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Abstract

This thesis explores the use of machine learning models to identify successful startup investments
for the purposes of Venture Capital (VC) investing. As this research topic is relatively new and not
typically a focus for quantitative model development, the process of how VC-investments generate
returns is first formalised and then translated into a binary target variable. The forward looking
target variables developed from this analysis create a point of divergence from existing research, as
they require both a future investment entry point (the initial event) and a subsequent investment
exit event, as opposed to only a future funding event.

A time series of data covering 64,197 startups founded between 2000-2017 in the UK and US is
developed using static data snapshots sourced from Crunchbase. This time series is then utilised
to encode the forward looking target variables. The time series is split into historical training sets
and future test sets. To imitate how predictive models might be used in a commercial setting,
four machine learning models (logistic regression, random forest, support vectors machines and
extreme gradient boosting) are developed using historical training sets, while their performance
is evaluated based on the predictive accuracy achieved on future test sets. The resulting models
developed on this principle are able to correctly identify successful startup investments in 46-52%
of cases within 4 years (average result over 10 randomised train-test iterations), depending on
the investment target identification requirements, which compares favourably to the average VC
success rate of up to ca. 30%.

The results presented in this paper are unique as this appears to be the first research which
strictly segregates historical and future data for training and evaluation purposes using the time
series data developed from Crunchbase. It also appears to be the only research which aims to
predict outcomes that directly influence the returns of VC portfolios and in doing so is much more
reflective of how these models would be used in a commercial setting.
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Chapter 1

Introduction

Financial markets can be broadly split into public markets and private markets. Public markets
consist of assets, such as stocks and bonds, that can be traded on publicly accessible platforms (e.g.
a stock exchange), whereas private markets encompass all other non-publicly traded assets, such
as privately held companies (startup or mature companies), real estate, infrastructure and private
debt. Whereas the general public can trade assets in public markets or have their investments
managed by fund managers (professional investors), private market investments can typically only
be accessed through fund managers with the necessary skills and experience to understand the
market dynamics and investment risks.

Public market fund managers are estimated to oversee around $3.05 trillion in assets [1], while
private market fund managers are estimated to oversee more than twice this amount at an estimated
$6.50 trillion [2]. Within either market, fund managers are typically classified according to the types
of opportunities they pursue. With a focus on private markets, the typical, high level fund manager
categories (based on [2]) are listed in Table 1.1.

Fund Type Description

Buyout Acquire full ownership or majority stakes in any mature and typically prof-
itable company (public or private), with the aim to increase profitability.

Growth Acquire minority or controlling stakes in any semi-mature company to finance
expansion or restructuring.

Venture Capital Acquire minority stakes in early- or mid-stage, high growth-potential technol-
ogy and life sciences companies (startups) to provide financing for continued
growth.

Real Estate Acquire land or properties and develop, operate or improve them to increase
their value.

Private Debt Direct lending or acquisition of loans extended to, typically, privately held
companies.

I&NR1 Acquire, build or develop infrastructure and/ or natural resources projects.

Other All other private market investments that do not fit into the above categories.

Table 1.1: Overview of Private Market Strategy Classifications

One of the key attractions of public markets is the availability of pricing and liquidity, meaning
fund managers can replace or rebalance portfolios as required, by buying, selling or even short-
selling assets. In comparison, private market investments are difficult to value and highly illiquid,
so that assets are bought with the understanding that these have a long holding period typically
ranging anywhere from 5-15 years. By implication, this means that private market fund strategies
are long-only and so investors have little or no ability to replace investments or rebalance portfolios
once transactions have been executed. Although investment selection is fundamental for both
public and private market assets, the inability to sell assets (without significant transaction costs/

1Infrastructure & Natural Resources
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losses) or rebalance portfolios makes the selection of investments in private market portfolios even
more important. In this paper, we will focus on Venture Capital investment selection and whether
this can be improved with machine learning models built using data sets that cover a large volume
of global startups.

