
ON THE CLASS OF MODULATED

VOLTERRA STOCHASTIC VOLATILITY

PROCESSES

by

Kees Groeneweg (CID: 01287450)

Department of Mathematics

Imperial College London

London SW7 2AZ

United Kingdom

Thesis submitted as part of the requirements for the award of the

MSc in Mathematics and Finance, Imperial College London, 2017-2018

Declaration

The work contained in this thesis is my own work unless otherwise stated.

Signature and date:

2

Acknowledgements

I would like to thank Dr. Antoine Jacquier who enabled me to based my work in this topic,

as well as for his constant help and guidance throughout the project.

3

Contents

1 Introduction 5

2 The Rough Bergomi Model 7

2.1 Simulation of the rBergomi Model . 11

2.2 Consistency with observed SPX smiles . 13

2.3 Failure to fit VIX smiles . 14

2.4 Implementation . 16

3 Modulated Volterra Stochastic Volatility models 20

3.1 Instantaneous Volatility process . 20

3.1.1 Simulation of the instantaneus volatility process 22

3.1.2 Implementaton of the Riemann sum method 24

3.1.3 Hybrid Scheme . 27

3.1.4 Implementation of the Hybrid Scheme . 28

3.2 Stock Price model under Modulated Stochastic Volatility processes 35

3.2.1 Simulation of the Stock Price process . 36

3.2.2 Implementation . 37

3.3 Calibration to SPX smiles . 39

3.3.1 Monte Carlo Implementation . 40

3.3.2 Control Variate . 43

3.3.3 Lévy-driven Ornstein-Uhlenbek process 49

3.3.4 Cox-Ingersoll-Ross process . 51

3.3.5 Calibration Results . 53

3.4 Forward Variance . 55

3.4.1 Pricing VIX options via Monte Carlo . 60

3.4.2 Implementation . 61

3.4.3 Calibration Results . 68

4 Conclusion 70

A Appendix 71

A.1 Comments on the Implementation . 71

A.2 rBer function . 71

A.3 Implementation of CallRS . 72

A.4 Implementation of the Levy functions . 75

4

5

1 Introduction

In 2014, J. Gatheral, T. Jaisson and M. Rosenbaum present a thorough analysis of financial

time series data from equity markets showing that log-volatility display properties of fractional

Brownian Motion.

In the same work, [1], the authors use estimates of the log-volatility process to conclude

that, across numerous assets, the same stylized facts are observed. In particular, J. Gatheral,

T. Jaisson and M. Rosenbaum corroborate the well-known stylized fact that distribution of log-

volatility is very close to be Gaussian and more importantly, that it presents a scaling property

with constant smoothness.

These properties lead the authors to suggest a model of log-volatility driven by fractional

Brownian Motion (BHt)t∈R with Hurst parameter H, which is a centered self-similar Gaussian

process with stationary increments and satisfying the following property:

E[|BHt+∆ −BHt |q] = Kq∆
qH for any t ∈ R,∆ ≥ 0, q ≥ 0

where Kq =
∫∞
−∞ |x|

q exp(− x2

2)√
2π

dx.

In addition, they consider a Hurst parameter H ≤ 1
2 to obtain a model consistent with the

shape of the volatility surface from equity markets, claiming that ”Volatility is Rough”.

In a later work, [2], from 2005, C. Bayer, P. Friz and J. Gatheral continue with the assumptions

introduced to model log-volatility and introduce the Rough Bergomi able to capture the shape

of the SPX volatility smile and give impressive fits with only four parameters and a quite small

Hurst parameter.

However, when applying this model of forward variance and stock price dynamics to price

VIX options, it produces implied volatility smiles approximately flat, a well-known problem of

the model. This is due to the fact that the forward variance process, E[vu| FT] is approximately

log-normal in the Rough Bergomi model, which ultimately passes this distribution to the VIX

monitoring formula

VIXT :=
√
ζ(T), ζ(T) =

1

Θ

∫ T+Θ

T

E[vu| FT]du

Very recently, in 2018, B. Horvath, A. Jacquier and P. Tankov introduced in [3] a set of

Modulated Stochastic Volatility models, integrating the rBergomi as part of it, and with the

capacity of producing non-flat VIX smiles.

This is achieved by introducing a new process Γ that modulates the instantaneous volatility

process. More precisely they define the instantaneous volatility process as

σt = θ(t) exp(

∫ t

0

√
Γsg(t, s)dBs).

6

By doing so, they achieve impressive fits to VIX smiles using a Lévy-driven Ornstein-Uhlenbek

process to modulate the above integral.

In Section 2 of this thesis, we will review the Rough Bergomi model and show the properties

of the model. We will generate both SPX and VIX smiles corroborating the statements above

about their shape and present an implementation of the exact simulation proposed in [2].

In Section 3, the set of Modulated Stochastic Volatility models are presented with different

implementations of the instantaneous volatility process. One of them is the Hybrid Scheme

proposed by M. Bennedsen, A. Lunde and M. S. Pakkanen. We will compare the different simu-

lation methods and propose a standard Stock Price dynamics using the instantaneous volatility

dynamics introduced in [3].

This model will be used to price European Call option prices and calibrate SPX smiles on

May 14, 2014. The aim here is to show that by introducing the process Γ not only the shape of

the VIX smiles are captured but also the fit to SPX smiles can be as good as in the rBergomi

model.

We will use the Lévy-driven Ornstein-Uhlenbek proposed by B. Horvath, A. Jacquier and P.

Tankov and explore the potential of the Cox-Ingersoll-Ross process as the process modulating

the integral
∫ t

0

√
Γsg(t, s)dBs.

Finally, we will use the Cox-Ingersoll-Ross process to calibrate VIX smiles with the model

proposed in [3] and compare the fit to the one obtained there with the Lévy-driven Ornstein-

Uhlenbek process.

7

2 The Rough Bergomi Model

This model introduced in [2] has been studied as a Rough Fractional Volatility Model (RFSV)

in both volatility and forward variance dynamics. The Rough Bergomi model (also known as

rBergomi) will be presented here as a starting model before introducing the class of Modulated

Volterra stochastic volatility processes presented in [3] which can be seen as a generalization of

the first.

The Rough Bergomi model is capable of replicating some of the stylized facts present in the

volatility surfaces in equity markets. A thorough study of these properties is present in [1] where,

in particular, the authors show that the increments of the log-volatility of several equity assets

display the following properties

• The scaling property: E[|log(σ∆)− log(σ0)|] = Kq∆
ζq .

• Distribution very close to be Gaussian.

Which motivates the authors to suggest the following simple RFSV model ([1], page 14):

σu = σ exp(νBHu) (2.1)

Where (BHu)u∈R is a fractional Brownian Motion process with Hurst parameter H ∈ (0, 1)

defined on a probability space (Ω,F , (Fu)u≥0),P) and ν > 0 is the volatility of volatility.

This process certainly captures the properties mentioned as can be immediately checked by

taking increments of the log process:

log(σu+M)− log(σu) = ν (BHu+M −BHu) (2.2)

Proceeding in a similar way as done in [2], by taking the Mandelbrot-Van Ness integral repre-

sentation of fractional Brownian motion and substituting into (2.1) we obtain

σu = σ exp(ν CH{
∫ u

−∞
(u− s)H− 1

2 dBs −
∫ 0

−∞
(−s)H− 1

2 dBs})

Where CH =
√

2HΓ(3/2−H)
Γ(H+1/2)Γ(2−2H) and Γ is the Gamma function.

To avoid working in the entire real line we can drop the integral parts from −∞ to 0 so

σu = σ exp(νCH

∫ u

0

(u− s)H− 1
2 dBs)

which give us the instantaneous volatility process of the rBergomi model.

8

The instantaneous variance process is given for free by taking the square of σu, vu := σ2
u.

The forward variance process can be defined as ξt(u) := E[vu|Ft] which is a martingale by the

properties of the conditional expectation.

This martingale process has the following explicit dynamics

dξt(u) = 2ξt(u)νCH(u− t)H− 1
2 dBs (2.3)

which are the dynamics of the stochastic Dolans-Dade exponential E(.). (Again, by the

Novikov’s condition, it is easy to see that the process is a martingale.)

To see how this dynamics are obtained we can start by expanding the expectation E[vu|Ft]

E[vu|Ft] = E[σ2 exp(2νCH

∫ u

0

(u− s)H− 1
2 dBs)|Ft]

= E[σ2 exp(2νCH

∫ t

0

(u− s)H− 1
2 dBs) exp(2νCH

∫ u

t

(u− s)H− 1
2 dBs)|Ft]

the first term is Ft-measurable so it can be taken out of the conditional expectation and the

second term is independent of (Fs)s≤t so we have

E[vu|Ft] = σ2 exp(2νCH

∫ t

0

(u− s)H− 1
2 dBs) E[exp(2νCH

∫ u

t

(u− s)H− 1
2 dBs)]

= σ2 exp(2νCH

∫ t

0

(u− s)H− 1
2 dBs) exp(2(νCH)2

∫ u

t

(u− s)2H−1ds)

where the last equality can be obtained by using the moment generating function of the

normal distribution (E[exp(tN)] = exp(µt+ 1
2σ

2t2)) and the fact that

2νCH

∫ t

0

(u− s)H− 1
2 dBs

is normally distributed with mean 0 and variance 4(νCH)2
∫ u
t

(u−s)2H−1ds (given by the Itô

isometry).

Consider t ≤ T ≤ u, then ξT (u) can be expressed as follows

ξT (u) = E[vu|FT] =

=σ2 exp(2νCH

∫ T

0

(u− s)H− 1
2 dBs) exp(2(νCH)2

∫ u

T

(u− s)2H−1ds)

=σ2 exp(2νCH

∫ t

0

(u− s)H− 1
2 dBs + 2νCH

∫ T

t

(u− s)H− 1
2 dBs)

exp(2(νCH)2

∫ u

t

(u− s)2H−1ds− 2(νCH)2

∫ T

t

(u− s)2H−1ds)

9

=ξt(u) exp(2νCH

∫ T

t

(u− s)H− 1
2 dBs − 2(νCH)2

∫ T

t

(u− s)2H−1ds)

=ξt(u) E(2νCH

∫ T

t

(u− s)H− 1
2 dBs).

this proves that the forward variance process in the rBergomi model have the dynamics (2.3).

It is worth noting that by the above we can recover the instantaneous variance process but

in a different expression

vu = E[vu|Fu] = ξu(u) =ξt(u) E(2νCH

∫ u

t

(u− s)H− 1
2 dBs)

=E[vu|Ft] E(2νCH

∫ u

t

(u− s)H− 1
2 dBs)

This, with the dynamics of the stock process, give us the rBergomi model proposed by Bayer,

Friz and Gatheral in [2] under the risk neutral probability measure Q on a filtered probability

space (Ω,F , (Ft)t≥0),Q)

dSt = St
√
vtdWt (2.4)

vt = ξ0(t) E(2νCH

∫ t

0

(t− s)H− 1
2 dBs) (2.5)

In the same work, the authors propose a simulation method that will be presented here in

addition to the Python implementation shown at the end of this section. This has been done

here to be able to replicate their results and comment the advantages of this model with respect

to stochastic volatility models in which the volatility process is driven by standard Brownian

Motion.

The method that the authors present is an exact simulation method for which the dependence

structure of the two Brownian motions, Wt and Bt, driving the stock and variance dynamics

respectively needs to be known.

In addition, and for completeness, the derivation of these results are presented here in the

following proposition.

Proposition 2.1. Let Bt and Wt be two standard Brownian motion defined on the same prob-

ability space (Ω,F , (Ft)t≥0),Q) such that d〈B,W 〉t = ρ dt and define

B̃t :=
√

2H

∫ t

0

(t− s)H− 1
2 dBs.

Then for v ≥ u

E[B̃v B̃u] =
2HΓ(1)Γ(H + 1

2)

Γ(H + 3
2)

v2H (
u

v
)H+ 1

2 2F1(
1

2
−H, 1, H +

3

2
,
u

v
) (2.6)

E[B̃v Wu] = ρ

√
2H

H + 1
2

(vH+1/2 − (v − u)H+1/2)

E[B̃u Wv] = ρ

√
2H

H + 1
2

uH+1/2

10

Proof. In the first equality, notice that B̃v and B̃u are stochastic integrals with respect to the

same Brownian motion Bt so by the Itô isometry and the change of variables x = s/u we obtain

E[B̃v B̃u] = E[2H

∫ v

0

(v − s)H− 1
2 dBs

∫ v

0

11{s≤u}(u− s)H−
1
2 dBs]

= 2H

∫ v

0

(v − s)H− 1
2 11{s≤u}(u− s)H−

1
2 ds = 2H

∫ u

0

(v − s)H− 1
2 (u− s)H− 1

2 ds

= 2H

∫ 1

0

(v − xu)H−
1
2 (u− xu)H−

1
2u dx

= 2HuH+ 1
2 vH−

1
2

∫ 1

0

(1− x)H−
1
2 (1− u/vx)H−

1
2 dx

Using Euler’s type formula

∫ 1

0

xb−1(1− x)c−b−1(1− zx)−adx = B(b, c− b) 2F1(a, b; c, z)

where B is the Beta function B(x, y) = Γ(x)Γ(y)
Γ(x+y) and 2F1 the hypergeometric function,

we obtain

E[B̃v B̃u] =
2H Γ(1)Γ(H + 1

2)

Γ(H + 3
2)

v2H (
u

v
)H+ 1

2 2F1(
1

2
−H, 1, H +

3

2
,
u

v
)

Notice here that the absolute value of u/v is smaller than 1, an assumption needed to use

the Euler’s type formula.

It is interesting to see that the Gauss’s Hypergeometric Theorem can be applied to the above

expression (when v = u) to obtain the variance of the process.

2F1(
1

2
−H, 1, H +

3

2
, 1) =

Γ(H + 3/2)Γ(2H)

Γ(2H + 1)Γ(H + 1/2)
=

Γ(H + 3/2)

2HΓ(H + 1/2)

with the last equality is given by the identity Γ(z + 1) = Γ(z)z. Then,

Var[B̃v] =
2H Γ(1)Γ(H + 1

2)

Γ(H + 3
2)

v2H
2F1(

1

2
−H, 1, H +

3

2
, 1)

=
2H Γ(1)Γ(H + 1

2)

Γ(H + 3
2)

v2H Γ(H + 3/2)

2HΓ(H + 1/2)
= v2H (2.7)

For the remains identities consider Wt = ρBt +
√

1− ρ2B⊥t where B⊥t is a standard Brownian

motion such that d〈B,B⊥〉t = 0dt.

Then by using this expression we have

E[B̃v Wu] = E[
√

2H

∫ v

0

(v − s)H− 1
2 dBs

∫ v

0

11{s≤u}dWs]

= E[
√

2H

∫ v

0

(v − s)H− 1
2 dBs

∫ v

0

11{s≤u}d(ρBs +
√

1− ρ2B⊥s)]

= E[
√

2H

∫ v

0

(v − s)H− 1
2 11{s≤u}ρ d〈B,B〉s]

+ E[
√

2H

∫ v

0

(v − s)H− 1
2 11{s≤u}

√
1− ρ2 d〈B,B⊥〉s]

2.1 Simulation of the rBergomi Model 11

=
√

2H

∫ u

0

(v − s)H− 1
2 ρ ds = ρ

√
2H

H + 1
2

(vH+1/2 − (v − u)H+1/2)

Similarly

E[B̃u Wv] = E[
√

2H

∫ v

0

11{s≤u}(u− s)H−
1
2 dBs

∫ v

0

dWs]

= E[
√

2H

∫ v

0

(u− s)H− 1
2 11{s≤u}dBs

∫ v

0

d(ρBs +
√

1− ρ2B⊥s)]

= E[
√

2H

∫ v

0

(u− s)H− 1
2 11{s≤u}ρ d〈B,B〉s]

+ E[
√

2H

∫ v

0

(u− s)H− 1
2 11{s≤u}

√
1− ρ2 d〈B,B⊥〉s]

=
√

2H

∫ u

0

(u− s)H− 1
2 ρ ds = ρ

√
2H

H + 1
2

uH+1/2

Remark 2.2. The expression (2.6) is slightly different from the one given in [2] but consistent

with the results. An interesting way in which the reader can be check the consistency of the

expression presented here is by computing Var[B̃v] directly using the Itô isometry instead of the

Hypergeometric Theorem from Gauss.

