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Abstract

Since its inception 20 years ago, optimal execution has come a long way with regards

modelling and reducing the costs of trading. A recent development is the inclusion of

liquidity imbalance signals to construct dynamically updating trading strategies. With

this new frontier of strategies in mind, a reasonable question is to assess the extent to

which they offer an advantage over the more classical, static strategies.

To do so requires the construction of the optimal static and dynamic strategies cor-

responding with those that exist already in the literature. As such we propose a static

alternative to the dynamic, signal driven strategy in the instantaneous market impact

framework as given by Neuman and Lehalle. Moreover we derive a heuristic, dynamic

strategy corresponding to the static solution in the transient impact setting again given

by Neuman and Lehalle.

Following this, we compare the static and dynamic strategies in both market impact

frameworks, suggest improvements to the heuristic approach and outline a data driven

methodology for optimal execution.
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1 Introduction

Simple supply and demand dictates that the desire to purchase an item increases the price

whereas the desire to sell an item decreases the price. Trading in a market causes the

price to move against the investor and the amount the price moves is known as the market

impact. The field of optimal execution seeks to manage precisely this: the adverse effects

of supply and demand on asset price.

With financial institutions facing tighter margins and increased trade frequency, market

impact is an essential consideration for profitability. This is most important in the case

of large trades which have a larger adverse effect on the price. Broadly speaking the most

common tactic to address the market impact for large, parent orders is to split them into

smaller child orders and execute them over a longer period of time. The effect of this is

two fold in that it does not broadcast the intent of an investor to the market and moreover

allows for market impact to be shared across the trades, and hopefully reduced.

The way the parent order is broken down into child orders, and moreover the schedule

that details the times that child orders are executed, constitutes the trading strategy. The

trading strategy will be built around an underlying market impact model that dictates

how the market moves in response to said trades amongst other things. Optimal execution

concerns finding the optimal strategy given such a market model.

There are many things to consider when constructing such a market model including

the underlying asset dynamics, the market impact and the class of admissible strategies.

We briefly outline the approaches taken in the literature concerning these facets before

more rigorously introducing them in the context of our chosen model in section 2.

1.1 Asset Dynamics

Obviously one must model the underlying dynamics of an asset, however given the way that

prices move in response to trading we must consider two different prices: the unaffected

and affected price. The unaffected price, or colloquially the mid-price, is the price of the

asset as observed by an investor who is not trading in the market.

The mid-price of an asset changes continuously in response to buy and sell orders

placed by other market participants, however it is most common to model the aggregate

effect of these involvements rather than the underlying buy and sell orders.
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In both the Almgren-Chriss [1] and Bertsimas-Lo [2] frameworks the mid-price is mod-

elled via an arithmetic Brownian motion (ABM). Alternatively in Gatheral and Schied’s

framework [3] they opt for a geometric Brownian motion (GBM), hoping to achieve more

realistic results. The former argue that over short time horizons the simplicity afforded by

ABM does not hinder the result in comparison to the more involved GBM. Brigo and Di

Graziano [4] considered a mid-price that follows a displaced diffusion, however concluded

this made little difference in practice.

With various asset dynamics producing similar results, more recently the trend has

been to move away from aggregate modelling of other market participant’s actions, to a

more sophisticated approach and consider the underlying order flow. Notably in Cartea

and Jaimungal [5] the mid-price is modelled via two order flow processes for buy and sell

orders and attempts to capture an important facet of any market: Liquidity.

1.2 Liquidity

Prices in today’s markets are established through a limit order book in which buy and sell

orders are placed by market participants, thereby quantifying the supply and demand of

the asset in question. Liquid assets are considered to have deep order books, with a large

volume of bids and offers whereas illiquid assets are said to have a thin order book with

fewer bids and offers.

A large acquisition or liquidation of a position in a deep market may have little effect

in pushing the price away from the agent, however that same trade in a thin market could

have drastically different effects. Needless to say, the effect of liquidity is of fundamental

importance when considering the market impact of a trade. Moreover the imbalance in

the order book, that is a surplus in buy or sell orders, could be a good indication as to

the direction of future price movements.

In response to this, new frameworks attempt to incorporate this notion, including the

aforementioned Cartea and Jaimungal [5] and the more recent Neuman and Lehalle [6].

In the latter a liquidity signal is directly incorporated into the drift term of the mid-

price dynamics. We will introduce this idea more formally later and explore some of the

implications of this modelling choice throughout the project.
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1.3 Market Impact

The other component of asset price to consider is the affected or execution price. This

price incorporates both the mid-price and the market impact and can be considered the

price of an asset for an investor who is trading in the market.

Different types of market impact attempt to model different fundamental ideas about

the order book. Temporary impact affects only the execution price and reflects the idea

of walking an elastic order book, that is executing a trade that executes at progressively

worse price points, only for the order book to be repopulated once the trade has finished.

Permanent impact affects only the mid-price, and captures the notion that an individual

can exert a pressure on price themselves by walking an inelastic order book, that is exe-

cuting trades at progressively worse prices, with no re-population of orders, pushing the

mid-price higher/lower.

There are various ways to model these two ideas, the most common of which is linear

impact, with market impact parameters dictating the strength of their effect. Another,

more realistic school of thought on the issue is that of Gatheral [11]: Transient impact.

Transient market impact affects both the execution price and the mid-price of the asset,

however in the latter case that effect decays over time. We will consider both temporary

impact and transient impact in the remainder of the project and these are introduced

more concretely in section 2.

1.4 Admissible Strategy

As with any optimisation problem there is a feasible set containing all permissible solutions,

thereby specifying the constraints of the problem. Classic consideration for a strategy

include

• Adaptability: the strategy relies only on information available at the current time

• Whether time is considered at discrete points as in [2] or continuously as in [1], [3]

• Continuity of inventory level, are instantaneous block trades allowed?

• Is meeting the acquisition/liquidation target a ‘hard’ constraint or is the investor

willing to sacrifice completing the entire trade for the sake of a better execution price

throughout?
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• Is the strategy static or dynamic?

The last of these is something we will cover more thoroughly throughout this project and

as such devote some attention to the previous literature surrounding it.

1.5 Static and Dynamic Strategies

One key property of a trading strategy is whether it is static or dynamic in nature. A

static strategy is determined at time t = 0 and left to run without alteration until the end

of the trading period. Contrastingly the dynamic strategy is constantly updated to reflect

underlying asset price or more generally broader market conditions. Intuitively speaking,

market observables should inform decisions of trading speed, for example faster trading in

deep markets, and slower trading in thin ones.

Static strategies obviously require less involvement of the agent, however one could

reasonably assume that the dynamic strategy allows for more efficient trading. To exem-

plify this consider the liquidation of a large position in a stock that has just tanked, the

static strategy would continue to sell despite the low price since it has no new information

about the stock in question. The dynamic strategy may observe this low price or some

other market observable and sell slower with the view to sell more later when the price

recovers.

At this point we take a brief look at how static and dynamic strategies arise in the

existing literature and identify 2 main factors that influence this:

• An a priori assumption of a static strategy

• Choices in various components of the model, including asset dynamics, inventory

penalties and time constraints

In the classic Almgren-Chriss model [1] an a priori assumption of a static strategy is

used. Restricting the class of admissible strategies to exclusively static ones, allows a vast

simplification in the stochastic control approach that is usually taken in optimal execution

and instead we can appeal to the relatively simpler calculus of variations or dynamic

programming methodology. In this case the optimal inventory to hold at time t, denoted

by Xt, is given by

Xt =
sinh((T − t)η)

sinh(ηT )
X0, 0 ≤ t ≤ T.
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In some cases, even without the assumption of a static strategy, the respective opti-

mal strategies can be found to be static, the simplest example of which being the Time

Weighted Average Price (TWAP). In this model we assume no permanent market impact,

linear temporary impact, strict time constraint and no inventory penalties. This time

appealing to stochastic optimisation methodology, the optimal inventory is given by

Xt =
T − t
T

X0, 0 ≤ t ≤ T.

As can be seen, this strategy relies only on the fraction of the trading window that has

elapsed and the initial position size. Even with the addition of inventory penalties and

more involved market impact, the resulting strategy remains static (see [8, Chapter 6,

page 139-151] for examples). This would seem to go against our intuition, since it is only

reasonable that the way an agent trades is influenced by market observables. The reason

for such disparity is most likely the result of an overly simplified model.