1.1 Venture Capital Portfolios

To understand Venture Capital portfolios, we first note that ca. 75% of fund managers manage
less than $250 million and the median investment value for early and mid stage investments ranges
from $7.5-18.3 million (see Figures A.1 and A.3). This means that the median Venture Capital
fund will select between 10 to 30 investments from which returns must be generated.

Given the risky nature of early stage companies, these investors expect some of their investments
to fail. In fact, estimates for the success rate on investments by Venture Capital funds vary
depending on the study. For example a review of data from Dow Jones VentureSource, as in
Figure 1.1 taken from [3] estimates this at 20-30% (looking at returns above 3x gross multiples,
which corresponds to annualised gross returns of 12% over 10 years and excludes management
fees and other costs), while the Harvard Business Review [4] estimates this at 28.8%. This means
that these funds take into account a large number of investments failing and because of this, the
majority of returns must be generated from a small number of very successful investments, as is
also evident from Figure 1.1.

Figure 1.1: Distribution of Realized U.S. Venture Outcomes 2009-2018

A comparison of the NASDAQ Composite2 and US Venture Capital Index3 shows that re-
turns generated by the average Venture Capital investor have not outperformed this public market
benchmark, as shown in Figure 1.2 taken from [5].

Figure 1.2: US Venture Capital Index vs. NASDAQ Composite, 2002-2019

2An index heavily weighted towards companies in the information technology sector
3An index calculated by Cambridge Associates
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Research by [6] compared the annualised returns achieved in the private equity markets vs.
returns on broad equity indices from 2006-2015 and concluded that both have returned ca. 11%
p.a.. This raises the question of why investors should allocate funds to the private market segment,
particularly Venture Capital fund managers, and serves as a source of motivation for improving the
success rate on Venture Capital investments in order to deliver increased returns. In particular,
Figure 1.2 shows that although startup investing is quite risky, with up to 64% of financings losing
money, it also shows that gross returns above 1,000% are achieved on around 5% of financings
(in the US). This highlights the large upside available to investors who are better able to identify
and invest in successful startups. The increased availability of data on startups, as detailed in
Table 2.1, serves as further motivation to pursue the development of quantitative models to better
identify successful startups and in doing so enhance returns of Venture Capital portfolios.

1.2 Structure of Paper

We start by reviewing the existing research on the development of machine learning models for
Private Market strategies and Venture Capital investments in Chapter 2. Although research on this
topic can be found as early as 2001, more recent research focuses on using large-scale databases that
have become available over the last 13 years. We cast a critical eye on the results of this research
to understand whether these findings could be used in practice, as claims regarding the level of
predictive ability that the various machine learning models have achieved appear impressive.

To understand how best to implement machine learning models for Venture Capital investing,
in Chapter 3 we explore how Venture Capital investing works in practice and how returns are
generated. To link this process to the intended models, we attempt to formalise this investment
microstructure and from there derive the target variable we intend to predict. We then explore
some of the mathematical details behind four machine learning models (logistic regression, random
forest, support vector machines and extreme gradient boosting) to understand how best to calibrate
them for our purposes, as well as to understand their strengths and weaknesses.

In Chapter 4 we explore the startup database (Crunchbase) to better understand the data that
will be used in the machine learning models. We start by contextualising what this data represents
and then aim to understand its reliability and any biases that might be present. We then provide
a brief overview of the data and describe how it will be processed into a time series format.

In Chapter 5 we then describe how this time series format will be used to produce tests for how
well machine learning models, that are trained on historical data, perform at predicting successful
investment targets on future (unseen) data. The machine learning models are then implemented
on a historical calibration/ future forecasting basis and evaluated using measures that take into
account the desire of increasing Venture Capital portfolio returns by increasing the number of
successful companies selected, while also taking into account the return generating process of these
investments.