E[B̃v B̃v] = E[2H

∫ v

0

(v − s)H− 1
2 dBs

∫ v

0

(v − s)H− 1
2 dBs]

= 2H

∫ v

0

(v − s)2H−1ds = v2H

2.1 Simulation of the rBergomi Model

The simulation method proposed by Bayer, Friz and Gatheral can be resumed in the three steps

• Compute the following 2N × 2N joint covariance matrix

C =

E[B̃t1B̃t1] . . . E[B̃t1B̃tN] E[B̃t1Wt1] . . . E[B̃t1WtN]

E[B̃t2B̃t1] . . . E[B̃t2B̃tN] E[B̃t2Wt1] . . . E[B̃t2WtN]
...

. . .
...

...
. . .

...

E[B̃tN B̃t1] . . . E[B̃tN B̃tN] E[B̃tNWt1] . . . E[B̃tnWtN]

E[Wt1B̃t1] . . . E[Wt1B̃tN] E[Wt1Wt1] . . . E[Wt1WtN]
...

. . .
...

...
. . .

...

E[WtN B̃t1] . . . E[WtN B̃tN] E[WtNWt1] . . . E[WtNWtN]

where Ti = i ∗ h, h = T

N and i = 0, . . . , N . (Notice that E[B̃t] = E[Wt] = 0)

2.1 Simulation of the rBergomi Model 12

• For each path, generate a discretization of the paths (B̃t)0≤t≤T and (Wt)0≤t≤T as follows

– Simulate a multivariate standard normal vector Z of size 2N × 1

– Use the Cholesky decomposition to get the lower triangular matrix L such that LLT =

C

– Multiply to obtain the paths,

[B̃t1 . . . B̃tN ,Wti . . .WtN]T = LZ

• Finally, use Euler discretization to obtain (vti)i=0,...,N and (Sti)i=0,...,N

Sti = Sti−1
exp(
√
vti−1

(Wti −Wti−1
)− 1

2
v
i−1
h) (2.8)

vti = ξ0 exp(µB̃ti −
1

2
µ2t2Hi) (2.9)

with µ = 2νCH√
2H

, h = T
N

This simulation method is precise but, as pointed out by the authors, extremely slow. For

this reason and because we are interested in simulating a more general set of Rough Stochastic

Volatility Models, the faster Hybrid Scheme introduced by M. Bennedsen, A. Lunde and M. S.

Pakkanen in [4] (and presented in 3.1.3) will be used here to generate some of the results below.

Before presenting these results, let us consider some justification of equations (2.8) and (2.9)

By discretizing the integrals, the stock process can be rewritten as follows

Sti = St0 exp(

∫ ti

0

√
vsdWs −

1

2

∫ ti

0

vsds) = St0 exp(

i−1∑
k=0

∫ tk+1

tk

√
vsdWs −

1

2

i−1∑
k=0

∫ tk+1

tk

vsds)

= St0 exp(

i−2∑
k=0

∫ tk+1

tk

√
vsdWs −

1

2

i−2∑
k=0

∫ tk+1

tk

vsds) exp(

∫ ti

ti−1

√
vsdWs −

1

2

∫ ti

ti−1

vsds)

and by taking left hand approximations we obtain (2.8)

= Sti−1 exp(

∫ ti

ti−1

√
vsdWs −

1

2

∫ ti

ti−1

vsds) ≈ Sti−1 exp(
√
vti−1

∫ ti

ti−1

dWs −
1

2
vti−1

∫ ti

ti−1

ds)

= Sti−1 exp(
√
vti−1(Wti −Wti−1)− 1

2
vti−1h)

Similarly for the variance process we have

vti = ξ0 E(2νCH

∫ ti

0

(ti − s)H−
1
2 dBs) = ξ0 E(µ

∫ ti

0

√
2H(ti − s)H−

1
2 dBs)

= ξ0 exp(µB̃ti −
1

2
2Hµ2

∫ ti

0

(ti − s)2H−1ds) = ξ0 exp(µB̃ti −
1

2
µ2t2Hi)

Notice that the function g(t− s) = (t− s)H− 1
2 has a singularity on s = t, however, we have

the following remark

2.2 Consistency with observed SPX smiles 13

Remark 2.3. The integral
∫ t

0
(t− s)2H−1ds is convergent for all H ≥ 0.

This can be seen by taking limits and a suitable change of variables: (u = t− s)∫ t

0

(t− s)2H−1ds = −
∫ 0

t

(u)2H−1du = lim
c→0+

∫ t

c

(u)2H−1du

= lim
c→0+

1

2H
[t2H − c2H] =

1

2H
t2H

Since 2H ≥ 0

Then the random variable 2νCH
∫ t

0
(u−s)H− 1

2 dBs, as already said before, has a finite second

moment that can be obtained by integrating the deterministic integral above.

2.2 Consistency with observed SPX smiles

As shown by C. Bayer, P. Friz, J. Gatheral in ([2], page 18), the fits of the Rough Bergomi model

to observed implied volatility smiles can be very impressive. This feature and the small number

of parameters of the model make this, and (RFSV) models in general, superior to conventional

stochastic volatility in terms of capturing the shape of the volatility surface.

Here, instead of presenting the fits to real data (which can be seen in [2]), we present different

graphs of the implied volatility as a variable of the Hurst parameter H. This may help the reader

to understand the role of this parameter.

The volatility of volatility has been fixed and chosen to match as much as possible the shortest

dated SPX smile as of February 4, 2010. ([2], page 19).

H = 0.07 H = 0.14

H = 0.21 H = 0.28

2.3 Failure to fit VIX smiles 14

H = 0.35 H = 0.45

Figure 3: Generated implied volatilities as a function of the log-strike k := log(K/S0) from the

rBergomi model. Prices have been simulated with the Hybrid Scheme and using the parameters

of the table below.

T S0 ν ρ M n k

0.041 1.0 1.2287 -0.9 100000 500 1

Notice that ν has been chosen to obtain µ = 1.9.([2], page 18). The parameters M , n and k

follow the notation used in 3.1.3.

2.3 Failure to fit VIX smiles

The VIX index measures the expected volatility of U.S. stocks over a period of 30 days. It is

computed from Put and Call option prices on the S&P 500 Index. A thorough explanation of

how the Index is calculated can be found in [11].

Despite the consistency of the rBergomi model with SPX smiles, it is a well known problem

that this models fails to capture the VIX smiles. It produces implied volatility smiles that are

approximately flat. The reason of this is that the forward variance process is approximately

log-normal. Let us see this.

The following monotoring formula is used to replicate the Index

VIXT :=
√
ζ(T), ζ(T) =

1

Θ

∫ T+Θ

T

E[vu | FT]du

where Θ is one month and, as seen before, E[vu | FT] = ξT (u) is the forward variance process

which can be rewritten as

E[vu | FT] = ξt(u) E(2νCH

∫ T

t

(u− s)H− 1
2 dBs)

then, taking the natural logarithm, the log-forward variance is

log(ξT (u)) = η(u) + 2νCH

∫ T

t

(u− s)H− 1
2 dBs

which is log-normal for any fixed u ≥ T .

2.3 Failure to fit VIX smiles 15

This eventually makes the VIX approximately log-normal producing flat volatility smiles

which differs from the observed volatility smiles form the markets that are upward-sloping to the

right.

Here we checked this feature of the model numerically. This have been done using the rectan-

gle scheme presented by B.Horvath, A.Jacquier and P.Tankov in [3] meant to simulate VIX op-

tions prices with a more general set of forward variance processes that include the rBergomi.(See

3.4)

To recover the rBergomi model from the more general set of Modulated Volterra Stochastic

Volatility models we only need to take the Γ process to be constant an equal to 1. Where Γ is

the process that modulates the instantaneous volatility process σt as we will see in 3.

Figure 4: Implied Volatility smiles as a function of the log-strike, k = K/S0, produced by the

rBergomi model using the rectangle scheme presented in [3]. All computations are based in 5000

Monte Carlo replications, n = 100, NYear = 500. The rest of parameters producing the flat

smiles from top to bottom are given in the table below.

A similar figure can be seen in ([3], pag 13)

T x α H

1.0 0.053 0.4 0.1

0.3 0.053 0.2 0.1

1.0 0.053 0.2 0.1

1.0 0.053 0.2 0.2

2.4 Implementation 16

2.4 Implementation

1 %%cython --cplus --force

2 from libcpp.vector cimport vector

3 from scipy.special import gamma as Gamma

4 from scipy.special import hyp2f1 as F1

5 import numpy as np

6 cimport numpy as np

7

8 cdef extern from "math.h":

9 double sqrt(double m)

10 double exp(double m)

11 double pow(double base, double exponent)

12

13 cdef class rBergomi(object):

14

15 cdef public double H, mu, rho, gamma, T;

16 cdef public double mean, var, covij;

17 cdef public vector[vector[double]] BW, V, S;

18 cdef public int N, M;

19 cpdef public cov;

20

21 def __cinit__(self, H, mu, rho):

22 self.H = H

23 self.mu = mu

24 self.rho = rho

25 self.gamma = H - 0.5

26

27 cdef double G(self, double x):

28 return (2.*self.H)*(Gamma(1.0)*Gamma(self.H+0.5)/Gamma(self.H+1.5))

29 *pow(x, self.H + 0.5)*F1(-self.gamma, 1., self.H + 1.5, x);

30

31 cpdef covariance(self, int N, double T):

32 self.T = T;

33 self.N = N;

34 C = np.zeros((2*N, 2*N));

35 cdef double h = T/float(N);

36 cdef double Dh = sqrt(2.*self.H)/(self.H + 0.5)*self.rho;

37 cdef double ti;

38 cdef double tj;

39

40 for i in range (1, N + 1):

41 ti = i*h;

42 C[i - 1][i - 1] = pow(ti, 2.0*self.H); #B

2.4 Implementation 17

43 C[i - 1 + N][i - 1 + N] = ti; #W

44 for j in range(1, i):

45 tj = j*h; #ti>tj

46 C[i - 1][j - 1] = pow(ti, 2.0*self.H)*self.G(tj/ti);

47 C[j - 1][i - 1] = C[i - 1][j - 1];

48 C[i - 1 + N][j - 1 + N] = tj;

49 C[j - 1 + N][i - 1 + N] = C[i - 1 + N][j - 1 + N];

50 C[i - 1 + N][j - 1] = Dh*pow(ti, self.H + 0.5);

51 C[j - 1][i - 1 + N] = C[i - 1 + N][j - 1];

52 for j in range(i, N + 1):

53 tj = j*h; #ti<=tj

54 C[i - 1 + N][j - 1] = Dh*(pow(tj, self.H + 0.5)

55 - pow(tj - ti, self.H + 0.5));

56 C[j - 1][i - 1 + N] = C[i - 1 + N][j - 1];

57

58 self.cov = C;

59

60 cpdef B_W(self, int M):

61 self.M = M;

62 cdef vector[vector[double]] BW;

63 BW.resize(M);

64 for m in range(M):

65 BW[m].resize(2*self.N);

66 BW[m] = np.random.multivariate_normal(np.zeros(2*self.N), self.cov);

67

68 self.BW = BW;

69

70 cpdef meanVarB(self):

71 cdef double mean = 0.;

72 cdef double var = 0.;

73 for m in range (self.M):

74 mean += self.BW[m][self.N - 1];

75 var += self.BW[m][self.N - 1]*self.BW[m][self.N - 1];

76

77 mean /= float(self.M);

78 var /= float(self.M);

79 var -= mean;

80 self.mean = mean;

81 self.var = var;

82

83

84

85

86

87

2.4 Implementation 18

88 cpdef covB(self, int i, int j):

89 cdef double meani = 0.;

90 cdef double meanj = 0.;

91 cdef double covij = 0.;

92 for m in range (self.M):

93 meani += self.BW[m][i];

94 meanj += self.BW[m][j];

95 covij += self.BW[m][i]*self.BW[m][j];

96

97 meani /= float(self.M);

98 meanj /= float(self.M);

99 covij /= float(self.M);

100 covij -= meani*meanj;

101 self.covij = covij;

102

103 cpdef volPath(self, double varOrSigma, c):

104 cdef double h = self.T/float(self.N);

105 cdef double ti;

106 cdef vector[vector[double]] Vol;

107 Vol.resize(self.M);

108

109 if (c == "variance"):

110 for m in range(self.M):

111 Vol[m].resize(self.N + 1);

112 Vol[m][0] = sqrt(varOrSigma);

113 for i in range(0, self.N):

114 ti = (i+1)*h;

115 Vol[m][i + 1] = Vol[m][0]*sqrt(exp(self.mu*self.BW[m][i]

116 - 0.5*self.mu*self.mu*pow(ti, 2.*self.H)));

117

118 elif (c == "instantaneous"):

119 for m in range(self.M):

120 Vol[m].resize(self.N + 1);

121 Vol[m][0] = varOrSigma;

122 for i in range(0, self.N):

123 ti = (i + 1)*h;

124 Vol[m][i + 1] = Vol[m][0]*exp(self.mu*self.BW[m][i]);

125

126 self.V = Vol;

127

128

129

130

131

132

2.4 Implementation 19

133 cpdef stockPath(self, double S0):

134 cdef double h = self.T/float(self.N);

135 cdef double volti;

136 cdef vector[vector[double]] S;

137 S.resize(self.M);

138

139 for m in range(self.M):

140 S[m].resize(self.N + 1);

141 S[m][0] = S0;

142 volti = self.V[m][0];

143 S[m][1] = S[m][0]*exp(volti*self.BW[m][self.N] - 0.5*h*volti*volti);

144 for i in range(1, self.N):

145 volti = self.V[m][i];

146 S[m][i + 1] = S[m][i]*exp(volti*(self.BW[m][i + self.N]

147 - self.BW[m][i - 1 + self.N]) - 0.5*h*volti*volti);

148

149 self.S = S;

Notice that instead of using the Cholesky decomposition, we are directly sampling from the

multivariate N (0, C) using he method

np.random.multivariate_normal(np.zeros(2*self.N), self.cov)

20

3 Modulated Volterra Stochastic Volatility models

In the previous section, we saw that the rough Bergomi model while being able to capture the

SPX smile better than standard stochastic volatility models failed to calibrate VIX smiles. As

an attempt to obtain better fits to VIX smiles B.Horvath, A.Jacquier and P.Tankov introduced

the set of Modulated Volterra Stochastic Volatility processes in [3]. In addition, they present

results on simulation schemes for this set of models and a impressive fit to VIX smiles on May 14,

2014. These results were obtained using a Lévy-driven Ornstein-Uhlenbek process to modulate

the instantaneous volatility process as will be explained below.

In this section we will corroborate that this set of models is still able to capture the shape of

SPX smiles obtaining similar shapes and fits as the ones observed in section 2 with the rBergomi

model. For this numerical illustration we will use the Lévy-driven Ornstein-Uhlenbek process

proposed by B.Horvath, A.Jacquier and P.Tankov as well as another regular affine process, the

Cox-Ingersoll-Ross process.

Then we will explore the capacity of this model together with the Cox-Ingersoll-Ross process

to capture the shape of the VIX smiles on May 14, 2014.