In the work of Gatheral and Schied [3], no assumption of a static strategy is assumed

and the resultant optimal strategy is dynamic. In the work of Brigo and Piat [9], they

considered the corresponding static strategy, that is the optimal strategy under the a priori

assumption that said strategy is static. As discussed above, one would expect that the

added computational effort of updating dynamic strategies would give benefits over their

deterministic counterparts, however, their work showed little difference in the associated

costs, for reasonable model parameters.

Again this minimal difference is likely due to an overly simplified model and as such

we consider a more involved market impact framework from Neumann and Lehalle [6] who

modify the asset price process to include a liquidity signal (It)t≥0. In this situation the

resulting optimal strategy (given in terms of trading speed rt) is indeed dynamic (note the

clear dependence on the current level of the liquidity signal It)

rt = − 1

2η

(
2v̄(t)Xt + It

∫ T

t
exp

(
−γ(s− t) +

1

η

∫ s

t
v̄(u)du

)
ds

)
.

Following the ideas of Brigo and Piat a reasonable question is whether this provides any

benefit over the corresponding static strategy.
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1.6 Structure

The structure of the remainder of the project is as follows. In section 2 we more formally

introduce the ideas covered above as they apply to our model. The model in question is

based on that of Neuman and Lehalle [6], and we will explore the effect of the underlying

modelling choices with regards both the type of impact and the admissible strategy. In

section 3 we consider the case of temporary market impact and derive the optimal static

strategy and compare it to the dynamic strategy given in [6]. In section 4 we consider the

transient impact setting and outline a methodology for constructing a dynamic strategy.

We compare this to the static strategy in [6] and moreover offer an alternative methodology

for the construction of the dynamic strategy using the more classical approach of stochastic

optimisation. In section 5 we suggest some further research including two suggestions for

evaluating the alternative dynamic strategy and moreover, briefly outline a methodology

for a more data driven approach to optimal execution.

2 Model

The main objective of optimal execution is to find the optimal trading speed, and subse-

quently the optimal inventory trajectory, that minimises (maximises) some notion of cost

(revenues) to the trader. Typically this cost will encompass 3 things: the asset dynamics,

the market impact and the risk of holding a position for a given period of time. The

trading window is the period of time in which the trade occurs and is defined in terms of

a terminal time T , as [0, T ]. We will be working in the continuous time framework that is

usually adopted (with the notable exception of Bertsimas-Lo [2]).

2.1 Asset Dynamics

A central idea to optimal execution is that of market impact, which is captured through

the difference between the mid-price (Pt)t≥0, and execution price (St)t≥0. In many classic

works, mid-price dynamics are modelled by a driftless arithmetic Brownian motion

dPt = σpdWt. (1)
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Following the work in [6] we introduce a liquidity signal It which drives the drift of the

mid-price dynamics. Here instead of (1), the unaffected mid price Pt is given by

dPt = Itdt+ σpdWt, (2)

where W is a standard Brownian motion. The signal follows Ornstein-Uhlenbeck dynam-

ics,

dIt = −γItdt+ σdBt I0 = ι, (3)

where again B is a standard Brownian motion, independent of the Brownian motion in the

price process. To fully describe the execution price we must first introduce two important

state variables: inventory and trading rate.

2.2 Inventory and Trading Rate

Let Xt denote the inventory of the agent at time t, with a position of size x to liquidate

or acquire over the time horizon [0, T ]. Let rt denote the rate of execution at time t, that

is the speed of liquidation or acquisition. As one would expect, inventory and execution

speed are related via

dXt = ±rtdt. (4)

Remark 2.1. By convention we adopt the idea that a positive execution rate corresponds

to either selling with a liquidation target or buying with an acquisition target. Contrast-

ingly, a negative execution rate is synonymous with purchasing an asset when one has an

overall liquidation target or vice versa. It may seem counter-intuitive to raise this point;

surely no optimal strategy would purchase the stock it is attempting to liquidate. This

however proves not be the case as can be seen in sections 3 and 4.

In light of this, in order to make sure the inventory is correctly expressed in terms of

the execution speed, we note the plus/minus in (4) which corresponds to the cases of the

acquisition and liquidation problem respectively. Similarly we have a case distinction for

the initial inventory level of both problems, that is,

X0 =


x liquidation problem

0 acquisition problem

.
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For the remainder of the project we will exclusively focus on the liquidation case for

the sake of discussion however the methods outlined work for acquisition with minimal

revision. �

2.3 Market Impact

Here we introduce the two types of market impact we will consider in sections 3 and 4

respectively: temporary impact and transient impact.

2.3.1 Temporary Impact

Temporary impact can be seen as walking an order book that is immediately repopulated,

and as such affects only the execution price, but not the mid-price, in the following way,

St = Pt − f(rt).

The functions f is the temporary market impact function and is a function of the execution

rate rt as introduced in [1] and [10]. In this project we adopt the convention that temporary

impact is linear, that is f(rt) = ηrt. As such the execution price is given by

St = Pt − ηrt, η ≥ 0, (5)

where η is the (temporary) market impact parameter.

Note how f maps from R+ 7→ R+ and R− 7→ R− to appropriately reflect the adverse

effects of supply and demand as mentioned in the introduction. In the case rt ∈ R+ (that

is selling with a liquidation target) the execution price is pushed below the mid-price, as

is expected. In the case rt ∈ R− (that is we are acquiring despite an overall liquidation

target) the execution price is pushed above the mid-price.

Remark 2.2 (Permanent Impact). A natural counterpart to temporary impact is per-

manent impact as introduced in [10]. Permanent impact captures the long term affect of

continually walking an order book applying an upward or downward pressure, and as such

effects only the mid-price as follows

dPt = g(rt)dt+ σpdWt,

12
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where W is a standard Brownian Motion, and g is the permanent impact function. We

will not consider permanent impact in this project. �

2.3.2 Transient Impact

It should be noted there is a broader class of market impact, Transient impact that

encompasses the ideas of both temporary and permanent impact. As described in [11], in

a transient market the execution price is given by

St = Pt +

∫
{s<t}

G(t− s)dXs (6)

instead of (5), where G the decay kernel and Pt is the mid-price, governed by (2).

Note in the transient setting, permanent and temporary impact are not separate quan-

tities, instead they are concepts captured more deftly in the decay kernel. The instanta-

neous impact captured by the shift from mid-price, the permanent impact captured by the

integral over previously elapsed time to incorporate the effects of previous trades. Empir-

ical studies, specifically those of Potter and Bouchaud [12], show that market impact is

quasi-permanent, that is, trading has a lasting effect on price level. This is precisely the

notion that is captured by the transient model. Moreover transient models can in fact

reduce to exclusively temporary or permanent impact models when the decay kernel G is

singular or 1 respectively.

Despite transient impact begin more realistic, temporary impact models are often

considered for their simplicity and use as a benchmark.

2.4 Risk Metric

Aside from price, another thing to be considered when finding an optimal strategy is the

risk the agent is exposed to over the course of the trading window [0, T ]. Although it may

be beneficial to trade slowly to reduce price impact, this requires the agent to hold the

asset for longer or hold off on a prompt acquisition. This is especially problematic given

the agent’s desire to act quickly to either offload a bad position or acquire alpha.

To address this issue of incorporating risk into the selection of a trading strategy, we

introduce an inventory penalty. There are a variety of risk criteria used in the literature

including that proposed by Gatheral and Schied [3], the quadratic variation inspired term
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of Forsyth et al [13] and the original variance term of Almgren [1]. We will take the latter

and more classical approach and use the following variance inspired risk criterion

φ

∫ t

0
X2
sds, φ ≥ 0, (7)

where φ is is the agent’s risk aversion.

