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Abstract

Market impact is a crucial area of study in financial markets. We explore a class of so-called

‘propagator models’ which consist of two main types. The Transient Impact Model (TIM)

models returns as a convolution of order signs and a propagator kernel. We also explore the

History Dependent Impact Model (HDIM) which states that the deviation between the realised

order sign and it’s expected value has a permanent and linear effect on the price. Both models

are generalised to two events types: price changing and non-price changing. We show that

these models perform well for small tick stocks but not for large tick stocks. Additionally,

some perform well for futures data, provided the asset is traded actively enough in any given

day.
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1 Introduction

Financial markets are constantly evolving and adapting to new technologies. The last few decades

have seen the rise of algorithmic trading. Algorithmic trading involves executing trading decisions

via computer programs with electronic market access. They were initially introduced at the start of

the 1990s as a tool for institutional investors but a number of factors including evolving exchanges,

reduction in fees and creation of new markets aside from the traditional LSE or NASDAQ exchange,

have led to an explosion in algorithmic trading. Now a typical sell side broker will trade trillions

of dollars per year using algorithms [7, slide 2]. But what is the main advantage of algorithmic

trading? Perhaps the most appealing feature it offers is not necessarily a way to maximise profits,

but a way to minimise the execution costs of a trade. Execution costs are the difference between

the cost of an ideal trade and the value at which it is actually traded. They consist of direct,

predictable costs such as broker commissions, taxes and exchange fees, as well as indirect costs [8,

page 1]. Prices are volatile and moments before a trade is placed, a piece of new information could

be released causing the price to jump up. This leads to an increased cost of the trade and this is

an example of market risk, an indirect cost. There is also the issue of liquidity risk. This is the

extra cost incurred when there is insufficient liquidity to meet the required amount for a trade.

More often than not small volumes can be executed close to the listed price so liquidity risk is

insignificant for smaller traders, however when large volumes are under consideration these costs

become significant and understanding the nature of the costs is highly nontrivial.

The scarce nature of the liquidity causes traders to split their orders into chunks (child orders)

and execute them over a certain time period according to a pre-determined trading strategy (see

section 2.4). Each time a child order is executed there is a price pressure in the same direction of

the child order making subsequent child orders more expensive. This is known as market impact,

another indirect cost. Additionally, if another market participant anticipates that another agent is

going to make a large order, they can trade faster than the other agent and push the price in their

favour. This is a strategy used by High Frequency Trading (HFT) firms. Understanding market

impact is important for three reasons:

1. It is fundamental to understanding the nature of fair prices. Market impact and and price

changes are inextricably linked and form a basis for determining a fair price for an asset.

2. A large proportion of execution costs can be from market impact. Understanding how a

trade will impact the price is crucial for a trading firms profits, particularly when the order

flow is large.

3. It aids financial regulation. A better understanding of market impact will prompt new market

microstructure regulations which should promote competition. It also reveals connections
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between systemic risk and the market setup [1, page 8, section 1.5].

The primary aim of this study is to investigate a specific class of market impact models known as

‘propagator models’, but before we continue any further we need to cover some market microstruc-

ture definitions and terminology.

1.1 Terminology

Traders execute their trades by submitting an order which specifies the quantity V , order sign

ε = ±1 (+1 for buy, -1 for sell), and some additional conditions which must be met to execute

the trade. When a trade counter-party is found the order is filled. Orders can also be partially or

entirely cancelled. The two main types of order are market orders and limit orders [9, pages 1-3].

Definition 1.1. A market order is an order where the price is not specified and the trade is

executed at the best available price at the time of the order.

Definition 1.2. A limit order is a buy or sell order which is quoted with its corresponding bid or

ask price: the bid for a buy order and the ask for a sell order.

There are two types of market: quote-driven and order-driven markets. In quote-driven markets

the broker sets the bid and ask prices and provides liquidity using a centralised system of buy

and sell orders. Order-driven markets are electronic markets where all unfilled limit orders are

collected into a limit order book such that market orders are filled at the best available price. In

recent years there has been a migration from quote-driven markets to order-driven markets which

has led to substantial increases in market data. This has prompted numerous studies into order

book dynamics.

The best-bid price pB(t) is the highest outstanding limit buy order in the limit order book and

the best-ask price pA(t) is the lowest outstanding limit sell order in the limit order book. Orders

remain in the limit order book until they are either filled or cancelled. We can formulate the limit

order book mathematically [10, pages 4-6, section 2.1, 2.2] by considering a price grid {1, . . . , n}

where each point is a multiple of a price tick. A price tick is the minimum increment at which

a price quote can be submitted. We consider the number of outstanding limit orders |Xp(t)|,

1 ≤ p ≤ n. If Xp(t) is negative then there are −Xp(t) bid orders at price p and if it is positive

then there are Xp(t) ask orders at price p. The order book follows the continuous time1 process

X(t) := (X1(t), . . . , Xn(t))t≥0.

Definition 1.3. The best bid price pB(t) at time t is defined by

pB(t) := inf{p = 1, . . . , n,Xp(t) > 0} ∧ (n+ 1). (1.1)

1on an intra-day time scale we usually consider this as discrete time.
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Definition 1.4. The best ask price pA(t) is defined by

pA(t) := sup{p = 1, . . . , n,Xp(t) < 0} ∨ (n+ 1). (1.2)

The difference between the best-bid pB and the best-ask pA is the bid-ask spread s(t) and the

mid-point price is the average of the best bid and best asking price

m(t) :=
pA(t) + pB(t)

2
, s(t) := pA(t)− pB(t). (1.3)

Given most market orders are filled close to the best bid/ask a useful quantity is the number of

outstanding limit orders Qi(t) at a given distance i from the best bid/ask

QBi (t) =

XpA(t)−i(t) 0 < i < pA(t)

0 pA(t) ≤ i < n.

(1.4)

QAi (t) =

XpB(t)+i(t) 0 < i < n− pB(t)

0 n− pB(t) ≤ i < n.

(1.5)

Essentially, the Qi(t) is the quantity available for aggressive orders2. If we consider a state of the

order book x ∈ Zn we define the new state of the order book following a limit order at price p

xp+1 := x± (0, . . . 1, . . . 0),

where the vector on the far right is a vector of zeros with a 1 at the p-th component. Table 1

shows the effect on the order book state x when an order of unit size arrives.

Order Type Sign Price Quantity Effect

Limit
Buy p < pA(t) Increase x→ xp−1

Sell p > pB(t) Increase x→ xp+1

Market
Buy - Decrease x→ xpA(t)−1

Sell - Decrease x→ xpB(t)+1

Cancellation
Buy p < pA(t) Decrease x→ xp−1

Sell p > pB(t) Decrease x→ xp−1

Table 1: The impact on the order book at state x of an order of unit size at price p [10, pages

4-6, section 2.1, 2.2].

The dynamics of the order book are thus governed by market orders, limit orders and cancellations

submitted by traders. There are two main types of traders in financial markets: market makers

and informed traders.
2An aggressive order is an order that removes liquidity from the book and usually is executed at a non-favourable

price
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Definition 1.5. A market maker is an agent which opposes a trade and provides the liquidity for

another market participant who wishes to buy or sell a financial instrument. They do not take a

position in the market and their main source of profit is a fraction of the bid-ask spread. We will

assume that market makers primarily submit limit orders.

Definition 1.6. An informed trader, or liquidity taker, is an agent who triggers trades by placing

market orders. They hope to gain from some piece of information and aim to make profits from

correct predictions in movements of the price [11, page 3].

We can further characterise an order book event π into price changing and non-price changing

events [12, table I, page 4]. Price changing events can be:

1. A market order with volume V greater than the outstanding volume at the best bid/ask.

2. A complete cancellation of the best bid/ask.

3. A limit order inside the bid-ask spread.

Non-price changing events consist of:

1. A market order with volume less than the outstanding volume V at the best bid/ask.

2. A partial cancellation of the bid/ask queue.

3. A limit order at or outside the bid-ask spread.

Figure 1 shows an example of a price changing event for Microsoft (MSFT). A market order of

100 shares is submitted and filled at $90.65, the best-ask. The best-level consists of 100 shares

so the level is completely used up and the best-ask moves to the next level at $90.67, hence the

mid-price increases from $90.645 to $90.655. Figure 2 shows a non-price changing event. A buy

limit order is placed at the fourth level resulting in no change in the mid-price. Figure 3 shows

another non-price changing event, a complete cancellation of a limit order at the best-bid. The

cancellation is not large enough to deplete the entire best-bid volume
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(a) Before (b) After

Figure 1: A buy market order of 100 shares (Microsoft) is filled at the best ask ($90.65) and the

best-ask shifts two ticks to the next best price level ($90.67).

(a) Before (b) After

Figure 2: A non-price changing event. A buy limit order of 55 shares (Microsoft) is placed at the

fourth level ($90.61), highlighted in green.
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(a) Before (b) After

Figure 3: A complete cancellation of a limit order of 100 shares (Microsoft) at the best-bid ($90.64).

1.2 Motivation

We have already explained the importance of understanding market impact but before we continue

we should explain the motivation behind propagator models. This stems from the origin of the

random walk nature of prices. There are two different hypotheses which propose contradictory

origins for the random walk nature of prices. The first of these is the Efficient Market Hypothesis

[13, page 5] which posits that the price of a financial instrument reflects all of the available infor-

mation and are thus efficient. Prices are by definition unpredictable and can only be influenced by

news events which are not anticipated. As a result, prices are predicted to be random walks.

Schiller et. al [14, page 14] noted that the measured volatility of stock prices was too high to be

attributed to new information. A more concrete criticism of this hypothesis observes that trades

on liquid stocks occur at fractions of a second, whereas the time increment between relevant news

events is longer. The conclusion is that the assumption of perfectly informed and rational agents

is flawed.

The second hypothesis, at the other extreme, assumes that market participants are completely

irrational and take completely random decisions on whether to buy or sell a particular asset and

their choices are interpreted by all other market participants as potentially containing some infor-

mation [15, page 3] [16, page 1]. A trade decision will potentially change the bid or the ask price

and thus the corresponding mid-price. This new price is adopted immediately by other market

agents as the price around which new decisions are made. This hypothesis also predicts a random

walk nature of prices and is popular due to its analytical tractability.

Clearly, the true case must lie somewhere between these two extremes. Bouchaud et. al [11, page

3] proposed that the random walk nature of prices originates from the delicate interplay between

market makers and informed traders.
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To demonstrate this fine-tuned competition consider the following. Suppose the informed trader

believes the price will go up and so they want to buy. An increased number of buy orders are

placed in the order book. The market maker is now incentivised to increase their asking price

since these buy orders might be from well informed traders taking advantage of price inefficiencies.

Should the price go up, the market maker will likely lose money when they have to close their

position. To combat this, the informed trader will place a meta-order, whereby they split their

total order into smaller orders. This leads to temporal correlations in the signs of the trades.

If the market orders do not contain any relevant information then the prices will mean-revert over

time, rather than go up. The market makers drive this phenomena. The mean reversion has to

be slow, otherwise the informed trader can take advantage of the lower prices. The action of these

two types of market agents removes linear correlations in the price changes, prevents statistical

arbitrage and leads to the random walk nature of prices.

Bouchaud et. al [11, section 3, page 13] proposed the class of propagator models to explain this

origin of the random walk nature of prices. They based their models on empirical observations and

provide numerous papers outlining their performance. Their focus is mainly on stocks, although

they do occasionally consider futures. In this study we will implement a number of propagator

models and assess their performance for futures data in more detail, as well as for common stocks.

The outline of the paper is as follows: first we present some background material on market impact

models and optimal order execution. Then we outline the data and tools used for this study before

presenting some empirical stylised facts found in the data. Following this we define each propagator

model before implementing and then we present our findings in section 6. We offer a critique for

each model before drawing conclusions on the effectiveness of each model for each dataset.