3.1 Instantaneous Volatility process

Let us first consider the instantaneous volatility process as introduced in [3]. For the remaining

of the work only the 1-dimensional case is considered.

B.Horvath, A.Jacquier and P.Tankov introduced the following dynamics for the instantaneous

volatility process

σt = θ(t) exp(

∫ t

0

√
Γsg(t, s)dBs) (3.1)

where B standard Brownian motion defined on a probability space (Ω,F , (Ft)t≥0),Q), Γ

is a time-homogeneous positive conservative affine process independent of B and g(t,s) is a

deterministic kernel function such that∫ t

0

g(t, s)2ds <∞

for all t ≥ 0. θ(t) is a deterministic function able to capture the initial volatility curve.

The process Γ has the capability to modulate the integral
∫ t

0

√
Γsg(t, s)dBs so that forward

variance has a distribution different from the log-normal seen in the rBergomi model which,

ultimately, can modulate the VIX implied volatility smiles providing non-flat curves.

3.1 Instantaneous Volatility process 21

However, notice that if the information (the filtration) of the Γ process is known, then we

can recover a log-normal distribution. The process,

Xt :=

∫ t

0

√
Γsg(t, s)dBs

conditioned to the process Γ is normally distributed with mean zero and variance
∫ t

0
Γsg(t, s)2ds.

In addition, by using the tower property of the expectation we can see that the process Xt

has always mean zero (having or not information on the Γ process)

E[Xt | Γ] = E[

∫ t

0

√
Γsg(t, s)dBs | Γ] = E[E[

∫ t

0

√
Γsg(t, s)dBs | Γ]] = 0

The covariance structure of this process can be obtained similarly. Assume v ≥ u then

E[XvXu] = E[

∫ v

0

√
Γsg(v, s)dBs

∫ u

0

√
Γsg(u, s)dBs]

= E[E[

∫ v

0

√
Γsg(v, s)dBs

∫ v

0

11{s≤u}
√

Γsg(u, s)dBs | Γ]]

= E[E[

∫ v

0

Γsg(v, s)g(u, s)11{s≤u}ds| Γ]] = E[

∫ u

0

Γsg(v, s)g(u, s)ds]

where the last equality is given by the Itô isometry which holds since the filtration of the Γ

process is independent from the filtration of the Brownian motion B.

Finally, by using Tonellis theorem to change order of integration, we obtain

E[XvXu] =

∫ u

0

E[Γs]g(v, s)g(u, s)ds (3.2)

Possible due to the fact that the process Γ has being conveniently defined as being positive.

Notice here that the dynamics (3.1) integrates the rBergomi model in the set of Modulated

Volterra Stochastic Volatility models. This can be seen by setting

• Γt(ω) = 1 for all ω ∈ Ω and t ≥ 0

• g(t, s) = α(t− s)H− 1
2 where α = ν

√
2HΓ(3/2−H)

Γ(H+1/2)Γ(2−2H) and ν is the volatility of volatility

The above is very similar to how rough Bergomi model is presented in [3] but the coefficient α

is slightly different. Here α has been chosen to be consistent with the definition of the rBergomi

model as proposed by Bayer, Friz and Gatheral in [2].

In either case this might result in small difference between the volatility of volatility as defined

in both cases.

3.1 Instantaneous Volatility process 22

3.1.1 Simulation of the instantaneus volatility process

Here is presented an easy and straightforward method to simulate the instantaneous volatility

process

σt = θ(t) exp(

∫ t

0

√
Γsg(t, s)dBs) (3.3)

To simulate this process it will be assumed that the path (Γs)0≤s≤t is given. As a first

approach we can start by discretizing the integral Xt :=
∫ t

0

√
Γsg(t, s)dBs by taking left hand

approximations, which is a standard Riemann sum approximation.

To do so, we can start by discretizing the time interval [0, T] where the process will be

simulated. Here a a equidistant grid {t0, t1, t2, ..., tN} is chosen where ti = ih and h = 1
N . Then

the process Xt can be rewritten as a sum and approximated as follows

Xti =

∫ ti

0

√
Γsg(ti, s)dBs =

i−1∑
j=0

∫ tj+1

tj

√
Γsg(ti, s)dBs ≈

≈
i−1∑
j=0

√
Γtjg(ti, tj)4Btj (3.4)

where 4Btj = Btj+1 −Btj can be obtained by simulating a standard Brownian motion path on

the grid {t0, t1, t2, ..., tN} or directly by the identity Btj+1
−Btj =

√
hZj where (Zi)i∈{0,1,...,N−1}

are independent samples from the standard normal distribution N (0, 1).

The simulation of the instantaneous volatility process on the grid {t0, t1, t2, ..., tN} would

simply consists on simulating the process Xt on the same grid and set σti as

σti = θ(ti) exp(

i−1∑
j=0

√
Γtjg(ti, tj)4Btj) (3.5)

Figure 5: 3 simulated paths of the instantaneous volatility process generated using the method

explained above. The Γ process has been set to 1 for all (ω, t) ∈ Ω×Rt≥0. Paths computed with

500 time steps, T = 1.0, σ0 = 0.085 and H= 0.21.

3.1 Instantaneous Volatility process 23

The method presented above is fast and straightforward. It is capable to produce meaningful

results when used for example to calibrate SPX smiles, but is not as precise as methods where a

covariance structure and a kernel approximation is used such as in the exact simulation method

presented in [2].

Since the approximation has been apply to the process (Xs)s≤t, one way of testing the accu-

racy of these methods is by simulating paths (Xs)s≤T and numerically computing the variance

of the random variable XT for a given T .

The next figure shows how the previous method fails to approximate this value for small Hurst

parameter H. To be able to compare this method with the exact simulation method discussed in

the previous section the following is assumed

• Γt(ω) = 1 for all ω ∈ Ω and t ≥ 0

• g(t, s) = α(t− s)H− 1
2 where α = ν

√
2HΓ(3/2−H)

Γ(H+1/2)Γ(2−2H) and ν is the volatility of volatility

• ν =
√

Γ(H+1/2)Γ(2−2H)
Γ(3/2−H)

with this choice we have XT = B̃T as defined in section 2. Then, from proposition 2.1 we have

the equality V ar[XT] = T 2H which is used to compare the accuracy of the methods.

Figure 6: Var[XT] with T = 1. computed using Monte Carlo simulations using the Riemann

sum method (blue line) with 300 time steps and 10.000 trajectories. In green: exact simulation

method presented by Bayer, Friz and Gatheral in [2] with 100 time steps and 2000 trajectories.

Comment 3.1. The randomness observed in the computations of Var[XT], using the exact

method, is due to the low number of replications. However, this simulation method gives values

very close to the theoretical ones even for number of replications used.

3.1 Instantaneous Volatility process 24

Notice here that the the exact simulation method gives a variance of XT very close to 1 for

any Hurst parameter H while the Riemann sum method presents a low accuracy for small H

values.

There are two main reasons that explain these results. The first is the lack of a covariance

structured used in (3.5) and the second, the explosion of the kernel function around T which

occurs faster as the parameter H decreases.

Figure 7: Step approximation of the kernel function g(x) = (1− x)H−
1
2 with 10 time steps and

Hurst parameter H = 0.05

3.1.2 Implementaton of the Riemann sum method

1 %%cython --cplus --force

2 from libcpp.vector cimport vector

3 import numpy as np

4 cimport numpy as np

5 from scipy.special import gamma as Gamma

6

7 cdef extern from "math.h":

8 double sqrt(double m)

9 double exp(double m)

10 double pow(double base, double exponent);

11

12 cdef double g(double x, double gamma):

13 return pow(x, gamma)

14

15 cdef class naiveVol(object):

16

17 cdef public double H, nu, gamma, T, alpha;

18 cdef public double mean, var, cov;

3.1 Instantaneous Volatility process 25

19 cdef public N, M;

20 cpdef public vector[vector[double]] Y, V;

21

22 def __cinit__(self, H, nu, N, M):

23 self.N, self.M, self.H, self.nu = N, M, H, nu;

24 self.gamma = H - 0.5;

25 self.alpha = nu*sqrt(2.*H*Gamma(1.5 - H)/(Gamma(H + 0.5)*Gamma(2. - 2.*H)));

26

27 cpdef I(self, double T, vector[vector[double]] normalM,

28 vector[vector[double]] sigmaPaths):

29 self.T = T;

30 cdef double h = T/float(self.N);

31 cdef double ti;

32 cdef double tj;

33 cdef vector[vector[double]] YPaths;

34 YPaths.resize(self.M);

35

36 for m in range (0, self.M):

37 YPaths[m].resize(self.N + 1);

38 for i in range(1, self.N + 1):

39 ti = i*h;

40 for j in range (0, i):

41 tj = j*h;

42 YPaths[m][i] += sqrt(sigmaPaths[m][j])*g(ti - tj, self.gamma)

43 *sqrt(h)*normalM[m][j];

44

45 YPaths[m][i]*= self.alpha;

46

47 self.Y = YPaths;

48

49 cpdef Vol(self, double theta):

50 cdef vector[vector[double]] VolPaths;

51 VolPaths.resize(self.M);

52

53 for m in range (0, self.M):

54 VolPaths[m].resize(self.N + 1);

55 for i in range(0, self.N + 1):

56 VolPaths[m][i] = theta*exp(self.Y[m][i]);

57

58 self.V = VolPaths;

59

60 cpdef meanVarI(self):

61 cdef double mean = 0.;

62 cdef double var = 0.;

63 for m in range (0, self.M):

3.1 Instantaneous Volatility process 26

64 mean += self.Y[m][self.N];

65 var += self.Y[m][self.N]*self.Y[m][self.N];

66

67 mean /= float(self.M);

68 var /= float(self.M);

69 var -= mean;

70 self.mean = mean;

71 self.var = var;

3.1 Instantaneous Volatility process 27

3.1.3 Hybrid Scheme

As seen in section 3.1.1, the Riemann sum approximation of the integral

Xt =

∫ t

0

√
Γsg(t, s)dBs

produces trajectories with a considerable error when estimating Var[XT] for g(t, s) = α(t−s)H− 1
2

and small Hurst parameter.

As it can be seen from the last figure, a step approximation of the function is not enough

accurate around t, where the function g(t, s) has the singularity.

To deal with this problem and obtain a faster and more general method than the exact simu-

lation method of the rBergomi model given in [2], M. Bennedsen, A. Lunde and M. S. Pakkanen

introduced in [4] a simulation scheme for Brownian semistationary processes by approximating

the kernel function by a power function near the singularity. This approximation, which results

in the so-called Hybrid Scheme, outperforms the Riemann sum approximation presented above.

For this reason, the Hybrid Scheme will be presented here as it will be used to simulate the

instantaneous volatility process (3.3) in some of the numerical experiments.

The Brownian semistationary process was first introduced by O. E. Barndorff-Nielsen and J.

Schimegel in [5] as a stochastic process Yt such that

Yt = µ+

∫ t

−∞
Σsg(t, s)dBs +

∫ t

−∞
asq(t, s)ds

Where µ is constant, B is Brownian motion, (Σt)t∈R and (at)t∈R are {Ft}-predictable pro-

cesses with locally bounded trajectories and g(t, s) = g(t− s), q(t, s) = q(t− s) : (0,∞)→ [0,∞)

are Borel measurable functions.

M. Bennedsen, A. Lunde and M. S. Pakkanen also present an extension of the scheme to

truncated Brownian semistationary processes (T BSS) which are the processes in which we will

be interested.

It will be useful to recall the definition of this process.

Definition 3.2. A Truncated Brownian semistationary process Yt is a stochastic process defined

on a probability space (Ω,F , (Ft)t≥0,P) such that

Yt =

∫ t

0

Σsg(t, s)dBs

Where B is Brownian motion , (Σt)t≥0 is an {Ft}-predictable process with locally bounded

trajectories and g(t, s) = g(t− s) : (0,∞)→ [0,∞) is a Borel measurable function.

This is basically a reduced form of a Brownian semistationary process where in additon the

integral has been truncated.

3.1 Instantaneous Volatility process 28

In [4] is also assumed that
∫∞
o
g(x)2dx is finite so the stochastic integral is well defined and

that the process (Σt)t≥0 is covariance stationary with finite second moments, i.e. E[Σ2
t] <∞ for

all t ≥ 0.

More assumptions are introduced in their work considering the kernel function g(x) to ensure

the roughness of the process Yt and that the approximation of this function by a power function

near zero is reasonable. With all this, the Hybrid Scheme is composed of two parts: a Riemann

sum approximation where the kernel function has been approximated using a step function and

a sum of Wiener integrals of the power function near t.

Yn(t) =

min{bntc,k}∑
j=1

Lg
(
j

n

)
Σt− j

n

∫ t− j
n + 1

n

t− j
n

(t− s)βdBs +

bntc∑
j=k+1

g

(
bj
n

)
Σt− j

n

∫ t− j
n + 1

n

t− j
n

dBs

(3.6)

The function Lg : (0, 1] → [0,∞) is related to one of the assumptions that requires g(x) =

xγLg(x) with γ ∈ (−1/2, 1/2)−{0} and x ∈ (0, 1]. In addition, Lg is assumed to be continuously

differentiable, slowly varying at 0 and bounded away from 0.

n, k are natural numbers determining the time-step discretization and the number of cells

in which the kernel function is approximated by the power function near zero. (bj)
bntc
j=k+1 with

bj ∈ [j − 1, j] a sequence of numbers that defines the step function approximation.

Remark 3.3. By choosing k = 0, bj = t− j
n and Σt− j

n
=
√

Γt− j
n

we recover the Riemann sum

method (3.4) presented above.

3.1.4 Implementation of the Hybrid Scheme

Given n, k natural numbers, T ≥ 0 and {Σi}bnTc−1
i=0 a discretized path of Σ, on a equidistant grid

{0, 1
n ,

2
n , ...,

bnTc
n } the method to simulate a path of the (T BSS) proposed by M. Bennedsen, A.

Lunde and M. S. Pakkanen is as follows:

• Generate independent samples Bi from the multivariate Gaussian distribution N (0, C) for

i = 0, 1, ..., bnT c − 1 where C is a (k + 1)× (k + 1) covariance matrix defined as

C1,1 =
1

n

C1,j =
(j − 1)γ+1 − (j − 2)γ+1

(γ + 1)nγ+1
, j = 2, ..., k + 1

Cj,j =
(j − 1)2γ+1 − (j − 2)2γ+1

(2γ + 1)n2γ+1
, j = 2, ..., k + 1

3.1 Instantaneous Volatility process 29

Cj,l =
(j − 1)γ+1 − (l − 1)γ

(γ + 1)n2γ+1 2F1(−γ, 1, γ + 2,
j − 1

l − 1
)

− (j − 2)γ+1 − (l − 2)γ

(γ + 1)n2γ+1 2F1(−γ, 1, γ + 2,
j − 2

l − 2
)

j, l = 2, ..., k + 1, j < l

• Compute Y
(
i
n

)
using the equation

Y

(
i

n

)
=

min{i,k}∑
j=1

Lg
(
j

n

)
Σi−jBi−j,j +

i∑
j=k+1

g

(
b∗j
n

)
Σi−jBi−j (3.7)

Finally, as in the previous case, simulating the instantaneous volatility process would simply

consist in simulating first the (T BSS) and on the same grid compute σti as

σti = θ(ti) exp(Yti) ti =
i

n

Figure 8: 3 simulated paths of the instantaneous volatility process generated using the Hybrid

Scheme with n = 500 and k = 1. The Γ process has been set to 1 for all (ω, t) ∈ Ω×Rt≥0. Paths

computed with 500 time steps, T = 1.0, σ0 = 0.085 and H= 0.21.