2.5 Performance Criteria

Having introduced the inventory, execution speed and price processes, we can construct

the agent’s cash process (Ct)t≤0 which satisfies

dCt = Strtdt. (8)

Remark 2.3. We could equivalently write

Ct = C0 +

∫ t

0
Ssrsds. (9)

Since we are dealing with the liquidation problem, cash is a positive quantity, to reflect

the positive revenues of the trade. Moreover we often assume C0 = 0 without loss of

generality. �

We can now construct the performance criteria to be maximised. Since we are in the

liquidation case, we want to maximise the agent’s cash and minimise the risk. As such,

we consider the negative of the inventory penalty, and consider the expected risk adjusted

revenues, that is

E
[
CT − φ

∫ T

0
X2
t dt

]
(10)

The value function is the risk adjusted revenues for the optimal strategy, given by

sup
Ξ

E
[
CT − φ

∫ T

0
X2
t dt

]
(11)

where Ξ is the set of admissible strategies, explained in the following section 2.6.

14
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2.6 Admissible strategy

The notion of an admissible strategy is the modelling choice we will explore the most and

this section outlines the cases we will consider. All definitions of admissible strategy in

this project share two common traits as given by Neuman and Lehalle [6] amongst others.

1. Xt adapted and left continuous

2. Xt has finite and P-a.s. bounded total variation

However, depending on the rest of the modelling choices, the notion of admissible strategy

must also change to accommodate the methodologies employed in finding the optimal

strategies. As such we consider the two cases of temporary and transient impact and

within each of these the dynamic and static strategies.

2.6.1 Admissibility in Temporary impact case

As briefly mentioned in the introduction, one consideration of an admissible strategy is

whether complete liquidation is a ‘hard’ or ‘soft’ constraint. In the case of a hard constraint

we impose another condition on the set of admissible strategies, namely

XT = 0.

Alternatively, in the soft constraint setting, we can relax this condition and instead amend

the performance criteria to include a terminal penalty term. The penalty term of choice

is XT (PT − ρXT ) which penalises holding shares past time T . XTPT corresponds to a

market order of the remaining XT shares at mid-price at time T . −ρX2
T reflects a penalty

and is controlled by parameter ρ > 0. With this in mind the alternative performance

criteria is given by

E

CT − φ ∫ T

0
X2
t dt+XT (PT − ρXT )︸ ︷︷ ︸

terminal penalty

 (12)

In this setting the strategy need not ensure the liquidation of the full position by time T ,

instead this is simply discouraged by the penalty term according to the parameter ρ.

In the derivation of the optimal strategy in [6] the latter convention of a soft liquidation

constraint is adopted and the resulting strategy is dynamic as can be seen in equation (18).
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In order to derive the corresponding static strategy (see section 3) we amend the

definition of admissible strategy to be moreover deterministic which reduces the problem

to one which can be solved via calculus of variations.

As is common in calculus of variation one is required to solve a second order ordinary

differential equation, and as such requires initial and terminal conditions. In order to do

this we remove the penalty term from the cost functional and instead impose a hard fuel

constraint on the strategy, that is

XT = 0 and X0 = x. (13)

Remark 2.4. As we intend to compare the performance of the static and dynamic strate-

gies, it is reasonable to wonder if this comparison is valid, given the difference in terminal

inventory constraints. In fact this is a valid alternative, as we can consider the asymptotic

properties of the dynamic strategy as ρ→∞ as in remark 3.5 of [6, Remark 3.5, page 15].

As such, we have effectively imposed a hard terminal inventory constraint in the dynamic

setting and consequently the two strategies are indeed comparable. �

Another key component of the admissible strategy is that block trades are not allowed,

that is the inventory process (Xt)t≥0 is assumed continuous in time. This allows us to

make use of the standard integration by parts formula which is used in the derivation of

the static strategy.

2.6.2 Admissibility in Transient Impact case

In the case of transient market impact, for both the static and dynamic strategies, we take

the following definition of an admissible strategy.

1. Xt adapted and left continuous

2. Xt has finite and P-a.s. bounded total variation

3. XT = 0 and X0 = x

In the static case we also make an a priori assumption that (Xt)t≥0 is deterministic.

This is of vital importance as it provides us with an important result (Theorem 4.3) that

is utilised in the derivation of the optimal strategy. For the dynamic counterpart we
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partition the trading window, on which each interval the ‘sub-strategy’ is deterministic.

The dynamic nature of the strategy arises from the fact that each sub-strategy is based on

random quantities unknown at time 0, and is updated on the fly. This concept is outlined

more concretely in section 4.2

Moreover, unlike the temporary case, we do allow for discontinuities in the inventory

trajectory, allowing for block trades to occur. As such we will have to amend our notion

of the cash process to allow for this, which can be seen later in section 4.

Notation 2.5. Throughout the remainder of the project we will abuse notation slightly

and use Ξ to denote the set of admissible strategies allowing context to dictate which of

the above definitions is being employed. �

3 Temporary Market Impact

3.1 Static Strategy

Under the assumption of a deterministic strategy as laid out in section 2.6.1 we can find

the optimal inventory trajectory in the case of temporary market impact.

Theorem 3.1. The deterministic trajectory X∗t ∈ Ξ that maximises (11) is given by

X∗t = (x− C)
cosh(kt) sinh(kT )− cosh(kT ) sinh(kt)

sinh(kT )
+ Ce−γt

(
1− e−γ(T−t) sinh(kt)

sinh(kT )

)
0 ≤ t ≤ T

Proof. Under linear temporary impact we can write (9) as

Ct =

∫ t

0
Ssrsds =

∫ t

0
Psrsds− η

∫ t

0
r2
t ds.

Integration by parts and substitution of asset dynamics (2) gives

∫ t

0
Psrsds = P0x− PtXt +

∫ t

0
XsdPs = P0x− PtXt +

∫ t

0
XsIsds+ σp

∫ t

0
XsdWs,

to give the following expression for the investors cash at the final time T :

CT = P0x− PTXT +

∫ T

0
XtItdt+ σp

∫ T

0
XtdWt − η

∫ T

0
Ẋ2
t dt.

17
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Note for the sake of a parsimonious representation we will use Ẋ instead of r in this

case. Under the assumption of X∗t deterministic and moreover XT = 0, the risk adjusted

revenues simplify significantly.

E
[
CT − φ

∫ T

0
X2
t dt

]
= E

[
P0x− PTXT +

∫ T

0
XtItdt+ σp

∫ T

0
XtdWt

−η
∫ T

0
Ẋ2
t dt− φ

∫ T

0
X2
t dt

]
= P0x+

∫ T

0
XsE [It] dt+ E

[
σp

∫ T

0
XtdWt

]
− η

∫ T

0
Ẋ2
t dt− φ

∫ T

0
X2
t dt

= P0x︸︷︷︸
Cost without

impact

+

∫ T

0
XtE [It] dt︸ ︷︷ ︸

Signal impact

− η
∫ T

0
Ẋ2
t dt︸ ︷︷ ︸

Temporary
impact

−φ
∫ T

0
X2
t dt︸ ︷︷ ︸

Risk aversion

(14)

Since It has Ornstein Uhlenbeck dynamics one can evaluate E [It], moreover removing

the constant P0x term reduces our objective functional to

ι

∫ T

0
Xte

−γtdt− η
∫ T

0
Ẋ2
t dt− φ

∫ T

0
X2
t dt.

Appealing to a Calculus of Variation methodology, let h(t) be a perturbation of the

path Xt, such that h(0) = h(T ) = 0 and define both

Xε
t := Xt + εh(t)

H(ε) := −
∫ T

0

(
φ(Xε

t )
2 − ιXε

t e
−γt + η(Ẋε)2

t

)
dt.

Differentiating H with respect to ε, and evaluating at ε = 0 gives

dH

dε
= −

∫ T

0

(
2φ(Xt + εh(t))h(t)− ιh(t)e−γt + 2η(Ẋt + εḣ(t))ḣ(t)

)
dt,

dH

dε

∣∣∣∣
ε=0

= −
∫ T

0

(
2φXth(t)− ιh(t)e−γt + 2ηẊtḣ(t)

)
dt. (15)

Noting, by straightforward application of integration by parts and h(T ) = h(0) = 0

∫ T

0
Ẋtḣ(t)dt = Ẋth(t)

∣∣∣T
0
−
∫ T

0
Ẍth(t)dt = −

∫ T

0
Ẍh(t)dt,
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we can then write (15) as follows

dH

dε

∣∣∣∣
ε=0

= −
∫ T

0

(
2φXt − ιe−γt − 2ηẌt

)
h(t)dt.