2 Background of Impact Models

2.1 Price Definition

First we consider the definition of price of a financial instrument, since defining the price becomes

more challenging when considering the dynamics of the limit order book. We can define the price

in a number of ways [1, page 6, section 1.3]:

1. Price of the transaction. The price of the asset is quoted as the price of the most recent

transaction.

2. The average of the transaction prices. The average can be taken over time or volume and pro-

duces the time-weighted average price (TWAP) and volume weighted average price (VWAP)

respectively.
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3. The mid price mt.

4. The micro-price Pmicrot (a generalistaion of the mid-price, see appendix).

Each of these price definitions has its own drawbacks, for example transaction prices can only be

quoted on a discrete time setting (i.e. at every transaction time). For the remainder of this study,

we will use the mid price to define the fair price of the asset under consideration. Extensions

to the micro-price are left as an area for further study. Figure 4 shows an excerpt of MSFT’s

mid price and the corresponding bid-ask prices. This shows the dynamics of price changes at a

microstructure level.

Figure 4: An excerpt from MSFT showing the best bid, ask and the mid-price. This indicates at

a microstructure level how prices change.

2.2 Market Impact

Market impact can be thought of as the correlation between price changes and an incoming order.

A buy trade will on average, depending on a number of factors, push the price up. Regarding

order book dynamics, this occurs when a market order uses up all of the available volume at the

first level. The best-bid moves to the second level which is higher, causing an increase in the

mid-price. Price impact is generally considered a cost since a market agent’s second buy trade

will likely be more expensive than the original. The control of market impact is particular active

area of research since order flow can total in the billions of dollars for some firms. Savings of even

fractions of basis points can be worth a substantial amount of money. The primary considerations

for industry practitioners will be the volume dependence of the market impact and the nature of

the impact: is it permanent or temporary?

It would be reasonable to consider a transaction as a fair deal between the buyer and seller. This

raises questions as to the origin of market impact, since a fair transaction should eliminate market

impact. Bouchaud [17, pages 1-2] proposed three possible origins:
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1. Market participants are able to predict temporal price movements and adjust their decisions

accordingly. Whilst the corresponding trades may have no direct impact on the price, they

do cause correlations between trades and future prices. For example, if a trader predicts a

price rise he will likely buy immediately.

2. Trades reveal hidden information. A price change can be triggered by an news event or

any form of incoming information. Since trades are anonymous it makes informed and non-

informed traders indistinguishable. All trades will thus impact the market since other market

participants will be aware that a proportion of these trades will be well informed decisions.

3. Market impact is a statistical effect caused by order flow variations. Differences in supply

and demand can be totally random, yet an additional buy order, ceteris paribus, will on

average increase the price. These fluctuations occur irrespective of information.

The first two points can be thought of as orders not directly impacting price but acting as predictors

for future prices. If the third point is correct, then this indicates that order flow and price change

correlations are essentially the same thing and prices only move due to trades, irrespective of the

number of well-informed traders (see section 2.3.3).

2.3 Market Impact Models

Here we will cover simplistic market impact models. The main scope of this study is propagator

models which are covered in section 5. These model market impact based on a number of empirical

observations as outlined in section 4. Firstly we will consider the most simplistic of impact models:

the Kyle Model.

2.3.1 The Kyle Model

Kyle [18] considered a scenario whereby a single informed trader will decide their order size such

as to maximise their profits (this can also be thought of as minimising costs). He proposed the

parameter λ which is generally interpreted as the inverse of the available liquidity in the market,

or a measure of impact [17, section 2, page 3]. Thus the price change can be represented as

dp = λεV, (2.1)

where εV is the signed volume of the trade. The total price change between time t = 0 and

t = T = Ndt is therefore

pT = p0 +

N−1∑
n=0

dpn = p0 + λ

N−1∑
n=0

εnVn, (2.2)

i.e. the price impact is permanent until time T and a linear function of the traded volume V . One

assumption of this model is that the signs ε must be uncorrelated, otherwise the price would not
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resemble a random walk and would have an element of predictability. We will show later in section

4 that this is not the case.

2.3.2 Hasbrouck’s Vector Autoregressive Model

Hasbrouck [19] formulated a model under the assumption that the size of the price impact of a

given trade is a function of the proportion of informed traders, the probability that said trader

is actually well informed and the precision of the private information they possess. These factors

can be considered as to what extent does information asymmetry exist. Information asymmetry

comes with two predictions: firstly that the asymmetry is positively correlated with the spread

and secondly that it is also positively correlated with price impact of a trade. Hasbrouck’s classic

paper investigates the second prediction.

Hasbrouck’s VAR model posits that the trades from an econometric perspective form a system

governed by auto and cross-correlations. He defines the information impact as the price impact

caused by the unexpected component of the trade. Vector autoregression is the technique of choice

since basic computations are linear and whilst the model is analytically tractable, it can also be

extended to incorporate nonlinear effects. It is worth noting that although this model was initially

designed for quote-driven markets it can be extended to order-driven markets. Hasbrouck’s VAR

model consists of the following bivariate vector autoregression model:

rt =
∑
j>0

Brr(j)rt−j +
∑
j≥0

Bxr(j)xt−j + vr,t (2.3)

xt =
∑
j>0

Brx(j)rt−j +
∑
j>0

Bxx(j)xt−j + vx,t, (2.4)

where rt are the returns, xt := Vtεt is the signed volume of the trade, the B(j) are regression coeffi-

cients, v1,t is the disturbance reflecting public information and vt,2 is the unanticipated component

of the trade. This model can in theory be of infinite order but in practise has to be truncated at

some maximum lag.

2.3.3 Random Order Flow and Latent Order Books

Random order flow is a widely studied topic in order flow dynamics since it provides simple,

analytically tractable models. Random order flow assumes that there are no informed traders and

decisions are made based on ‘zero intelligence’ [20] [21] [22]. This is analogous to point 3 in section

2.2 above. These models consider the order book as a price grid, as described in section 1.1. The

limit order flow and market order flow are both described by a Poisson process with rates λ and µ

per unit event and time respectively.

Donier et. al [23] extended these random order flow models to the latent order book. This model

is an extension of propagator models and is primarily aimed at capturing nonlinear effects. The
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latent order book is relevant when considering a mesoscopic time-scale. The visible limit order

book hides the intentions of high-latency traders since the limit order book mainly displays the

activity of low-latency traders. Therefore, the limit order book does not reflect the true supply and

demand in the market [1, page 10, section 1.5.3]. The latent order book aims to describe the true

supply and demand. It is a fictitious order book which records intentions of market participants.We

consider the price m(t) at some time t ∈ [t, t + dt). A high-latency trader will decide to put a

latent order of size V at price m(t) + ∆ with probability λ, i.e. the order only appears when the

price reaches around m(t) + ∆. A schematic of a latent order book is shown in Figure 5.

Figure 5: A diagram of the latent order book. The ‘slow‘ liquidity largely exceeds the ‘fast‘ liquidity

[1, page 11, figure 1.4].

Donier et al. named x(t) := m(t) + ∆ the reservation price. They set the following set of partial

differential equations for the volume density ρ(t, x):

∂ρB(t, x)

∂t
= −vt

∂ρB(t, x)

∂x
+D

∂2ρB(t, x)

∂x2
− νρB(t, x) + λΘ(pt − x)− κRAB(x, t) (2.5)

∂ρA(t, x)

∂t
= −vt

∂ρA(t, x)

∂x
+D

∂2ρA(t, x)

∂x2
− νρA(t, x) + λΘ(pt − x)− κRAB(x, t), (2.6)

where ρA is the density of sell orders, ρB is the density of buy orders and pt is the price averaged

over high frequency noise defined by ρA(t, pt)−ρB(t, pt) = 0. The other terms are explained below.

1. & 2. The first two terms represent the drift diffusion: the market participant revises their reser-

vation price x due to, for example, new information. This consists of a random element, a

diffusion characterised by coefficient D and an overall shift (caused by new public information

for example) vt which shifts the entire book.
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3. The third term considers cancellations of the latent orders which occur at the ν−1.

4. The fourth term considers deposition, i.e. the emergence of new intentions to buy/sell at an

intensity λ, governed by the function Θ(u).

5. The final term represents the reaction. Two orders meet with reaction rate κ and RAB(t, x)

is the average product of the buy/sell volume densities.

We can introduce a change of variables φ(t, x) := ρB(t, x) − ρA(t, x) and y = x − p̂t where p̂t =∫ t
0
vsds is the un-impacted price. The above equations become

∂φ(t, y)

∂t
= −vt

∂φ(t, y)

∂y
+D

∂2φ(t, x)

∂y2
− νφ(t, y) + λsign(pt − p̂t − y), (2.7)

where pt solves the equation φ(pt, t) = 0. For a meta order that starts at t = 0 the latent order

book can be characterised by the exact solution

φ(y, t) = −L+

∫ t

0

dsms√
4πD(t− s)

exp

{
− (yt − ys)2

4D(t− s)

}
, (2.8)

where L is the latent liquidity. Hence we can represent the translated reservation price as an

integral equation

yt =

∫ t

0

dsms√
4πD(t− s)

exp

{
− (yt − ys)2

4D(t− s)

}
, (2.9)

where mt is the signed trading intensity (positive for buy meta-order). This can be used to calculate

the market impact of a meta-order in the latent order book. This model is consistent with empirical

observation, as outlined in section 4, particularly the square-root impact of meta-orders which is

not captured by the Kyle model.

The response function measures the average price change conditional to a buy order at time 0 (or

sell order with the opposite effect) at time l. This quantity is not the market impact to a single

trade [11, section 2.3, page 7]. When we consider different types of order book events we need the

conditioned response function.

2.4 Optimal Order Scheduling

Understanding market impact is beneficial for reasons outlined earlier. However more is required to

manage execution costs. In order for market participants to control their execution costs they must

utilise their knowledge of market impact to devise optimal order scheduling methods. Controlling

the execution costs using optimal scheduling involves a trade off between market impact and

market risk. Reducing market impact requires more passive trading whilst reducing market risk

demands more aggressive trading. The most widely known works in optimal order scheduling are

the Bertsimas-Lo model, Almgren-Chriss model and the Obizhaeva-Wang model [24, page 1]. We

will briefly cover them here.
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2.4.1 Bertsimas-Lo Model

Bertsimas and Lo [25, section 2, pages 4-9] provided a definition of best execution by minimising

the expected trade cost using stochastic dynamic programming. Their work was notable since it

was the first time dynamic programming had been used for best execution. The problems arise

from the observation that trading takes time and affects the price dynamics as well as the current

price. This influence over price dynamics affects future trading costs.

The problem is set up as follows: we want to buy a large number of units X of an asset between

t = 0 and t = T , where t ∈ {0, 1, . . . , T}. We denote Xt as the number of outstanding units and

we want to choose the quantities Vt := −(Xt+1 − Xt) and ∆t to minimise the expected impact

cost of the trade. We will consider the case of permanent market impact. The asset dynamics are

modelled according to the following:

St = St−1 + θ∆Vt−1 + σS0∆Wt−1, (2.10)

where Wt is a Brownian motion on a filtered probability space (Ω,F , {Ft}t≥0,P). We want to

choose {∆V }T−1
0 such that expected cost C is minimised:

C(X0, S0) = min
∆V

E0

[
T−1∑
t=0

St+1∆Vt

]
. (2.11)

Bertsimas and Lo constructed a dynamic programming algorithm the based on the observation

that an optimal solution {S∗0 , S∗1 , . . . , S∗T } must be optimal for the remaining program for every t.

This property is summarised by the Bellman equation:

C(Xt, St) = min∆V Et[St+1∆Vt + C(Xt+1, St+1)]. (2.12)

This equation can be solved backwards by noting that the execution must be completed by time

T so that ∆VT−1 = XT−1. Using induction it can be shown that

∆VT−i =
X0

T
, for i = 1, . . . , T, (2.13)

i.e. it is optimal to split the orders equally across time. By substituting this into equation (2.11)

and with a little algebra we get the total cost

C(X0, S0) = X0S0 +
θX2

0

2

(
1 +

1

T

)
, (2.14)

where the second term represents the cost due to market impact.
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Figure 6: The execution profile in discrete time of the Bertsimas-Lo model for a parent order of

100 shares to be executed over the time period T = 1.