From now on, when using the Hybrid Scheme in this work, the sequence (bj)
bntc
j=k+1 will be

the optimal sequence from ([4], Proposition 2.8, pag 10).

b∗j =

(
jH+ 1

2 − (j − 1)H+ 1
2

H + 1
2

) 1

H− 1
2

.

3.1 Instantaneous Volatility process 30

In addition, notice that the assumptions presented in [4] are meant for a more general frame-

work that the one we are interested in here so from now on we will consider

• Σt =
√

Γt

• g(t, s) = α(t− s)H− 1
2 so we have γ = H − 1

2 and Lg(x) ≡ α .

• α = ν
√

2HΓ(3/2−H)
Γ(H+1/2)Γ(2−2H)

Figure 9: V ar[XT] with T = 1. computed using Monte Carlo simulations with 300 time steps

and 10.000 trajectories with two methods: Riemann sum method in blue and Hybrid Scheme

with k = 1 in green and k = 2 in red.

The figure above shows the advantage of using the Hybrid Scheme over the Riemann sum

method or the exact simulation proposed in [2] in the rBergomi model.

Implementation

1 %%cython --cplus --force

2 from libcpp.vector cimport vector

3 from math import floor

4 import numpy as np

5 cimport numpy as np

6 from scipy.special import gamma as Gamma

7 from scipy.special import hyp2f1 as F1

8

9 cdef extern from "math.h":

10 double sqrt(double m)

11 double exp(double m)

12 double pow(double base, double exponent);

3.1 Instantaneous Volatility process 31

13

14 cdef double mx(double a, double b):

15 if (a > b):

16 return a

17 else:

18 return b

19

20 cdef double g(double x, double H):

21 return pow(x, H - 0.5)

22

23 cdef class HybridScheme(object):

24

25 cdef public double H, nu, gamma, T, alpha, theta, S0;

26 cdef public double mean, var, covij;

27 cdef public int k, n, N, M;

28 cpdef public vector[vector[double]] Y, V, S;

29 cdef public vector[double] b, call;

30 cpdef public cov, L;

31

32 def __cinit__(self, H, nu, k, n, M, T):

33 self.k, self.n, self.M, self.H, self.nu, self.T = k, n, M, H, nu, T;

34 self.gamma = H - 0.5;

35 self.N = floor(T*n);

36 self.alpha = nu*sqrt(2.*H*Gamma(1.5 - H)/(Gamma(H + 0.5)*Gamma(2. - 2.*H)));

37

38 cpdef covariance(self):

39 cdef double g1 = self.gamma + 1.;

40 cdef double g2 = self.gamma + 2.;

41 cdef double g3 = 2.*self.gamma + 1.;

42 cdef vector[double] b;

43 b.resize(self.N - self.k)

44 E = np.ndarray(shape = (self.k + 1, self.k + 1));

45

46 E[0][0] = 1./float(self.n);

47 for j in range (2, self.k + 2):

48 E[0][j-1] = (pow(j - 1., g1) - pow(j - 2., g1))/(g1*pow(self.n, g1));

49 E[j-1][0] = E[0][j-1];

50 E[j-1][j-1] = (pow(j - 1., g3) - pow(j - 2., g3))/(g3*pow(self.n, g3));

51 for t in range(j + 1, self.k + 2):

52 E[j-1][t-1] = pow(j - 1., g1)*pow(t - 1., self.gamma)

53 *F1(-self.gamma, 1., g2, (j - 1.)/(t - 1.)) - pow(j - 2., g1)

54 *pow(t - 2., self.gamma)*F1(-self.gamma, 1., g2, (j - 2.)/(t - 2.));

55 E[j-1][t-1] /= (g1*pow(self.n, g3));

56 E[t-1][j-1] = E[j-1][t-1];

57

3.1 Instantaneous Volatility process 32

58 self.cov = E;

59 self.L = np.linalg.cholesky(E);

60

61 for l in range (self.k + 1, self.N + 1):

62 b[l - (self.k + 1)] = pow((pow(l, g1) - pow(l - 1., g1))/g1,

63 1./self.gamma);

64

65 self.b = b;

66

67 cpdef TBSS(self, normalM, vector[vector[double]] sigmaPaths):

68 cdef vector[vector[double]] YPaths;

69 YPaths.resize(self.M);

70 cdef vector[vector[double]] W;

71 W.resize(self.N);

72 WAux = np.zeros(self.k + 1);

73

74 for m in range(self.M):

75 YPaths[m].resize(self.N + 1);

76 for i in range(self.N):

77 for j in range(self.k + 1):

78 WAux[j] = normalM[i][m + j*self.M];

79 W[i].resize(self.k + 1);

80 W[i] = self.L.dot(WAux);

81

82 for i in range(1, self.k + 1): #i<=k

83 for j in range(1, i + 1):

84 YPaths[m][i] += sqrt(sigmaPaths[m][i - j])*W[i - j][j]

85 YPaths[m][i] *= self.alpha;

86

87 for i in range(self.k + 1, self.N + 1): #i>k

88 for j in range(1, self.k + 1):

89 YPaths[m][i] += sqrt(sigmaPaths[m][i - j])*W[i - j][j]

90 for j in range(self.k + 1, i + 1):

91 YPaths[m][i] += g(self.b[j - (self.k + 1)]/float(self.n), self.H)

92 *sqrt(sigmaPaths[m][i - j])*W[i - j][0];

93 YPaths[m][i] *= self.alpha;

94

95 self.Y = YPaths;

96

97 cpdef Vol(self, double theta):

98 self.theta = theta;

99 cdef vector[vector[double]] VolPaths;

100 VolPaths.resize(self.M);

101

102 for m in range (0, self.M):

3.1 Instantaneous Volatility process 33

103 VolPaths[m].resize(self.N + 1);

104 for i in range(0, self.N + 1):

105 VolPaths[m][i] = theta*exp(self.Y[m][i]);

106

107 self.V = VolPaths;

108

109 cpdef Stock(self, double S0, vector[vector[double]] normalM):

110 self.S0 = S0;

111 h = self.T/float(self.N);

112 cdef vector[vector[double]] SPaths;

113 SPaths.resize(self.M);

114

115 for m in range (0, self.M):

116 SPaths[m].resize(self.N + 1);

117 SPaths[m][0] = S0;

118 for i in range(1, self.N + 1):

119 SPaths[m][i] = SPaths[m][i - 1]*exp(self.V[m][i - 1]*sqrt(h)

120 *normalM[i - 1][m]

121 - 0.5*h*self.V[m][i - 1]*self.V[m][i - 1]);

122

123 self.S = SPaths;

124

125 cpdef meanVarTBSS(self):

126 cdef double mean = 0.;

127 cdef double var = 0.;

128 for m in range (0, self.M):

129 mean += self.Y[m][self.N];

130 var += self.Y[m][self.N]*self.Y[m][self.N];

131

132 mean /= float(self.M);

133 var /= float(self.M);

134 var -= mean;

135 self.mean = mean;

136 self.var = var;

The HybridScheme class first needs to be initialized by providing the parameters H, ν, k, n,

M, T where M is the number of paths wanted and the rest of parameters are as presented above.

Hs = HybridScheme(H, nu, k, n, M)

Then the covariance matrix C need to be computed before generating any (T BSS) path.

This is done by calling the member function: covariance()

Hs.covariance()

Finally M (T BSS) paths are generated using the equation (3.7) by calling

3.1 Instantaneous Volatility process 34

Hs.TBSS(normalM, sigmaPaths)

Here sigmaPaths should be a container with M distretized paths {Σi}Ni=0 with N = Hs.N.

normalM should be a container of size = (Hs.N, Hs.M*(Hs.k + 1)) with independent samples

drawn from a standard normal distribution.

The main advantage of having this as an input is that the randomness can be fixed. This

is desirable when calibrating where we want a change in the value only produced by changes in

the parameters and not in the randomness. Otherwise, the random seed should be prefixed but

having normalM as an input also allows to generate it only once.

3.2 Stock Price model under Modulated Stochastic Volatility processes 35

3.2 Stock Price model under Modulated Stochastic Volatility processes

Let (St)t≥0 and (σt)t≥0 be stochastic processes defined on a probability space (Ω,F , (Ft)t≥0,Q)

with dynamics

dSt = StσtdWt

σt = θ(t) exp(

∫ t

0

√
Γsg(t, s)dBs) (3.8)

where B and W are standard Brownian motions with correlation ρ, i.e. dWtdBt = ρdt.

The process (Γs)s≤t and the deterministic functions θ(t) and g(s, t) are as presented previously

in section 3.

Remark 3.4. Being the model specified under the risk neutral probability measure we could

find differences between the parameters obtained from calibration (pricing) under this probability

space and the ones obtained from statistical estimations (physical measure).

The dynamics of the stock price process are proposed here without a drift term to avoid

dealing with the change of measure to obtain a truly martingale price process.

However, it does not seem obvious how to prove that (St)t≥0 is actually a martingale.

First, notice that under this dynamics the price process becomes the stochastic exponential of∫ t
0
σsdWs. This is easy to check by defining the process Yt := log(St) and applying Itô’s lemma

dYt =
1

St
dSt −

1

2

1

S2
t

(dSt)
2 = σtdWt −

1

2
σ2
t dt

then integrating from 0 to t

log(St)− log(S0) =

∫ t

0

σsdWs −
1

2

∫ t

0

σ2
sds

and finally by exponentiating both sides of the equality

St = S0 exp(

∫ t

0

σsdWs −
1

2

∫ t

0

σ2
sds) (3.9)

(3.10)

Being the volatility process (σt)t≥0 a Wiener integral of a deterministic function, the instan-

taneous volatility process becomes a left continuous {Ft}-adapted process. This allow us to

conclude that (St)t≥0 is a local martingale.

There are several ways of checking that a local martingale is a martingale. In this case,

having St = E(σt) where E(·) is the stochastic exponential we may be tempted to use Noviko’s

condition which is a sufficient condition for E(σt) to be a martingale. The condition is

E[exp(
1

2

∫ t

0

σ2
sds)] <∞

However, the process (Γt)0≤t that modulates the volatility process does not help with this com-

putations and actually this does not seem a straightforward condition to check.

3.2 Stock Price model under Modulated Stochastic Volatility processes 36

3.2.1 Simulation of the Stock Price process

The simulation of the Stock price process is straightforward having already a path {σti}Ni=0 of

the instantaneous volatility process.

It can be derived similarly as in section 2 by splitting the integrals into sums and taking left

hand side approximations

Sti = St0 exp(

∫ ti

0

σsdWs −
1

2

∫ ti

0

σ2
sds) = St0 exp(

i−1∑
k=0

∫ tk+1

tk

σsdWs −
1

2

i−1∑
k=0

∫ tk+1

tk

σ2
sds)

= St0 exp(

i−2∑
k=0

∫ tk+1

tk

σsdWs −
1

2

i−2∑
k=0

∫ tk+1

tk

σ2
sds) exp(

∫ ti

ti−1

σsdWs −
1

2

∫ ti

ti−1

σ2
sds)

= Sti−1
exp(

∫ ti

ti−1

σsdWs −
1

2

∫ ti

ti−1

σ2
sds) ≈ Sti−1

exp(σti−1

∫ ti

ti−1

dWs −
1

2
σ2
ti−1

∫ ti

ti−1

ds)

= Sti−1
exp(σti−1

(Wti −Wti−1
)− 1

2
σ2
ti−1

h)

Recall that the Brownian motions B and W driving the instantaneous volatility and the

stock price processes are correlated with parameter ρ. Notice that W can be defined as Wt :=

ρBt+
√

1− ρ2B⊥ where B and B⊥ are independent Brownian motions. This is a consequence of

the Lévy Characterization of Brownian motion, since W is a continuous martingale with W0 = 0

and (dWt)
2 = dt.

In practice we will sample from a standard normal random variable and use the property

that Brownian motion has normally distributed increments with mean 0 and variance given by

the time difference.

Wti −Wti−1 =
√
ti − ti−1Z Z ∼ N (0, 1)

This means that we only need independent samples from a standard normal variable.

To generate a stock price path we need to

• Choose a discretization of the interval [0, T]. Here a equidistant grid {t0, t1, t2, ..., tN} is

chosen with ti = ih, i = 0, 1, 2, ..., N

• Generate a path {Γti}Ni=0 of the process Γ that modulates the stochastic integral of the

instantaneous volatility process.

• Generate paths {Bti}Ni=1 (or {Bti}Ni=1 if the Hybrid Scheme is chosen) and {Wti}Ni=1.

In case of using the Riemann sum method to generate the instantaneous volatility process

we could proceed by simulating two independent multivariate standard normal vectors B,

B⊥ and set Z = ρB +
√

1− ρ2B⊥.

• Generate a path {σti}Ni=0 of the instantaneous volatility process by using either the Riemann

sum method or the Hybrid scheme presented above.

3.2 Stock Price model under Modulated Stochastic Volatility processes 37

• Finally use the following equation to generate a path {Sti}Ni=0 of the stock price

Sti = Sti−1
exp(σti−1

(Wti −Wti−1
)− 1

2
σ2
ti−1

h)

3.2.2 Implementation

To complete the implementations presented above only an extra member function is needed for

the stock price.

1 cpdef Stock(self, double S0, vector[vector[double]] normalM):

2 self.S0 = S0;

3 h = self.T/float(self.N);

4 cdef vector[vector[double]] SPaths;

5 SPaths.resize(self.M);

6

7 for m in range (0, self.M):

8 SPaths[m].resize(self.N + 1);

9 SPaths[m][0] = S0;

10 for i in range(1, self.N + 1):

11 SPaths[m][i] = SPaths[m][i - 1]*exp(self.V[m][i - 1]*sqrt(h)

12 *normalM[i - 1][m]

13 - 0.5*h*self.V[m][i - 1]*self.V[m][i - 1]);

14

15 self.S = SPaths;

3.2 Stock Price model under Modulated Stochastic Volatility processes 38

The following class will be helpful to generate the multivariate standard normal samples.

1 class normalGen(object):

2

3 def __init__(self, k, Nrows, Ncolumns):

4 self.k, self.N, self.M = k, Nrows, Ncolumns

5

6 def vol(self):

7 self.B = np.random.normal(size=(self.N, self.M*(self.k + 1)))

8

9 def stockAndVol(self, rho):

10 self.rho = rho

11 self.B = np.random.normal(size=(self.N, self.M*(self.k + 1)))

12 Bbar = np.random.normal(size=(self.N, self.M))

13 self.W = rho*self.B[:, :self.M] + np.sqrt(1. - rho*rho)*Bbar

The normalGen class first needs to be initialized by providing the parameters k, Nrows, Ncolumns.

normalMatrix = normalGen(k, Nrows, Ncolumns)

Then, if we only want to generate a vol path the following member function will give us the

normal samples wanted.

normalMatrix.vol()

On the other hand, if we want correlated samples to generate instantaneous volatility and

stock price paths, we can call

normalMatrix.stockAndVol(rho)

The results are stored as member data, normalMatrix.B and normalMatrix.W for the volatil-

ity and the stock paths respectively.

This class supports both the Riemann sum method (k = 0) and the Hybrid Scheme.

3.3 Calibration to SPX smiles 39

3.3 Calibration to SPX smiles

As seen in section 2, fractional stochastic volatility models such as the rBergomi model show a

stronger consistency with the SPX volatility surface than stochastic volatility models driven by

a standard Brownian motion process.

In the case of the set of Modulated Volterra stochastic processeses it is expected that the

consistency with the SPX volatility surface should be as good as the one presented by the rough

Bergomi model.

In this section we will calibrate the model to SPX smiles using the dynamics (3.8) presented

above. This is done by calibrating the parameters of the model to match the prices of liquid

derivatives on the SPX Index. Usually European Call and Put options are used for calibration.