The optimal path is given by dH
dε

∣∣
ε=0

= 0 and since h is arbitrary it must be the case that

X∗t satisfies the following inhomogeneous second order ODE

Ẍt − k2Xt = − ι

2η
e−γt k :=

√
φ

η
(16)

Solving the associated homogeneous ODE, gives a complimentary solution

Xc
t = A cosh(kt) +B sinh(kt).

Moreover making an ansatz at the particular solution of Xp
t = Ce−γt we find C = ι

2η(k2−γ2)

and as such

X∗t = A cosh(kt) +B sinh(kt) + Ce−γt

Using the conditions of an admissible strategy as outlined in section 2.6.1, namely XT = 0

and X0 = x, we can solve for A and B to give

A = x− C

B =
cosh(kT )(C − x)− Ce−γT

sinh(kT )
.

Hence the optimal strategy Xt is given by

X∗t = x
sinh(k(T − t))

sinh(kT )
+ Ce−γt

(
1− 1

sinh(kT )

(
e−γ(T−t) sinh(kt) + eγt sinh(k(T − t))

))

Using the parameter values given in table 1, we plot some example inventory trajecto-

ries for varying values of the initial signal as can be seen in figure 1. As one would expect

the negative signal, indicative of a negative pressure in the order book and potential pre-

dictor of a falling stock, prompts the investor to liquidate quicker to avoid future losses.

Similarly for a positive initial signal, the investor is prompted to sell slower with the hope

of being able to liquidate more at a higher price point in the future.
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Figure 1: Trajectories of the deterministic strategy in the temporary setting for varying
initial signal values, namely ι = 0 (green), ι = 0.05 (orange) and ι = −0.05 (blue).

γ 0.1 σp 0.3

θ 0 x 1

σ 0.01 η 0.05

ι 0 φ 0.05

P0 100 T 10

Table 1: Default parameter values as used throughout the remainder of this work

Remark 3.2. For ι = 0 the optimal solution corresponds with Almgren-Chriss solution,

namely

X∗t = x
sinh(k(T − t))

sinh(kT )
, 0 ≤ t ≤ T,

with k defined as in (16). Since this strategy is static, any new information with regards

the liquidity will not affect the trading strategy. Moreover since the initial view of the

liquidity signal is 0, the agent assumes no upward or downward market pressure for the

remainder of the trading session, and as such the mid-price is assumed to be driven only

by the Brownian Motion, hence reducing to the classic Almgren-Chriss model. �

Using an intermediary result of the above proof (namely (14)) we can write the follow-

ing and hence evaluate the corresponding expected risk adjusted revenues of a the optimal

strategy.

sup
Ξ

E
[
CT − φ

∫ T

0
X2
t dt

]
= P0x+ ι

∫ T

0
X∗t e−γtdt− η

∫ T

0
(Ẋ∗t )2dt− φ

∫ T

0
(X∗t )2dt (17)
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(a) 2 sample paths of the Ornstein-Uhlenbeck
liquidity signal.

(b) The corresponding sample paths of stock
price in accordance with the signal paths left.

(c) Trading rates corresponding to the 2 sample
paths above (red and blue) and corresponding
static trading rate (black)

(d) Inventory trajectories corresponding to the
2 sample paths above (red and blue) and corre-
sponding static trajectory (black)

Figure 2: 2 sample simulations of the signal, corresponding stock path and subsequent
optimal trading rates and inventories (red and blue) and corresponding static strategy
(black).

3.2 Dynamic Strategy

Dropping the strict fuel constraint, adding in a penalty function and appealing to the

asymptotic nature of the solution as outlined in section 2.6.1 (and justified in remark 2.4),

the corresponding adapted strategy as given in [6] is as follows,

rt = − 1

2η

(
2v̄2(t)Xt + It

∫ T

t
exp

(
−γ(s− t) +

1

η

∫ s

t
v̄(u)du

)
ds

)
. (18)

where v̄2 is given by

v̄2(t) =
√
ηφ

1 + e2k(T−t)

1− e2k(T−t) ,

and k is as in (16).

One can see in figure 2 the dynamic trading strategies (2c) and corresponding inventory

trajectories (2d) for 2 sample paths of the liquidity signal (2a) and corresponding asset

(2b). Moreover the static trajectory with the same parameters is included for reference.

There are notably similarities with the static strategy regarding the response to the value

of the signal. Namely, a positive signal encourages a slower liquidation, with the aim of
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Figure 3: Sample of 20 optimal inventory trajectories as specified by the dynamic strategy
(blue) and the corresponding static inventory trajectory (black).

selling at a higher price and a negative signal encourages faster selling, to avoid liquidation

at a lower price. The key difference being the strategy’s ability to continuously observe

the signal and thus adjust the trading rate continuously as opposed to just once.

Something else of note that can be observed most clearly in figure 2d is the acquisition

of the asset in the face of a liquidation target. Although this behaviour can be observed in

the classic, static Almgren-Chriss model, it is usually the result of excessive risk aversion

that causes rapid trading. By virtue of the smoothness of the solution, it sells too much

and ‘overshoots’, acquiring a net short position before having to consequently buy back.

An example of this can be seen in Brigo and Piat’s work [9, Figures 23-24, pages 44-45],

albeit within a different modelling framework.

In the dynamic approach described by (18) the acquisition is crucially not a corrective

measure to address an overshoot, but a direct response to the signal level. This is the key

difference between the static and dynamic strategies, and in what follows we attempt to

assess how beneficial this phenomenon is.

By modifying proposition 3.1 of [6, Proposition 3.1, page 14] similarly to above, that

is considering the limit as ρ goes to infinity, we have an expression for the associated
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expected risk adjusted revenues of the strategy.

V (t, ι, c, x, p) = c+ xp+ v0(t, ι) + xv1(t, ι) + x2v2(t, ι)

v̄1(t, ι) :=
ι

ek(T−t) − e−k(T−t)

(
ek(T−t) 1− e−(γ+k)(T−t)

γ + k
+ e−k(T−t) 1− e−(γ−k)(T−t)

γ − k

)

v̄0(t, ι) :=
1

4η

∫ T

t
Et [v̄1(s, Is)] ds.

(19)

where v̄2 is defined as in (18). Here ι, c, x, p are the values of the signal, cash, inventory and

mid-price processes respectively at time t. In our analysis we will focus on the expected

revenues at time t = 0 and since we are dealing with the liquidation problem we take c to

be 0. Adjusting (19) in accordance with this, allows us to compare the associated time 0

expected revenues of both the static and dynamic strategies.

3.3 Comparison of Static and Dynamic Strategy

The dynamic strategy and corresponding inventory trajectory can be seen as a perturba-

tion of the static (and in this case Almgren-Chriss per remark 3.2) solution as can be seen

more clearly in figure 3. We return to this idea later in section 5 in a short proposal for a

data driven approach to optimal execution.

In order to assess whether the dynamic strategy performs better than the static one

we can compare the value functions for a range of parameter values.

In figure 4 we see the expected risk adjusted revenues for the static and dynamic

strategies, as specified by (17) and (19) respectively, as a function of the terminal time T .

Over shorter time horizons the static and dynamic strategies have similar risk adjusted

revenues since the requirement to liquidate is a high priority and thus the limiting factor

of the strategy. However in the case of longer time horizons the risk adjusted revenues of

the dynamic strategy continue to rise where the static one stays constant. This difference

is precisely down to the access the dynamic strategy has to incoming market information

via the liquidity signal which allows for increased revenues. With time no longer a limiting

factor, the dynamic strategy can afford to make directional plays in the market. Conversely

with no new information in the static case the optimal course of action is to avoid making

directional plays in the market.

In figure 5a, we see the risk adjusted revenues are quadratic in the position size, which
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Figure 4: Time 0, expected, risk adjusted revenues as a function of the size of trading
window T for the static (blue) and dynamic (orange) strategies

is unsurprising in the dynamic case given (19). In fact, we see this is also the case for

the corresponding static strategy. For extremely large positions the risk term dominates

the value function and as such the adjusted revenues are large and negative to reflect the

extreme risk of such large positions.

