λQi+1(0)υ2
i+1) +

(
1− e− t2

)2

(µiυ2
i + µi+1υ2

i+1)
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Theorem 3.11. For the λQi (t) modelled as CIR processes and under the following scheme:

λQ(t ∈ [i; i+ 1]) = (i+ 1)λQi+1(t)− iλQi (t)

V ar[λQ(t)] = (i+ 1)2

(
λQi+1(0)2υ2

i+1

(
e−

t
2 − e−t

)
+ µi+1υ

2
i+1

(
1− e− t2

)2)

−i2
(
λQi (0)2υ2

i+1

(
e−

t
2 − e−t

)
+ µiυi

2

(
1− e− t2

)2)

−2ρi,(i+1)i(i+ 1)

√(
e−

t
2 − e−t

)
2(λQi (0)υ2

i + λQi+1(0)υ2
i+1) +

(
1− e− t2

)2

(µiυ2
i + µi+1υ2

i+1)

Using the parameters given in the appendix G for the Italian government bonds, for the first

scheme 2.10.1.

((a)) Variance for Italy ((b)) Variance for France

For the French hazard rate λQi,i+1(t) it makes sense to have larger volatility for the i=3 , and

i+1=4 (between the point 300 and 400) as the next presidential elections are in less than 4Y.

With that kind of model you could adapt the volatility depending on the potential event that will

happen, at least those that are planned, but with an unknown outcome. With such model, it is

clear you can choose how to adjust Variance of the diffusion process on defined intervals.

3.8 The Expectation of the hazard rate λQ(t) for the first scheme CIR

Theorem 3.12. Under this scheme, and with CIR λQi (t) the expectation for λ(t) can be express

as:

E[λQ(t ∈ [i; i+ 1])] = (i+ 1)

(
λQi+1(0)e−ki+1t +µi+1(1− e−ki+1t)

)
− i
(
λQi (0)e−kit +µi(1− e−kit)

)
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3.9 Under the Third scheme

3.9.1 The Variance of λQ(t)

Under the first scheme, λQ(t ∈ [i+ j
100 ; i+ j+1

100 ] = λQ
(i+ j

100 ),(i+ j+1
100 )

(t)

λQ(t) = 100

(
i+

j + 1

100

)
λQ
i+ j+1

100

(t)− 100

(
i+

j

100

)
λQ
i+ j

100

(t)

with λQ
i+ j+1

100

(t) =

(
j+1
100

)
λQi+1(t)+

(
1− j+1

100

)
λQi (t) and λQ

i+ j
100

(t) =

(
j

100

)
λQi+1(t)+

(
1− j

100

)
λQi (t)

Which implies:

λQ(t) = 100

(
i+

j + 1

100

)(
j + 1

100
λQi+1(t) +

(
1− j + 1

100

)
λQi (t)

)

−100

(
i+

j

100

)(
j

100
λQi+1(t) +

(
1− j

100

)
λQi (t)

)
Let’s define A =

(
i+ j

100

)(
j

100λ
Q
i+1(t) +

(
1− j

100

)
λQi (t)

)
and B =

(
i+ i+1

100

)(
j+1
100 λ

Q
i+1(t) +

(
1− j+1

100

)
λi(t)

)
Then V ar[B −A] = 10000 ∗ V ar[A] + 10000 ∗ V ar[B]− 2 ∗ 10000 ∗ ρAB

√
V ar[A]V ar[B]

V ar[A] =

(
i+

i+ 1

100

)2
[(

j + 1

100

)2

V ar[λQi+1(t)] +

(
1− j + 1

100

)2

V ar[λQi (t)]

+2ρi;i+1

(
j + 1

100

)(
1− j + 1

100

)√
V ar[λQi (t)]V ar[λQi+1(t)]

]

V ar[B] =

(
i+

i

100

)2
[(

j

100

)2

V ar[λQi+1(t)] +

(
1− j

100

)2

V ar[λQi (t)]

+2ρi;i+1

(
j

100

)(
1− j

100

)√
V ar[λQi (t)]V ar[λQi+1(t)]

]
The other that need to be calculated is ρAB :

ρAB =
Cov[A,B]√
V ar[A]V ar[B]

Cov[A,B] =

(
i+
j + 1

100

)(
i+

j

100

)
Cov

[
j + 1

100
λi+1(t)+

(
1−j + 1

100

)
λQi (t) ;

(
j

100

)
λQi+1(t)+

(
1− j

100

)
λQi (t)

]

For a more readable formula let’s define α =

(
i+ j+1

100

)(
i+ j

100

)

Cov[A;B] = α

[(
j + 1

100

)(
j

100

)
Cov[λQi+1(t);λQi+1(t)] +

(
1− j + 1

100

)(
1− j

100

)
Cov[λQi (t);λQi (t)]
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+

((
j + 1

100

)(
1− j

100

)
+

(
1− j + 1

100

)
j

100

)
Cov[λQi (t);λQi+1(t)]

]

Cov[A;B] = α

[
j2 + j

1002
V ar[λi+1(t)] +

(
1− 2j + 1

100
+
j2 + j

1002

)
V ar[λQi (t)]

+

(
2j + 1

100
− 2j2 + 2j

1002

)√
V ar[λQi+1(t)]V ar[λQi (t)]

]

As I have V ar[λQi (t)] and V ar[λQi+1(t)], I have the ρAB and so I could compute the Variance of the

hazard rate λQ(t) for any t. This allow me to create the following theorem:

Theorem 3.13. If the hazard rate λQi (t) are modelled as CIR process, then λQ(t) under the fol-

lowing scheme:

λQ
(
t ∈
[
i+

j

100
; i+

j + 1

100

])
= 100

((
i+

j + 1

100

)
λQ
i+ j+1

100

(t)−
(
i+

j

100

)
λQ
i+ j

100

)
λQ
i+ j+1

100

(t) and λQ
i+ j+1

100

(t) are obtained trough the equivalent hazard rate surface, using linear ap-

proximation between the points of the surface that have been calibrated.

has for Variance:

10000 ∗ V ar[A] + 10000 ∗ V ar[B]− 2 ∗ 10000 ∗ Cov[A,B]

Var[A], Var[B] and Cov[A,B] are given above.

3.9.2 Expectation of λQ(t)

Theorem 3.14. Under this model and assuming that λQi (t) are CIR processes, then the expectation

of λ(t) for every j ∈ [0; 99], for every i ∈ [1; imax], for every t ∈[i j
100 ;i+ j+1

100 ]:

E[λQ(t)] =
1

100
E[λQi (t)] +

(
i

100
+

2j + 1

1002

)(
E[λQi+1(t)]− E[λQi (t)]

)
with:

E[λQi (t)] =

(
λQi (0)e−kit + µi(1− e−kit)

)
E[λQi+1(t)] =

(
λQi+1(0)e−ki+1t + µi+1(1− e−ki+1t)

)

3.10 Impact of adding a jump process

First of all, the generation of the jump process is described in E.

In this section the hazard rate for the bonds with maturity iY is defined as below:

λQi (t) = yi(t) + J(t)
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where J(t) is a pure jump process. The sequence of hazard rate, over the time t; the PDE that

defines this process is:

dλQn(t) = k(µ− λQn(t))dt+ υ

√
λQndW (t) + dJ(t)

I will again use a Euler scheme for this model:

λQi (t+ 1) = λQi (t) + k(µi − λQi (t))h+ υi

√
hλQi (t)Zt+1 + Y 1[thereisajumpbetweentandt+1]

By adding a jump process to the diffusion process will increase the volatility if the remaining

parameters are unchanged; you will need to adapt the volatility of the diffusion process.