Here European Call option prices are chosen to calibrate the model. As the reader probably

knows already, European Call options are financial contracts that gives the holder of the option

the right but not the obligation to buy an underlying at maturity T for a certain price K

previously agreed

Assuming that there is no discounting factor and that we are on a probability space (Ω,F ,

(Ft)t≥0,Q) where the stock price process is a martingale, by the martingale pricing theory, the

price CT of a European Call option with maturity T and strike K is

CT = E0[(ST −K)+]

Recall that the dynamics (3.8) were presented with the intention to start under this assump-

tions.

Therefore, the pricing of this financial contract can be easily obtain by simulating multiple

paths of the stock process as already explained and using the estimation

E0[(ST −K)+] ≈ 1

M

M∑
m=1

(SmT −K)+

where SmT is the value at T of the m path simulated of the stock process.

Figure 10: Consistency test based in the property that the European Call option price is decreasing and

convex as a function of the strike. Simulation based in 10000 replications, 500 time steps and parameters:

T = 1.0, S0 = 100.0, σ0 = 0.085, H = 0.1, ν = 1.0, ρ = −0.8. Γ is the Lévy-driven Ornstein-Uhlenbek

process as in 3.3.3 with parameters: Γ0 = 0.012, λ = 0.01, A = 5.82, a = 19.82.

3.3 Calibration to SPX smiles 40

3.3.1 Monte Carlo Implementation

Once the paths have been generated and stored it is very easy to obtain the Call option price as

explained above. Then, it will be enough to add the following member function to the classes

introduced before

1 cpdef Call(self, vector[double] K):

2 N_K = K.size();

3 cdef vector[double] call;

4 call.resize(N_K);

5

6 for m in range(self.M):

7 for l in range(N_K):

8 call[l] += mx(self.S[m][self.N] - K[l], 0.);

9

10 for l in range(N_K):

11 call[l] /= float(self.M);

12

13 self.call = call

Nevertheless, when using this implementation we are performing unnecessary computations

as well as storaging values of the paths that are no longer needed after their pay-off evaluation.

This slows down the pricing significantly which is something someone would not want when

calibrating a model.

For this reason either the following implementation based in the Hybrid Scheme or the one

based in the Riemann sums (A.3) will be used.

1 cdef class CallHS(object):

2

3 cdef public double H, nu, T, vol0, S0;

4 cdef public double alpha, gamma, h;

5 cdef public int k, n, N, M;

6 cdef public vector[double] b, call;

7 cpdef public cov, L;

8

9 def __cinit__(self, H, nu, k, n, M, T, vol0, S0):

10 self.k, self.n, self.M = k, n, M;

11 self.H, self.nu, self.T, self.vol0, self.S0 = H, nu, T, vol0, S0;

12 self.gamma = H - 0.5;

13 self.alpha = nu*sqrt(2.*H*Gamma(1.5 - H)/(Gamma(H + 0.5)*Gamma(2. - 2.*H)));

14 self.N = floor(T*n);

15 self.h = self.T/float(self.N);

3.3 Calibration to SPX smiles 41

16

17 cpdef covariance(self):

18 cdef double g1 = self.gamma + 1.;

19 cdef double g2 = self.gamma + 2.;

20 cdef double g3 = 2.*self.gamma + 1.;

21 cdef vector[double] b;

22 b.resize(self.N - self.k)

23 E = np.ndarray(shape = (self.k + 1, self.k + 1));

24

25 E[0][0] = 1./float(self.n);

26 for j in range (2, self.k + 2):

27 E[0][j-1] = (pow(j - 1., g1) - pow(j - 2., g1))/(g1*pow(self.n, g1));

28 E[j-1][0] = E[0][j-1];

29 E[j-1][j-1] = (pow(j - 1., g3) - pow(j - 2., g3))/(g3*pow(self.n, g3));

30 for t in range(j + 1, self.k + 2):

31 E[j-1][t-1] = pow(j - 1., g1)*pow(t - 1., self.gamma)

32 *F1(-self.gamma, 1., g2, (j - 1.)/(t - 1.)) - pow(j - 2., g1)

33 *pow(t - 2., self.gamma)*F1(-self.gamma, 1., g2, (j - 2.)/(t - 2.));

34 E[j-1][t-1] /= (g1*pow(self.n, g3));

35 E[t-1][j-1] = E[j-1][t-1];

36

37 self.cov = E;

38 self.L = np.linalg.cholesky(E);

39

40 for l in range (self.k + 1, self.N + 1):

41 b[l - (self.k + 1)] = pow((pow(l, g1) - pow(l - 1., g1))/g1, 1./self.gamma);

42

43 self.b = b;

44

45 cpdef Call(self, vector[double] K, vector[vector[double]] normalVol,

46 vector[vector[double]] normalStock,

47 vector[vector[double]] sigmaPaths):

48 cdef int N_K = K.size();

49 cdef vector[double] call;

50 call.resize(N_K);

51 cdef vector[vector[double]] W;

52 W.resize(self.N);

53 WAux = np.zeros(self.k + 1);

54 cdef double Y = 0.;

55 cdef double volti;

56 cdef double StockExpSum;

57 cdef double ST;

58

59

60 for m in range(self.M):

3.3 Calibration to SPX smiles 42

61 for i in range(self.N):

62 for j in range(self.k + 1):

63 WAux[j] = normalVol[i][m + j*self.M];

64 W[i].resize(self.k + 1);

65 W[i] = self.L.dot(WAux);

66

67 StockExpSum = self.vol0*sqrt(self.h)*normalStock[0][m]

68 - 0.5*self.h*self.vol0*self.vol0;

69 for i in range(1, self.k + 1): #i<=k

70 for j in range(1, i + 1):

71 Y += sqrt(sigmaPaths[m][i - j])*W[i - j][j]

72 volti = self.vol0*exp(self.alpha*Y);

73 StockExpSum += volti*sqrt(self.h)*normalStock[i][m]

74 - 0.5*self.h*volti*volti;

75 Y = 0.;

76

77 for i in range(self.k + 1, self.N): #i>k

78 for j in range(1, self.k + 1):

79 Y += sqrt(sigmaPaths[m][i - j])*W[i - j][j]

80 for j in range(self.k + 1, i + 1):

81 Y += g(self.b[j - (self.k + 1)]/float(self.n), self.H)

82 *sqrt(sigmaPaths[m][i - j])*W[i - j][0];

83 volti = self.vol0*exp(self.alpha*Y);

84 StockExpSum += volti*sqrt(self.h)*normalStock[i][m]

85 - 0.5*self.h*volti*volti;

86 Y = 0.;

87

88 ST = self.S0*exp(StockExpSum);

89

90 for l in range(N_K):

91 call[l] += mx(ST - K[l], 0.);

92

93 for l in range(N_K):

94 call[l] /= float(self.M);

95

96 self.call = call;

3.3 Calibration to SPX smiles 43

3.3.2 Control Variate

As seen in the previous section, pricing Call options via Monte Carlo replications under this

model is straightforward. However, notice that the simulation of three processes are involved

which turns out in a computationally expensive model.

For this reason, two control variate methods are presented and tested here with the intention

to decrease significantly the number of replications needed to price.

Control variate methods have been proved to be one of the most effective variance reduction

techniques. This is obviously the goal, by decreasing variance we will achieve a more accurate

estimation with the same number of replications.

In this particular case, V = (ST −K)+ is the random variable that we want to estimate. The

estimator used here is the sample mean V ≈ 1
M

∑M
m=1 Vm as shown above where V1, V2, ..., Vm

are M samples drawn from V .

The idea behind the control variate method is to define a new random variable with same

mean as the one that we are interested but lower variance. To illustrate the idea, below is

presented a standard derivation of how this can be done. There are multiples references about

this method, a complete an extended discussion of the problem can be found in [6].

Lets take b ∈ R and any random variable X. We can define the following

C := V − b(X − E[X])

This new random variable has the same mean as the original V

E[C] = E[V]− E[b(X − E[X])] = E[V]− b(E[X]− E[X]) = E[V]

and its variance can be computed as

V arb[C] = V ar[V − b(X − E[X])] = V ar[V] + b2V ar[X − E[X]]− 2bCov[V,X − E[X]]

= V ar[V] + b2V ar[X]− 2bCov[V,X] = V ar[V] + b2V ar[X]− 2bρV,X
√
V ar[V]V ar[X]

Now notice that the equation V arb[C] defines a parabola as a function of the parameter b.

Moreover, this parabola is opening to the top since the term multiplying b2 is V ar[X] which is

always positive. Therefore, the function has a minimum which can be obtained by using standard

calculus derivatives. The minimum is attained at

b∗ =
ρV,X

√
V ar[V]V ar[X]

V ar[X]
=
Cov[V,X]

V ar[X]

As mentioned in [6] b∗ is not usually known and in practice it can be estimated with the

following estimator

3.3 Calibration to SPX smiles 44

b̂M =

∑M
i=1(Xi −X)(Vi − V)∑M

i=1(Xi −X)2

Be aware that b∗ is the value for which the function V arb[C] attained its minimum but it

does not ensure V arb∗ [C] to be smaller than V ar[V]. By equating V arb∗ [C] < V ar[V] we obtain

the condition

b2
√
V ar[X] < 2bρV,X

√
V ar[V] (3.11)

Then, to find and effective control variate, the random variable X has to be carefully chosen

so it satisfies condition(3.11)

To be able to asses and compare the performance of different random variables X as control

variate we will use the variance ratio

RV,X =
V ar[V − b∗(X − E[X])

V ar[V]

Substituting b∗ in this equation we obtain

RV,X = 1− ρ2
V,X .

This equality tell us that the larger the correlation between V and X the more variance

reduction we will obtain.

Numerical experiment

We now present the performance of two control variates for multiple strikes. In both cases Γ

is a Lévy-driven Ornstein-Uhlenbek as in process 3.3.3 and the instantaneous volatility process

is simulated using the method of Riemann sums.

To obtain meaningful results the parameters have been chosen based in real data after cali-

brating the model to European Call option on the SPX Index prices on the fourteenth of May

2014 without control variates.

The first control variate considered is X = ST which is widely used in derivative pricing. As

expected the correlation between X and V turns out to be stronger for lower strikes

As explained before, the method of control variates is based in sampling from a new random

variable C to be defined knowing the expectation of the control variate X. Notice that under

the dynamics (3.8) the stock price process is a martingale so E[ST] = S0.

3.3 Calibration to SPX smiles 45

Figure 11: Scatter plot of the sample pairs (Xi, Vi) for strike K = 1800. Regression line in red.

Sample correlation = 0.94.

Variance ratio obtained across strikes from K = 1700 to 2000.

X = ST

K 1700 1750 1800 1850 1900 1950 2000 2050

RV,X 0.08289 0.11593 0.17382 0.28837 0.51096 0.81483 0.93369 0.94880

The second control variate considered in this experiment is X = (S̃T −K)+ where (S̃t)t≥0 is

given by the dynamics

St = S0 exp(

∫ t

0

σ0dWs −
1

2

∫ t

0

σ2
0ds) = S0 exp(σ0Wt −

1

2
σ2

0t)

The use of this control variate is motivated by the fact that the volatility of volatility might

be small. In that case, considering that the instantaneous volatility will not move too much

from its starting value is a sensible assumption. However, we can see that a significant variance

reduction can be achieved even for a volatility of volatility not as small as expected.

In this case we are in the framework of the Black-Scholes model without drift so, assuming

no interest rates,

E[(S̃T −K)+] = Φ(d+)S0 − Φ(d−)K

where, as usual,

d+ =
log(S0/K) + 1

2σ
2T

σ2
√
T

d− = d+ − σ
√
T

with Φ the cumulative distribution of the standard normal distribution.

3.3 Calibration to SPX smiles 46

Figure 12: Scatter plot of the sample pairs (Xi, Vi) for strike K = 1800 and regression line.

Sample correlation = 0.90.

X = (S̃T −K)+

K 1700 1750 1800 1850 1900 1950 2000 2050

RV,X 0.22991 0.22105 0.22601 0.28160 0.48424 0.87586 0.99804 1.00000

The next table shows the parameters used.

M N T S0 σ0 ρ

10000 100 38./365.25 1888.53 0.085 -0.736

H ν x λ A a

0.0437 0.9984 0.012 0.01 5.82 19.82

where x, λ, A, a defined the process Γ as explained in 3.3.3.

Notice that the first control variate generally outperforms the other. For this reason and for

being computationally less expensive, we will used the control variate S = ST to calibrate SPX

smiles.

3.3 Calibration to SPX smiles 47

Implementation of the Control Variate method

The following is a member function of the class CallHS.

1 cpdef CallCV(self, vector[double] K, vector[vector[double]] normalVol,

2 vector[vector[double]] normalStock, vector[vector[double]] sigmaPaths):

3 cdef vector[vector[double]] W;

4 W.resize(self.N);

5 WAux = np.zeros(self.k + 1);

6 cdef double I = 0.;

7 cdef double volti;

8 cdef double StockExpSum;

9 cdef double ST;

10 cdef int N_K = K.size();

11 cdef vector[vector[double]] X;

12 X.resize(self.M);

13 cdef vector[double] XMean_M;

14 XMean_M.resize(N_K);

15 cdef vector[vector[double]] Y;

16 Y.resize(self.M);

17 cdef vector[double] YMean;

18 YMean.resize(N_K);

19 cdef vector[double] b;

20 cdef vector[double] bAux;

21 b.resize(N_K);

22 bAux.resize(N_K);

23 cdef vector[double] call;

24 call.resize(N_K);

25

26 for m in range(self.M):

27 for i in range(self.N):

28 for j in range(self.k + 1):

29 WAux[j] = normalVol[i][m + j*self.M];

30 W[i].resize(self.k + 1);

31 W[i] = self.L.dot(WAux);

32

33 StockExpSum = self.vol0*sqrt(self.h)*normalStock[0][m]

34 - 0.5*self.h*self.vol0*self.vol0;

35 for i in range(1, self.k + 1): #i<=k

36 for j in range(1, i + 1):

37 I += sqrt(sigmaPaths[m][i - j])*W[i - j][j]

38 volti = self.vol0*exp(self.alpha*I);

39 StockExpSum += volti*sqrt(self.h)*normalStock[i][m]

40 - 0.5*self.h*volti*volti;

41 I = 0.;

3.3 Calibration to SPX smiles 48

42

43 for i in range(self.k + 1, self.N): #i>k

44 for j in range(1, self.k + 1):

45 I += sqrt(sigmaPaths[m][i - j])*W[i - j][j]

46 for j in range(self.k + 1, i + 1):

47 I += g(self.b[j - (self.k + 1)]/float(self.n), self.H)

48 *sqrt(sigmaPaths[m][i - j])*W[i - j][0];

49 volti = self.vol0*exp(self.alpha*I);

50 StockExpSum += volti*sqrt(self.h)*normalStock[i][m]

51 - 0.5*self.h*volti*volti;

52 I = 0.;

53

54 ST = self.S0*exp(StockExpSum);

55

56 X[m].resize(N_K);

57 Y[m].resize(N_K);

58 for l in range(N_K):

59 Y[m][l] = mx(ST - K[l], 0.);

60 X[m][l] = ST;

61

62 for l in range(N_K):

63 for m in range(self.M):

64 YMean[l] += Y[m][l];

65 XMean_M[l] += X[m][l];

66 YMean[l] /= float(self.M)

67

68 for l in range(N_K):

69 for m in range(self.M):

70 b[l] += Y[m][l]*X[m][l];

71 bAux[l] += X[m][l]*X[m][l];

72

73 b[l] = b[l] - YMean[l]*XMean_M[l];

74 bAux[l] = bAux[l] - XMean_M[l]*XMean_M[l]/float(self.M);

75 b[l] /= bAux[l];

76

77 for l in range(N_K):

78 for m in range(self.M):

79 call[l] += Y[m][l] - b[l]*X[m][l];

80

81 call[l] /= float(self.M)

82 call[l] = call[l] + b[l]*self.S0;

83

84 self.call = call

3.3 Calibration to SPX smiles 49

3.3.3 Lévy-driven Ornstein-Uhlenbek process

Here we briefly discuss the simulation method used to generate paths from the affine regular

process suggested by B.Horvath, A.Jacquier and P.Tankov in [3] to calibrate VIX smiles.