Figures 5b - 5d display the effect of a varying the temporary impact parameter η, initial

signal level ι and risk aversion parameter φ. We observe only a marginal difference in the

risk adjusted revenues in the static and dynamic case, however the dynamic strategies

do yield slightly better results as is to be expected when optimising over a larger search

space. In figure 5e, for ι = 0 the dynamic strategy has no dependence on the parameter of

mean reversion, γ, since these two parameters appear exclusively together. In this case,

low mean reversion of the signal is more beneficial to the trader, since there is more time

to execute in accordance with prevailing market sentiment. With faster mean reversion

the drift of the stock price is more often closer to 0 and as such the dynamic strategy

gains less information, making it more comparable to the static strategy. For ι 6= 0 we

observe a similar situation to above, with the dynamic strategy only showing marginal

improvements over the static counterpart.
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(a) Risk adjusted revenues as a function of size
of position size

(b) Risk adjusted revenues as a function of mar-
ket impact parameter

(c) Risk adjusted revenues as a function of intial
signal value

(d) Risk adjusted revenues as a function of risk
aversion

(e) Risk adjusted revenues as a function of signal
reversion speed for 2 different values of ι. The
solid lines correspond to ι = 0 and the dashed
lines corresponding to ι = 0.05.

Figure 5: A comparison of the time 0, expected risk adjusted revenues of the static (blue)
and dynamic (orange) strategies over varying parameter values in accordance with (17)
and (19).
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Figure 6: Time 0, expected, risk adjusted revenues as a function of the size of signal
volatility T for the static (blue) and dynamic (orange) strategies

(a) Simulations of liquidity signal (b) Corresponding simulations of asset

Figure 7: Simulation of a signal, and the corresponding stock, for different signal volatilities

In figure 6 the dynamic value function appears most different to its static counterpart

since the static strategy is independent of the volatility of the signal. In situations where

the liquidity signal is very volatile, the new market information becomes more valuable in

deciding how best to trade. This is down to the relationship between the signal volatility

and the stock price which can be observed in figure 7. Larger signal volatility for fixed

mean reversion is indicative of a signal of greater magnitude, and as such the stock price

is more heavily driven by the liquidity signal. In these situations where a more obvious

relationship between signal and stock price exists, observing said signal will of course be

very valuable to a trader in terms of their potential to increase risk adjusted revenues.

Contrastingly, with low volatility, the signal has little effect on the stock price and as such,

the access to the signal is seen to be of little benefit to the dynamic strategy.
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4 Transient market impact

Recall equation (6), which details the execution price within the transient market impact

setting:

St = Pt +

∫ t

0
G(t− s)dXs.

In the above work in the temporary market impact setting we have assumed the strate-

gies to be continuous in time, we now however allow for discontinuities in the trading

trajectory or block trades. With this in mind we have a new expression for the revenues

associated with a trading strategy X given by

∫ T

0
StdXt +

G(0)

2

∑
(∆Xt)

2.

Using the same mid-price dynamics as in the temporary market impact case (section

3) we can subsequently write the cost of the strategy in terms of the signal and decay

kernel.∫ T

0
StdXt +

G(0)

2

∑
(∆Xt)

2 =

∫ T

0
PtdXt +

∫ T

0

∫ t

0
G(t− s)dXsdXt +

G(0)

2

∑
(∆Xt)

2

=

∫ T

0

(
P0 +

∫ t

0
Isds+ σp

∫ t

0
dWt

)
dXt

+

∫ T

0

∫ t

0
G(t− s)dXsdXt +

G(0)

2

∑
(∆Xt)

2

=

∫ T

0

∫ t

0
IsdsdXt + σp

∫ T

0

∫ t

0
dWtdXt

+

∫ T

0

∫ t

0
G(t− s)dXsdXt +

G(0)

2

∑
(∆Xt)

2 − P0X0

Where the final equality uses the hard fuel constraint, XT = 0 as specified in section

2.6. Using the above and Lemma 2.3 of [14, Lemma 2.3, page 6], we can write the expected
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cost of the strategy as

E0

[∫ T

0
StdXt +

G(0)

2

∑
(∆Xt)

2

]
= E0

[∫ T

0

∫ t

0
IsdsdXt + σp

∫ T

0

∫ t

0
dWtdXt − P0X0

+

∫ T

0

∫ t

0
G(t− s)dXsdXt +

G(0)

2

∑
(∆Xt)

2

]
= E0

[∫ T

0

∫ t

0
IsdsdXt − P0X0

+
1

2

∫ T

0

∫ T

0
G(|t− s|)dXsdXt

]

Notation 4.1. Here Et [·] = E
[
·|FWt

]
where FW is the natural filtration of the Ornstein-

Uhlenbeck process (It)t≤0. �

Remark 4.2. At this point, one could add a classic risk aversion term φ
∫ T

0 X2
t dt, however

for simplicity we will exclude this. It should be noted the following results do however

hold with the risk aversion term and we refer the reader to [6] for such results. �

Recalling the a priori assumption of a deterministic strategy as outlined in section

2.6.2 and removing the constant −P0X0 term, for any X ∈ Ξ we can define the cost

functional as

U([0, T ]) :=

∫ T

0

∫ t

0
E0 [Is] dsdXt +

1

2

∫ T

0

∫ T

0
G(|t− s|)dXsdXt (20)

Before we proceed, it is necessary to quote some important results found in [6]. Theo-

rem 2.4 of Neuman, Lehalle [6, Theorem 2.4, page 8] (a generalisation of Theorem 2.11 of

Gatheral et al [14, Theorem 2.11, page 8]) is of vital importance in solving this optimisa-

tion problem and is stated as follows. Note that without the assumption of a deterministic

strategy the following result fails.

Theorem 4.3. X∗ ∈ Ξ minimises (20) over Ξ if and only if there exists λ ∈ R such that

∫ t

0
E0 [Is] ds+

∫ T

0
G(|t− s|)dXs = λ ∀t ∈ [0, T ]

4.1 Deterministic strategy

For the following we use an exponential decay kernel given by

G(t) = κρe−ρt.
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Moreover, since (It)t≤0 is an Ornstein Uhlenbeck process, we can evaluate the expectation

E0 [Is] = ιe−γs where I0 = ι.

Using the above results, we have a unique deterministic optimal strategy (given by corol-

lary 2.7 of [6, Corollary 2.7, page 9]).

Theorem 4.4. The minimiser of cost functional (20) is given by.

X∗t = x+ 1{t>0}A+ Ct+
B

γ

(
1− e−γt

)
1{t>T}

Where A,B,C,D are given by

A :=
1

2 + Tρ

(
1

2κρ2γ

(
(ρ+ γ)

(
1 + Tρ− ρ− γ

γ
(1− e−γt)

)
− (ρ− γ)e−γT

)
− x
)

B := ι
ρ2 − γ2

2κρ2γ

C := ρA− ιρ+ γ

2κργ

D := A− ι

2κρ2γ

(
ρ+ γ − (ρ− γ)e−γT

)
Moreover the corresponding λ introduced and guaranteed by Theorem 4.3 is given by

λ = 2κC +
ι

γ

With this in mind we can evaluate the cost functional for the optimal strategy X∗t as

follows

U∗([0, T ]) :=

∫ T

0

∫ t

0
E0 [Is] dsdX

∗
t +

1

2

∫ T

0

∫ T

0
G(|t− s|)dX∗sdX∗t

=
1

2

∫ T

0

∫ t

0
E0 [Is] dsdX

∗
t +

1

2

∫ T

0

[∫ t

0
E0 [Is] ds+

∫ T

0
G(|t− s|)dX∗s

]
dX∗t

=
1

2

∫ T

0

ι

γ

(
1− e−γt

)
dX∗t +

1

2

∫ T

0
λdX∗t

=
1

2

(
ι

γ
+ λ

)∫ T

0
dX∗t −

ι

2γ

∫ T

0
e−γtdX∗t

= −1

2

(
ι

γ
+ λ

)
X0 −

ι

2γ
{A+

B

2γ

(
1− e−2γT

)
+
C

γ

(
1− e−γT

)
+De−γT }

(21)
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Figure 8: Trajectories of the deterministic strategy in the transient setting

4.2 Dynamic Strategy I

In line with Remark 2.9 of [6, Remark 2.9, page 10] we propose a dynamic version of the

trading strategy given above in the natural way, that is we allow the agent to update the

trading strategy at some intermediate times according the new information available. To

formalise this chose the number of intermediate points m at which the strategy can be

updated. Partition the trading window [0, T ] into m intervals of size T
m as follows.