8



Chapter 2

Literature Review

2.1 Evolution of Data Availability for Venture Capital

The research of quantitative methods to predict company events, up until ca. 2015, relied mostly
on self-created survey-data or bespoke data sets that were limited in size and scope. Large scale
databases for researching this topic, particularly in a Venture Capital setting, have only been
established in the last 13 years. Furthermore, these databases have only matured in scope and
scale over the last 5 years, leading to a rise in research of more advanced quantitative methods
on this topic. Before reviewing the literature, it is therefore helpful to first review some of these
recently developed databases, as this will provide some context on how research has evolved over
the last 20 odd years.

Company Started Description

Crunchbase 2007 Covers around 1 million companies globally (2020/06), with informa-
tion on public and private companies, such as funding rounds, founders
and employees, mergers and acquisitions and industry trends. Data
is sourced from the venture program1, machine learning (processing
publicly available sources), in-house data teams and the Crunchbase
community (crowdsourcing). Only limited data is publicly accessi-
ble, with Pro and Enterprise subscriptions required to access the data
(apart from academic access).

PitchBook 2007 Covers around 3 million companies globally (2020/06), with informa-
tion on public and private companies, such as funding rounds, founders
and employees, mergers and acquisitions and industry trends. Data is
sourced from machine learning (processing publicly available sources)
and a large in-house data research team. Only limited data is publicly
accessible, with various subscriptions available to access the data.

Dealroom 2013 Covers ca. 550,000 startups, scale ups and corporates (2020/06), with
a more European focus. Information spans public and private com-
panies, such as funding rounds, founders and employees, mergers and
acquisitions and industry trends. Data is sourced from machine learn-
ing (processing publicly available sources), government sources and
through crowdsourcing. Only limited data is publicly accessible, with
various subscriptions available to access the data.

Table 2.1: Overview of StartUp Databases

Crunchbase is the most commonly used data source in recent research and is also the source
used in this paper, so we will focus on understanding its content and structure - although from
a review of sample data from Dealroom and PitchBook, these insights should also hold for those

1The venture program incentivises investors to keep their portfolio companies’ Crunchbase profile information
up-to-date in return for discounted product costs (source = CB and Techcrunch)
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data sources. Crunchbase tailors their product for use in marketing, deal sourcing, fund raising
and business development, with different company details updated at different times and stored
in separate databases. This means the data is primarily set up in a way to present the user with
a current snapshot of a company, rather than a time-series view. Fortunately, some time series
information is stored across various databases so that with some effort, the data can be transformed
into a comprehensive time-series view.

Given this context, we now review the literature covering the use of quantitative methods to
predict company events. We group the research by the scale of data used, as this provides a natural
chronlogical segmentation as well as some much needed context for the outcomes of the research.

2.2 Research Using Small Data Sets

Overview

2001, Lussier’s paper [7] is one of the earliest and most cited research papers in this field. It looks
at developing a logistic regression model to predict the success or failure of Croatian companies
over a 3 year period. Success is defined as making at least the industry-average profits over the
previous 3 years, while failure is defined as not making a profit over the same period. Data to
develop the model was drawn from a manual survey by the author, resulting in 120 data points
with 84 success and 36 failed outcomes. The logistic regression model is able to correctly classify
72% of the data points.

2003, Ragothaman et al [8] looks at predicting corporate acquisitions using Artificial Intelligence-
based rule induction techniques. The authors use a total of 194 data points from COMPUSTAT,
covering 97 companies that were acquired between 1994 to 1996 and 97 companies that were not
acquired. Commercial software is then used to train a rule-based system labelled ACQTARGET,
which is compared to standard statistical techniques such as multiple discriminant analysis and
Logit analysis. They concluded that the ACQTARGET system performs in line with the standard
statistical techniques in predicting the acquisition of companies.

2009, the paper [9] by Wei et al is one of the most cited subsequent research papers on this
topic and looks at whether mergers and acquisitions, using data enriched with patent information,
can be predicted using machine learning techniques. It is based on 61 mergers and acquisitions in
Japan between 1997-2008, using data from Thomson Reuters Platinum database. 523 non-merger
and acquisition data points are generated from the same 61 acquisition examples, as explained in
[9, p 197]. After enriching the data from the United States Patent and Trademark Office (USPTO)
they develop an ensemble learning algorithm to predict merger and acquisition outcomes, achieving
an accuracy of 88% and precision of up to 42%.