The dynamics of the process are

dΓt = −λΓtdt+ dLt (3.12)

where Lt is a Lévy driving Compound Poisson process with jump intensity A and exponential

law with parameter a.

The dynamics (3.12) can be rewritten as

d(exp(λt))Γt) = exp(λt)dLt

now, integrating from 0 to t we obtain

Γt exp(λt) = Γ0 +

∫ t

0

exp(λs)dLs = Γ0 +
∑

0≤s≤t

exp(λs)∆Ls

Finally, the process can expressed in the following form

Γt = Γ0 exp(−λt) +
∑

0≤s≤t

exp(−λ(t− s))∆Ls

See ([7], Chapter 11) for an introduction to stochastic calculus for jump processes.

To generate a path on the interval [0, T] we need to

• Generate the Compound Poisson process on the same interval. This is straightforward but

see [6] for reference.

• Discretize the interval [0, T] on a grid {ti}Ni=0. Here we choose a equidistant grid.

• In each interval find the number of jumps and sum up the jumps
∑ki
j=1 ∆Lj where ki

denotes the number of jump on the interval [ti−1, ti].

• Compute Γti as

Γti = exp(−λh)(Γti−1
+

ki∑
j=1

∆Lj)

with h = T
N .

The implementation can be found in the next page under the class name LevyOU. It has two

member functions, CPoissonExp and Paths which computes the Compound Poisson and the

Lévy-driven Ornstein-Uhlenbek processes respectively.

3.3 Calibration to SPX smiles 50

1 %%cython --cplus --force

2 from libcpp.vector cimport vector

3 import numpy as np

4 cimport numpy as np

5 from numpy cimport ndarray

6

7 cdef extern from "math.h":

8 double exp(double m)

9

10 cdef double Exp(a):

11 return np.random.exponential(1/a);

12

13 cdef class LevyOU(object):

14

15 cdef public double T, levy0, lamb, A, a;

16 cdef public vector[double] jumpTimes, jumpSizes;

17 cdef public int N, M;

18 cdef public vector[vector[double]] levyPaths;

19

20 def __cinit__(self, levy0, lamb, A, a, T):

21 self.levy0, self.lamb, self.A, self.a, self.T = levy0, lamb, A, a, T;

22

23 cpdef CPoissonExp(self):

24 cdef double TT = Exp(self.A);

25 cdef double auxSize = Exp(self.a);

26

27 while TT <= self.T:

28 self.jumpTimes.push_back(TT);

29 self.jumpSizes.push_back(auxSize);

30 TT += Exp(self.A)

31 auxSize += Exp(self.a)

32

33 if TT > self.T:

34 self.jumpTimes.push_back(0.);

35 self.jumpSizes.push_back(0.); #This means no jump before T;

36

37 cpdef Paths(self, int N, int M):

38 cdef double h = self.T/float(N);

39 cdef vector[double] levy;

40 levy.resize(N + 1);

41 levy[0] = self.levy0;

42

43 cdef double jumps = 0.0;

44 cdef int kCurrent = 0;

3.3 Calibration to SPX smiles 51

45 cdef int kPrev = 0;

46 cdef vector[vector[double]] CP;

47

48 cdef vector[vector[double]] Paths;

49 Paths.resize(M);

50

51 for m in range(M):

52 self.CPoissonExp();

53 self.jumpSizes.insert(self.jumpSizes.begin(), 0.);

54 jumps = 0.0;

55 kCurrent = 0;

56 kPrev = 0;

57 for i in range(1, N + 1):

58 while (self.jumpTimes[kCurrent] <= (i*h)) and

59 (kCurrent < self.jumpTimes.size()- 1):

60 kCurrent +=1;

61 jumps = 0.0;

62 for j in range(kPrev , kCurrent):

63 jumps += exp(-self.lamb*((i-1)*h - self.jumpTimes[j]))

64 *(self.jumpSizes[j+1] - self.jumpSizes[j]);

65

66 kPrev = kCurrent;

67 levy[i] = exp(-self.lamb*h)*(levy[i - 1] + jumps)

68

69 Paths[m] = levy;

70

71 self.levyPaths = Paths

3.3.4 Cox-Ingersoll-Ross process

The CIR process has dynamics

dΓt = k(θ − Γt)dt+ σ
√

ΓtdWt

where θ is the long term mean, k to the speed adjustment and σ to the volatility.

To simulate this process we will use the Ninomiya-Victoir scheme, [9], assuming that the

Feller condition is satisfied

σ2 ≤ 2kθ

3.3 Calibration to SPX smiles 52

Remark 3.5. The assumption presented above is not needed for our study but the Ninomiya-

Victoir scheme is very fast and accurate in this case, being a desirable feature for calibration.

However, the assumption will restrict our calibration results. Calibration without restriction on

the parameters is left for future research. This can be done by using either a exact simulation

method or even the faster second order scheme proposed by A. Alfonsi in [10] or similars.

Implementation

1 %%cython --cplus --force

2 from libcpp.vector cimport vector

3 cimport numpy as np

4 from numpy cimport ndarray

5

6 cdef extern from "math.h":

7 double sqrt(double m)

8 double exp(double m)

9

10 cpdef cir2(double x0, double k, double theta, double sigma, double T, int N, int M,

11 vector[vector[double]] NormalMatrix):

12 #Assuming the Feller condition is satisfied

13 cdef double h = T/float(N);

14 cdef double e = exp(-k*h/2.);

15 cdef double p_phi_k = (k*theta - sigma*sigma/4.)*(1. - e)/k;

16 cdef double r, temp;

17 cdef vector[double] cir_path;

18 cir_path.resize(N + 1);

19 cir_path[0] = x0;

20

21 cdef vector[vector[double]] Paths;

22 Paths.resize(M);

23 for j in range (0, M):

24 for i in range(0, N):

25 #Now t = h, x = previous cir, Dist = Z[i]

26 r = sqrt(p_phi_k + e*cir_path[i]);

27 temp = r + sigma*sqrt(h)*NormalMatrix[i][j]/2.;

28 cir_path[i + 1] = e*temp*temp + p_phi_k;

29

30 Paths[j] = cir_path;

31

32 return Paths

3.3 Calibration to SPX smiles 53

3.3.5 Calibration Results

Here we present the calibration results obtained on May 14, 2014 using the Lévy-driven Ornstein-

Uhlenbek proposed by B. Horvath, A. Jacquier and P.Tankov and the Cox-Ingersoll-Ross process

to modulate the instananeous volatility process.

We have calibrated only four parameters, H, ν, ρ and σ0 by minimising the sum of squared

differences between model prices and mid market prices of European Call option prices on the

SPX Index. Data has been obtained from WRDS (Wharton Research Data Services).

Prices have been simulated using the class CallRS (A.3) based in the Riemann sum method

with 20000 Monte Carlo replications and 500 time steps per year.

The reason behind choosing only those parameters resides in the desirable goal of achieving

joint calibration to SPX and VIX smiles. Here, we will take the parameters that define the Γ

process as given from calibration to VIX smiles.

Lévy-driven Ornstein-Uhlenbek case

Figure 15: Implied volatilities and option prices as observed in the market and those simulated

by the model after calibration. From top to bottom the maturities are: 9, 38, 66 days. The

Γ process has been defined using the calibrated parameters from ([3], Table 1, pag 22) for the

following maturities: 7, 35 and 63 days.

3.3 Calibration to SPX smiles 54

Lévy-driven Ornstein-Uhlenbek

T H ν ρ σ0 Error

9 0.08703 5.99945 -1.0 0.09116 0.0005

38 0.15234 7.03255 -0.71281 0.08734 1.90e-06

66 0.2293 5.49893 -0.99347 0.10142 1.57e-05

Cox-Ingersoll-Ross case

Figure 18: Implied volatilities and option prices as observed in the market and those simulated

by the model after calibration. From top to bottom the maturities are: 9, 38, 66 days. The Γ

process has been defined using the calibrated parameters from 3.4.3

Cox-Ingersoll-Ross

T H ν ρ σ0 Error

9 0.09426 6.09117 -0.98583 0.0927 0.0005

38 0.13658 5.84783 -0.65588 0.08879 7.11e-05

66 0.10872 5.54235 -0.73286 0.09462 4.81e-07

3.4 Forward Variance 55

The minimization has been done using the TNC algorithm from Python optimize toolbox

and the error used in both cases is the sum of the squared differences between observed implied

volatilities and the ones obtained from the model prices.

Notice that volatility of volatility obtained turned out to be very large. This is due to how

the parameter α of the kernel function has been chosen in 3.1.3. The parameter α proposed in

[3] seems a more sensible option, giving a volatility of volatility much lower.

Remark 3.6. During calibration, the maximum number of iteration was achieved in multiple

occasions which means that better results can be obtained. From empirical tests, it has been

seen that calibrating to all the parameters also reduces the error.

The implementation using the Hybrid Scheme as presented 3.1.3 (CallHS) is ready to use for

calibration purposes. Tests on the same data are left for future research.

However, notice that the Γ processes considered here are not covariance stationary so some

of the result derived in [4] might not apply.

3.4 Forward Variance

As mentioned at the beginning of section 3, B.Horvath, A.Jacquier and P.Tankov introduced

the set of Modulated Volterra stochastic volatility process meant to capture the shape of the

VIX smiles. Similarly as we did when obtaining the SPX smiles, to obtain the VIX smiles we

need to be able to price VIX options. However, as mentioned in [3], working directly with the

instantaneous volatility process is not as easy as working with the forward variance dynamics.

Again in [3] these dynamics together with methods to price VIX options via Monte Carlo are

presented.

In this section some of these results will be presented to be able to explore the behaviour of

the model when the the process Γ that modulates the integral
∫ t

0

√
Γsg(t, s)dBs is given by the

Cox-Ingersoll-Ross dynamics.

It will be useful to recall the definition of a regular affine process.

Definition 3.7. A stochastic process Γt defined on a probability space (Ω,F , (Ft)t≥0,Px) and

with state space D = Rm+ × Rn is a regular affine process if it satisfies the following properties

• Px is defined as a probability measure on (Ω,F) such that P(X0 = x) = 1.

• Γt is a time-homogeneous Markov process.

• There exist functions φ ∈ C and ψ ∈ Cm × Cn such that for all (t, u) ∈ R+ × U

E[exp(〈Γt, u〉)|X0 = x] = Ex[exp(〈Γt, u〉)] = exp(φ(t, u) + 〈x, ψ(t, u)〉)

3.4 Forward Variance 56

where U = {u ∈ C | Re(〈x, u〉) ≤ 0}

In the 1-dimensional real valued case the last condition simply becomes

Ex[exp(Γtu)] = exp(φ(t, u) + xψ(t, u))

so the log-characteristic function of the process Γ is affine on u.

Example 3.1. The CIR process with dynamics

dΓt = k(θ − Γt)dt+ σ
√

ΓtdWt

is a regular affine process.

A standard procedure to check this property is to assume that such ψ and φ functions exist

such that

• ψ and φ are at least in R1.

• ψ(0, u) = u and φ(0, u) = 0 for all u ∈ C

Then we can define f(t,Γt) := exp(φ(T − t, u) + Γtψ(T − t, u)) so if ft were a martingale

E[fT] = E[exp(φ(0, u) + Γtψ(0, u))] = E[exp(ΓTu)]

= f0 = exp(φ(T, u) + Γtψ(T, u))

applying now Itô formula we have

df(t,Γt) = ft(t,Γt)dt+ fx(t,Γt)dΓt +
1

2
fxx(t,Γt)(dΓt)

2

= f(t,Γt)(−φt(T − t, u)− Γtψt(T − t, u))dt+ f(t,Γt)ψ(T − t, u)k(θ − Γt)dt

+ f(t,Γt)ψ(T − t, u)σ
√

ΓtdWt +
1

2
f(t,Γt)ψ

2(T − t, u)σ2Γtdt

So f(t,Γt) is a local martingale if it has zero drift i.e.

φt(T − t, u) + Γtψt(T − t, u) =
1

2
ψ2(T − t, u)σ2Γt + ψ(T − t, u)k(θ − Γt)

Since this equation needs to hold for all (t,Γt) ∈ R≥0 × R we obtain

φt(t, u) = kθψ(t, u)

ψt(t, u) = 1
2ψ

2(t, u)σ2 − kψ(t, u)

with ψ(0, u) = u and φ(0, u) = 0.

3.4 Forward Variance 57

The second equation is known as the Bernoulli differential equation with n = 2 so it can be

solved by the change of variable y(t) = ψ(t, u)−1 as follows

yt(t) = − ψ−2(t, u)ψt(t, u) = −ψ−2(t, u)(
1

2
ψ2(t, u)σ2 − kψ(t, u))

Then

(exp(−kt)y(t))t = exp(−kt)yt(t)− k exp(−kt)y(t) = − exp(−kt)1

2
σ2

and integrating from 0 to t we obtain

y(t) = exp(kt)y(0)− σ2

2k
(exp(kt)− 1)

with y(0) = 1
u we finally have

ψ(t, u) =
u exp(−kt)

1− σ2u
2k (1− exp(−kt))

φ(t, u) is directly obtained by integrating kθψ(t, u) from 0 to t

φ(t, u) =− 2kθ

σ2
log(1− σ2u

2k
(1− exp(−kt)))

Now having the characteristic function of the process, which totally defines its probability

distribution, we can extend the example and obtain the second moment of Xt which can be

computed using 3.2

Let us define charΓT
(u) := Et[exp(ΓT iu)], then by the properties of the characteristic function

E[ΓT] = −i char′ΓT
(0) = −i exp(φ(T, 0) + Γtψ(T, 0))(φu(T, 0) + Γtψu(T, 0))

Where

• φ(T, 0) = 0

• ψ(T, 0) = 0

• φu(T, 0) = − 2kθ
σ2 (−σ

2i
2k (1− exp(−kT))) = i θ((1− exp(−kT)))

• ψu(T, 0) = i exp(−kT)

So finally by substituting this identities into the last equation we obtain

E[ΓT] = θ((1− exp(−kT)) + Γ0 exp(−kT)

And the second moment of XT is

E[XTXT] =

∫ T

0

E[Γs] g(T, s)2ds =

∫ T

0

(θ((1− exp(−ks)) + Γ0 exp(−ks)) g(T, s)2ds

3.4 Forward Variance 58

As cited in [3] from the work of D. Duffie, D. Filipović and W. Schachermayer in [8], the

infinitesimal generator of the process Γ can presented in the following form

Lf(x) = k(θ − x)
∂f

∂x
(x) +

σ2x

2

∂2f

∂x2
(x)+

+

∫ ∞
0

(f(x+ z)− f(x))m(dz) +

∫ ∞
0

(f(x+ z)− f(x))xµ(dz)

where k, θ and σ are non negative constants and m and µ are positve measures in (0,∞)

such that
∫∞

0
(x ∧ 1)(m(dz) + µ(dz)) is finite.

The following functions and assumption are introduced in [3]

R(u) := −ku+
σ2

2
u2 +

∫ ∞
0

(exp(zu)− 1)µ(dz)

F (u) := kθu+

∫ ∞
0

(exp(zu)− 1)m(dz)

G(u) :=

∫ u

0

g2(s)ds

Assumption 3.8. For fixed T ≥ 0, there exists A > 0 such that
∫∞

0
z exp(zA)(m(dz) + µ(dz))

and 2G(T) + T (0 ∨R(A)) ≤ A.