[0, T ] = {0 = t0 < t1 < · · · < tm−1 < tm = T} where ti :=
iT

m

Moreover consider the cost functional (20), now defined on the interval [t, T ], with

expectation conditional on the information at time t, FWt .

U([t, T ]) =

∫ T

t

∫ τ

t
Et [Is] dsdXτ +

1

2

∫ T

t

∫ T

t
G(|τ − s|)dXsdXτ − P0X0 (22)

We define X̃i
s to be the strategy that minimises the cost functional U([ti, T ]) and X̃s as

follows
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X̃s =



X̃0
s for s ∈ [t0, t1]

X̃1
s for s ∈ [t1, t2]

...

X̃m−1
s for s ∈ [tm−1, T ]

Theorem 4.5. The optimal strategy for a given t ∈ [0, T ] is given by

X̃t
s = A1{t∈[t,s]} +

B

γ
(e−γt − e−γs) + C(s− t) +D1{T∈[t,s]} + x

where A,B,C,D are given in the proof.

Proof. Appealing to Theorem 4.3, X̃t ∈ Ξ minimises U([t, T ]) over Ξ if and only if there

exists λt ∈ R such that

∫ τ

t
Et [Is] ds+

∫ T

t
G(|τ − s|)dX̃t

s = λt ∀τ ∈ [t, T ]

For an exponential decay kernel and Ornstein-Uhlenbeck signal we can rewrite this as

ι

γ

(
e−γt − e−γτ

)
+ κρ

∫ T

t
e−ρ|τ−s|dX̃t

s = λt, where ι = It. (23)

As in Obizhaeva and Wang [7] we make an ansatz at the solution of the form

dX̃t
s = Aδt + (Be−γs + C)dt+DδT (24)

where δa is the Dirac delta at a. Substituting the ansatz into equation (23), and evaluating

the resulting integral gives

ι

γ

(
e−γt − e−γτ

)
+Aκρe−ρ(τ−t) +Dκρe−ρ(T−τ) + Cκ

(
2− e−ρ(τ−t) − e−ρ(T−τ)

)
+Bκρ

[
1

ρ− γ

(
e−γτ − e−γte−ρ(τ−t)

)
+

1

ρ+ γ

(
e−γτ − e−γT e−ρ(T−τ)

)]
= λt

(25)

Since (23) holds for all τ ∈ [t, T ] it must be the case that

λt =
ι

γ
e−γt + 2Cκ
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Recall the hard constraint on terminal liquidation as detailed in section 2.6.2 which

can be alternatively written as ∫ T

t
dX̃t

τ = −x, (26)

where x is the remaining inventory at time t.

Collecting terms in (25) and substituting our ansatz (24) into the fuel constraint (26)

we construct the following system of equations

−x = A+
B

γ

(
e−γt − e−γT

)
+ C(T − t) +D

0 = Bκρ

(
1

ρ− γ
+

1

ρ+ γ

)
− ι

γ

0 = Aκρ−B κρ

ρ− γ
e−γt − Cκ

0 = Dκρ−B κρ

ρ+ γ
e−γT − Cκ

(27)

Solving the above system gives

B =
ι

2ρ2κγ

(
ρ2 − γ2

)
A =

−1

2 + ρ(T − t)
{B
(

1

γ

(
e−γt − e−γT

)
− ρ

ρ− γ
e−γt(T − t) +

e−γT

ρ+ γ
− e−γt

ρ− γ

)
+ x}

C = Aρ− Bρ

ρ− γ
e−γt

D = B(
e−γT

γ + ρ
− e−γt

ρ− γ
) +A

Finally integrating our ansatz from t to s gives

X̃t
s = A1{t∈[t,s]} +

B

γ
(e−γt − e−γs) + C(s− t) +D1{T∈[t,s]} + x

Figure 9 shows the simulated signal and corresponding optimal inventory trajectory.

The signal informs the strategy by indicating the size and direction of the block trade

as well as the subsequent rate of trading prior to the next update. In cases where the

signal is low, the investor will make large block liquidations. Contrarily for higher signal

values, block liquidations are smaller or even block acquisitions in some cases, despite

the liquidation target. Again we note that as with the temporary impact case, these
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(a) Simulations of signal (b) Corresponding optimal inevntory trajectory

Figure 9: Sample inventory trajectories of the dynamic strategy in the transient impact
case

Figure 10: 50 sample inventory trajectories in the case of the dynamic strategy, for m = 2
(blue) and the corresponding static inventory trajectory (black).

acquisitions do not constitute a corrective measure to remedy excessive trading, and are

simply an attempt to capture alpha and offset the cost of market impact.

4.3 Comparison of Static and Dynamic Strategy

Note that by construction, the static and dynamic strategies coincide on [t0, t1], since they

are optimising over the same objective function. This can be clearly seen in figure 10.

With regards finding the associated expected time 0 revenues of the trade, we are

unable to appeal to the same methodology as in equation (21) since we cannot similarly

apply theorem 4.3 by virtue of the limits of integration. With this in mind the analytical

result becomes very cumbersome for the case where m = 2 and is worse still for larger m.

As such we appeal to a Monte Carlo scheme to numerically evaluate the expected revenues
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Figure 11: Monte Carlo simulation of risk adjusted revenues for m = 1, 2, 3

of the dynamic strategy.

E0

[∫ T

0
StdX̃t +

G(0)

2

∑
(∆X̃t)

2

]
= E0

[∫ T

0

∫ t

0
IsdsdX̃t

+
1

2

∫ T

0

∫ T

0
G(|t− s|)dX̃sdX̃t

]
− P0X0

≈ 1

N

N∑
i=1

Ai − P0X0

where Ai is given below

Ai :=

∫ T

0

∫ t

0
IsdsdX̃t +

1

2

∫ T

0

∫ T

0
G(|t− s|)dX̃sdX̃t

Moreover we numerically evaluate Ai in the standard way, constructing a partition on

[0, T ] into n pieces of size h := T/n

Ai ≈
n∑
j=1

[
j∑

k=1

Itkh+
1

2

n∑
k=1

G(|tj − tk|)
(
X̃tk − X̃tk−1

)](
X̃tj − X̃tj−1

)

Figure 11 shows the convergence of the Monte Carlo simulations for the expected

revenues in the case where m = 1, 2, 3. As can be seen, the revenues are highest for the

strategy with the most updates and with the most access to new market information.

Figure 12 shows the simulated expected revenues as a function of the number of up-
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Figure 12: Revenues as a function of number of strategy updates.

dates m. This continues to display the aforementioned trend of increasing revenues with

more access to market information and is in line with the expected behaviour of dynamic

strategies in comparison with static ones (m = 1).

Remark 4.6 (Criticism). One thing worth baring in mind with this model is the inter-

action of the transient nature of the model and the way the strategy is updated. In using

the optimal strategy according to equation (22) the decaying market impact from trading

that occurs before time t is not taken into consideration when formulating a new optimal

strategy. As such, the updated strategy will underestimate the associated market impact

and hence overestimate the amount of liquidation. The effect of this is seen in figure

10, where the sample dynamic trajectories are seen to be lower than the static strategy,

demonstrating the above bias. �

4.4 Alternative derivation of a Dynamic Strategy

To rectify the issue outlined in remark 4.6 one might consider a stochastic optimisation

approach as is commonplace in the optimal execution setting ( [1], [5], [6] amongst others).

Specifically, we address the issue of preserving past transient impact by incorporating a

new state variable µ into the model described in [6].

µt =

∫ t

0
G(t− s)rsds.
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With this notation, recall the execution price in the transient setting,

St = Pt −
∫ t

0
G(t− s)rsds = Pt − µt.

As above, we consider an exponential decay kernel,

G(t) = καe−αt.

Note, here the parameter ρ used for terminal penalty so we will use α as the decay

parameter. Applying Leibniz Integral Rule we have the following.

dµ

dt
= G(t− t)rt +

∫ t

0

∂

∂t
(G(t− s)) rsds

= G(0)rt +

∫ t

0
G′(t− s)rsds

= rt − α
∫ t

0
καe−αt

= rt − αµt

(28)

or equivalently

dµt = (rt − αµt) dt.