2.4.2 Almgren-Chriss Model

Bertsimas and Lo provided a definition of best execution, however their approach ignored the

volatility of execution costs for different trading strategies. Almgren and Chriss [26, pages 3-15]

worked in the framework of minimising the cost of trading with a penalty for cost uncertainty. The

issue of cost uncertainty can be understood as follows: say we have an illiquid, highly volatile asset

we want to trade. One could either trade all of the asset now at the expense of a high execution

cost, or trade the asset in fixed amounts over a finite duration, with the added uncertainty of

volatile prices. We want to optimise the trading strategy given a level of uncertainty, or appetite

for risk.

We adopt a similar set up as in the Bertsimas-Lo model, except now we consider t continuous and

the price dynamics are governed by

St = S̃t + ηvt + γ(x0 − xt), (2.15)

where vt := −ẋt is the rate of trading, η and γ are temporary and permanent respectively, and S̃t

is the unaffected mid price given by a driftless arithmetic Brownian motion

dS̃t = σS̃0dWt. (2.16)
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The execution cost is now

C =

∫ T

0

Stdxt, (2.17)

so if we include the variance of the trading cost, our optimisation problem becomes the following:

min
v
E[C] + λVar[C], (2.18)

where λ represents the risk aversion of the trader. Following a little algebra the optimisation

problem can be reduced to

minvη

∫ T

0

ẋ2
tdt+ λσ2S̃2

0

∫ T

0

x2
tdt

subject to x0 = X, xT = 0.

This optimisation problem can be solved using calculus of variations and has solutions

xt = X
sinh[k(T − t)]

sinh(kT )
, k =

√
λσ2S̃2

0

η
(2.19)

vt = kxtcoth[k(T − t)] (2.20)

We can see from figure 7 that the execution profile depends on k, which is a function of the risk

aversion parameter λ. A higher risk aversion means the trader wants to execute quickly since they

are more concerned about market risk rather than market impact. This is evident in the figure

since increasing λ leads to increasing k and earlier execution.

2.4.3 Obizhaeva-Wang Model

Both the Bertsimas-Lo and Almgren-Chriss models have one particular shortfall: they fail to

describe the level of interactions with the order books. Obizhaeva and Wang [2, pages 1-5, 17-19]

proposed a framework which describes the evolution of the limit order book. They showed that

the optimal strategy depends on the interaction between the limit order book and a sequence of

trades.

Obizhaeva and Wang noted that following the execution of a trade the order book does not revert

to its previous state immediately, particularly in more illiquid markets. They modelled a trade as

having a transient impact with an exponential decay with decay rate ρ. Therefore, the price has

the following dynamics:

St = S0 + η

∫ t

0

vse
−ρ(t−s)ds+

∫ t

0

σsdWs (2.21)

The optimisation problem then becomes

minvE0

[∫ T

0

Stvtdt

]
= S0x0 + minvη

∫ T

0

vt

(∫ t

0

vse
−ρ(t−s)ds

)
dt, (2.22)
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Figure 7: The execution profile of the Almgren-Chriss model for a parent order of 100 shares to be

executed over time period T = 1. Execution profile depends on k which depends on risk aversion

λ.

which has solution

vs =
x0

2 + ρT
[δ(s) + ρ+ δ(s− T )] , (2.23)

where δ(x) is the Dirac-delta function. The optimal execution strategy thus consists of two block

trades at time t = 0 and t = T , both of size x0/(2 + ρT ). In between, the trading rate is constant

vt = ρx0/(2 + ρT ). The total execution cost is

C∗(0, T ) = S0x0 + η
x2

0

2 + ρt
(2.24)

The initial block trade serves the purpose of perturbing the limit order book from a steady state

such as to attract new limit orders at better prices. The subsequent continuous trading is aimed

at matching these limit orders and the final block trade matches any outstanding orders at the end

of the time period. This different approach utilitses discrete and continuous trading methods and

the cost saving depends on the dynamical properties of the order book, such as the time evolution

following the trade. More strikingly, Obizhaeva and Wang showed that the optimal strategy is

not sensitive to the instantaneous price-impact function, a feature not predicted by the other two

models.
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Figure 8: The execution profile of the Obizhaeva-Wang model for a parent order of X0 shares to

be executed over time period T . Optimal strategy is an initial block trade at t = 0 followe by a

period of continuous trading until t = T , where another block trade of the same size as the initial

trade is executed [2, figure 3, page 20].
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3 Dataset and Tools

Here we outline the data and tools used to produce results in subsequent sections.

3.1 Discussion of Data

For each dataset, we collect the data per day and run our calculations on a daily basis before

averaging.

3.1.1 Cash equities (common stock)

For this study, we selected a number of liquid stocks traded on the NASDAQ exchange between

02/04/2018 - 30/04/2018, a total of 21 trading days. Stocks from the NASDAQ change are

convenient since the NASDAQ uses a constant tick size of $0.013. For this study we consider two

types of stock: large tick and small tick stock. Large tick stocks tend to have a bid-ask spread of

1-2 ticks, whereas small tick stocks tend to have spreads of several ticks. As a rule of thumb, large

tick stocks tend to have a lower price and small tick stocks tend to have higher prices. When we

present our results, we will use EBAY as representative of large tick stocks and Amazon (AMZN)

as representative of small tick stocks. The behaviour of these types of stock is different, as we will

see later.

NASDAQ data was obtained from LOBSTER, a company which reconstructs limit order book

data for all NASDAQ stocks4. The data from LOBSTER comes in two files: a message file and an

order book file. Table 2 shows an example of the message file.

Time (s) Event Type Order ID Size Price Direction

: : : : : :

34567.254323 1 9086849 100 120050 -1

34567.334534 4 9086849 10 120050 1

: : : : : :

Table 2: Sample of the message file

Time is the time of the order book event in seconds, accurate up to microseconds. Event type

denotes what event has occured, for example 1 for a new limit order or 4 for an execution of a

visible order (incoming market order). Order ID is the unique order reference number and Size is

the number of shares. Price is given in dollars multiplied by 104 and Direction is the sign of the

event: +1 for buy, -1 for sell. An example of a two level order book file is shown in table 3

3Stocks under a dollar use a separate tick size but these are not relevant for this study
4LOBs have to be reconstructed since only limited information is published by the exchange
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A Price 1 A Size 1 B Price 1 B Size 1 A Price 2 A Size 2 B Price 2 B Size 2

: : : : : : : :

1257700 1100 1257900 100 1258000 1000 1257800 2000

1257700 1000 1257900 100 1258000 1000 1257800 2000

: : : : : : : :

Table 3: Sample of a 2 level order book file.

The A/B Price 1 is the price of the ask/bid at the first level (i.e. the best bid/ask). The A/B Size

1 is the corresponding liquidity at this level. A/B Price i where i = 1, . . . nlevels is the similar for

the next i levels. Each row in the message file corresponds to the same row in the order book file.

The data cleaning process consisted of selecting the required events for the required time-frames.

The market operates between 9:30 and 16:00, however the first and last half an hour of trading

per day was discarded. We also discarded trading days with shorter trading hours and checked

for trading halts and volatility auctions. This study is concerned only with trades, hence all other

order book events were discarded. We decided not to use the order signs provided by the exchange

and defined a buy market order ε = +1 as a trade executed above the mid-price, and vice-versa for

sell orders. Trades at the mid-price were discarded. Returns were calculated as the log difference

in mid-price between two trades: i.e.

rt := logmt+1 − logmt

, where mt is the mid-price.

3.1.2 Futures

We also run analysis for two futures. We consider the S&P 500 E-mini futures contract for the

same dates: the ESM8 5. S&P 500 futures are very actively traded so this provided a vast dataset

for the specified days. We also consider the 10 year U.S Treasury Note Futures 6. The 10Y T-Note

futures dataset was collected for April 2018 and the contract valid at this time was TYM8.

The futures dataset was collected from Bloomberg and the data cleaning process was slightly

different to the cash equities, since futures are traded over a longer period. They are not traded

on the weekend. We discard any events which were not trades and calculated order signs as done

for the equities.

5Futures contracts are only valid for a certain time period, after which a new one becomes valid. During April

2018 the contract was ESM8. It is currently ESU8.
6The 10 Y U.S. T-Note is a debt-obligation issue by the U.S government with a maturity of 10 years.
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Figure 9: A screen shot from a bloomberg terminal for ESM8. The order book events we require

are TSUM (Trade Summary).

3.2 Tools

All of the data cleaning and analysis was carried out in R. Some of the plots were produced in

Python since the plotting tool was preferred in some cases. The following packages were used:

• R: zoo, latex2exp, stats, base, pracma, Rfast, dplyr, rblpapi (Bloomberg API), sparr, retic-

ulate,

• Python: pandas, numpy, scipy, matplotlib, scorr, priceprop

The scorr library was written by the author of [27] in Python. Some of the functionality in this

library was vital for this study, so the package was rewritten in R.
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4 Empirical Findings

4.1 Persistence of order signs

One stylised fact identified in a number of papers [28, page 16, section 2.6] [11, pages 11-13, section

2.5] [29, page 8, section 4.1] from intra-day order data is the long-term memory of the trade signs

ε. Temporal price changes are largely uncorrelated, else this would make markets predictable. The

signs of the trade, however, display slow decaying correlations. We define the auto-correlation of

the signs as

C(l) = 〈εt+lεt〉 , (4.1)

where 〈·〉 denotes the time averaged value and l is the lag. Figure 10 shows the auto-correlation

of order signs for AMZN in April 2018. The auto-correlation of the signs decays as a power law

C(l) ∼ l−γ , with decay parameter γ = 0.66 in this case. Continuing from the random trading

hypothesis in section 1.2, if this were the case then the auto-correlation of the signs would decay

rapidly. The long term memory in order signs indicates that trades are not random. There are two

likely explanations for this empirical observation [30, page 1, section 1]. The first explanation is

informed traders executing meta-orders to manage their execution costs. The second explanation

is ‘copy-cat’ traders, who interpret the initial trade as a result of a well informed future price

prediction.

Figure 10: The autocorrelation of signs C(l) for AMZN in April 2018. We see a long-ranged

correlation with decay parameter γ = 0.66 which persists for several thousand trades.
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4.2 Price pins

One of the more striking empirical findings identified by Patzelt et. al [31, page 6, section III.C] is

that large order sign imbalances lead to price pina and are associated with minuscule returns. This

is observed frequently on an intra-day timescale in both stocks and futures and one of these price

pins is shown in figure 11. The excerpt was taken from the Microsoft stock price on 02/04/2018

and indicates the 50 trade log-return series as well as the average order sign over this 50 period.

We see around trade 600 that the average order sign is ε̄ ≈ 1, indicating a series of sell trades

which leads to a large bias in the order book. The corresponding return plot indicates a price pin

for approximately the same period.

Figure 11: A small window of order flow for Microsoft with 50 day average order sign ε̄t (top) and

the 50-trade returns (bottom). A price pin is observed at around trade 600 following a high order

sign bias.

The price pin can be attributed to market makers reconsidering their limit orders and revising

them to match the present order bias, as well as informed traders revising their volume of market

orders to match the outstanding liquidity. If there is a high order book bias towards the buy

side, then a continuous string of sell market orders will likely not completely deplete the available

liquidity, hence the price will not change.

4.3 Nonlinear Effects

A detailed investigation into the dynamics of meta-orders is challenging since it requires a propri-

etary trading database where each trading decision can be mapped to the individual trades. Since
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most order book data from major exchanges is anonymous we need another quantity to investigate

aggregate price impacts [31, pages 1-2, section I].