Under this assumption it is showed in [[3], Proposition 4] that the forward variance has the

following dynamics

ξt(u) = ξ0(u) exp(2

∫ t

0

√
Γsg(u− s)dBs + ψ(u− t)Γt + φ(u− t)− ψ(u)Γ0 − φ(u)) (3.13)

where t ≤ u ≤ T and ψ and φ are functions that satisfy the following ordinary differential

equations

∂tψ(t) = 2g2(t) +R(ψ(t))

∂tφ(t) = F (ψ(t))

with initial conditions ψ(0) = φ(0) = 0.

Consider now the particular example of the CIR case. The infinitesimal generator of this

process takes the following form

Lf(x) = k(θ − x)
∂f

∂x
(x) +

σ2x

2

∂2f

∂x2
(x)

This can be checked by applying the Itô formula to f(Xt) where f : R→ R and

dXt = k(θ −Xt)dt+ σ
√
XtdWt

This give us

df(Xt) = f ′(Xt)dXt +
1

2
f ′′(Xt)(dXt)

2

= f ′(Xt)[k(θ −Xt) +
σ2

s
Xtf

′′(Xt)]dt+ f ′(Xt)σ
√
XtdWt

3.4 Forward Variance 59

Coming back to the CIR example, and taking the kernel function as g(t− s) = α(t− s)H− 1
2 ,

we obtain the following ordinary differential equations

∂tψ(t) = 2α2t2H−1 − kψ(t) +
σ2

2
ψ2(t)

∂tφ(t) = kθψ(t) (3.14)

In practice these equations will need to be solved numerically. However, we can simplify the

equations by making the following change of variables ψ̃(t) = exp(kt)ψ(t) so

∂tψ̃(t) = k exp(kt)ψ(t) + exp(kt)ψt(t) = k exp(kt)ψ(t) + exp(kt)(2α2t2H−1 − kψ(t) +
σ2

2
ψ2(t))

= k exp(kt)ψ(t) + exp(kt)2α2t2H−1 − exp(kt)kψ(t) + exp(kt)
σ2

2
ψ2(t)

= exp(kt)2α2t2H−1 + exp(−kt)σ
2

2
ψ̃2(t)

with ψ̃(0) = exp(k0)ψ(0) = 0.

φ(t) is easily obtained integrating from 0 to t

φ(t) = φ(0) + kθ

∫ t

0

ψ(t) = kθ

∫ t

0

ψ(t)

Possible implementation using the original ordinary differential equations.

1 cpdef double dv_dt_or(double v, double t, double sigma, double k, double alpha,

2 double gamma):

3 return 2.0*alpha*alpha*pow(t,2.0*gamma) + sigma*sigma*0.5*v*v - k*v

4

5 cpdef psi_or(double x, double x0, double psi_0, double epsilon, double sigma,

6 double k, double alpha, double beta):

7 cdef double psi;

8 if (x == x0):

9 return psi_0;

10 tt = [epsilon + x0, x];

11 sol_v = odeint(dv_dt_or, psi_0, tt, args=(sigma, k, alpha, beta),

12 tcrit = [epsilon]);

13 psi = sol_v[-1];

14 return psi

15

16 cpdef phi_or(double x, double x0, double phi_0, double psi_0, double epsilon,

17 double sigma, double theta, double k, double alpha, double gamma):

18 res = quad(psi_or, x0, x, args=(x0, psi_0, epsilon, sigma, k, alpha, gamma))[0];

19 return k*theta*res + phi_0

3.4 Forward Variance 60

3.4.1 Pricing VIX options via Monte Carlo

As mentioned in [3], princing of VIX options can be done using the formula

E

[
f

(
1

Θ

∫ T+Θ

T

x(u)ξT (γ, u)

)]

with ξT (u) following the dynamics (3.13) and Γ0 = γ.

In the case of Call options the function f takes the form f(x) = (
√
x−K)+.

Here we will use the kernel g(t − s) = α(t − s)H− 1
2 and rectangle scheme introduced in [3]

which is based in the following simple discretization

1

Θ

∫ T+Θ

T

x ξT (γ, u) =
x∆

Θ

n−1∑
i=0

ξT (γ, ti) =
x

n

n−1∑
i=0

ξT (γ, ti)

Where, for simplicity, x(u) ≡ x constant and ti = T + i∆, ∆ = Θ
n .

Then it is easy to see that for a given path (Γt)t≥0,

log(ξT (γ, ti)) = 2

∫ T

0

√
Γsg(ti − s)dBs + ψ(ti − T)ΓT + φ(ti − T)− ψ(ti)Γ0 − φ(ti)

is a Gaussian random variable with mean

mi = ΓTψ(ti − T) + φ(ti − T)− γψ(ti)− φ(ti)

and that the sequence (log(ξT (γ, ti)))
n−1
i=0 has the following covariance structure

Cij = 4α2

∫ T

0

Γs(ti − s)H−
1
2 (tj − s)H−

1
2 ds

This integral can be discretized on a grid {Tk}N−1
k=0 with Tk = kh and h = T

N

Cij = 4α2

∫ T

0

Γs(ti − s)H−
1
2 (tj − s)H−

1
2 ds

≈ 4α2
K−1∑
k=0

ΓTk

∫ Tk+1

Tk

(ti − s)H−
1
2 (tj − s)H−

1
2 ds := 4α2

K−1∑
k=0

ΓTk
Ckij

Ckij can be computed as shown in [[3], page 16] ,

where for tj > ti

Ckij =

∫ Tk+1

Tk

(ti − s)H−
1
2 (tj − s)H−

1
2 ds

=
1

H + 1
2

(tj − ti)H−
1
2 (ti − Tk)H+ 1

2 2F1

(
1

2
−H, 1

2
+H,

3

2
+H,− ti − Tk

tj − ti

)
− 1

H + 1
2

(tj − ti)H−
1
2 (ti − Tk+1)H+ 1

2 2F1

(
1

2
−H, 1

2
+H,

3

2
+H,− ti − Tk+1

tj − ti

)
.

3.4 Forward Variance 61

and tj = ti

Ckii =

∫ Tk+1

Tk

(ti − s)2H−1ds =
1

2H
((ti − Tk)2H − (ti− Tk+1)2H)

The implementations is as follows

Choose n, N and M natural numbers, where n controls the discretization of the integral∫ T+Θ

T
ξT (γ, u), N the discretization of the covariance coefficients Cij and M the number of

Monte Carlo replications.

• For each replication m, generate independent samples Zi from the multivariate Gaussian

distribution N (m, C) for i = 0, 1, ..., n where C = (Cij)
n
i≤j and m = (mi)

n
i=1.

• Compute the average Xm := x
n

∑n−1
i=0 exp(Zi)

• After M replications estimate the price using the sample mean

E

[√ 1

Θ

∫ T+Θ

T

x(u)ξT (γ, u)−K

+

]
≈ 1

M

M∑
m=1

(
√
Xm −K)+

3.4.2 Implementation

1 %%cython --cplus --force

2 from libcpp.vector cimport vector

3 from math import floor

4 import time

5 import numpy as np

6 cimport numpy as np

7 from scipy.special import gamma as Gamma

8 from scipy.special import hyp2f1 as F1

9 from __main__ import cir2, rBer, psi_or, phi_or,

10 psi_levy, phi_levy, LevyOU, volimp

11

12 cdef extern from "math.h":

13 double sqrt(double m)

14 double exp(double m)

15 double pow(double base, double exponent);

16

17 cdef double mx(double a, double b):

18 if (a > b):

19 return a

20 else:

21 return b

22

23 cdef class CallRec(object):

3.4 Forward Variance 62

24

25 cdef public double H, nu, T, Theta, x;

26 cdef public double alpha, gamma, delta, forwardPrice;

27 cdef public double c1, c2, c3, c4;

28 cdef public int n, N, NYear, M;

29 cdef public vector[double] call, strikes, impliedVol;

30 cpdef public cov;

31 cpdef public modProcress;

32 cdef public vector[vector[double]] sigmaPaths, meanPaths, normalMx;

33 cpdef public vector[vector[vector[double]]] auxCov;

34

35 def __cinit__(self, H, nu, T, Theta, x, n, NYear, M):

36 self.H, self.nu, self.T, self.Theta, self.x = H, nu, T, Theta, x;

37 self.n, self.NYear, self.M = n, NYear, M;

38 self.gamma = H - 0.5;

39 #self.alpha = nu*sqrt(2.*H*Gamma(1.5 - H)/(Gamma(H + 0.5)*Gamma(2. - 2.*H)));

40 self.alpha = 2.*nu*sqrt(Gamma(1.5 - H)/(Gamma(H + 1.)*Gamma(2. - 2.*H)));

41 self.N = int(floor(T*NYear));

42 self.delta = self.Theta/float(self.n);

43 #self.N = NYear

44

45 cpdef normalCIR(self, vector[vector[double]] normalMx):

46 self.normalMx = normalMx;

47

48 cpdef sPaths(self, double c1, double c2, double c3, double c4, modProcress):

49 self.c1, self.c2, self.c3, self.c4 = c1, c2, c3, c4;

50 self.modProcress = modProcress;

51

52 if (modProcress == "Levy"):

53 sigma = LevyOU(c1, c2, c3, c4, self.T) #levy0, lamb, A, a

54 sigma.CPoissonExp();

55 sigma.Paths(self.N, self.M);

56 self.sigmaPaths = sigma.levyPaths;

57

58 elif (modProcress == "CIR"):

59 self.sigmaPaths = cir2(c1, c2, c3, c4, self.T, self.N, self.M,

60 self.normalMx);

61 #x0, k, theta, sigma

62

63 elif (modProcress == "Bergomi"):

64 self.sigmaPaths = rBer(self.N, self.M);

65

66 cpdef auxCovariance(self):

67 start = time.time();

68 cdef double g1 = self.H + 0.5;

3.4 Forward Variance 63

69 cdef double g2 = self.H + 1.5;

70 cdef double h = self.T/float(self.N);

71 cdef double aux1;

72 cdef double aux2;

73

74 cdef vector[vector[vector[double]]] auxCov;

75 auxCov.resize(self.n);

76

77 for i in range(self.n):

78 auxCov[i].resize(self.n);

79 for j in range(i , self.n):

80 auxCov[i][j].resize(self.N);

81 if (j == i):

82 for k in range(self.N):

83 auxCov[i][j][k] = (pow(self.T + i*self.delta - k*h, 2.*self.H)

84 - pow(self.T + i*self.delta - (k+1)*h, 2.*self.H));

85 auxCov[i][j][k] *= (self.alpha*self.alpha*2./self.H);

86 else:

87 for k in range(self.N):

88 aux1 = pow(self.T + i*self.delta - k*h, g1)

89 *F1(-self.gamma, g1, g2,

90 -(self.T + i*self.delta - k*h)/((j -i)*self.delta));

91 aux2 = pow(self.T + i*self.delta - (k+1)*h, g1)

92 *F1(-self.gamma, g1, g2, -(self.T + i*self.delta

93 - (k+1)*h)/((j - i)*self.delta));

94 auxCov[i][j][k] = 4.*self.alpha*self.alpha

95 *pow((j - i)*self.delta, self.gamma)

96 *(aux1 - aux2)/g1;

97

98 self.auxCov = auxCov;

99

100 cpdef covariance(self, vector[double] sigmaPath):

101 cdef double Cij = 0.;

102 cdef double Cii = 0.;

103 C = np.zeros((self.n, self.n));

104

105 for i in range(self.n):

106 for j in range(i , self.n):

107 if (j == i):

108 for k in range(self.N):

109 Cii += sigmaPath[k]*self.auxCov[i][j][k];

110 C[i][i] = Cii;

111 Cii = 0.;

112 else:

113 for k in range(self.N):

3.4 Forward Variance 64

114 Cij += sigmaPath[k]*self.auxCov[i][j][k];

115

116 C[i][j] = Cij;

117 C[j][i] = C[i][j];

118 Cij = 0.;

119

120 self.cov = C;

121

122 cpdef meanCIR(self):

123 start = time.time();

124 cdef double epsilon = 0.0000000001

125 cdef vector[double] psi1;

126 psi1.resize(self.n - 1);

127 cdef double phi1;

128 cdef double phi2;

129 cdef double psi2;

130 cdef double mean0;

131 cdef vector[double] auxMean;

132 auxMean.resize(self.n - 1);

133

134 cdef vector[vector[double]] meanPaths;

135 meanPaths.resize(self.M);

136

137 for i in range(1, self.n):

138 psi1[i - 1] = psi_or(self.delta*i, 0., 0., epsilon, self.c4,

139 self.c2, self.alpha, self.gamma);

140 phi1 = phi_or(self.delta*i, 0., 0., 0., epsilon, self.c4, self.c3,

141 self.c2, self.alpha, self.gamma);

142 psi2 = psi_or(self.T + self.delta*i, 0., 0., epsilon, self.c4,

143 self.c2, self.alpha, self.gamma);

144 phi2 = phi_or(self.T + self.delta*i, 0., 0., 0., epsilon, self.c4,

145 self.c3, self.c2, self.alpha, self.gamma);

146 auxMean[i - 1] = phi1 - psi2*self.c1 - phi2;

147

148 mean0 = -psi_or(self.T, 0., 0., epsilon, self.c4, self.c2, self.alpha,

149 self.gamma)

150 *self.c1

151 - phi_or(self.T, 0., 0., 0., epsilon, self.c4, self.c3, self.c2,

152 self.alpha, self.gamma);

153 for m in range(self.M):

154 meanPaths[m].resize(self.n);

155 meanPaths[m][0] = mean0;

156 for i in range(1, self.n):

157 meanPaths[m][i] = psi1[i - 1]*self.sigmaPaths[m][self.N]

158 + auxMean[i - 1];

3.4 Forward Variance 65

159

160 self.meanPaths = meanPaths;

161 print("Mean computed in: ", time.time() - start, " seconds");

162

163 cpdef meanLevy(self):

164 start = time.time();

165 cdef vector[double] psi1;

166 psi1.resize(self.n - 1);

167 cdef double phi1;

168 cdef double phi2;

169 cdef double psi2;

170 cdef double mean0;

171 cdef vector[double] auxMean;

172 auxMean.resize(self.n - 1);

173

174 cdef vector[vector[double]] meanPaths;

175 meanPaths.resize(self.M);

176

177 for i in range(1, self.n):#levy0, lamb, A, a

178 psi1[i - 1] = psi_levy(self.delta*i, 0., self.c2, self.alpha,

179 self.gamma);

180 phi1 = phi_levy(self.delta*i, 0., self.c3, self.c4, self.c2,

181 self.alpha, self.gamma);

182 psi2 = psi_levy(self.T + self.delta*i, 0., self.c2, self.alpha,

183 self.gamma);

184 phi2 = phi_levy(self.T + self.delta*i, 0.,self.c3, self.c4, self.c2,

185 self.alpha, self.gamma);

186 auxMean[i - 1] = phi1 - psi2*self.c1 - phi2;

187

188 mean0 = -psi_levy(self.T, 0., self.c2, self.alpha, self.gamma)

189 *self.c1 - phi_levy(self.T, 0., self.c3, self.c4, self.c2,

190 self.alpha, self.gamma);

191 for m in range(self.M):

192 meanPaths[m].resize(self.n);

193 meanPaths[m][0] = mean0;

194 for i in range(1, self.n):

195 meanPaths[m][i] = psi1[i - 1]*self.sigmaPaths[m][self.N]

196 + auxMean[i - 1];

197

198 self.meanPaths = meanPaths;

199 print("Mean computed in: ", time.time() - start, " seconds");

200

201 cpdef meanBerg(self):

202 start = time.time();

203 cdef vector[vector[double]] meanPaths;

3.4 Forward Variance 66

204 meanPaths.resize(self.M);

205 for m in range(self.M):

206 meanPaths[m].resize(self.n);

207

208 self.meanPaths = meanPaths;

209 print("Mean computed in: ", time.time() - start, " seconds");

210

211 cpdef mean(self):

212

213 if (self.modProcress == "CIR"):

214 self.meanCIR();

215

216 elif (self.modProcress == "Bergomi"):

217 self.meanBerg();

218

219 elif (self.modProcress == "Levy"):

220 self.meanLevy();

221

222 cpdef Call(self, vector[double] K, double c1, double c2, double c3, double c4,

223 modProcress):

224 self.strikes = K;

225 cdef vector[double] Z;

226 cdef double X = 0.;

227 cdef double forward = 0.;

228 cdef int N_K = K.size();

229 cdef vector[double] call;

230 call.resize(N_K);

231

232 self.sPaths(c1, c2, c3, c4, modProcress);

233 self.mean();

234 self.auxCovariance();

235

236 for m in range(self.M):

237 self.covariance(self.sigmaPaths[m])

238 np.random.seed(0)

239 Z = np.random.multivariate_normal(self.meanPaths[m], self.cov);

240 for j in range(self.n):

241 X += exp(Z[j]);

242

243 X *= (self.x/float(self.n));

244 forward += sqrt(X);

245 for l in range(N_K):

246 call[l] += mx(sqrt(X) - K[l], 0.);

247

248 X = 0.;

3.4 Forward Variance 67

249

250 for l in range(N_K):

251 call[l] /= float(self.M);

252

253 self.call = call

254 self.forwardPrice = forward/float(self.M);

255

256 cpdef impVol(self):

257 cdef vector[double] IVol;

258 cdef int N_K = self.strikes.size();

259 IVol.resize(N_K);

260 for i in range(N_K):

261 IVol[i] = volimp(self.forwardPrice, self.strikes[i], self.T, 0.,

262 self.call[i]);

263

264 self.impliedVol = IVol;

Notice that this class can be used for the rBergomi model and the class of Modulated Stochas-

tic Volatility processes for both CIR and Lévy-driven Ornstein-Uhlenbek cases.