As the default swaption market gives the implied volatility, as seen above, and the jumps process

and the diffusion process are independent and I will simulate them as independent.The Variance

of the hazard rate λQn will be:

V ar[λQn ] > V ar[diffusion process]

As the Jump process is defined, as in [8].

The estimation of time till the next jump is tjump the volatility of the jump process is then:

J(t) =

t∑
i=0

dJ(i)

with dJ(i) = eυZi − 1 if there is a jump at (i+ 1)th step, meaning it has occurred between the ith

step’s time and the (i+ 1)th step’s time.

with α the number of jumps in the interval [ti; ti+1]

Zi ∼ N (0,1) are independent to each others.

3.10.1 Under CIR model

Adding a jump process will have consequences on the PDE of the process, from Pr. Zheng lecture

notes in Simulation methods [8]:

dλQn(t) = dλQn
c(t) + dJ(t)

where λQn
n(t) is a diffusion process.

As seen in [6.1], the PDE, under a CIR model with no jump is:

dλQi,(i+1)(t) = (i+ 1)

(
k(µi+1 − λQi+1(t)) + υi+1

√
λQi+1(t)

(
ρi,(i+1)dWi(t) +

√
1− ρ2

i,(i+1)dW
′

i (t)

))

−i
(
k(µi − λQi (t)) + υi

√
λQi (t)dWi(t)

)
− (i+ 1)iρi,(i+1)υi+1υi

√
λQi (t)λQi+1(t)dt

Recalling that λQi,(i+1)(t) = (i+ 1)λQi+1(t)− iλQi (t)
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When adding a jump process to CDS spread, those jumps occur on events that make the market

reevaluates the default probability at a smaller or higher value, the hike is repeated on all the λQn ,

but not with the same intensity (for all the nY). To keep the correlation, I decided to affect the

jump process amplitude as 1 for λQ1 (t) then for the other λQi (t) the magnitude is ρ1,i determined

by the correlation matrix.

Remark 3.15. I can justify those coefficient by the fact that hazard rates for sovereign European

are quite low, and the jumps for larger maturities are smaller, as the high default of probability

is often diluted by the mean reversion feature that tends to lead the hazard rate to the mean

reversion level on the long-term.

Remark 3.16. For higher hazard rate on the short-term, I would use other coefficient as the

hazard rate on the short-term is affected, but as the hazard rates are already high, there are

chances that on the 10Y for example, the hazard rate moves much less than ρ1−10δλ
Q
1 .

Remark 3.17. One could argue that different coefficients than the correlation coefficients could

change the correlation between the processes, I would say that the correlation matrix also depends

on the length of the data, and that the jumps are not occurring every day, then the spread

between the estimate of the correlation made with data and the correlation of the λQi created by

the described simulation will likely be in an acceptable range. In other words, if you could accept

the idea of finding correlation matrix with past data, the error made by generating the processes

by this method should also be acceptable.

Using those remarks and hypothesis I can write the following property:

If:

dλQi (t) = Ri(t)dt+ Γi(t)dWi(t) + dJi(t)

dλQi+1(t) = Ri+1(t)dt+ Γi+1(t)dWi+1(t) + dJi+1(t)

with d[Wi,Wi+1](t) = ρi,(i+1)dt.

In Pr Zheng lecture notes [8], the quadratic correlation of λQi (t) and λQi+1(t) could be express the

following way:

d[λQi , λ
Q
i+1](t) = ρi,(i+1)Γi(t)Γi+1(t)dt+ ∆Ji(t)∆Ji+1(t)

Using the above remarks:

d[λQi , λ
Q
i+1](t) = ρi,(i+1)Γi(t)Γi+1(t)dt+ ρ1,iρ1,(i+1)∆Ji(t)∆Ji(t)

dλQi,i+1(t) =
∂λQi,i+1(t)

∂λi(t)
dλQi (t) +

∂λQi,i+1(t)

∂λQi+1(t)
dλQi+1(t) +

(
(i+ 1)ρ1,i+1 − iρ1,i

)
dJ(t)
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dλQi,(i+1)(t) = (i+ 1)

(
k(µi+1 − λQi+1(t)) + υi+1

√
λQi+1(t)

(
ρi,(i+1)dWi(t) +

√
1− ρ2

i,(i+1)dW
′

i (t)

))
−i
(
k(µi − λQi (t)) + υi

√
λQi (t)dWi(t)

)
+
(
(i+ 1)ρ1,i+1 − iρ1,i

)
dJ(t)

3.10.2 Under Exponential Vasicek model

Under the Exponential Vasicek model the PDE that describes λi,i+1 is:

dλQi,i+1(t) = (i+ 1) ln (λQi+1(t))λQi+1(t)
(
k(µi+1 − ln (λQi+1(t)))dt+ υi+1dWi+1(t) + ρ1,i+1dJ(t)

)
−i ln (λQi (t))λQi (t)

(
k(µi − ln (λQi (t)))dt+ υidWi(t) + ρ1,idJ(t)

)
+

1

2
(i+ 1)(ln (λQi+1(t)))2λQi+1(t)(υ2

i+1dt+ ρ2
1,i+1(dJ(t))2)

−1

2
i(lnλQi (t))2λQi (t)(υ2

i dt+ ρ2
1,i(dJ(t))2)

3.10.3 The jump diffusion process and its parameters

Keeping the Exponential Vasicek model for λQn(t), but adding a jump process the PDE verified by

lnλQn(t) is:

dln(λQn(t)) = k(µn − ln(λQn(t)))dt+ υnln(λQn(t))dZt + dJt

So λQ is stochastic with jumps. The different analysis of past prices of bonds will give υ and λQ

at time 0. I will use a Euler scheme to get those parameters. The time interval is divided, such as

there are 100 points per year. So first I will run a lambda with this formula:

yi+1 = yi + k(µi − yi) + υi
√
hZi+1 + Y dN

λQn(t) = eyt So at each point i I have the value of λQn(i). Then I get the mean and variance and I

have υn and µn the mean.

Then as I have the yield of the bonds I will adapt υn. To do that I take a bond, I price a risk bond

with different value for υl (υ1 is the parameter of the jump process if there is a jump dJt = eυ1Z′k -1,

as explained in appendix E), as I have the yield of the bond, I get an estimation of υl by dichotomy.

If my estimator is too large the bond with a coupon equals to the yield on the market will have a

price under 100, reciprocally if the estimation is too small the bond with a coupon equals to the

yield on the market will have a price over 100, as the jump will be lower.

Then I will be able to price any other bonds from this issuer, no matter the maturity. Here is an

example of parameters for λQn for Italian bonds:
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T Mean Var λ0 υ µ υ1 k

1Y 0.01719 0.000357 0.01740 1.0904 -4.6580 1 0.5

2Y 0.02371 0.0004808 0.03084 0.9185 -4.1637 0.983 0.5

3Y 0.02782 0.000529 0.03589 0.7871 -3.8917 0.9566 0.5

4Y 0.03031 0.0005298 0.04106 0.6705 -3.7210 0.9382 0.5

5Y 0.03191 0.0005283 0.04279 0.5864 -3.6167 0.92 0.5

10Y 0.03511 0.0003054 0.04642 0.3125 -3.3981 0.8628 0.5

Remark 3.18. As I don’t allow the negative hazard rate, there is a skew for the under CIR model

for the λQn(t), adding a jump process and not allowing the negative λQn(t) will increase the positive

skew, as it is likely to put more value above the mean reversion level.

To compensate such effect the mean reversion level should be much less than the mean of the

hazard rate.