Remark 4.7. Note in the following instead of using the integral of the price process with

respect to inventory we use the investors cash, C as a state variable. This works to simplify

the resulting calculation and moreover motivates the choice of ansatz given by (35). �

Let us define the performance criteria, as introduced in section 2.5, which captures the

risk adjusted revenues of the trade in addition to a terminal penalty as per remark 2.4.

V r(t, ι, c, x, p, µ) := Et,ι,c,x,p,µ

[
CrT − φ

∫ T

t
(Xr

s )2ds+Xr
T (P rT − ρXr

T )

]
. (29)

Notation 4.8. Et,ι,c,x,p,µ is the expectation conditioned on It = ι, Ct = c, Xt = x, Pt = p,

µt = µ. For brevity we will equivalently use Et,~xt [·], where ~xt is defined as the vector of

parameters ~xt := (It, Ct, Xt, Pt, µt). Moreover the notation ~xrτ := (Irτ , C
r
τ , X

r
τ , P

r
τ , µ

r
τ ) is

used to denote the state variables having evolved from time t to τ in accordance with

control r. �
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Moreover we can introduce the value function

V (t, ι, c, x, p, µ) := sup
r
V r(t, ι, c, x, p, µ). (30)

Remark 4.9. Similarly to above, when discussing the performance criteria or value func-

tion we will often write V r(t, ~x) and V (t, ~x). �

From here we will appeal to the usual methodology of stochastic optimisation as de-

tailed in [15]. Specifically, formulating the dynamic programming principle (DPP) and the

Hamilton-Jacobi-Bellman (HJB) equation.

Theorem 4.10 (Dynamic Programming Principle). The corresponding DPP for the above

stochastic control problem is given by

V (t, ~x) = sup
r
E

[
V (τ, ~xrτ )− φ

∫ τ

t
(Xr

s )2ds

]
.

Proof. Consider the evolution of the state variables ~x from time t to time τ according

to an arbitrary admissible strategy r. By application of the tower property we have the

following:

V r(t, ~x) = Et,~x

[
CrT − φ

∫ T

t
(Xr

s )2ds+Xr
T (P rT − ρXr

T )

]
= Et,~x

[
Eτ,~xrτ

[
CrT − φ

∫ T

t
(Xr

s )2ds+Xr
T (P rT − ρXr

T )

]]
= Et,~x

[
Eτ,~xrτ

[
CrT − φ

∫ T

τ
(Xr

s )2ds+Xr
T (P rT − ρXr

T )

]
− φ

∫ τ

t
(Xr

s )2ds

]
= Et,~x

[
V r(τ, ~xrτ )− φ

∫ τ

t
(Xr

s )2ds

]
.

Since the above holds for an arbitrary control r it follows that

V r(t, ~x) = Et,~x

[
V r(τ, ~xrτ )− φ

∫ τ

t
(Xr

s )2ds

]
≤ Et,~x

[
V (τ, ~xrτ )− φ

∫ τ

t
(Xr

s )2ds

]
.

Taking supremum over both sides gives

V (t, ~x) ≤ sup
r
Et,~x

[
V (τ, ~xrτ )− φ

∫ τ

t
(Xr

s )2ds

]
.
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We now show the reverse inequality. Let ε > 0 be given and, under the assumption of

a continuous control space, there exists rε such that

V (t, ~x) ≥ V rε(t, ~x) ≥ V (t, ~x)− ε

We now construct the following control, that follows rε after τ and the arbitrary control

r before τ ,

r̂εt =


rt for t ≤ τ

rεt for t > τ.

By an analogous tower property argument to above we have,

V (t, ~x) ≥ V r̂ε(t, ~x) = Et,~x

[
V r̂ε(τ, ~xr̂

ε

τ )− φ
∫ τ

t
(X r̂ε

s )2ds

]
.

Note that, by construction of r̂ε and rε, the following hold:

1. ~xr̂
ε

τ = ~xrτ , since r̂ε and r are equivalent before τ

2. V r̂ε = V rε , since r̂ε and rε are equivalent after τ

3. V rε ≥ V − ε

Combining the above we can deduce the following,

V (t, ~x) ≥ Et,~x
[
V r̂ε(τ, ~xr̂

ε

τ )− φ
∫ τ

t
(X r̂ε

s )2ds

]
= Et,~x

[
V rε(τ, ~xrτ )− φ

∫ τ

t
(Xr

s )2ds

]
≥ Et,~x

[
V (τ, ~xrτ )− φ

∫ τ

t
(Xr

s )2ds

]
− ε.

(31)

Noting the above holds for arbitrary r it must indeed hold for the supremum. Moreover

taking ε→ 0 gives,

V (t, ~x) ≥ sup
r
Et,~x

[
V (τ, ~xrτ )− φ

∫ τ

t
(Xr

s )2ds

]
.

Theorem 4.11 (Hamilton-Jacobi-Bellman equation). The corresponding HJB equation
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for the above stochastic control problem is given by

0 =
(
∂t + LIt + LPt − αµ∂µ

)
V − φx2 + sup

r

((
(p− µ)r∂c − r∂x + r∂µ

)
V
)

V (T, ~xT ) = c+ x(p− ρx)

where LIt and LPt are the generators of I and P respectively, given in the proof.

Proof. For τ = t+ h for small h, Theorem 4.10 reads,

V (t, ~xt) = sup
r
E

[
V (t+ h, ~xrt+h)− φ

∫ t+h

t
(Xr

s )2ds

]
.

Assuming sufficient regularity of the value function we apply Itô’s formula to obtain

V (t+ h, ~xrt+h) = V (t, ~xt) +

∫ t+h

t

(
∂t + LIs + Ssrs∂c − rs∂x + LPs + (rs − αµs)∂µ

)
V ds

+

∫ t+h

t
σ∂ιV dBs +

∫ t+h

t
σp∂pV dBs (32)

where LI and LP are the generators of I and P respectively, given by

LIs = −γIs∂ι +
1

2
σ2∂2

ι

LPs = Is∂p +
1

2
σp∂

2
p

Using the second inequality of Theorem 4.10 and (32) gives

V (t, ~x) = sup
r
E

[
V (t+ h, ~xrt+h)− φ

∫ t+h

t
(Xr

s )2ds

]
≥ E

[
V (t+ h, ~xrt+h)− φ

∫ t+h

t
(Xr

s )2ds

]
= E

[
V (t, ~xt) +

∫ t+h

t

(
∂t + LIs + Ssrs∂c − rs∂x + LPs + (rs − αµs)∂µ

)
V ds

+

∫ t+h

t
σ∂ιV dBs +

∫ t+h

t
σp∂pV dBs − φ

∫ t+h

t
(Xr

s )2ds

]
= E

[
V (t, ~xt) +

∫ t+h

t

(
∂t + LIs + Ssrs∂c − rs∂x + LPs + (rs − αµs)∂µ

)
V ds

−φ
∫ t+h

t
(Xr

s )2ds

]
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Hence we have

0 ≥ E
[∫ t+h

t

(
∂t + LIs + Ssrs∂c − rs∂x + LPs + (rs − αµs)∂µ

)
V ds

−φ
∫ t+h

t
(Xr

s )2ds

]
Dividing by h, taking the limit as h→ 0 and appealing to the mean value theorem we

have

0 ≥
(
∂t + LIt + (p− µ)r∂c − r∂x + LPt + (r − αµ)∂µ

)
V − φx2.

Since the above holds for arbitrary r we have

0 ≥ sup
r

((
∂t + LIt + (p− µ)r∂c − r∂x + LPt + (r − αµ)∂µ

)
V − φx2

)
≥
(
∂t + LIt + LPt − αµ∂µ

)
V − φx2 + sup

r
(((p− µ)r∂c − r∂x + r∂µ)V )

Since this result holds for all r, it must also hold for the optimal control r∗, and as such

the above argument holds with equality and we arrive at the above result. Moreover the

terminal condition follows immediately from the definition of the value function (29).