Definition 4.1. The aggregate-volume impact over N trades RN is defined as the average price

return conditional on the total volume imbalance QN

RN (Q) =

〈
log mt+N − log mt | Q =

N−1∑
i=0

qt+i

〉
, qi := εiVi, (4.2)

where mt is the mid-price, qt is the signed volume of the trade, εt is the sign of the trade and Vt

is the volume of the trade.

Patzelt et al. [31, page 3, section III.A] showed that for N & 10, the rescaled aggregate impact

function is follows a non-linear sigmoidal shape with which is approximately independent of N and

the asset under consideration. This is not the only quantity which exhibits nonlinear effects.

Definition 4.2. The aggregate-sign impact over N trades RN (E) is defined as

RN (E) =

〈
log mt+N − log mt | E =

N−1∑
i=0

εt+i

〉
, (4.3)

Since our study is mainly concerned with order signs rather than volume we will display results

for the aggregate sign only. Figure 12 shows the aggregate sign impact for AMZN and the ESM8

with bin sizes of N = 50.

(a) AMZN (b) ESM8

Figure 12: The aggregate sign impact RN (E) for AMZN and ESM8 Index for N = 50. Both display

sinusoidal behaviour and the curves are very similar.

We see that both curves follow a sinusoidal curve. These curves are remarkably stable and, when

N & 10, are also independent of N . In fact, Patzelt et al. [31, page 3, section III.A] proposed the

scaling ansatz

RN (E) ∼ RNF

(
E
EN

)
, (4.4)
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where EN and RN both follow power-law scaling

EN ∼ E1N
ξ

RN ∼ R1N
φ.

In this case we have F (x) = sinx. Figure 12 also corroborates the price pins seen in figure 11.

When the sign imbalance reaches 100%, the aggregate sign impact reverts to zero, which results

in small returns.

4.3.1 Concave volume dependence

A commonly observed feature in market micro-structure when studying market impact is the

nonlinear dependence on volume. This is in direct contradiction of the Kyle model which predicts

a linear dependence on volume. To see this volume dependence we need a volume conditional

response function.

Definition 4.3. The volume conditional response function over a time period T is defined as

R(T, V ) = 〈(mt+T −mt) · εt|Vt = V 〉 , (4.5)

where V is the volume of the trade and mt is the mid-price.

Proposition 4.4. The volume dependence of the price impact is sublinear and follows a power-law

[17, section 4.1, page 5]:

R(T = ∆t, V ) ∼ V ψ(∆t), ψ(∆t) ≤ 1, (4.6)

where ∆t is the time scale under consideration, and the exponent ψ varies depending on the time

scale.

The power law has exponent ψ which is a function of the time scale ∆t. The time scale can range

from milliseconds to days and typically takes values of ψ ≈ 0.1−0.3 on a trade by trade time scale

but tends to ψ = 1 when considering several thousands of trades. Figure 13 shows the volume

conditioned response function of AMZN for April 2018 with T = 50. We see that the volume

conditional response function follows a power law with exponent ψ = 0.124.

The small value of the exponent ψ for trade-by-trade time scales implies a week volume dependence.

This can be attributed to large market orders which are only submitted if there is a sufficient

quantity at the best price level, hence the impact is limited. It has been suggested that price

changes are more strongly correlated with the number of trades rather than the volume [32].
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Figure 13: Plot of R(T = 50, V ) against V for AMZN in April 2018. The conditional response

function is a power law with exponent ψ = 0.124.

4.3.2 The square root law of a Meta-order

An empirical observation identified in numerous studies is the empirical square root law of a meta-

order. This law considers the peak impact of a meta order. Consider the inventory I(t). A meta

order has total volume

Q =

∫ t+

t−

dtM(t), (4.7)

where M(t) is the trading rate

M(t) =
∂I(t)

∂t
, (4.8)

and t+ and t− are the starting and ending times respectively.

Definition 4.5. Let X be an arbitrary set and f : X → R be a real valued function. The

set-theoretic support of f supp(f) is the set of points in X where f is non-zero

supp(f) = {x ∈ X|f(x) 6= 0}.
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Definition 4.6. The starting and ending times of a meta-order are defined as

t− = inf supp(m) (4.9)

t+ = sup supp(m) (4.10)

Definition 4.7. The peak-impact of a meta-order is defined as

I(T ) = E[p(t+)− p(t−)] (4.11)

Proposition 4.8. The peak impact of a meta order follows the relation

I(T ) = Y σ

√
Q

V
, (4.12)

where T := t+ − t− is the length of the meta-order, V is the average daily volume of the security

traded, σ is the daily volatility of the security and Y is a homogenisation constant of order 1 [33,

slides 21-27] .

What is remarkable about this empirical law is the near universality it displays. It has been

observed in stocks [4], futures, options [34] and even Bitcoin markets [3]. It does not appear to

have any dependence on geographical location, time period nor the maturity of the market (S&P

500 vs. Bitcoin) [23, section I, page 1]. This also contradicts the predictions of the Kyle model.

Since a propriety trading database is not available for this study, we refer to results from Toth,

Lehalle and Donier. Figure 14 shows the square root law for a number of asset classes. The

law holds, to a reasonable approximation, for all asset classes. The law predicts no dependence

on execution path, an assumption which has been shown to be incorrect. Hence the square root

law acts as a good benchmark for market impact models but can only been seen as a first order

approximation [1, section 1.5.1, pages 8-9].
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(a) Bitcoin (b) LT and ST options

(c) CFM large tick and small tick stocks

Figure 14: The square root law for different asset classes [3, figure 5, page 9] [4, figure 1, page 2]

[5, slide 8]
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5 Propagator Models

We now come to the main focus of this study: propagator models. The motivation of these models

stems from the autocorrelation of order signs as well as the origin of the random nature of price as

discussed in section 1.2. A mathematical framework is required which describes the slowly decaying

correlations in the trade signs as well as the (almost) diffusive nature of prices. Bouchaud et al.

[11, pages 13-14] proposed a class of so-called ‘propagator’ models. These models posit that the

mid-point price mt at time t just before the trade can be expressed as a linear superposition of the

impact of all past trades plus a noise term:

mt =
∑
t′<t

[G(t− t′)εt′ + ηt′ ] +m−∞, (5.1)

where εt′ is the sign of the trade (+1 for a buy order and -1 for a sell order), ηt′ is a noise term

which models price changes not induced by trades (e.g. jumps due to news). The function G(t− t′)

is known as the ‘propagator’ and describes the time decay of the impact of a single trade. The

propagator must decay with time in a precise way to counteract the autocorrelation of the sign of

the trades. In the absence of decay, the sign of the the trades would be proportional to returns,

leading to strong autocorrelations in time and high predictability which is clearly unphysical. On

the other hand, a sudden rapid decay creates a price oscillation over a short period and the resulting

long-term volatility would tend to zero [12, page 2, section 2].

As mentioned in section 4.1, the correlation of order signs C(l) := 〈εtεt+l〉 at large lags l decays as

a power law with exponent γ < 1. This is to account for the effect of meta-orders. To account for

this behaviour, G(t− t′) must also decay as a power law.

The above framework is clearly an over-simplification and is missing three key features [30, page

2]:

1. Equation (5.1) assumes that G only depends on t− t′ rather than t and t′ individually. This

implies that all market orders have identical impact and neglects any fluctuations in the

impact which may arise.

2. There are other order book events which can change the price, such as limit orders within

the bid ask spread and cancellations. These effects are only considered implicitly, since limit

orders oppose market orders. These need to be accounted for explicitly.

3. This is a linear model and neglects any nonlinear effect, like those outlined in section 4.

Linear propagator models aim to address issues 1 and 2 by generalising equation (5.1) such that

price-changing and non price-changing market orders are considered separately. We will consider

two types of linear propagator models: the Transient Impact Model (TIM) and the History De-

pendent Impact Model (HDIM).
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5.1 The one-event propagator model

5.1.1 The Transient Impact Model (TIM1)

Before we generalise the above model into price-changing and non price-changing events we consider

the one-event transient impact model (TIM1). The ‘1’ refers to the single propagator function. If

we consider the price process as above then we can derive a formula for the TIM1 return process

rt := mt+1 −mt by taking the price difference:

rt := mt+1 −mt =
∑

t′<t+1

[G(t− t′ + 1)εt′ + ηt′ ]−
∑
t′<t

[G(t− t′)εt′ + ηt′ ] (5.2)

=
∑
t′<t

[G(t− t′ + 1)−G(t− t′)]εt′ + ηt′ ] +G(1)εt (5.3)

=
∑
j>0

[G(j + 1)−G(j)]εt−j ] +G(1)εt (5.4)

=
∑
j≥0

G(j)εt−j , (5.5)

where we have made the substitution j = t − t′ and we have neglected the noise term. We have

also defined the differential kernel G := G(j + 1) − G(j). Note G(j ≤ 0) ≡ 0 by definition. The

TIM1 is similar to equation (5.1), except the kernel G is now written as a differential kernel G.

The returns rt are written as the convolution between the order signs εt and the kernel G:

5.1.2 The History Dependent Impact Model (HDIM1)

A different interpretation of the TIM1 model is the History Dependent impact model HDIM1 [30,

pages 4-5, section 2.3] which states that the difference of the sign εt from its expected level ε̂t has

a permanent linear impact on the returns:

rt = G(1)(ε− ε̂t) (5.6)

If we consider ε̂t as the best predictor of εt then by construction the price process is a martingale.

When ε̂t is linear then the the TIM1 and the HDIM1 are equivalent:

ε̂t = −
∑
j≥0

G(j)

G(1)
εt−j (5.7)

This best predictor is linear when the string of signs is generated by a Discrete Autoregressive

(DAR) process. We consider the sign at time t as having been influenced by a sign at time t − l,

where the distance is characterised by a discrete probability distribution λl such that

∞∑
l=1

λl = 1

When the model is truncated at l = p the model becomes DAR(p). In this case we have:

ε(t) =

 εt−l with probability ρ

−εt−l with probability 1− ρ.
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Lemma 5.1. If the process is in a stationary state, the signs are probable with equal probability

and the sign autocorrelation function C(l) obeys the Yule-Walker equation

C(l) = (2ρ− 1)

∞∑
n=1

λnC(l − n) (5.8)

Proof. Since εt is an auto-regressive process we have

εt =

∞∑
n=1

λnεt−n.

If we multiply by εt−l and take the time averaged values we get

〈εtεt−l〉 =

〈 ∞∑
n=1

λnεt−nεt−l

〉

= (2ρ− 1)

∞∑
n=1

λn 〈εt−nεt−l〉

= (2ρ− 1)

∞∑
n=1

λn
〈
εtεt−(l−n)

〉
,

where in the final line, we have used stationarity of the εt.

As we have shown empirically the correlation function C(l) decays as power law l−γ with γ < 1.

This then leads to λl ∼ l(γ−3)/2 andρ→ 1−. By construction we have

ε̂t = (2ρ− 1)

∞∑
l=1

λlεt−l,

so we can consider the HDIM1 as a TIM1 where

G(l) = −(2ρ− 1)G(1)λl. (5.9)

Since we can consider the two as equivalent, will not investigate the HDIM1 for the remainder of

this study.

5.2 The generalised propagator model

Larger market orders will have a different impact to smaller market orders, since large market

orders are likely to use up entire levels in the order book. To account for this phenomena, we

introduce different event types πt and extend our definition of the TIM1 and the HDIM1 models.

We consider price-changing and non price-changing events:

πt =

n if rt = 0

c if rt 6= 0.