3.10.4 Impact of the jump process on λQi,i+1(t)

As seen in section 3.10.1 and 3.10.2 on λQi,i+1(t) which is also the behaviour of λQ(t) under the first

scheme described 2.10.1, recalling that λQi,i+1(t) is the difference between (i+1)λQi+1(t) and iλQi (t).

In this section I am focusing my study on λQi,i+1(t) and so on λQ(t) under the first scheme.

The purpose of this section is to show the impact of describing the hazard rate as λQi,i+1(t) on the

jump event. As λQi (t) and λQi+1(t) receive a jump, but a different amplitude, and the factors in front

of each other are different in the difference, the amplitude of the normalized variation of λQi,i+1(t)

will be higher or smaller than 1. 1 is the amplitude of the jump for the λQ0,1(t) to normalized the

value of the hike will repeat on λQi,i+1(t).

3.10.5 For the CIR model

the variation due to the jump of λQi (t) and λQi+1(t):

(i+ 1)ρ1,i+1 − iρ1,i+1

for the case 5,10 I use the relationship:

10ρ1,10 − 5ρ1,5

5

Let’s look at the value for the Italian hazard rate, with the correlation values in G.1.

Here is the amplitude of the repeated jump:
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i,i+1 Amplitude

0,1 1

1,2 0.966

2,3 0.904

3,4 0.875

4,5 0.855

5,10 0.863

The jump repeats with a large magnitude on λQi,i+1(t), the first scheme has a small impact on the

representation of the jump process model. The remaining jump is still relevant.

3.10.6 For the Exponential Vasicek model

For the Exponential Vasicek model, the formula is much longer, using an infinitesimal increase

in time, and using a Euler scheme, the variation of λQi,i+1(t + h) with a jump (with amplitude 1)

between t and t+δ t, then variation λQi,i+1(t+ h)− λQi,i+1(t) due to the jump is:

(i+ 1) ln (λQi+1(t))λQi+1(t)ρ1,i+1 − i ln (λQi (t))λQi (t)ρ1,i

+
1

2
(i+ 1)(ln (λQi+1(t)))2λQi+1(t)ρ2

1,i+1 −
1

2
i(lnλQi (t))2λQi (t)ρ2

1,i

Here are the results for Italy, with the correlation given on G.1 and λQi (t) in G. The λQi (t) I will

use to calculate the variation due to the jump are the µi, meaning I consider a jump happening

when λQi (t) is close to its mean reversion level.

i,i+1 Amplitude

0,1 1

1,2 0.071

2,3 0.048

3,4 0.037

4,5 0.025

5,10 0.017

The amplitude is much lower than for the CIR model. Using the first scheme 2.10.1 with an

Exponential Vasicek model will kill the jump effect on λi,i+1(t), as a consequence there will not

be any jumps outside the junction (when there is a transition for λ(t), passing from λi,i+1(t) to

λi+1,i+2(t)) for the First scheme under Exponential Vasicek model.

Except for i=0 and i+1=1 there will not be any detectable jumps for the simulated path of λ(t).
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Remark 3.19. For the first scheme under a CIR model the behaviour is not the same as the

jumps could happen at any time, even if the jump will probably be smaller for t ∈[5Y;10Y] than

for t ∈[0;1Y].

Remark 3.20. For the scheme 2.10.3, λQ(t) = λQ
(i+ j

100 ),(i+ j+1
100 )

(t), using the analysis above, for

the CIR model, the jump will still exist, but for the Exponential Vasicek model the jump process

will not be visible on λQ(t).

3.11 Could the calibration be done through the past CDS spread/Hazard

rate

As you could see in the appendix G.1, the values of the parameters are different from on simple

estimate made with the past data. The first explanation is that the past data capture too much

data. For example looking at the Southern European Sovereign bonds, the mean reversion level is

near 0, at least for the past year. The CDS spread value is slowly going back to 0.

The choice of the parameters is subjective, moreover I didn’t find any good estimation else that

looking at the few past months to determine what should be the parameters in such market. The

few jumps that have occurred could give an estimation of the amplitude and the repetition of the

jump process.

4 Simulations

4.1 Without surface

To show that the market doesn’t consider the risk of default the same way it does. A simplistic

model would be to say, the hazard rate λQ(t) is stochastic and could be modelled by a CIR process

or an Exponential Vasicek:

dλQ(t) = k(µ− λQ(t))dt+ υ
√
λQ(t)dW (t)
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or

dy(t) = k(µ− y(t))dt+ υdW (t) and λQ(t) = ey(t)

As I have shown before the variance of the process λQ(t) is quite volatile depending on the time,

then it seems impossible to create a one-parameter model, with only one process, but a known

shift could be use to get a value in adequation with the market.

4.1.1 CIR model

I have tried to generate λQ(t) as λQi (t) for different i, where λQi (t) follows a CIR PDE, using Euler

scheme to compute the moves, and approximate the path of λQi (t). Then using a Monte Carlo

method, I could get an estimation of the fair CDS spread.

I have plotted the curves with the parameters given in the appendix G.1. I have generated the

λQi (t) for i ∈ [1; 3; 5; 10] and for t ∈ [0; 10].

None of the model fits well the CDS market curve, the 1Y curve is the closest, a deterministic

function could help to fit the market curve. However such model shows this model is too sim-

plistic, and there is no reason that the deterministic function should not evolve in time. Using

λQ(t) = λQ1 (t) + Φ(t, T ) where T is the maturity, and t the time.



4.2 The problem of speed reversion for such model 50

4.1.2 Exponential Vasicek model

I have tried the same kind of fitting with an Exponential Vasicek model, but the result is worse

than with the CIR model.

4.2 The problem of speed reversion for such model

Both models don’t fit well, of course, there are different ways to make the curves fit the market. A

smaller mean reversion speed parameter, with lower volatility as well as other mean reversion level,

could force the curve to fit the market. At the same time, the hazard rate obtained doesn’t make

any sense as its behaviour is far from the moves I have observed in the market. We should keep in

mind that the goal of this thesis is to find a fair representation of how the market is pricing the

hazard rate, but it is definitely not to find the good value the λQ(t) should take to fit the market

now, as soon as the market moves, the market should also follow.

4.3 Fitting without jumps

On the following graphics I have used the parameters given in the appendix G, I have plotted the

CDS curve and an example of a path for each model (CIR and Exponential Vasicek) and each

scheme for λQ(t). The maturities for the CDS spread are 1Y, 2Y, 3Y, 4Y, 5Y, 10Y. In the last

I will look at the same maturities CDS spread to see if looking at not calibrated point make the

model still valid or not.

On the CDS curve the abscissas are [1Y; 2Y;3Y;4Y;5Y;10Y]. Computing
∫ T

0
λQ(t)dt for T in

[1;2;3;4;5;10] gives the CDS curve, with λQ(t) given by the scheme in the thesis.
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The number of paths per CDS spread is 1000 estimation.

I decided to adapt the different parameters for a realistic representation for the Italian, French and

Spanish hazard rates. Whereas for the Portuguese hazard rates I used the market implied fitting

over a long-term.

From Reuters data, I can extract one hazard rate per week as I have a CDS spread per week, the

Variance of the process could be changed to get the volatility for 100 points per year:√
52

100
Weekly V ar[λQn ] = V ar[λQn for n points per year]

4.3.1 CIR first scheme

((c)) CDS curve ((d)) Example of a path

Figure 7: France

((a)) CDS curve ((b)) Example of a path

Figure 8: Italy



4.3 Fitting without jumps 52

((a)) CDS curve ((b)) Example of a path

Figure 9: Portugal

((a)) CDS curve ((b)) Example of a path

Figure 10: Spain

After this first test, the historical average of volatility seems too high, as for the Portugal’s curve

I took the historical volatility. The CDS curve hits many times 0, at the same time the jumps are

big and the moves are brutal with no transition time, and no period of stability, which lead to the

fact that the volatility parameter is not adapted.