2014, Yankov et al [10] evaluate the use of machine learning models to predict whether tech-
nology startups in Bulgaria will be successful, where success is defined by a startup surviving and
increasing in size over a 5 year period. Data to develop the model was drawn from a manual survey
by the authors, resulting in 142 data points on Bulgarian technology startups. Their models are
able to correctly identify 83.76% of successful companies.

2019, Martinez [11] investigates the use of logistic regression models to predict 3 startup out-
comes: 1) achieving funding above ¤1,000,000, 2) Employing more than 10 staff and 3) Achieving
an annual investment IRR of at least 20%. The research uses 91 Dutch startup and scale ups
founded between 2009-2017 identified from finleap.nl. Data on these 91 companies from the early
stages of the company is sourced via questionnaire, while the outcome variables are taken from
finleap.nl (implied to be 2019 values). Logistic models are developed on this data, achieving a
predictive accuracy of 1) 71%, 2) 71% and 3) 76%.

Discussion

The above research provides insights into the drivers of success/ failure on small samples of startups
and develops some quantitative methods to enhance the identification of merger and acquisition
targets, as well as trying to classify some startup outcomes. The limited and specialised data used
to derive results make broader applications of their findings in industries such as Venture Capital
challenging, but the insights some of them provide form the basis of future research on this topic.
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2.3 Research Using Large, Static Data

Overview

2012, the paper [12] by Xiang et al is the first published research to use data from Crunchbase to try
and predict merger and acquisition activity using machine learning models. They use Crunchbase
data, as at 2011/12, on 59,631 companies founded between 1970-2007 and enrich this with news
coverage features for 10% of the companies. Machine learning models on this static data set are
then developed to predict whether a company should be classified as acquired, achieving a True
Positive and False Positive rate of between 60.0-79.8% and 0.0-8.3% respectively.

2017, Dellerman et al [13] develop a hybrid machine learning and collective intelligence pre-
diction method. They source data on 1,500 technology startups with angel investments from
Crunchbase, Mattermark2 and Dealroom. A combination of machine learning and human classifi-
cation models are developed and combined to predict whether these companies will reach Series A
funding. No results on the success of this method are included in the paper.

2017, Bento [14] studies the use of machine learning models to classify ’successful’ and ’not
successful’ outcomes for about 87,000 US companies present on Crunchbase on 2017/01/23, where
’successful’ is defined as a company with an IPO or acquisition event and ’not-successful’ is assigned
to all other companies. The machine learning models are developed on the snapshot view as at
2017/01/23 and achieve a True Positive and False Positive rate of around 94% and 8% respectively.

Discussion

The above papers take the approach of developing models to recreate positive and negative company
statuses (based on funding) using a static data snapshot, as per Figure 2.1.

Figure 2.1: Classification Models using a Static Data Approach

These results validate the ability of machine learning models to accurately categorise data,
however they are backward looking and not aligned to the use-case that would be required in a
commercial setting. In practice, these models need to be forward looking and give the user the
ability to (A) act on the prediction (enter an investment) and (B) benefit from the predicted event
(crystallise a return on an investment), as per Figure 2.2.

Figure 2.2: Return Generating Investment Process

As elaborated in Section 3.2, a quantitative model therefore needs to predict the 2 events (A)
and (B) into the future.

2Mattermark is a similar offering to Crunchbase, Pitchbook and Dealroom, but was acquired and closed down in
2017. The company relaunched in 2019 and claims to cover 80 data points on over 4 million companies (2020/06)

11



2.4 Research Using Large, Time Series Data

Overview

2018, Hunter et al [15] develop a framework to model the behaviour of company funding events.
They then create a Bayesian approach to building investment portfolios which maximise the prob-
ability of containing winners (company reaching either IPO or acquisition status). Data are drawn
from Crunchbase up to 2016/06 and covers 24,000 US companies founded between 2000-2016.
PitchBook and LinkedIn data are used to clean and enrich this data. Only companies which have
seed or series A funding as the first funding event (baseline date) are selected to be eligible for the
investment portfolio. The companies’ data at the baseline date are then used to develop a model
which maximises the probability of including winners in the portfolio.