We now generalise equation(5.1) to include price changing and non-price changing events πt =

{n, c} so now we incur an extra summation

mt =
∑
t′<t

[∑
π′

Gπ′(t− t′)εt′1{πt′=π
′} + ηt′

]
+m−∞. (5.10)
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5.2.1 The Transient Impact Model (TIM2)

If we take equation (5.10) and calculate the returns rt := mt+1 −mt we get

rt =
∑

t′<t+1

[∑
π′

Gπ′(t− t′ + 1)εt′1{πt′=π
′} + ηt′

]
−
∑
t′<t

[∑
π′

Gπ′(t− t′)εt′1{πt′=π
′} + ηt′

]
(5.11)

=
∑
π

G(1)1{πt=π}εt +
∑
j>0

∑
π′

Gπ′(j)1{πt−j=π′}εt−j (5.12)

=
∑
π′

∑
j≥0

Gπ′(j)1{πt−j=π′}εt−j , (5.13)

where again we have defined the differential kernel Gπ′ := Gπ′(j + 1) −Gπ′(j). This is the TIM2

model, where the ‘2’ represents the two different propagator functions. Note that past events,

through the decay of the kernel, aways influence the the price in the TIM2 model. This leads to

the unphysical prediction that non-zero returns are possible when πt = n.

5.2.2 The History Dependent Impact Model (HDIM2)

A modification of the TIM2 model adds a dependency on present events as well as past events.

This is the HDIM2 model:

rt =
∑
π′′

1{πt=π′′}
∑
π′

∑
j≥0

κπ′,π′′(j)1{πt−j=π′}εt−j , (5.14)

where κπ′,π(l) is know as the ‘influence kernel’ which is dependent on past and present events. The

HDIM2 utilises four kernels through and ‘influence matrix’ κπ′,π′′ which is dependent on the label

of the most recent event. The HDIM2 and the TIM2 become equivalent when the kernel κ loses

its dependency on the present event type π. In this case we have:

κπ′,π′′(j) = Gπ′(j). (5.15)

5.3 The Constant Impact Model (CIM)

The above models all assume some time dependence for the propagators G and κ. To verify this

assumption it is worth reversing the logic and test how well time-independent models perform.

We consider the Constant Impact Model, which has no such time-dependence. Consider the exact

formula for the mid-price mt

mt+l = mt +
∑

t≤t′<t+l

εt′∆π′t,εt′ ,t
′ , (5.16)

where ∆π′t,εt′ ,t
′ is the price change at time t′ is event π happens. Since only price changing events

affect the price this becomes

mt+l = mt +
∑

t≤t′<t+l

εt′∆εt′ ,t
′1{π′t=c}.
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We remove the time dependency by averaging the ∆ s over time; this is the average realised gap

∆R
c =

〈
∆εt′ |πt = c

〉
. (5.17)

If we rewrite this in terms of returns we arrive at the CIM2 model

rCIM2
t := ∆R

c 1{π(t)=c}εt (5.18)

∆R
c = 〈|rt| | πt = c〉 . (5.19)

5.4 Measuring Market Impact

Before moving any further we should consider how we should measure market impact. There are

a number of ways we can measure the impact. One could consider the correlation ρ(T ) between

the price change from 0 to T and the total signed volume within this time frame:

ρ(l) =

〈
(mt+l −mt) ·

∑N−1
n=0 εnVn

〉
√
〈(mt+l −mt)〉2

〈
(
∑N−1
n=0 εnVn)2

〉 , (5.20)

where 〈·〉 denotes the time averaged value, εt is the sign of the trade, V is the volume of the trade

and mt is the mid-price. This study is primarily concerned with using response function, which is

a measure of market impact used to calibrate the propagator models.

Definition 5.2. The empirical response function is defined as the covariance of the mid-price

change mt between two points in time separated by l, and the sign of the trade, or precisely:

R(l) := 〈(mt+l −mt) · εt〉 (5.21)

Definition 5.3. The empirical conditioned differential response function Rπ,π′(l) is defined as the

average price behaviour after an order book event, or average impact function:

Rπ,π′(l) := 〈r(t) · ε(t− l)|π(t) = π′, π(t− l) = π〉 (5.22)

=
〈
r(t) · ε(t− l)1{π(t−l)=π}1{π(t)=π′}

〉
. (5.23)

Note we can sum over events π′ and π respectively to get the integrated response functions:

Rπ(l) :=
∑
π′

Rπ,π′(l), R(l) :=
∑
π

Rπ(l). (5.24)

R(l) is the expected one-trade return r at time t+ l given a trade at time t.

5.5 Model Calibration

To calibrate the models, we measure the empirical response function and use it to form a system of

linear equations, which we solve for the kernel [30, page 3, section 2.1] [27, pages 9-10, appendix

A].
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Firstly we consider the HDIM2, which is the most challenging to calibrate. The TIM1 and TIM2

calibration methods are specific instances of this calibration process. First we introduce an error

term defined as:

νt := rt − rHDIM2
t (5.25)

If we combine this with the predicted returns from the HDIM2 [equation (5.14)], we see

Sπ(l) =
〈
(rHDIM2
t + νt)1{πt−l=π}εt−l

〉
≈
〈
rHDIM2
t 1{πt−l=π}εt−l

〉
=

∑
π′′,π′,j≥0

[
κπ′,π′′(j)

〈
1{πt=π′′}1{πt−j=π′}εt−j1{πt−l=π}εt−l

〉]
=

∑
π′′,π′,j≥0

[κπ′,π′′(j)Cππ′π′′ (l, j)] ,

where Cππ′π′′(l, j) is the triple triple cross-correlation. A well calibrated, consistent model will have

no correlations between the model error νt and its input, hence this error term will be negligible

for well formed models.

If we set

f = 1{πt:=π′′}

g = 1{πt−l:=π}εt−l

h = 1{πt−j :=π′}εt−j ,

then we can define Cππ′π′′(l, j) := Cfgh(l, j). For convenience, we will write it in the form S = Ck

or Snc

Scc

 =

Cnnc Ccnc

Cncc Cccc

knc

kcc

 ,
where

Sπ,π
′

l = Sπ,π′(l), Cππ′π′′

lj = Cππ′π′′(l, j), kππ
′

j = κππ′(j).

The TIM2 is easier to calibrate as is expressed in the form:Snc

Scc

 =

Cnn Ccn

Cnc Ccc

gnc

gcc

 ,
where

Cππ′

lj = Cππ′(l, j), gπ
′

j = gπ′(j).

The TIM1 is a further simplification of these linear equations and can be expressed as S = Cg,

where Sl = S(l), gj = g(j) and Clj = 〈r(t)ε(t+ l − j)〉

Calculations were done per day then averaged over the month. Each day has equal weighting

however for more active trading days the contribution of each individual event is lower.
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5.5.1 The Triple Cross-Correlation

Calculation of the triple cross-correlation requires a novel technique proposed by Patzelt et. al

[27, page 10, appendix B].

Definition 5.4. For a function f in Schwartz Space S(R), its Fourier Transform F [f ](ξ) is defined

as

F [f ](ξ) :=

∫
Rn

eiξ·xf(x)dx, for any ξ ∈ Rn (5.26)

Definition 5.5. For a Schwartz function f ∈ Rn, its inverse Fourier transform is defined as

F−1[f ](ξ) := (2π)−nF [f ](−ξ) (5.27)

Definition 5.6. Let f, g : R→ R then the convolution of f and g, written f ∗ g is defined as

(f ∗ g)(t) :=

∫ ∞
−∞

f(τ)g(t− τ)dτ (5.28)

Theorem 5.7. let f, g be in L1(Rn). Then the convolution theorem states that:

(f ∗ g) = F−1 {F{f}F{g}} (5.29)

Proof. See Appendix

Definition 5.8. Let F := F [f ], G := F [g] and H := H [h]. We define the cross-spectrum (or

periodogram) between the functions f , g and h as

Bfgh(x, y) = F̄ (x+ y)G(x)H(y) (5.30)

We can calculate the cross-correlation Cfg(l) between two functions using the convolution theorem

Cfg(l) :=

∫ +∞

−∞
f̄(t)g(t+ l)dt = F−1

[
F̄G
]

(l), (5.31)

where l is the lag, and f̄ is the complex conjugate of f .

Proposition 5.9. The three-point cross-correlation Cfgh(l, j) between three time domain functions

f, g and h is given by the inverse Fourier transform of the cross-bispectrum of the corresponding

functions, namely

Cfgh(l, j) = F−1
ν′ν′′ [Bfgh(ν′, ν′′)] (l, j). (5.32)

Proof. We can extend equation (5.31) to a three-point cross-correlation between the functions
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f(t), g(t+ l) and h(t+ j).

Cfgh(l, j) :=

∫ +∞

−∞
f̄(t)g(t+ l)h(t+ j)dt

=

∫ +∞

−∞
dt

(∫ +∞

−∞
dνF̄ (ν)e2πiνt

∫ +∞

−∞
dν′G(ν′)e−2πiν′(t+l)

∫ +∞

−∞
dν′′H(ν′′)e2πiν′(t+j)

)

=

+∞∫∫∫
−∞

dνdν′dν′′
(
F̄ (ν)G(ν′)H(ν′′)

∫ +∞

−∞
dte2πit(ν′+ν′′−ν)e2πi(lν′+jν′′)

)

=

+∞∫∫∫
−∞

dνdν′dν′′
(
F̄ (ν)G(ν′)H(ν′′)δ(ν′ + ν′′ − ν)e2πi(lν′+jν′′)

)

=

+∞∫∫
−∞

dν′dν′′
(
F̄ (ν′ + ν′′)G(ν′)H(ν′′)e2πi(lν′+jν′′)

)
= F−1

ν′ν′′ [Bfgh(ν′, ν′′)] (l, j)

where we have used the Dirac delta in the third line.

5.5.2 Processing finite discrete-time signals

The autocorrelation of signs C(l) cannot be calculated for an infinite number of lags in practise,

hence we estimate for the truncated series l = −T + 1, . . . , T − 1 [27, appendix B.2, page 11].

Hence for two process correlations we calculate

Ĉfg(l) :=
1

T − |l|

T−1−sup {0,l}∑
t=sup {0,−l}

f̄(t)g(t+ l) (5.33)

= iFFTν [F (ν)G(ν)](l), (5.34)

where Ĉ = 〈C〉 if f and g are jointly stationary, F and G are the zero-padded, Fourier transformed

signals of f and g. The normalisation has a dependence on l since the number of summands

decreases with l. Signals are padded with T zeros since the Fourier transformed signals contain

frequencies for T/2 positive and negatice frequencies respectively. For the triple cross correlations

we have Bfgh(ν, ν′) and Cfgh(l, j) which are T × T matrices. We will apply a variation of Welch’s

method to reduce the number of calculations.

Welch’s method [6] is used to estimate power spectral densities from their periodogram. We will

use a variation to determine the periodogram. Before discussing the variation, we will introduce

Welch’s method. Let X(j), j = 0, 1, . . . , N − 1 be a sample taken from a second order stationary

stochastic sequence with first zero first moment. The sample has spectral density B(f) with

|f | ≤ 1/2. First we take overlapping segments of length L with starting points D steps apart, as

shown in figure 15.
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Figure 15: The segmentation of the signal for Welch’s method. Source: [6, page 18]

The first segment is

X1(j) = X(j), j = 0, 1, . . . , L− 1.

The next segments are

X2(j) = X(j +D), j = 0, 1, . . . , L− 1,

Xk(j) = X(j + (K − 1)D), j = 0, 1, . . . , L− 1.

The spectral density is estimated by calculating a modified periodogram, i.e. we take a window

W (j), j = 0, 1, . . . L− 1 and construct sequences X1(j)W (j), . . . Xk(j)W (j), of which we take the

fast-Fourier transform:

Ak(n) =
1

L

L−1∑
j=0

Xk(j)W (j)e−2πijn/L. (5.35)

The K modified periodograms a given by

Ik(fn) =
L

U
|Ak(n)|2, k = 1, 2, . . . ,K, (5.36)

where fn = n/L, n = 0, 1, . . . , L/2 and

U =
1

L

L−1∑
j=0

W 2(j). (5.37)

The spectral density is then estimated using the average of the periodogams, or more precisely:

P̂ (fn) =
1

K

K∑
k=1

Ik(fn). (5.38)

The variation used is similar except equation (5.35) is not used. Instead, for each time segment

we calculate

Cfgh(l, j) =
1

T − sup (|l|, |j|
F−1
ν′ν′′ [Bfgh(ν′, ν′′)] (l, j), (5.39)

where B is calculated using zero padded fast-Fourier transforms to calculate F,G and H.
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5.6 Link to Hasbrouck’s VAR Model

It is worth considering how the propagator framework relates to the econometric perspective of

Hasbrouck’s VAR model outlined in section 2.3.2, since it has become a benchmark for microstruc-

ture studies [29, section2.4, pages 5-6]. Equation (5.1) can be seen as a special case of equation

(2.3) provided:

1. The signed volume becomes the signs: xt → εt

2. Brr(j) are zero

3. G(l) =
∑

0≤j′<j Bxr(j
′), since equation (5.1) models price rather than returns.