In addition with this scheme and model, there are some jumps, even if there is no jump process

in the model, in fact, using a difference between (i + 1)λQi+1(t) and iλQi (t). The jumps occur at

the junction points, point number 500 for the French path, there is also smaller jump between the

point 500-600. For the Italian curve, the only distinct jump is at the point 500. For the Spanish

path, the jump occurs at the point 300.

This behaviour is confirmed by the Portuguese path, with a jump at the point number 200.

There is not necessarily a jump at the junction but from what you could see it happens, often, in

this case once per path. As there is 1000 points per path, there is one jump every 10 years, this

might be a bit too small, as those hikes are not as high as the jumps that have occurred in the

past market, with the Euro bonds crisis, and its replicas.



4.3 Fitting without jumps 53

Remark 4.1. If there is an election in a major Euro-country, match the junction with the election

date could be an excellent fitting. For example, the last Italian election has led to a jump, on every

CDS spread.

Remark 4.2. To go further, one could find the correlation between the CDS spread for the different

countries, and then simulating the random shocks on the different countries. Such a proposal might

need copulas introduction, and to model default probability as in [14]

Mathematically speaking, using a Monte Carlo method, there is no need for such correlation, as

the CDS curve that will appear will be an expectation of the CDS spread, but that would make

sense to compare the path to each other.

4.3.2 CIR second scheme

((a)) CDS curve ((b)) Example of a path

Figure 11: France

((a)) CDS curve ((b)) Example of a path

Figure 12: Italy
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((a)) CDS curve ((b)) Example of a path

Figure 13: Portugal

((a)) CDS curve ((b)) Example of a path

Figure 14: Spain

Remark 4.3. The jumps on junctions are still present as on the point number 300 for the Spanish

path. By the way, the stagnation around 0 for the 2 first years of the simulation for the Portuguese

path show that the volatility parameters are not appropriate.
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4.3.3 ExpVas first scheme

((a)) CDS curve ((b)) Example of a path

Figure 15: France

((a)) CDS curve ((b)) Example of a path

Figure 16: Italy

((a)) CDS curve ((b)) Example of a path

Figure 17: Portugal
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((a)) CDS curve ((b)) Example of a path

Figure 18: Spain

Remark 4.4. For the Exponential Vasicek model, the French and Spanish paths are not showing

much volatility, and the λQ(t) stays in the neighbourhood of the mean. This is not the desired

behaviour. For the French path it is clear for the beginning of the path, then the last volatility

parameter (for the 10Y) looks like to be well calibrated, as some volatility appears. On the

contrary, the Portuguese paths seem in adequation with what could happen, knowing the historical

behaviour. However, it depends on the features we want for the paths.

4.3.4 Exp second scheme

((a)) CDS curve ((b)) Example of a path

Figure 19: France

Remark 4.5.
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((a)) CDS curve ((b)) Example of a path

Figure 20: Italy

((a)) CDS curve ((b)) Example of a path

Figure 21: Portugal

((a)) CDS curve ((b)) Example of a path

Figure 22: Spain

Remark 4.6. The previous remark on French and Spanish paths are confirmed. Building a

dependency between the paths of different countries would make the identification of badly estimate

parameters even easier.
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Remark 4.7. The volatility parameters seems a better fit for the Portuguese case with Exponential

Vasicek than for the CIR model, but I anticipated that as there were not the past historical estimate,

using a simple average estimation.

4.4 Fitting with jumps

4.4.1 CIR first scheme

((a)) CDS curve ((b)) Example of a path

Figure 23: France

((a)) CDS curve ((b)) Example of a path

Figure 24: Italy
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((a)) CDS curve ((b)) Example of a path

Figure 25: Portugal

((a)) CDS curve ((b)) Example of a path

Figure 26: Spain

Remark 4.8. All the previous remarks are also accurate for the simulations adding a jump process.

As I have used the same parameters for the jump diffusion process than the simulation without

any jump. The jump process definitely adds some volatility to the global process.

Remark 4.9. The fitting of the CDS curve is not impacted by adding a pure jump process for

France and the Italy. The Italian CDS is quite high, and so adding a jump, even down will not

bring the hazard rate to zero. If the jump process brings the computing of λQ(t) to the limit zero,

then the distribution of the jump process has a positive skew. That is the reason why the Spanish

and Portuguese CDS are not fitting the market, you need to make the mean reversion smaller, or

reduce the variance of the diffusion process that reduces the positive skew due to the 0 limit as

well as cutting down the high diffusion process values.



4.4 Fitting with jumps 60

4.4.2 CIR second scheme

((a)) CDS curve ((b)) Example of a path

Figure 27: France

((a)) CDS curve ((b)) Example of a path

Figure 28: Italy

((a)) CDS curve ((b)) Example of a path

Figure 29: Portugal
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((a)) CDS curve ((b)) Example of a path

Figure 30: Spain

Remark 4.10. The problem of overestimating the CDS spreads for the 3 first years continues for

Spain, but not for Portugal with this scheme.

4.4.3 ExpVas first scheme

((a)) CDS curve ((b)) Example of a path

Figure 31: France
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((a)) CDS curve ((b)) Example of a path

Figure 32: Italy

((a)) CDS curve ((b)) Example of a path

Figure 33: Portugal

((a)) CDS curve ((b)) Example of a path

Figure 34: Spain

Remark 4.11. With the Exponential Vasicek model for λQn , λQ(t) is much less volatile the under

the CIR model. The periods of calm are more extended, as it could be observed on the market.
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Remark 4.12. As seen in 3.10.2 the process λQ(t) is mainly driven by the diffusion process, the

jump process doesn’t have much influence. The significant volatility periods that look like jumps,

are in fact the diffusion process with a large volatility parameter.

4.4.4 Exp second scheme

((a)) CDS curve ((b)) Example of a path

Figure 35: France

((a)) CDS curve ((b)) Example of a path

Figure 36: Italy
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((a)) CDS curve ((b)) Example of a path

Figure 37: Portugal

((a)) CDS curve ((b)) Example of a path

Figure 38: Spain

Remark 4.13. As the second scheme seems highly volatile, and the first scheme not volatile

enough, maybe a hybrid method, mixing both schemes could be a better scheme.

I want to make an observation remark:

Remark 4.14. The second scheme seems to need more paths to converge with the Monte Carlo

method.

5 conclusion

This paper treats the hazard rate, extract from the bonds market as well as past CDS market data.

However, the CDS spread market values can also gives these data. The representation I have done

come back the essence of default risk and its pricing, but it is a way to get close the real market

value of the risk and to model it.

I could also argue that the hazard rate surface extracted from the bonds/CDS market could help
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to price new bonds emission by an issuer. Of course, the problem could be harder if there is a

different degree of seniority of the debt issued. The newly issued debt could also raise the prob-

ability of default by adding some nominal to pay back in a longer term, but at the same time it

gives leverage to the company and decreases the probability of default at a short-term by giving to

this company fresh cash. During such events, the short-term CDS/hazard rate should be smaller

whereas for the longer maturity the decreasing, if it happens, is smaller. The CDS spread curve

will be steeper.

The parameters in the models need to be changed, a calibration by adjusting the hazard rate at

time 0, and the mean reversion level should be done, to keep curves fitted.

Remark 5.1. I should make an important comment, I used the fact that the hazard rate for the

day is fixed on the morning, nothing prevent you from saying that λQ(t ∈ [ i
100 ; i+1

100 ]) = λQ( 2i+1
200 ),

in other words taking the hazard rate λQ(t) in the middle of the day, same for the end of the day.