2018, Sharchilev et al [16] develop machine learning models that try to predict if a company will
have another funding round within a 1 year period. Data is drawn from Crunchbase and combined
with additional features derived from crawling news sources. The data is structured as a rolling
30 day snapshot of all companies and news features up until 2017/05. Only companies which have
angel or seed funding (trigger rounds) are included in the model development. Models are trained
on rolling snapshots up until 2014/05 and tested on rolling snapshots from 2015/05 until 2016/05.
They report precision levels, for the top-100 and top-200 companies their models identify, of 0.626
and 0.535 respectively. A visualisation of this is provided in Figure A.4.

2019, Arroyo et al [17] develop models to predict the future funding event of pre series C funded
companies. Data on 120,507 global companies, founded between 2011/08 and 2015/08, are drawn
from Crunchbase as at 2018/08 conditional on not being closed, reached IPO, been acquired or
having achieved series C+ funding as at 2015/08. Only data that can be estimated for these
companies as at 2015/08 are included in the development of models which aim to predict whether
these companies will be closed, reach IPO, be acquired, achieve another funding round or have no
event over the next 3 years (i.e. up until 2018/08). They report precision levels between 0.84-0.86
when predicting a binary outcome indicator consisting of good (funding round, acquired or IPO)
and bad (no event and closed).

Discussion

It’s assumed in [15] that investors will invest after the seed or series A funding round and then
generate returns when these companies are acquired or have an IPO. Reviewing the Crunchbase
data [18] for US companies with seed or series A funding in 2011 and 2012, we can see that of these
5,590 companies, 739 will be acquired or have an IPO, but 291 of these have the acquisition or IPO
events immediately after seed or series A funding (283 acquisitions, 8 IPOs). As such, a Venture
Capital investor wouldn’t be able to invest in about 38% of the companies before the return event
occurs, which isn’t factored into the analysis and so overstates the degree to which the method is
able to construct portfolios containing winners. In fact, 8 out of 18 winners from the portfolios in
[15, p. 36-39] are acquired immediately after seed or series A funding (see Table A.2).

The stated aim in [16, p 7, Section 3] is: ”for a given startup that has received seed or angel
funding, predict whether it will secure a further Series A or larger round of funding during the
next year”. A particular shortcoming with this approach, in context of Figure 2.2, is that in order
for investors to benefit from this prediction they would already need to be investors in the seed or
angel rounds (potentially crystallising a return when the next funding event occurs). Alternatively,
investors could benefit from this approach if a company with angel or seed investing has more than
one subsequent round of funding, which isn’t factored into their analysis. Analogous to the analysis
of winners in the portfolios of [15], predicting a next round of funding isn’t a sufficient condition
for investors to profit from the model’s predictions. The impact of these points is difficult to assess
and so we refrain from drawing any further conclusions.

The aim of [17] is to predict a broader set of events to assist Venture Capital investors in
deciding which companies to analyse in more detail. One shortcoming in their approach is that the
model doesn’t provide insights to the user whether there is an entry and exit point available for the
Venture Capital investor (as per Figure 2.2) to generate a return. As we’ve seen in the discussion
of other research, being able to predict future outcomes for companies such as IPO, acquisition
or achieving another funding does not mean the investor has a chance to enter before the return
generating event occurs. The impact of these points is difficult to assess and so we refrain from
drawing any further conclusions.
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Chapter 3

Quantitative Models for Venture
Capital

We’ll start by looking at existing Venture Capital investment practices and then provide an
overview of the funding terminology before moving on to discussing the processes that create
returns for investors. This will then be linked to what we want to predict with models, how it
will be reflected in the data and how it will be encoded for prediction. Finally an overview of
the models that will be used to make predictions will be provided along with a summary of their
theoretical background.