4. The dynamical model for εt is non-specified.

Essentially, the main difference between these two types of model lies in the interpretation. For

example, there is no interpretation for the Brr coefficients since past returns cannot influence the

present price alone.

5.7 Link to Latent Order Books

It is worth mentioning the link between propagator models and the model outlined in section 2.3.3.

Consider the price impact equation (2.9). If the impact is small, i.e. for all t, s |ys−yt| << D(t−s)

then (2.9) becomes

yt =

∫ t

0

dsms√
4πD(t− s)

, (5.40)

which is just a linear propagator model with square-root impact.

6 Results

6.1 Kernels

Here we present the calibrated kernels for the propagator models. Some terminology is inter-

changed: an order book event is taken to be a market order, i.e. a trade. We also present two

cash equities (common stocks) for comparison: EBAY as representative of large tick stocks and

AMZN as a representative of small tick stocks. Results were similar for all small tick stocks and

large tick stocks respectively (see figure 32 in appendix for two more stocks). We compare the cash

equities to an S&P 500 E-mini futures contract and 10-Year U.S. Treasury Note futures. Note, the

maximum lag used for the TIM1 and TIM2 for the equities are up to 1024. Maximum lags for the

other assets were capped at 256 due to data limitations.
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6.1.1 TIM1

The TIM1 kernels were calibrated to their respective response functions and the results are shown

in figure 16. The top two panels indicate kernels for cash equities and the bottom two panels are

the kernels for futures.

(a) EBAY (large tick) (b) AMZN (small tick)

(c) ESM8 (d) TYM8

Figure 16: The TIM1 kernels. All kernels increase before following power law decay.

We see for all assets the kernel increases for the first few lags, resulting in a positive differential

kernel G(l) at small lags, an effect which is much more prominent in large tick stocks and TYM8.

This is not as expected since empirical observations suggest G should be a decreasing function,

thus G(l > 0) should be a negative function. The physical interpretation of this is a market order

will have a lower market impact provided it follows a sequence of trades with the same sign rather

than the opposite sign. Lillo and Farmer referred to this as the ‘asymmetric liquidity’ mechanism

[30, section 2, page 3] whereby the market impact of a market order is inversely proportional to

the probability of occurrence. Suggested reasons for this include market makers placing their limit

orders such as to oppose a trend in market orders, as well as informed traders adjusting their
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request for liquidity to the available volume, thus reducing their market impact.

Knowing this, the increasing integrated kernel G does not behave as expected for small lags. Since

G(1) > 0 market impact will be increased by a sequence of orders of the same sign as the initial

market order, which will violate market efficiency over shorter time scales [30, section 2, page 3].

Following a positive price change, the probability that the next order will have the opposite sign

is increased, which promotes price efficiency. This is a feature which the TIM1 fails to capture.

This effect clearly increases with tick size.

For larger lags, the integrated kernels G follow a slow monotone decay, larger so than the noise

observed at longer lags. The decay of the EBAY kernel exceeds that of the AMZN kernel, a feature

which is common in large tick stocks.

The ESM8 TIM1 kernel appears very similar in shape to the AMZN kernel. The ESM8 kernel is

much less noisy and follows an almost perfect power law decay. This reflects the increase in the

number of events per trading day, as the ESM8 is very frequently traded. The TYM8 appears

more noisy but the vertical axis is an order of magnitude smaller than the ESM8 axis hence the

noise appears worse than it is. The TYM8 has a very slow decaying kernel.

6.1.2 TIM2

The TIM2 kernels were calibrated using conditional response functions and are shown in figure

17. It is immediately obvious that there are some calibration difficulties, particularly for large

tick stocks, as shown in the top left panel. The price changing event kernel Gc follows a noisy

power law decay for L & 10. The kernel is too noisy to observe any monotone decay and the noise

exceeds the decay rate at some points. The non-price changing kernel Gn is increasing for small

lags and plateaus for larger lags. Small tick stocks exhibited similar behaviour, except the non-

price changing kernel Gn increases before decreasing as a power law, which means that non price

changing events has less of an effect on the price at larger lags. An additional discrepancy is the

relative positions of the kernels. The large tick stock kernels even interweave. Notwithstanding,

the distance of the price changing kernel Gc above the non-price changing kernel Gn is larger for

small tick stocks, implying that price changing events have, relatively speaking, more impact on

the price than non-price changing events for small tick stocks.

The ESM8 has a different shaped Gc kernel to the cash equities. Initially it rises and then decays,

as occurs in the other Gc kernels, except the decay rate is much faster and there is a turning

point at around l = 10, after which the kernel increases and then plateaus. This implies that

price changing events have more of a permanent impact rather than a temporary impact. The

non-price changing kernel behaves similarly to AMZN’s: increasing initially before decaying to
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zero. The TYM8 has a non-price changing kernel approximately constant zero, meaning most of

the impact comes from the price changing events. This kernel Gc also increases before decaying as

a power-law.

There is an additional inconsistency regarding Gn(1) which is present for all asset types consid-

ered. By construction, a non-price changing event must have Gn(l = 1) < 0. We see here that

Gn(l = 1) 6= 0, hence the outputs of the model disrespect the labels of {n, c}. This is an inherent

inconsistency within the TIM2 model, the effects of which we will see later. The fact that Gn(l = 1)

is negative means that the market impact of a trade will be larger if it is immediately preceded

by a non-price changing trade on the opposite side of the book, a feature which does not have any

logical explanation.

(a) EBAY (large tick) (b) AMZN (small tick)

(c) ESM8 (d) TYM8

Figure 17: The TIM2 kernels.
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6.1.3 HDIM2

The HDIM2 kernels were calibrated using conditional response functions and are shown in figure

18. Note, these are not the κπ,π′ influence kernels. Instead, we plot

Kπ(l) ≡ Kπc(l) :=

l∑
l′=0

κπc(l
′), (6.1)

so the kernels now represent the influence of past order signs up until a price changing trade c at

lag l = 0. The kernels are all only shown up to lag l = 256 since the data had to be grouped by

date, else the kernels diverged to very large values; the cause of this was undetermined. Since the

calculations were done in groups, these groups were too small to calibrate for lags up to l = 1024.

(a) EBAY (large tick) (b) AMZN (small tick)

(c) ESM8 (d) TYM8

Figure 18: The HDIM kernels

The inconsistency encountered in the TIM2 kernels is no longer present because Kπ(l = 1) = 0

by definition. For both stocks, the decay rate of Kc is particularly high, so much so that it drops

below zero for large enough lags; we will denote this lag l∗. For l < l∗, the price changing kernel

Kc is positive, which means a sequence of price changing market orders of the same sign as the
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final price changing event c will have a greater market impact that a sequence of price changing

signs of the opposite sign. However, for lags l > l∗, the converse is true since Kc is now negative.

This is evidence of the asymmetric liquidity discussed above. The optimal trading strategy would

incorporate price changing orders of the same sign until l∗ trades before the final trade c, after

which price changing events of the same sign will have lower impact.

The main differences between small and large tick stocks is in the non-price changing kernel Kn. It

increases before plateauing for EBAY whereas it increases then decays as a power law for AMZN.

Additionally, a sequence non-price changing events before a price changing event has a greater

market impact for larger tick stocks. This is intuitive since a sequence of non-price changing

orders on the same side of the book as c will deplete the best bid/ask until the price changing

event c which will move the price by at least a tick. Returns in basis points will be higher for

larger tick stocks. The decay of Kn for small tick stocks implies that non-price changing events

before c put more pressure on the price in the same direction as c.

The price changing kernel Kc for the ESM8 shows a steady power law decay. The kernel does not

drop below zero as seen in the equity kernels, hence market impact will be reduced with a sequence

of market orders on the other side of the book of c before c occurs. The non-price changing kernel

Kn increases for the first lag and then remains remarkably constant at around 0.1bps. Whether

this is a very slow decay or constant is not distinguishable from the figure but it does imply that

non-price changing events to have a slow decaying impact on the price. The TYM8 contract price

changing kernel has a completely different shape to the other kernels. It does not appear to follow

a power law, nor any linear relation. This is likely because there are not enough trades per day or

price changing events per day to allow a good calibration. The price changing kernel Kn remains

approximately constant at zero, although it is very noisy.

6.2 Response Functions

We now assess the performance of the models by doing an out of sample analysis. We use data from

first days trading in May 2018 to determine the performance of the models. Subsequent results

are calculated with the kernels up to a max lag of l = 256, since this is the maximum available for

the HDIM2 and using TIM1 and TIM2 kernels up to l = 1024 will unfairly penalise the HDIM2.

Empirical response functions and response functions generated by the models are shown in figure

19 for positive and negative lags l (negative lag is response following market order). For both

small and large tick stocks, we see the response function is generally well replicated up until lags

l ∼ ±10 for the TIM2/TIM2 and l ∼ ±100 for the HDIM2/CIM2. The overall divergence between

predicted response from the models and empirically measured response function could be amplified

by the truncated maximum lag l = 256. Evidence for this is contained in the appendix in figure
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31.

(a) EBAY (large tick) (b) AMZN (small tick)

(c) ESM8 (d) TYM8

Figure 19: The response functions

6.2.1 Large tick stocks

The TIM1 response proves the worst fit to empirical data at negative lags for EBAY. The measured

response is larger than the predicted response for the TIM1, particularly at larger lags; this is

mainly due to the assumption of rigid order flow which does not depend on past price changes. A

consequence of this assumption is there must exist a negative correlation between future order flow

and past returns, a feature that the TIM1 does not capture [30, section 4.2, page 9]. At positive

lags, the TIM1 response function replicates the empirical observation slightly better for EBAY but

still diverges for lags greater than a few hundred. The TIM1 therefore performs the worst out of

the four models, as expected.

The TIM2 response function shows a slight improvement on the TIM1 for negative lags but the

empirical response it still higher. This is due to the additional negative correlation between past
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returns and future order flow as seen in the TIM1 response, although albeit lower meaning that

some of this behaviour is captured by the model. At smaller positive lags we see there is a slight

overshoot. We will observe this overshoot later when we consider the returns plots. There is also

a divergence from the empirical response function at larger lags, so the TIM2 performs particu-

larly badly for EBAY. This can be attributed to calibration bias which arises from inconsistent

interpretation of the event labels {c, n}. This will be discussed in detail in section 6.6.

Figure 20 shows the conditional response functions Rπ. This allows us to see which type of event

contributes the most to the overshoot. As expected, the non-price changing event component

contributes the most to the deviation for positive lags, as shown in figure 20b. We see the TIM2

predicts a negative response for l = 1, which disrespects the non-price changing event label. For

negative lags, however, the non-price changing response function appears to have a better fit to

empirical data than it’s counterpart. The negative correlation between past returns and future

order flow is present in both price changing and non price changing TIM2 kernels, although is is

less pronounced in the former. The empirical curve appears initially flat for positive lags, implying

that non-price changing events do not have an immediate effect on future returns, which seems

intuitive.