Fundamentally this does not change the results nor the fittings.
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A Proof of the formula for λQn (t)

Let’s say the bond pays a yearly coupon i, and has a maturity of n years. The discounting factor

Bo(t) = 1
1+y , the first hypothesis will be that the bond default on the next day of coupon payment

if it defaults. Using the expectation under the risk-neutral probability, I get:

P (0) =

n∑
j=1

(
100 i

(1 + y)j

)
+

100Q[τ > n]

(1 + y)n
+

∫ n

0

100RQ

r[τ ]
dQ[τ < u]

with P(0)=P(0,n− years)

=

n∑
j=1

100 i

(1 + y)j
e−jλn +

100e−nλ
Q
n

(1 + y)n
+ +

∫ n

0

100RQ

r[τ ]
dQ[τ < u]

with RQ = 0.5

P (0) =

n∑
j=1

(
100i

(1 + y)j
e−jλ

Q
n

)
+

100e−nλ
Q
n

(1 + y)n
+ 50λQn

(
1− e−nλ

Q
n

(1 + y)n

)
1

λQn ln (1 + y)

B Appendix

B.1 Euler and Miller Scheme

For a standard SDE:

dS(t) = a(S)dt+ b(S)dW (t), 0 < t < T,

with W a standard Brownian motion.

The Euler scheme is:

S(t+ h) = S(t) + a(S(t))h+ b(S(t))
√
hZk+1

with k= t
h where h is the δt between t+1 and t, and Zk+1 is a random variable with a Normal(0,1)

distribution, the Z for different times are independent. For a simulation between 0 and T, with a

δt=h, there will be n intervals, so n independent random Normal(0,1). The Miler scheme is:

S(t+ h) = S(t) + a(S(t))h+ b(S(t))
√
hZk+1 +

1

2
b′(S(t))b(S(t))(Z2

k+1 − 1)

with k= t
h

where h is the δt between t+1 and t, and Zt+1 is a random variable with a Normal(0,1) distribution,

the Z for different times are independent.
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B.2 Generation of a normal random variable with Box-Muller method

In this thesis, all the random variable with normal distribution are generated with Box-Muller

method.

G. E. P. Box and M. E. MULLER in 1958 [7] have introduced this numerical method.

a, b are independent random Normal(0,1) variables:

Z =
√
−2 log a cos(2πb)

Then Z is a random variable with distribution N (0,1).

C Schemes to estimate the daily hazard rate

C.1 First scheme

The hazard rate is highly dependent on the model we take. The first model I want to try is the

stochastic model where the hazard rate rate on the period [i;i+1] will be determine by the PDE of

the hazard rate λi;i+1 obtained by this equation:

λQi (t) = k(µi − λQi (t))dt+ υi

√
λQi (t)dWi(t)

λQi+1(t) = k(µi+1 − λQi+1(t))dt+ υi+1

√
λQi (t)dWi+1(t)

Q(τ < ti+1) = 1− e
∫ ti+1
0 λQ(u)du

As I have defined λQi such that tiλ
Q
i (0) =

∫ ti
0
λQ(udu), I can write the integral as:

Q(τ < ti+1) = 1− e
∫ ti+1
0 λQ(u)du

= 1− eti∗λ
Q
i+

∫ ti+1
ti

λQ(u)du

as I could consider the hazard rate for the period as the hazard rate λi,i+1(t) generated by the

previous equation.

Q(τ < ti+1) = 1− etiλ
Q
i+

∫ ti+1
ti

λQ
i,i+1(u)du)

As I look at the daily hazard rate, the expression could be reduced to:

Q(τ < ti+1) = 1− e−tiλ
Q
i−

1
n

∑n−1
j=0 λ

Q
i,i+1(ti+

j
n )
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So I can write that the short-term hazard rate for any t in the interval [ti; ti+1] is:

ti+1λ
Q
i+1(t) = tiλ

Q
i (t) + (ti+1 − ti)λQi;i+1(t)

λQi,i+1(t) =
1

ti+1 − ti
(
ti+1λ

Q
i+1(t)− tiλQi (t)

)

with n the number of days in a year As in the model λQi is stochastic then λQi;i+1 is and so the

daily short-term hazard rate is.

It is easy to caliber the model for the λQi as soon as we consider the Black and Scholes model

for default swap to get the volatility of λQi . Then the rest is straightforward. To get on multiple

period, you have to reiterate the process, by simulating the λQi , then getting the hazard rate, by

continuity of hazard rates, if there is no jump at the junction the initial condition will be obtained

for the next interval thanks to the last value of the previous period.

For this representation, the volatility of the short-term hazard rate will be constant at each interval.

C.2 Second scheme

With the second model, I go even further, here the idea at the beginning is the same but the

deposition of the period will be even harder, as I will decompose the period in 1
100 long periods,

and not anymore in 1 year, or more.

Q(τ < ti +
1

100
) = 1− e−ti∗λ

Q
i−

∫ ti+ 1
100

ti
λQ(u)du

Q(τ < ti +
1

100
) = 1− e

−(ti+
1

100 )∗λQ
i+ 1

100

on this interval λ(t) will be consider constant.

Q(τ < ti +
1

100
) = 1− e−ti∗λ

Q
i−

∫ ti+ 1
100

ti
λQ(u)du

with the hazard rate λQ
i+ 1

100

is obtained by linear extension on the surface of hazard rate.

λQ
i+ 1

100

(t) = 99
100λ

Q
i (t) + 1

100λ
Q
i+1(t)

e−(i+ 1
100 )( 99

100λ
Q
i+ 1

100λ
Q
i+1) = e−iλi−

1
100λ

Q(tin[i;i+ 1
100 ])

(i+ 1
100 )( 99

100λ
Q
i + 1

100λ
Q
i+1) = iλi + 1

100λ
Q(tin[i; i+ 1

100 ])

λQ(i+ 1
100 ) = (99−i)

100 λQi + (i+ 1
100 )λQi+1

Then the next hazard rate will be obtained by calculating the above λ(i + 1
100 ) and taking this

value:

λQ(i+
2

100
) =

(98− i)
100

λQi + (i+
2

100
)λQi+1 −

1

100
λQ(i+

1

100
)

for any j belonging to [1; 99], we have:

s =

j−1∑
k=1

λQ(i+
k

100
(estimatedattimei+

j

100
))
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(i+
j

100
)λQ
i+ j

100

= iλQi +
1

100
λQ(i+

j

100
) +

1

100
s

λQ(i+
j

100
) = (i+

j

100
)(jλQi+1 + (100− j)λQi )− 100iλQi − s

λQ(i+
j

100
) = (ij +

j2

100
)λQi+1 + ((i+

j

100
)(100− j)− 100i)λQi − s

here is a development to get an easy formula for s:

1− e
−(i+ j−1

100 )λQ
i+
j−1
100 = 1− e−iλ

Q
i−

1
100 s

s = 100(i+
j − 1

100
)(
j − 1

100
λQi+1(i+

j

100
) +

100− j + 1

100
λQi (i+

j

100
)− 100iλQi (i+

j − 1

100
))

with the λi and the λQi+1 from the (100i+ j)th surface obtained.

As I get a surface at each simulation, 100 simulation in a year, thanks to the previous surface and

with a Euler scheme, the λQi and λQi+1 are stochastic, and so the λ(i+ 1
100 ) are, but with volatility

that changes as λQi and λQi+1 don’t have the same volatility. The volatility of the short-term hazard

rate is changing depending on the parameter, but it is not a stochastic, but just a deterministic

function. With this method you can notice that this volatility is linear between the nodes where I

made the calibration.