The expected forward price is stored as member data since is needed for the implied volatilities

computations.

3.4 Forward Variance 68

3.4.3 Calibration Results

Here we present the calibration results obtained on May 14, 2014 using the the Cox-Ingersoll-Ross

process to modulate the instantaneous volatility process.

We have calibrated the parameters x, H, ν, Γ0, k, θ, σ by minimizing the sum of squared

differences between model prices and market prices of European Call option prices on the VIX

Index.

Prices have been simulated using the class CallRec presented above using 5000 Monte Carlo

replications, n = 100 and α as presented in [3].

Figure 19: Option prices as observed in the market and those simulated by the model after

calibration. Maturity: 35 days

Figure 20: Implied volatilities as observed in the market and those obtained from the simulated

prices by the model after calibration. Maturity: 35 days

The calibrated parameters are shown in the table below

3.4 Forward Variance 69

Cox-Ingersoll-Ross

T x H ν Γ0 k θ σ Error

35 0.08511 0.04446 0.8199 0.00331 24.867 0.04513 0.09820 0.09714

The minimization used the TNC algorithm from Python optimize toolbox and the error

computed as the sum of the squared differences between observed implied volatilities and the

ones obtained from the model prices.

The error here is higher compared to the fits obtained in [3] using the Lévy-driven Ornstein-

Uhlenbek process and the approximate pricing method proposed in ([3], pag 19).

However, the tests performed do not seem enough to discard the Cox-Ingersoll-Ross as a

suitable Γ process that modulates the instantaneous volatility for the following reasons:

• Low number of replications and discretization steps.

• Restriction on the parameters to satisfy the Feller condition.

• Lack of accuracy when solving the system of ordinary differential equations (3.14) due to

the explosion of the kernel function g(t) = α tH−
1
2 around zero, where the initial conditions

are defined.

70

4 Conclusion

To conclude, we have seen that the class of Modulated Stochastic Volatility processes introduced

in [3] is able to capture the shape of the VIX smiles and has the potential to provide good fits

to SPX smiles.

However, joint calibration of SPX and VIX smiles needs further tests under these models.

From empirical experiments, it seems that either the initial volatility is too high when pricing

VIX options or too low for the pricing of options on the SPX.

Nevertheless, the class of Modulated Stochastic Volatility processes offers immense possibili-

ties due to the presence of the process Γ that modulates the instantaneous volatility and seems

a model to explore when looking for accurate fits to VIX smiles.

71

A Appendix

A.1 Comments on the Implementation

All the code presented in this thesis has been coded from scratch an based in the cited works.

The implementation has been coded using Cython a C-extension for Python which shows an

outstanding performance compared to Python.

The user will need to load Cython

%load_ext cython

Then every class/function presented needs to be compiled before calling it.

Example A.1. The following commands will generate and plot M paths of the instantaneous

volatility process using the Hybrid Scheme.

normalM = normalGen(k_tilde, N, M)

normalM.vol()

Hs = HybridScheme(H, nu, k_tilde, N, M, T)

Hs.covariance()

Hs.TBSS(normalM.B, rBerPaths)

Hs.Vol(vol0)

tt = np.linspace(0.0, T, N + 1)

for j in range(0, M):

plt.plot(tt, Hs.V[j])

plt.title("Instantaneous Volatility Paths")

plt.show()

A.2 rBer function

Produces constant paths equal to 1.

1 %%cython --cplus --force

2 from libcpp.vector cimport vector

3 import numpy as np

4 cimport numpy as np

5

6 cpdef rBer(int N, int M):

7 cdef vector[vector[double]] Paths;

8 Paths.resize(M);

A.3 Implementation of CallRS 72

9 for m in range (0, M):

10 Paths[m].resize(N + 1);

11 for i in range(0, N + 1):

12 Paths[m][i] = 1.;

13 return Paths

A.3 Implementation of CallRS

1 %%cython --cplus --force

2 from libcpp.vector cimport vector

3 from math import floor

4 import numpy as np

5 cimport numpy as np

6 from scipy.special import gamma as Gamma

7 from scipy.special import hyp2f1 as F1

8

9 cdef extern from "math.h":

10 double sqrt(double m)

11 double exp(double m)

12 double pow(double base, double exponent);

13

14 cdef double mx(double a, double b):

15 if (a > b):

16 return a

17 else:

18 return b

19

20 cdef class CallRS(object):

21

22 cdef public double H, nu, T, vol0, S0;

23 cdef public double alpha, gamma, h;

24 cdef public int n, N, M;

25 cdef public vector[double] b, call;

26 cdef public vector[vector[double]] kernel;

27 cpdef public cov, L;

28

29 def __cinit__(self, H, nu, n, M, T, vol0, S0, kernel):

30 self.n, self.M, self.H, self.nu = n, M, H, nu;

31 self.T, self.vol0, self.S0 = T, vol0, S0;

32 self.kernel = kernel;

33 self.gamma = H - 0.5;

34 self.alpha = nu*sqrt(2.*H*Gamma(1.5 - H)/(Gamma(H + 0.5)*Gamma(2. - 2.*H)));

35 self.N = floor(T*n);

36 self.h = self.T/float(self.N);

A.3 Implementation of CallRS 73

37

38 cpdef naive(self, vector[double] K, vector[vector[double]] normalMx,

39 vector[vector[double]] sigmaPaths):

40 cdef int N_K = K.size();

41 cdef vector[double] call;

42 call.resize(N_K);

43 cdef double h_H = pow(self.h, self.H);

44 cdef double volti;

45 cdef double auxVolSum = 0.;

46 cdef double stockExpSum;

47 cdef double ST;

48

49 for m in range(self.M):

50 for i in range(1, self.N + 1):

51 for j in range (i - 1):

52 auxVolSum += sqrt(sigmaPaths[m][j])*self.kernel[i - 1][j]

53 *normalMx[j][m];

54

55 vol_ti = self.vol0*exp(self.alpha*h_H*auxVolSum);

56 auxVolSum = 0.;

57 stockExpoSum += vol_ti*sqrt(self.h)*normalMx[i - 1][m + self.M]

58 - self.h*vol_ti*vol_ti*0.5;

59

60 ST = self.S0*exp(stockExpoSum);

61 stockExpoSum = 0.;

62

63 for l in range(N_K):

64 call[l] += mx(ST - K[l], 0.);

65

66 for l in range(N_K):

67 call[l] /= float(self.M);

68

69 self.call = call;

70

71 cpdef controlV(self, vector[double] K, vector[vector[double]] normalMx,

72 vector[vector[double]] sigmaPaths):

73 cdef double h_H = pow(self.h, self.H);

74 cdef double auxVolSum = 0.;

75 cdef double volti;

76 cdef double stockExpSum = 0.;

77 cdef double ST;

78 cdef int N_K = K.size();

79 cdef vector[vector[double]] X;

80 X.resize(self.M);

81 cdef vector[double] XMean_M;

A.3 Implementation of CallRS 74

82 XMean_M.resize(N_K);

83 cdef vector[vector[double]] Y;

84 Y.resize(self.M);

85 cdef vector[double] YMean;

86 YMean.resize(N_K);

87 cdef vector[double] b;

88 cdef vector[double] bAux;

89 b.resize(N_K);

90 bAux.resize(N_K);

91 cdef vector[double] call;

92 call.resize(N_K);

93

94 for m in range(self.M):

95 for i in range(1, self.N + 1):

96 for j in range (i - 1):

97 auxVolSum += sqrt(sigmaPaths[m][j])*self.kernel[i - 1][j]

98 *normalMx[j][m];

99

100 vol_ti = self.vol0*exp(self.alpha*h_H*auxVolSum);

101 auxVolSum = 0.;

102 stockExpoSum += vol_ti*sqrt(self.h)*normalMx[i - 1][m + self.M]

103 - self.h*vol_ti*vol_ti*0.5;

104

105 ST = self.S0*exp(stockExpoSum);

106 stockExpoSum = 0.;

107

108 X[m].resize(N_K);

109 Y[m].resize(N_K);

110

111 for l in range(N_K):

112 Y[m][l] = mx(ST - K[l], 0.);

113 X[m][l] = ST;

114

115 for l in range(N_K):

116 for m in range(self.M):

117 YMean[l] += Y[m][l];

118 XMean_M[l] += X[m][l];

119 YMean[l] /= float(self.M)

120

121 for l in range(N_K):

122 for m in range(self.M):

123 b[l] += Y[m][l]*X[m][l];

124 bAux[l] += X[m][l]*X[m][l];

125

126 b[l] = b[l] - YMean[l]*XMean_M[l];

A.4 Implementation of the Levy functions 75

127 bAux[l] = bAux[l] - XMean_M[l]*XMean_M[l]/float(self.M);

128 b[l] /= bAux[l];

129

130 for l in range(N_K):

131 for m in range(self.M):

132 call[l] += Y[m][l] - b[l]*X[m][l];

133

134 call[l] /= float(self.M)

135 call[l] = call[l] + b[l]*self.S0;

136

137 self.call = call

A.4 Implementation of the Levy functions

These functions here are presented in ([3], pag 17).

1 %%cython --cplus --force

2 import numpy as np

3 cimport numpy as np

4 from scipy.integrate import odeint, quad

5

6 cdef extern from "math.h":

7 double sqrt(double m)

8 double exp(double m)

9 double pow(double base, double exponent)

10

11 cpdef double fun_levy(double s, double t, double lamb, double alpha, double gamma):

12 return 2.*exp(- lamb*(t - s))*pow(s, 2.*gamma)*alpha*alpha

13

14 cpdef psi_levy(double t, double t0, double lamb, double alpha, double gamma):

15 res = quad(fun_levy, t0, t, args=(t, lamb, alpha, gamma))[0]

16 return res

17

18 cpdef auxLevy(double u, double u0, double A, double a, double lamb, double alpha,

19 double gamma):

20 psi = psi_levy(u, u0, lamb, alpha, gamma)

21 return A*psi/(a - psi);

22

23 cpdef phi_levy(double t, double t0, double A, double a, double lamb, double alpha,

24 double gamma):

25 res = quad(auxLevy, t0, t, args=(t0, A, a, lamb, alpha, gamma))[0]

26 return res

References 76

References

[1] J. Gatheral, T. Jaisson and M. Rosenbaum. Volatility is rough, 2014. Available at

arXiv:1410.3394.

[2] C. Bayer, P. Friz and J. Gatheral. Pricing under rough volatility. Quantitative Finance, 16:

887-904, 2016.

[3] B. Horvath, A. Jacquier and P. Tankov. Volatility options in rough volatility models, 2018.

Preprint available at arXiv:1802.01641.

[4] M. Bennedsen, A. Lunde and M. S. Pakkanen. Hybrid scheme for Brownian semistationary

processes, 2017 Available at arXiv:1507.03004.

[5] O. E. Barndorff-Nielsen and J. Schimegel. Brownian semistationary processes and volatil-

ity/intermittency, 2009 H. Albrecher, W.J. Runggaldier and W. Schachermayer (Eds). Ad-

vanced financial modelling, volume 8 of Radon Series. Comput. Appl. Math., pp. 1-25, Walter

de Gruyter, Berlin.

[6] P. Glasserman. Monte Carlo Methods in Financial Engineering. Springer-Verlag New York,

2004.

[7] S. E. Shreve. Stochastic calculus for finance. II, Continuous-time models. Springer New York,

2004.

[8] D. Duffie, D. Filipović and W. Schachermayer. Affine processes and applications in finance.

Annals of Applied Probability, 13(3): 984-1053, 2003.

[9] S. Ninomiya and N. Victoir. Weak approximation of stochastic differential equations and

application to derivative pricing. Applied Mathematical Finance, Vol. 15, No. 2, pp. 107-121,

2008.

[10] A. Alfonsi. High order discretization schemes for the CIR process: application to Affine

Term Structure and Heston models. Mathematics of Computation, American Mathematical

Society 79 (269), pp.209-237., 2010.

[11] Cboe. VIX White Paper. http://www.cboe.com/framed/pdfframed?content=/micro/

vix/vixwhite.pdf§ion=SECT_MINI_SITE&title=VIX+White+Paper

https://arxiv.org/abs/1410.3394
https://arxiv.org/abs/1802.01641
https://arxiv.org/abs/1507.03004
http://www.cboe.com/framed/pdfframed?content=/micro/vix/vixwhite.pdf§ion=SECT_MINI_SITE&title=VIX+White+Paper
http://www.cboe.com/framed/pdfframed?content=/micro/vix/vixwhite.pdf§ion=SECT_MINI_SITE&title=VIX+White+Paper

	Introduction
	The Rough Bergomi Model
	Simulation of the rBergomi Model
	 Consistency with observed SPX smiles
	 Failure to fit VIX smiles
	 Implementation

	Modulated Volterra Stochastic Volatility models
	Instantaneous Volatility process
	Simulation of the instantaneus volatility process
	Implementaton of the Riemann sum method
	Hybrid Scheme
	Implementation of the Hybrid Scheme

	Stock Price model under Modulated Stochastic Volatility processes
	Simulation of the Stock Price process
	Implementation

	Calibration to SPX smiles
	Monte Carlo Implementation
	Control Variate
	Lévy-driven Ornstein-Uhlenbek process
	Cox-Ingersoll-Ross process
	Calibration Results

	Forward Variance
	Pricing VIX options via Monte Carlo
	Implementation
	Calibration Results

	Conclusion
	Appendix
	Comments on the Implementation
	rBer function
	Implementation of CallRS
	Implementation of the Levy functions