(a) Price changing (b) Non-price changing

Figure 20: The conditional response functions for EBAY

Finally we consider the HDIM2 model. For both positive and negative lags, this model matches

the empirical response function very well up until lag l ∼ ±100, after which the response function

diverges from the true response. Since the HDIM2 has the best theoretical grounding it is expected

that this model will reproduce the best results, and up to certain lags it does. The divergence from

the true response could be attributed to the truncated lag of the kernels Kπ,π′ . If we now turn out

attention to the price changing and non price changing response functions Rπ, we see that both

response functions for the HDIM2 replicate the empirical data up to l ∼ ±100.
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6.2.2 Small tick stocks

For AMZN, we see a substantial improvement in the TIM1 and TIM2 response functions at negative

lags. The response is still lower than the empirical data but less so than for EBAY, which implies

the negative correlation between between future order flow and past returns is smaller. This is

common across all smaller tick stocks. The empirical response function increases and then plateaus

at larger positive lags and this behaviour is not captured by the TIM1 nor the TIM2, event when

calculated using longer kernels as in figure 31b.

(a) Price changing (b) Non-price changing

Figure 21: The conditional response functions for AMZN

For the TIM2 model, we can check the contributions from price changing or non-price changing

events. Figure 21 shows the conditional response functions for the TIM2 and HDIM2. For the TIM2

we see at negative lags, the price changing response function matches the data well, indicating that

the negative correlation is captured by the model. However, at positive lags the fit is quite poor.

For non-price changing events, the negative correlation is not captured since the TIM2 predicted

response is too low for negative lags. The divergence of this response function at positive lags is

also present here since the event label inconsistency is still present.

The CIM2 model does not perform as well for small tick stocks as it did for large tick stocks.

This is as expected since the TIM2 kernels cannot be interpreted as constant. The plateau of the

response function at large positive lags is not captured by the CIM2 either.

The HDIM2 replicates the response function of AMZN well for negative lags. At positive lags it

reproduces the data well until around l ∼ 100, after which is diverges like the other models. It is

not clear whether the cause of this is the truncation of the kernel to l = 256 or if this is an issue

with the model itself. When considering the price changing kernel, the HDIM2 does reasonable well

at negative lags but is relatively poor at reproducing the data at positive lags. There are relatively
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few differences between the TIM2 and HDIM2 for the price changing kernel, which is intuitive since

the models both receive the same inputs. The difference lies in the non-price changing kernels.

6.2.3 Futures

The response function for the ESM8 Index is different in shape to the equity response functions.

Firstly, it spans a much lower range. Secondly, at negative lags the response function increases

before decreasing at around lag l ∼ −100. This suggests that, for lags approaching this point from

zero, on average there exists a negative correlation between the present order sign and past returns

[30, section 4.3.1, page 16]. At positive lags the response function appears similar to AMZN’s:

increasing and then plateauing.

TIM1 model does not capture this feature at all and is, as a whole, the worst model for replicating

the empirical response function as it consistently under-estimates the response. The TIM2 offers

a better fit at negative lags but diverges after the first few lags. For positive lags we still see the

overshoot present in equities for the TIM2. The HDIM2 and CIM2 both replicate the empirical

response function very well, with the CIM2 only being slightly worse than the HDIM2.

(a) Price changing (b) Non-price changing

Figure 22: The conditional response functions for the ESM8 Index

If we turn out attention to the conditional response functions, as shown in figure 22, we see that

these are very different to the conditional response functions produced by the equities. The non-

price changing kernel Gn at negative lags increases initially which indicates that if a non-price

changing event occurs, then for smaller lags there is a negative correlation between the current

order sign and past returns. The price changing kernel Gc also increases for negative lags which

means this negative correlation also exists for price changing events. These both contribute to the

overall negative correlation seen in figure 19c. At positive lags, the price changing kernel starts

from the value of the spread in basis points and subsequently decreases, which means the general
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reaction of the market is to mean revert the price following a price-changing order [30, section

4.3.1, page 16].

A remarkable feature of figure 19c is the performance of the CIM2 model. The CIM2 was introduced

as a time independent model such that the time dependent models could be evaluated against

some simplified reference model. The surprising success of the CIM2 model in this case can be

traced back to the TIM2 kernels Gπ. At lags l & 10, both kernels are non-decaying. This hints at

permanenent impact, rather than transient. If the kernel Gn was constant at zero, the price process

could be considered as the sum of non-zero price changes, of which market impact is permanent

[30, section 4.3.1, page 16]. The price could then be modelled by the sequence of random variables

{(εt, πt)}t∈N, and their correlation structure. Since Gn is non-zero constant, we can still apply this

with a vertical shift. This implies that the a constant impact model will work well for ESM8.

The HDIM2 model replicates both price changing and non-price changing kernels well, but the

TIM2 is a relatively poor fit, especially for the non-price changing kernel.

The response function for TYM8 is similar in shape to the ESM8. All models are relatively poor

at replicating this response function. We still observe the overshoot for the TIM2 and all models

begin to diverge after the first few lags. We have omitted the conditional response functions since

they does not provide any insightful information.

6.3 Returns

We now turn our attention to the main assessment for the performance of the models: the predicted

price returns. We want to assess how well each model’s predicted returns match the observed

returns in the market. We use 50 trade log returns and display excerpts of the returns for each

dataset for visualisation. Out of sample analysis is also used here on the first days trading in May

2018.

6.3.1 Large tick stocks

An excerpt of the EBAY 50 day log returns as well as the predicted returns for the models is

shown in figure 23. The top panel includes predicted returns for the TIM1 and TIM2 models.

Both models do not appear to replicate the true returns accurately. A number of times when the

returns peak, like at trade 250 and trade 350, the models do not capture this. The TIM1 frequently

underestimates the returns and the TIM2 frequently overshoots when the returns peak. This is

to be expected since both models have their drawbacks: the TIM1 requires rigid order flow and

the TIM2 is inherently inconsistent. Additionally, the calibration data used consisted of only 21

days. In the literature, calibration of multiple years data was used but this was not a viable option
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given the resources available. Notwithstanding, since the returns are so poorly replicated by the

TIM1 and TIM2 models there is no guarantee that calibration over more data would substantially

improve the results.

(a) TIM1/TIM2

(b) CIM2/HDIM2

Figure 23: An excerpt of 50 trade returns from EBAY with the corresponding predicted returns from the

models. Two figures were used for clarity.

The CIM2, on inspection, appears to be the worst fit of all. This is as expected since the model

is very simple. The general direction of the returns is reasonably well reproduced, i.e. when

true returns increase the CIM2 predicted returns will likely increase too. For the most part, the

predicted returns underestimate the true returns. The HDIM2 predicted returns produce the best

fit to the data but its performance is still relatively poor. It represents a slight improvement on the

TIM2 model, but still has similar issues. For example, the two peaks a trade 250 and 350 are not

captured by the model. There are also overshoots in the predicted returns but not as pronounced

as for the TIM2. The poor performance of all the models when reproducing returns is expected

since their corresponding predicted response functions were poor.
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6.3.2 Small tick stocks

The model predicted returns for AMZN are substantially closer to the true returns than for EBAY.

Figure 24 shows an excerpt of the true 50 trade log returns and their corresponding predictions

from the models. The TIM1 and TIM2 returns shown in the top panel exhibit a remarkable

improvement over the EBAY returns. The rigid order flow assumption has less of an influence on

small tick stocks which is the primary reason for the increase in performance for the TIM1 and

TIM2 returns. There are still overshoots from both models and occasionally the model will fail to

capture a peak or trough, as shown around trade 550.

(a) TIM1/TIM2

(b) CIM2/HDIM2

Figure 24: An excerpt of 50 trade returns from AMZN with the corresponding predicted returns from

the models. Two figures were used for clarity.

The excerpt also shows a remarkable improvement in the CIM2 predicted returns. If considering

this sample alone, the CIM2 appears to be the best performing model of them all which seems

counterintuitive since the CIM2 is expected to perform better for large tick stocks. We will see

later that this excerpt is misleading and actually the CIM2 has the worst fit of all the models. The
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HDIM2 model also provides a reasonably good fit to data which is as expected since the HDIM2

has the best theoretical grounding and the models are expected to perform better for small tick

stocks.

6.3.3 Futures

The first thing that is immediately obvious from figure 25 is the very poor performance of the

TIM2 model. The returns are out by almost an order of magnitude. A poor fit for the TIM2

is to be expected since the response function is not replicated well, however the true extent of

the discrepancy is alarming. A possible explanation for this lies in the non-price changing events.

The non-price changing kernel is hugely over estimated and the futures data consists mainly of

non-price changing events. The TIM1 performs substantially better than the TIM2, although it

fails to capture the (approximate) price pin in the final 200 trades of the excerpt.

(a) TIM1/TIM2

(b) CIM2/HDIM2

Figure 25: An excerpt of 50 trade log returns from ESM8 with the corresponding predicted returns from

the models. Two figures were used for clarity.
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The HDIM2 performs reasonably well although there are prominent overshoots whenever the re-

turns peak and the model also fails to capture the price pin in the final segment. The CIM2,

however, exhibits the best fit of the models. The returns match so well that it can be hard to

distinguish the CIM2 returns in the figure since they hug the true returns so well.

Figure 26: The 50 trade log returns and the model predictions for the TIM1 and CIM2.

For the TYM8, none of the models appear to accurately reproduce the returns. Based on the

model’s ability to replicate the response function, this is as expected. The CIM2 offers the best

fit and the TIM2 and HDIM2 produce returns an order of magnitude higher than expected, hence

they are not displayed. This is expected of the TIM2 but is rather surprising for the HDIM. The

strange shape of the kernel implies that the HDIM2 is not a suitable model for this dataset.

6.3.4 Quantitative comparison

Since we have only considered small excerpts of 1000 trades; it would not be fair to draw any

conclusions from this. A more quantitative description is required which encompasses the entire

dataset. Here we offer a simple quantitative comparison which we will use to conclude which

combination of model and dataset fits the best.

We consider a second order comparison of the predicted 50 day log returns and the true returns.
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Model EBAY AMZN ESM8 TYM8

TIM1 9.499 5.447 1.842 4.866

TIM2 11.023 6.167 12.944 9.482

HDIM2 10.860 5.120 1.632 21.442

CIM2 14.256 7.110 0.493 4.009

Table 4: The root mean square error E2
m of the returns for each model.

We will consider the root mean-squared error E , defined as

E2
m :=

1

N

N∑
i=1

(rt − rm
t )

2
, (6.2)

where N is the number of data points, rt is the true out-of-sample returns, rm
t is the predicted

returns of each model and m ∈ {TIM1,TIM2,HDIM2,CIM2}.

The results are shown in table 4. We see there is a substantial increase in the performance in

results for AMZN over EBAY. One surprising result is the TIM1 and TIM2 outperform the CIM2,

something that was not evident in the returns plots. The HDIM2 proves the best fit for small tick

stocks. For futures, we see a substantial increase in performance for the ESM8 over the TYM8,

as anticipated. The CIM2 model for ESM8 yields the best results, we a root mean square error of

just 0.493.

6.4 Replication of Empirical Observations

Here we assess the performance of the models at replicating some of the findings displayed in 4.

The models account for the autocorrelation of signs by construction. Additionally, since this study

is mainly concerned with order signs, we will not verify the concave volume dependence. We will

mainly consider price pins and aggregate sign impact. The price pins are not replicated well by

all models apart from the CIM2 for futures. Figure 25 shows an example of this. There is an

approximate price pin for the final 100 trades and this is not captured by any of the models except

the CIM2. This was observed frequently in all of the datasets. Each of the models except the

CIM2 largely over estimated returns around price pins.

Figure 27 shows the aggregate sign impact RN (E) for N = 50 predicted by all of the models.

For AMZN, most models are able to approximately reproduce the sinusoidal shape, but all models

overestimate the aggregate sign impact when the sign imbalance is 100%. This is as expected

since the models were not able to capture the price pins. The CIM2 produces the best sinusoidal

shape but still deviates from the true values the most. The TIM1 and TIM2 aggregate sign impact

functions are both linear, which does not reflect the empirical findings. The ESM8 aggregate sign
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(a) AMZN (b) ESM8 Index

Figure 27: Aggregate sign impact R50(E) for the models.

impact results are not replicated well by the models. All models, except the TIM1 overestimate

the aggregate impact and the TIM2 proves the worst fit again for reasons discussed above.