4.4.1 Adding temporary impact

In this case the supremum is linear in r meaning the optimisation problem is unbounded.

To rectify this we will consider the addition of a temporary market impact term to the

execution price. Although this may initially seem odd, to have both a temporary impact

term and a transient impact term, we will arrive at a quadratic supremum that can

henceforth be solved. Moreover one could then consider the limiting solution as η → 0.

As such let us define the execution price S,

St = Pt − µt − ηrt.

Moreover we can write the investor’s cash as

CT − Ct =

∫ T

t
(Ps − µs − ηrs) rsds. (33)

Remark 4.12. We note that in this new optimisation problem, the performance criteria
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and value function are the same as before, the only difference being in our definition of

the state variable Ct as given in (33). As such the dynamic programming principle is as

in Theorem 4.10 and we can reuse most of the above argument for formulating the new

HJB equation.

�

Theorem 4.13 (Hamilton-Jacobi-Bellman equation). The corresponding HJB equation

for the new stochastic control problem, where execution price includes a temporary market

impact, is given by

0 =
(
∂t + LIt + LPt − αµ∂µ

)
V − φx2 + sup

r

((
(p− µ− ηr)r∂c − r∂x + r∂µ

)
V
)

V (T, ~xT ) = c+ x(p− ρx),

where LIt and LPt are as above.

Proof. Arguing as in Theorem 4.11, we have

0 ≥ E
[∫ t+h

t

(
∂t + LIs + Ssrs∂c − rs∂x + LPs + (rs − αµs)∂µ

)
V ds

−φ
∫ t+h

t
X2
sds

]
.

Again we note that the argument is identical to that of Theorem 4.11, up to a redefi-

nition of state variables. Dividing by h, taking the limit as h→ 0 and again appealing to

the mean value theorem we have

0 ≥
(
∂t + LIt + (p− µ− ηr)r∂c − r∂x + LPt + (r − αµ)∂µ

)
V − φx2.

Since the above holds for arbitrary r we have

0 ≥ sup
r

((
∂t + LIt + (p− µ− ηr)r∂c − r∂x + LPt + (r − αµ)∂µ

)
V − φx2

)
≥
(
∂t + LIt + LPt − αµ∂µ

)
V − φx2 + sup

r

((
(p− µ− ηr)r∂c − r∂x + r∂µ

)
V
)

We use an identical argument to above to show the above holds with equality and

arrive at the desired result.

Crucially now the supremum is quadratic in r meaning it can be easily solved to give
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the optimal trading speed

r∗ =
((p− µ)∂c − ∂x + ∂µ)V

2η∂cV
.

Moreover this allows us to simplify the HJB equation of 4.11 to give

0 =
(
∂t + LIt + LPt − αµ∂µ

)
V − φx2 +

(
(p− µ)∂cV − ∂xV + ∂µV

)2
4η∂cV

V (T, ~xT ) = c+ x(p− ρx) (34)

Examining the terminal condition V (T, ~xT ) = c + x(p − ρx) we suggest the following

ansatz for the value function

V (t, ~x) = c+ xp+ v(t, ι, x, µ), (35)

where v is to be determined in accordance with the terminal condition of V . Specifically

v(T, ι, x, µ) = ρx2. Substituting this ansatz into (34) we have

0 =
(
∂t + LIt − αµ∂µ

)
v + ιx− φx2 +

(
∂µv − µ− ∂xv

)2
4η

(36)
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5 Further Research

5.1 Alternative derivation of a Dynamic Strategy

In section 4.4 we proposed an alternative derivation for the dynamic strategy in the tran-

sient market impact setting. This poses two new avenues for future research to consider.

The first of which is to find analytic or numerical solutions to PDE (36) and then consider

the limiting case as η → 0.

Alternatively one could work with the earlier PDE (recall below) of theorem 4.11 and

construct a numerical solution.

0 =
(
∂t + LIt + LPt − αµ∂µ

)
V − φx2 + sup

r

((
(p− µ)r∂c − r∂x + r∂µ

)
V
)

V (T, ~xT ) = c+ x(p− ρx)

As mentioned in section 4.4.1 the linear supremum does pose a problem regarding the

boundedness of the problem, however this may be rectified using an approach outlined

in [16]. In this approach we assume the control r is bounded in absolute value by some

M . Then we can find the optimal control r∗ given by

r∗ =


M for (p− µ)∂c − ∂x + ∂µ > 0

−M for (p− µ)∂c − ∂x + ∂µ < 0

As such one could devise a numerical scheme involving 2 PDEs, one for each of the above

cases, to find a numerical solution and moreover consider the results as M →∞.

5.2 A Supervised Learning approach to adapted strategies

With execution moving away from the classical methods to a more signal driven approach,

we would expect institutions to be trading with these ideas in mind. As such, instead of

proposing ever more complicated models that react to certain signals, an alternative may

be to observe how market participants deal with large liquidations and acquisitions and

attempt to learn from them. As with any machine learning problem, one must first address

the source of the data, which in this case is the NASDAQ OMX exchange. The NASDAQ

OMX is a particularly useful data source as, up until 2014, it published both the trades
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executed and moreover who executed them. With this, one could establish individual

market participants’ full inventory trajectories, which we will denote (X̂t)t≥0.

As observed in figure 3, the trajectories of the dynamic strategy can be seen as pertur-

bations of the corresponding static strategy. With this in mind if we assume the realised

inventory trajectories, (X̂t)t≥0, are perturbations around the optimal inventory of some

classical static model, (X∗t )t≥0, we could extract a process of aggression coefficients (βt)t≥0

via

βt =
X̂t

X∗t
0 ≤ t ≤ T.

The problem can then be framed as a time indexed series of supervised learning problems,

with βt as the target variable. In the same light as Cartea and Jaimungal and Neuman

and Lehalle in their consideration of liquidity and imbalance signals as a key driver of exe-

cution strategy, possible features could be the depth, spread and price in addition to other

directional signals derived from level I order book data. Once trained, to subsequently

evaluate the resulting strategy one could take a simulation based approach similar to that

of section 4.3, for a comparison with the corresponding static model.
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Conclusion

To begin this project, we gave a brief survey on commonly adopted modelling choices in

the existing optimal execution literature, with specific focus on how static and dynamic

strategies arise. Following the work of Brigo and Piat, we wished to compare corresponding

static and dynamic strategies with less stylised asset dynamics, namely those introduced

by Neuman and Lehalle in the form of a driving Ornstein-Uhlenbeck liquidity signal. We

considered two different market impact models, namely temporary impact and transient

impact.

Under the former framework we derived a static execution strategy via a calculus of

variations approach and observed the dynamic strategy could be thought of as perturba-

tions around its static counterpart. We moreover considered the asymptotic properties of

the dynamic strategy with respect to the terminal penalty parameter, to establish a basis

for comparison. We observe how the optimal dynamic strategy may chose to purchase

despite a liquidation target but note this isn’t a corrective measure as seen in classic static

models, instead this is in response to the liquidity signal in an effort to increase revenues.

In most cases there is little to no difference between the two strategies, with the dynamic

strategy providing only marginally increased revenues, however this was not the case when

considering two specific model components: signal volatility and size of trading window.

For small signal volatilities, the dynamic strategy offered little benefit, however for larger

values, access to new information greatly increased the respective performance criteria.

For shorter time horizons the strategies performed similarly, with little difference in the

revenues. Over longer time horizons the dynamic strategy utilised new market informa-

tion to make directional plays in the market where the static strategy could not, thus

increasing risk adjusted revenues.

In the transient setting we introduced some key results in the current literature before

using these to develop the heuristic approach in constructing a dynamic strategy as pro-

posed by Neuman and Lehalle. We explicitly derived this strategy in terms of an update

frequency and, as in the temporary case, note that the optimal strategy can look to pur-

chase an asset even with an overall liquidation target. We found the expected risk adjusted

revenues of the dynamic startegy via Monte Carlo simulation, which coincided with our

intuition that increasing the update frequency would increase the revenues. Following this
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we discussed a criticism of this heuristic approach and subsequently proposed an alter-

native that addresses these concerns, highlighting how future research may proceed with

this in mind.

Finally we respond to the desire for a more data driven approach to optimal execution

and consider supervised learning as a different resolution to the optimal execution problem.
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