C.3 Third scheme

Another way to consider the short-term hazard rate, and maybe the most natural way to get the

hazard rate on a daily rate, the hazard rate will be directly the daily hazard rate. This way to

estimate the short-term and then forward hazard rate is to estimate λQ
i+ j

100−i+
j+1
100

:

Q(τ < i+ j+1
100 ) = 1− e

−(i+ j+1
100 )λQ

i+
j+1
100

Q(τ < i+ j+1
100 ) = 1− e

−(i+ j
100 )λQ

i+
j

100

− 1
100λ

Q
i+

j
100
−i+ j+1

100

The short-term hazard rate for the daily period [i+ j
100 ; i+ j+1

100 ] will be:

λQ
i+ j

100 ,i+
j+1
100

= (i+ j+1
100 )λQ

i+ j+1
100

− (i+ j
100 )λQ

i+ j
100

Using the surface of constant hazard rate and especially the segment between λQi (t) and λQi+1(t):

λQ
i+ j

100 ,i+
j+1
100

= (i+
j + 1

100
)(
j + 1

100
λQi+1 +

100− j − i
100

λQi )− (i+
j

100
)(

j

100
λQi+1 +

100− j
100

λQi )

= λQi+1(i(
j + 1

100
− j

100
) + (

j + 1

100
)2 − (

j

100
)2) + λQi (− i

100
+

100− j − 1

100

j + 1

100
− j

100

100− j
100

)

= λQi+1(
i

100
+

2j + 1

1002
) + λQi (− i

100
− (2j + 1− 100)

1002
)

= (
i

100
+

2j + 1

1002
)λQi+1 − (

i

100
+

2j + 1− 100

1002
)λQi

As a year in my notation is equivalent to 100 points, then the short-term hazard rate could be

found with this formula: λ(i + j
100 ) = λQ(for the ith year and jth day) = ( i

100 + 2j+1
1002 )λQi+1(i +
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j
100 )− ( i

100 + 2j+1−100
1002 )λQi (i+ j

100 ) In the case the interval is longer than 1Y, for example 5Y as I

will have to do for the interval [5Y;10Y]: the formula is a bit different:

λQ
i+ j

100−>i+
j+1
100

= (i+
j + 1

100
)λQ
i+ j+1

100

− (i+
j

100
)λQ
i+ j

100

= (i+
j + 1

100
)((
j + 1

500
)λi+1 + (

500− j − 1

500
)λQi )− (i+

j

100
)((

j

500
)λQi+1 + (

500− j
500

)λQi )

= λQi+1(
ij + i

500
+

(j + 1)2

50000
− ij

500
− j2

50000
) + λQi (− i

500
+

(j + 1)(499− j)
50000

− (i+
j

100
)(

500− j
500

))

= λQi+1(
i

500
+

2j + 1

50000
) + λQi (− i

500
+

499− 2j

50000
)

where j belongs to the interval [0;500]

For any interval length l,as I have 100 points per year:

λQ
i+ j

100 ,i+
j+1
100

= λQi+1(
i

100l
+

2j + 1

10000l
) + λQi (− i

100l
+
l − 1− 2j

10000l
)

D Details on Vasicek model

Definition D.1 (Static replication). In the Vasicek model, the equivalent hazard rate on the pe-

riod [0;T] is assumed to satisfy the stochastic differential equation:

dλQT (t) = kT (µT − λQT (t))dt+ υTdW (t)

where W(t) is a standard Brownian motion under the risk-neutral probability Q.

Theorem D.2. For any s and t such that 0≤ s ≤ t ≤ T :λQT (t) = r(s)e−kT (t−s) + µT (1 −

e−kT (t−s)) + υT
∫ t
s
e−kT (t−u)dW (u)

E[λQT (t)|F∫ ] = λQT (s)e−k(t−s) + µT (1− e−k(t−s))

V[λQT (t)|F∫ ] =
υ2
T

2kT
(1− e−2k(t−s))

Theorem D.3. Under this model by analogy with the zero coupon bond with maturity T will have

the value at time t:

P (t, T ) = A(t, T )e−r(t)B(t,T )

where

B(t, T ) =
1− e−k(T−t)

k

and

A(t, T ) = e(µ− υ2

2k2
)(B(t,T )−T+t)− υ24kB

2(t,T )
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for the hazard rates I have the value at time 0 of the λQT so I could get the an estimation of the

probability of default on the period [0;T].

Q(τ < T ) = 1− e−
∫ T
0
λQ(t)dt

E[Q(τ < T )] = A(0, T )e−λ
Q(0)B(0,T )

B(0, T ) =
1− e−kT

k

A(0, T ) = e(µ− υ2

2k2
)(B(0,T )−T )− υ24kB

2(0,T )

The main feature of the model I will use is the normal distribution. But the main problem is the

positive probability of getting a negative hazard rate with this model. Another problem is that

the skew is null, but in reality, the hazard rate has a positive skew.

E Simulation of a Jump process

This part has been defines in [8]. To generate a Jump process on a period with length T, I divide

the timeline in interval with length 1
100 , I obtain 100T intervals and so 100T+1 point as the first

point is known.

Definition E.1. A Geometric Brownian Motion Poisson Process is defined as:

dXt

Xt−
= µdt+ υdW (t) + dJt,

Using Euler Scheme you can get:

Xti+1
= Xti(1 + µh+ υ

√
hZi+1),

Xti+1 = Xti(1 + µh+ υ
√
hZi+1 + (eυJ Z̃k − 1)),

where h is the length of th interval [ti; ti+1], in the thesis it will be 1
100 .

Another scheme to estimate more appropriately Xti+1 from Xti with the following formula:

Xti+1
= Xtie

((µ− 1
2υ

2)h+υ
√
hZi+1),

Xti+1 = Xtie
((µ− 1

2υ
2)h+υ

√
hZi+1+υJ Z̃k),
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F Calibration of the volatility parameter from the implied

volatility of the default swaptions

Once the market implied volatility is given by the market, by using the Black and Scholes model

on the market price of the default swaption on CDS with the maturity T, υT .

Remark F.1.

TλT (t) =
s̃(t)

1−R

Another way to get this parameter is to approximate it to υT =
√

2Π
texercise

s̃T
Ctexercise,T

where s̃T

is the fair spread for the a CDS with maturity T, and Ctexercise,T is the price of the option on the

CDS with maturity T, and will be exercised or not at time texercise.

From the volatility of the CDS, I can get the volatility of the CDS spread, that will be defined as√
V ar[s̃(t)] for the volatility at time t.

F.1 under CIR model

Definition F.2. In the Cox Ingersoll Ross model, the hazard rate is assumed to satisfy the stochas-

tic differential equation:

dλQT (t) = kT (µT − λQT (t))dt+ υT

√
λQT (t)dW (t)

dλQi (t) = k(µi − λQi (t)) + υi

√
λQi (t)dWi(t)

with 2kµn > υ2
n and 2kµi > υ2

i

the expectation of the hazard rate under this model is:

E[λQi (t)|F0] = λQi (0)e−kt + µi(1− e−kt)

Var[λQi (t)|F0] = λQi (0)
υ2
i

2k
(e−kt − e−2kt) + µi

υ2
i

2k
(1− e−kt)2

as the only condition we have is the hazard rate now, by convention it is time t=0. then the mean

of lambda.