6.5 Calibration to Special Days

As an extension, we offer a comparison for the 10Y U.S. T-Note treasury futures calibrated on a

‘special day’. A special trading day refers to any trading day where trading is different to usual.

Examples include month-end, contract expiry date or contract rollover dates. The special day

we will consider is the Non-Farm Payroll date. Non-farm payroll (NFP) refers to any job in the

U.S except farming, self-employment, non-profit employment and military employment. The U.S

Bureau of Labor Statistics releases the change in the total number of non-farm payrolls on the

first Friday of each month and it is generally seen as an indicator of economic health. The release

of this statistic leads to different trading behaviour on these days. The days are generally more

active, especially if the figure comes as a surprise. The difference in trading activity will be more

pronounced for long-maturity governmnent debt securities, hence why we choose the 10Y U.S. T-

Note futures. We want to see if there is a discrepancy between the kernels and associated returns

when calibrated to these NFP days only. Since Bloomberg data only goes back a few months,

only 5 days data was available for the 10 Y U.S T-Note futures. Since we don’t want to penalise

either dataset, we will recalibrate the 10Y U.S T-Note futures using only 5 days data7 and we will

compare with kernels calibrated to NFP days only.

Figure 28 shows the calibrated TIM1 and TIM2 kernels for the 10-Year U.S. Treasury Note futures

kernel. The calibration process for the HDIM2 failed. This is expected since it also failed when

calibrated to a whole months data. This is likely due to insufficient trades per day. We will omit

7The days were arbitrarily chosen as the days before NFP Dates.
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the HDIM2 from subsequent results for this asset.

The TIM1 kernels are both noisy which is as expected since the dataset used to calibrate is much

smaller. The kernel is also an order of magnitude smaller in range than the ESM8 kernel but still

exhibits a slow power law decay. The kernel calibrated to the NFP date dataset is larger than

its regular counterpart, and this is intuitive since these trading days are more active and volatile,

hence returns are likely to be higher.

(a) TIM1 (b) TIM2

Figure 28: Calibrated kernels for the 10Y U.S. T-Note futures

The 10-Year U.S. Treasury Note non-price changing kernel is approximately constant at zero, whilst

the price changing kernel follows an approximate power law decay for lags greater than 5. There

does not appear to be a significant discrepancy between the NFP dates and non-NFP dates when

calibrating the kernels. The Gc kernel is slightly higher for NFP dates up until around l = 50, for

similar reasons as outlined above.

Figure 29 shows the response functions predicted by the TIM1 and TIM2 models. The CIM2 is

omitted since it does not change when calibrated NFP dates. There do not appear to be any large

discrepancies between the TIM models calibrated to NFP dates and those calibrated to regular

days. This is as expected since the kernels were very similar. The responses from NFP dates are

slightly higher than normal days, which is also as expected from the kernels above.
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Figure 29: The response functions for the TIM1 and TIM2 models calibrated for normal and NFP

dates. The curves appear very similar.

Figure 30 shows the predicted returns of the TIM1 and CIM2 models for the 10Y U.S. T-Note

futures. The TIM2 model is not included since the returns were an order of magnitude larger than

the predicted returns. This is primarily due to the high number of non-price changing events, since

the TIM2 is inherently inconsistent for non-price changing events. The TIM1 performs poorly,

regardless of NFP date or not. Predicted returns are slightly higher at peaks, which represents a

slight improvement of the models when calibrated to NFP days. We consider this an improvement

since TIM1 returns usually underestimate the returns. Nonetheless, there is an argument that this

is not an improvement since the overall fit of the TIM1 is so poor. Given the available data, this is

not surprising. The CIM2 model provides the best fit for returns in this excerpt which is intuitive

since it does not have to be calibrated in the same way as the other models.
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Figure 30: An excerpt of returns for 10Y U.S. T-Note futures. The TIM2 is omitted since returns

were too large and greatly exceed that of the true returns. The CIM2 returns match the true

values the best.

6.6 Discussion

We have explored each propagator model for a number of different datasets, each performing

differently depending on the dataset. We will put the results in section 6.5 aside for now, since

they are only calibrated to 5 days data which is insufficient to fully calibrate the models. Otherwise,

the HDIM2 has the best overall fit if the entire data range is considered. This is as expected since

the HDIM2 has the best theoretical grounding. That said, performance is dependent on the dataset

of choice. For small tick stocks, the models out-perform those calibrated to large tick stocks. One

of the key assumptions used in propagator models is rigid order flow, meaning that the order book

does not explicitly react to past event hence it can be described as a whole by its correlations [30,

section 5, page 17]. In this sense, the structure of order flow can be considered as exogenous and

does not depend on the short term dynamics of prices. This assumption is mostly valid for small

tick stocks where price changes are more common. For large tick stocks, however, price changes

are rare and this assumption is no longer valid.

The TIM2 is poor at replicating the response functions for positive and negative lags. The returns

also corroborate this observation, since the returns over shoot before reverting. This is somewhat

counterintuitive since the TIM2 received the same input as the HDIM2. The reason lies in the

calibration bias. The calibration bias, defined in equation (5.25) only vanishes if there is are no

correlations between the the prediction error and the inputs. The TIM2 contains one substantial

inconsistency which will likely lead to correlations between the prediction error and the inputs to

the model: the incorrect interpretation of event label. This leads to negative correlations between

past returns and future order signs. As seen in the results above, the discrepancy between TIM2

predicted returns and the true returns is magnified significantly when there are a fewer proportion
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of price changing events in the dataset.

The TIM1 as a whole also performs particularly badly. Since the model is so simplistic and

only depends on order signs, this is hardly surprising. One interesting observation is the slight

improvement in returns when calibrating to NFP dates. For small tick stocks the TIM1 consistently

underestimates returns so calibrating to NFP dates will likely train the model to predict larger

returns and provide a better fit. This will be an interesting area for further study, provided more

NFP day data can be acquired.

The CIM2 performs poorly for both small tick and large tick stocks, however for futures it represents

the best fitting model. The returns for the futures appear more discrete than for the stocks. This

benefits the CIM2 the most since non-price changing events are assumed to have zero impact. Since

the CIM2 fits so well, this implies that for futures a non-price changing event will have negligible

effects on returns. The main conclusion of this is the fit of the models depends on the dataset.

The CIM2 predicts constant, permanent impact for returns rather than transient impact which is

much better suited to futures than for stocks.

The dependency of the validity of the models on the dataset seems intuitive. Each dataset has a

different number of price changing events and different daily activity. The poor performance of

the propagator models for the TYM8 could be attributed to insufficient trades per day, or it could

be down to the number of price changing events. In proportional terms, the ESM8 has around 5

times the amount of price changing events as the TYM8.

Before concluding we will divert a little to consider the applications and impact of these findings. As

mentioned in the introduction, understanding market impact is crucial for controlling execution

costs and for setting regulation. Whilst some of our models have not been able to successfully

reproduce empirical findings, in some cases we have managed to find a good fit, to a reasonable

degree of accuracy. We are able to perform out-of-sample analysis to predict different scenarios

based only on two inputs: the signs of the trades and whether it is price changing or not. We have

shown for futures that returns can be predicted. For a sell side business, this allows them to predict

their execution costs in advance8, therefore they can adjust their execution strategy accordingly.

Nonetheless, methods of predicting whether an event will be price changing or not are required to

firm up the predictive power of these models, hence these models are better utilised as a way of

understanding market impact, rather than predicting it.

8The predictions will not be far into the future since they will have to know whether their child orders will be

price changing or not. In the short term you can predict this, for example if there is a high order book imbalance

to one side, you know a small order will likely not be price changing.
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7 Conclusion

The aim of this study was to investigate linear propagator models as a class of models for modelling

market impact. We have found a large dependency of the performance of the models on the dataset

under consideration. All models perform badly for large tick stocks but exhibit a substantial

improvement when tested on small tick stocks. This is due to the assumption of rigid order flow.

We find that the TIM2 is the weakest model due to inconsistent interpretation of the price changing

label. When applied to futures, provided the futures contracts are traded actively enough, we see

strong results for the HDIM2 and particularly the CIM2 which is particularly good for modelling

returns which appear more discrete. When calibrating the models to NFP days, we show there

is a slight improvement in the TIM1 results but the HDIM2 and TIM2 failed to exhibit any

improvement, mostly due to the calibration difficulties with the asset under consideration.

We have left a number of problems for future studies. The main drawback of these models is we

are not able to simulate artificial order-flows with them. As discussed, a sell-side company could

anticipate a price changing event, but there is only a small window in time at which this prediction

is viable. Further studies could include predictions as to whether an event will be price changing

or not. Furthermore, we have only considered trades for this study. Additional studies could look

in more detail into the impact of limit orders, market orders and cancellations (see [29] and [12]).

We have touched on the idea of calibrating these models to so-called ‘special days’, such as NFP

dates. Since the dataset used was limited; a more in-depth study into these special days could yield

some interesting results. This could include contract roll dates or month-end. Finally, other assets

could be considered. We have noted the improvement of the models when considering futures over

stocks (particularly large tick stocks). An investigation into the performance of these models for

other asset classes may uncover further improvements.
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A Appendix

A.1 The Micro Price

The micro-price is was introduced by Stoikov [35, page 4, section 2] to address a number of issues

with using the mid price as the fair price. Firstly, it has been observed that changes in the mid

price can be correlated, an effect known as bid-ask bounce. This means that the mid price is not a

martingale. Secondly, the price signal is low frequency since price changes occur fairly infrequently

compared to the quote updates. Lastly, it does not consider the volume at the best bid/ask prices.

The set up of the micro price is as follows: consider the prediction of the i-th mid-price

P it = E[mτi |Ft],

where τi, i = 1, . . . , n are stopping times when the mid price mt changes defined by

τ1 = inf{u > t|mu −mu− 6= 0

τi+1 = inf{u > τi|mu −mu− 6= 0},

and Ft is the information contained in the order book up until time t. The price processes P it are

martingales by construction.

Definition A.1. The micro price is defined as

Pmicrot = lim
i→∞

P it (A.1)

A.2 Proof of convolution theorem

Proof. Define h(z) := (f ∗ g)(z). First we need to check that h is in L1. Note that∫ ∫
|f(x)g(z − x)|dzdx =

∫
|f(x)|

∫
|g(z − x)|dzdx =

∫
|f(x)|‖g‖1dx = ‖f‖1‖g‖1,

so by Fubini’s theorem we have that h ∈ L1(Rn)

H(ξ) := F [h] =

∫
Rn

∫
Rn

f(x)g(z − x)dxeiξ·zdz

Note that |f(x)g(z − x)eiξ·z| = |f(x)g(z − x)| so we can apply Fubini’s theorem again

H(ξ) =

∫
Rn

f(x)

(∫
Rn

g(z − x)eiξ·zdz

)
dx.
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By substituting y = z − x we have

H(ξ) =

∫
Rn

f(x)

(∫
Rn

g(y)eiξ·(y+x)dy

)
dx

=

∫
Rn

f(x)eiξ·x
(∫

Rn

g(y)eiξ·ydy

)
dx

=

∫
Rn

f(x)

(∫
Rn

g(y)eiξ·(y+x)dy

)
dx

=

∫
Rn

f(x)eiξ·xdx

∫
Rn

g(y)eiξ·ydy

= F (ξ)G(ξ).

Applying the inverse Fourier transform to both sides yields the required result.

A.3 Improved response functions

(a) EBAY (b) AMZN

Figure 31: The TIM1 and TIM2 response functions calculated using kernels up to lag l = 1000. We see a

substantial improvement from figures 19a and 19b for these two models, implying this would be the case

for the HDIM2 too.
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A.4 Kernels for other Stocks

(a) INTC (large tick) (b) MSFT (small tick)

Figure 32: The TIM kernels for MSFT and INTC. Both exhibit the same behaviour as AMZN and EBAY

respectively.
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