Under the CIR model, the hazard rate λQT (t) will be defined by the following:

dλQT (t) = kT (µT − λQT (t))dt+ υT

√
λQT (t)dW (t)
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V ar[λQT (t)|F′] = λQT (0)
υ2
T

kT

(
e−kT t − e−2kT t

)
+ µT

υ2
T

2kT

(
1− e−kT t

)2

V ar[λQT (t)] = V ar[
s̃(t)

1−R
]√

V ar[s̃(t)|F0] = (1−RQ)

√
V ar[λQT (t)|F0]

√
V ar[s̃(t)|F 0] = (1−RQ)υT

√
λQT (0)

kT
(e−kT t − e−2kT t) +

µT
2kT

(1− e−kT t)2

υT =

√
V ar[s̃(t)|F′]

(1−RQ)
√

λT (0)
kT

(e−kT t − e−2kT t) + µT
2kT

(1− e−kT t)2

Theorem F.3. If λQT (t) follows a CIR process then the fitting with the volatility calibration could

be done with default swaption, assuming the CDS price are geometric Brownian motion, implied

volatility:

υT =

√
V ar[s̃(t)|F′]

(1−RQ)

√
λQ
T (0)

kT
(e−kT t − e−2kT t) + µT

2kT
(1− e−kT t)2

where kT has been determined before, same for µT with the bond market. R is also predetermined.

Then under the CIR model, λQT (t) is defined by the following PDE:

dλQT (t) = kT (µT − λQT (t))dt+ υT

√
λQT (t)dW (t)

F.2 Hypothesis to simplify this formula

In my thesis (1−RQ)=0.5 and using the fact that:

lim
t→∞

4V ar[s̃(t)] = lim
t→∞

V ar[λQT (t)]

υT =
2
√
V ar[s̃]√
µT
2kT

= 2

√
2kTV ar[s̃]

µT

F.3 Under Exponential Vasicek model

The Exponential Vasicek model has many advantages, first it is not tractable, the hazard rate is

positive, and the distribution of the hazard is log-normal, the rate is mean reverting, that is a

really important feature.

A great feature of the exponential Vasicek model is that on the contrary to the CIR there is

no condition on the parameter to satisfy the stability.
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Definition F.4. In the Exponential Vasicek model, the stochastic process will be described by:

λQn(t) = ey(t)

dy(t) = k(µ− y(t))dt+ υdW (t)

Where W(t) is a standard Brownian motion under the risk-neutral probability.

Remark F.5. On the contrary to the others models in this paper this model is not tractable.

AS stated in the definition, if λQT (t) follows a Exponential Vasicek model, then it solve the

following PDE:

λQT (t) = eyT (T )

dyT (t) = kT (µT − yT (t))dt+ υTdW (t)

On the long-term the process yT (t) is equivalent to a normal random variable X∼ N (µT , υ
2
T ).

Moreover as λQT (t)=eyT (t), λQT (t) as a log-normal distribution, with the following properties:

V ar[λQT (t)] = (eV ar[yT (t)] − 1)e2E[yT(≈)]+Var[yT(≈)]

E[λQT (t)] = eE[yT (t)]+
V ar[yT (t)]

2

with market data : V ar[s̃|F0] =
1

(1−R)2
V ar[λQT |F0] and Mean[λQT ]2 =

1

(1−R)2
( Mean[s̃])2

By writing E[yT ] = ln(2E[s̃])− V ar[yT ]
2

an so substituting in the V ar[λQT ] formula:

V ar[s̃] =
1

4
(1−R)2

(
eV ar[yT ] − 1

)(
e2 ln(2E[s̃])−V ar[yT ]+V ar[y]

)
V ar[s̃](eV ar[yT−1])E[s̃]2

V ar[y] = ln

(
V ar[s̃]

E[s̃]2
+ 1

)

υT =

√
ln

(
V ar[s̃]

E[s̃]2
+ 1

)
Theorem F.6. Under the exponential Vasicek model the parameter υ, which has a major impact

on volatility of the process could be determined by the market data, and the following formula:

υT =

√
ln

(
V ar[s̃]

E[s̃]2
+ 1

)
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υT =

√
ln

(
V ar[λQT |F′]
Mean[λQT ]2

+ 1

)
in the thesis I take RQ =

1

2

as V ar[s̃|F0] = 4V ar[λQT |F0] and Mean[λQT ]2 = (2 Mean[s̃])2

(1−R)2V ar[λQT |F′] = V ar[s̃|F′]

υT =

√
ln

(
V ar[λQT |F′]
e2µ+υ2

T

+ 1

)
The V ar[s̃] could be determined b an analysis of the market, by looking at the past CDS spread

volatility for the corresponding maturity.

E[yT (t)|F′] = y0e
−kT t + µT (1− e−kT t)

the value of yT (0) is the spot value of ln(λQT (0)).

µT is the mean reversion level implied by the analysis of the market and determined by the

behaviour of the past market value of λQT .

As

υT =

√
ln

(
V ar[s̃]e−υ

2
T

(1− QR)2e2µT
+ 1

)

eυ
2
T =

V ar[s̃]e−υ
2
T

(1−RQ)2e2µT
+ 1

e2υ2
T =

V ar[s̃]

(1−RQ)2e2µT
+ eυ

2
T

Let’s solve the following equation, where X is the solution:

X2 −X − V ar[s̃]

(1−RQ)2e2µT
= 0

As x=eυ
2
T , x≥1, it remains one solution:

x =
1 +

√
1 + 4 V ar[s̃]

(1−RQ)2e2µT

2

It follows:

υT =

√√√√
ln

(1 +
√

1 + 4 V ar[s̃]
(1−RQ)2e2µT

2

)

As in my thesis the parameter RQ = 1
2 , the formula is now:

υT =

√
ln

(
1 +

√
1 + 16V ar[s̃]e−2µT

2

)
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As
√

1 + 16V ar[s̃]e−2µT > 1, ln

(
1+
√

1+16V ar[s̃]e−2µT

2

)
>0, everything is ok.

The mean reversion level l of the λQT , will influence the yT mean reversion level µT :

µT = ln(l)− υ2
T

2

G Parameters

The following parameters are the results over a period from 2007 to today, the variance is the daily

variance.

For the CIR model for any n, with this data, I have stability as:

2kµn > υ2
n

ITALY

Market Data CIR parameters Exp. Vasicek parameters

T Mean[s̃] Variance[s̃] Mean[λQT ] Var[λQT ] µT υT µT υT

1Y 0.008406 0.0000622 0.01681 0.0002486 0.01681 0.1216 -4.4014 0.7944

2Y 0.01060 0.0000691 0.02120 0.0002762 0.02120 0.1141 -4.0933 0.6921

3Y 0.01242 0.0000715 0.02484 0.0002858 0.02484 0.1073 -3.8856 0.6169

4Y 0.01358 0.0000676 0.02715 0.0002702 0.02715 0.09976 -3.7625 0.5588

5Y 0.01461 0.0000638 0.02923 0.0002552 0.02923 0.09344 -3.6632 0.5112

10Y 0.01679 0.00000469 0.03358 0.0001878 0.03358 0.07478 -3.4708 0.3925

Parameters to fit the CDS market

Market Data CIR parameters Exp. Vasicek parameters Jump parameter

T CDS Spread in bps λQT (0) µT υT µT υT υJ

1Y 141 0.0282 0.026 0.1216 -4.6 1.0904 0.08

2Y 181 0.0362 0.0365 0.1141 -4.02 0.9185 0.08

3Y 212 0.0424 0.042 0.1073 -3.64 0.7871 0.08

4Y 230 0.0460 0.046 0.09976 -3.42 0.6705 0.08

5Y 248 0.0496 0.0505 0.09344 -3.25 0.5864 0.08

10Y 276 0.0552 0.055 0.07478 -3 0.3125 0.08
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FRANCE

Market Data CIR parameters Exp. Vasicek parameters

T Mean[s̃] Variance[s̃] Mean[λQT ] Var[λQT ] µT υT µT υT

1Y 0.001721 0.00000320 0.003442 0.00001278 0.003442 0.06093 -6.0376 0.8554

2Y 0.002277 0.00000422 0.004554 0.00001688 0.004554 0.06088 -5.6895 0.7717

3Y 0.002899 0.00000551 0.005798 0.00002204 0.005798 0.06165 -5.4023 0.7101

4Y 0.003585 0.00000630 0.007170 0.00002518 0.007170 0.05926 -5.1372 0.6314

5Y 0.004217 0.00000736 0.008434 0.00002944 0.008434 0.05908 -4.9487 0.5885

10Y 0.006006 0.00000690 0.01201 0.00002760 0.01201 0.04794 -4.5096 0.4184

Parameters to fit the CDS market

Market Data CIR parameters Exp. Vasicek parameters Jump parameter

T CDS Spread in bps λQT (0) µT υT µT υT υJ

1Y 4.26 0.000852 0.001 0.06 -6.9 0.65 0.01

2Y 5.76 0.001152 0.0011 0.045 -6.8 0.5 0.01

3Y 7.41 0.001481 0.0017 0.04 -6.57 0.45 0.01

4Y 9.59 0.001918 0.002 0.06 -6.4 0.4 0.01

5Y 11.76 0.002352 0.0023 0.04 -6.15 0.4 0.01

10Y 23.43 0.004686 0.005 0.045 -5.5 0.45 0.01

SPAIN

Market Data CIR parameters Exp. Vasicek parameters

T Mean[s̃] Variance[s̃] Mean[λQT ] Var[λQT ] µT υT µT υT

1Y 0.008300 0.00000584 0.01660 0.00002336 0.01660 0.1678 -4.1390 0.2852

2Y 0.01002 0.00000702 0.02004 0.00002806 0.02004 0.1673 -3.9438 0.2599

3Y 0.01137 0.000000752 0.02274 0.00003006 0.02274 0.1626 -3.8119 0.2377

4Y 0.01231 0.00000743 0.02462 0.00002470 0.02464 0.1553 -3.7242 0.1999

5Y 0.01310 0.00000729 0.02620 0.00002916 0.0262 0.1492 -3.6628 0.2040

10Y 0.01484 0.00000539 0.02968 0.00002154 0.02968 0.1205 -3.5294 0.1554
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Parameters to fit the CDS market

Market Data CIR parameters Exp. Vasicek parameters Jump process

T CDS Spread in bps λQT (0) µT υT µT υT υJ

1Y 16.4 0.00328 0.0031 0.06 -5.8 0.2852 0.05

2Y 21.33 0.004166 0.0043 0.055 -5.55 0.2599 0.05

3Y 26.65 0.00533 0.0051 0.05 -5.3 0.2377 0.05

4Y 32.89 0.006578 0.0063 0.048 -5.02 0.199 0.05

5Y 38.73 0.007746 0.0075 0.047 -4.88 0.2040 0.05

10Y 56.8 0.01136 0.0112 0.04 -4.5 0.1554 0.05

PORTUGAL

Market Data CIR parameters Exp. Vasicek parameters

T Mean[s̃] Variance[s̃] Mean[λQT ] Var[λQT ] µT υT µT υT

1Y 0.02518 0.001022 0.05036 0.004088 0.05038 0.2849 -3.4686 0.9798

2Y 0.02884 0.001167 0.05768 0.004668 0.05768 0.2849 -3.2912 0.9363

3Y 0.02980 0.0009687 0.05960 0.003875 0.05960 0.2549 -3.1889 0.8588

4Y 0.02976 0.0007601 0.05952 0.003040 0.05952 0.2260 -3.1312 0.7871

5Y 0.02989 0.0006289 0.05978 0.002516 0.05978 0.20515 -3.0836 0.7301

10Y 0.02941 0.0003569 0.05882 0.001428 0.05882 0.1556 -3.0060 0.5878

Parameters to fit the CDS market

Market Data CIR parameters Exp. Vasicek parameters Jump process

T CDS Spread in bps λQT (0) µT υT µT υT υJ

1Y 28.92 0.004784 0.0064 0.25 -5.1 0.8 0.03

2Y 36.99 0.007398 0.0058 0.25 -5.1 0.75 0.03

3Y 45.02 0.009004 0.0082 0.22 -4.92 0.7 0.03

4Y 53.83 0.01077 0.0108 0.196 -4.72 0.63 0.03

5Y 63.41 0.01268 0.0130 0.175 -4.5 0.58 0.03

10Y 92.45 0.01849 0.0195 0.125 -4.05 0.43 0.3

G.1 Correlation data

CorrelationItaly =



1 0.9830 0.9566 0.9382 0.9200 0.8628

0.9830 1 0.9929 0.9832 0.9713 0.9233

0.9566 0.9929 1 0.9975 0.9914 0.9526

0.9382 0.9832 0.9975 1 0.9981 0.9668

0.9200 0.9832 0.9914 0.9981 1 0.9761

0.8628 0.9233 0.9526 0.9668 0.9761 1
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CorrelationFrance =



1 0.9907 0.9703 0.9433 0.9020 0.8112

0.9907 1 0.9937 0.9777 0.9467 0.8670

0.9703 0.9937 1 0.9935 0.9725 0.9054

0.9433 0.9777 0.9935 1 0.9912 0.9381

0.9020 0.9467 0.9725 0.9912 1 0.9675

0.8112 0.8670 0.9054 0.9381 0.9675 1



CorrelationSpain =



1 0.9907 0.9742 0.9619 0.9477 0.9078

0.9907 1 0.9948 0.9880 0.9788 0.9468

0.9742 0.9948 1 0.9983 0.9936 0.9688

0.9619 0.9880 0.9983 1 0.9984 0.9797

0.9477 0.9788 0.9936 0.9984 1 0.9870

0.9078 0.9468 0.9688 0.9797 0.9870 1



CorrelationPortugal =



1 0.9948 0.9927 0.9860 0.9757 0.9360

0.9948 1 0.9966 0.9916 0.9838 0.9489

0.9927 0.9966 1 0.9983 0.9932 0.9656

0.9860 0.9916 0.9983 1 0.9981 0.9781

0.9360 0.9489 0.9656 0.9781 0.9877 1



LItaly =



1 0 0 0 0 0

0.9830 0.1836 0 0 0 0

0.9566 0.2863 0.0543 0 0 0

0.9382 0.3320 0.0914 0.03452 0 0

0.9200 0.3646 0.1279 0.06405 0.01435 0

0.8628 0.4094 0.1848 0.1303 0.07492 0.1767
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LFrance =



1 0 0 0 0 0

0.9907 0.1361 0 0 0 0

0.9703 0.2382 0.0422 0 0 0

0.9433 0.3172 0.0630 0.0748 0 0

0.9020 0.3901 0.1035 0.1348 0.0736 0

0.8112 0.4654 0.1762 0.1894 0.1424 0.1953



LSpain =



1 0 0 0 0 0

0.9960 0.1368 0 0 0 0

0.9742 0.2175 0.1509 0 0 0

0.9619 0.2569 0.0354 0.0866 0 0

0.9477 0.2925 0.0446 0.1165 0.0273 0

0.9078 0.3475 0.05858 0.1749 0.0786 0.1222



LPortugal =



1 0 0 0 0 0

0.9948 0.1018 0 0 0 0

0.9927 0.0890 0.0814 0 0 0

0.9860 0.1054 0.1243 0.0353 0 0

0.9757 0.1294 0.1610 0.0682 0.0263 0

0.9360 0.1745 0.2568 0.1386 0.0292 0.0788
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