3.1 Venture Capital Investing

A review of the available literature did not yield any definitive studies on how Venture Capital
investors currently make their decisions or whether there is any trend towards using more quan-
titative methods to improve these processes. A handful of blogs1 and interviews with Venture
Capital investors2 suggest that quantitative methods methods have not yet been widely adopted
and remain a niche operating model within the industry.

A 2016 survey of 885 Venture Capital investors, covering 681 firms [19] looked at what the most
important factors are for Venture Capital investors when assessing an investment target. Perhaps
somewhat surprisingly, 47% ranked the management/ founding team as the most important factor
when deciding whether to invest compared to 10%, 13% and 8% for the business model, product
and market, respectively. Similarly, 95% of firms identified the management/ founding team as an
important factor when deciding whether to invest compared to 83%, 74% and 68% for the business
model, product and market, respectively [19, Table 5, p. 178]. Furthermore, when comparing the
importance of deal sourcing, investment selection and value-add, 49% of Venture Capital investors
ranked investment selection as the most important item, while only 27% and 23% rank value-add
and deal flow as the most important item [19, Table 13, p. 187]. These tables are reproduced in
Figures A.5 and A.6 respectively.

Hence, given the availability of people-related data on the databases listed in Table 2.1, this
bodes well for quantitative models being able to predict successful startups (even without company
specific data) and further motivates their use to improve the deal selection process.

3.2 Venture Capital Market Microstructure

Chapter 2 showed how some quantitative models, using larger startup databases, have been devel-
oped over the last few years. Most of this research has focused on developing models that process
these new data sources into making some sort of prediction on companies’ funding statuses. How-
ever, one of the key elements missing from this research is the consideration of how investments
are executed and how returns are generated. In other words, the market microstructure of Venture

1https://medium.com/iveyfintechclub/machine-learning-and-big-data-in-private-equity-is-networking-still-
needed-9f8912a61ee9

2https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/a-machine-
learning-approach-to-venture-capital#
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Capital investing doesn’t seem to have been factored into the development of quantitative models
so far.

Market microstructure plays an important role in the development and implementation of trad-
ing strategies. For example, in public markets, if the market is order-driven or quote-driven changes
the way trading strategies are created to take into account the way that investments are entered and
exited, as these microstructures impact the price and execution timing of investments. Another
consideration is that market microstructures are constantly evolving in response to regulation,
participant demands and competition, which also needs to be taken into account.

Private market microstructures in particular also evolve over time. For example, within the
Venture Capital segment, the introduction of the Jumpstart Our Business Startups (JOBS) Act
2012 in the US gave rise to electronic marketing and investing venues for early stage companies for
retail investors - also known as crowdfunding sites. Equity crowdfunding3 is a small proportion of
total funding round activity (making up 3% of volume and 0.3% of value across 2017-2019 in the
USA and UK, based on Crunchbase data), but evolving and growing over time. It also presents
new ways for companies to raise funds, but also presents new ways for investors to enter and exit
investments.

Funding Rounds

Before discussing the Venture Capital investment process, we look at some of the terminology
associated with the funding events. Investing is typically categorised into a number of stages, with
each category further subdivided into a funding series. These reflect the funding requirements
given the growth stage of the company and can also be used as a proxy for the riskiness of the
investment. An overview of these funding rounds, compiled from [20] and [21], is provided in
Table 3.1 and provides further insights into the microstructure of Venture Capital investing.

Funding Stage Round Investors Description

Pre-seed Pre-seed Early Stage Angels
Angels
Early Stage VC
Accelerators
Friends and Family
Startup Accelerators

Pre-institutional, pre-product fund-
ing that is a very low amount, often
below $150k.

Seed Seed Angels
Early Stage VC
Accelerators

Among the first funding rounds,
ranging from $10k-2m, used to de-
velop company’s market traction.

Early Stage Series A VCs
Super Angels

Funding usually ranging from $1-
15m that targets revenue growth
and increased marketing. The series
rounds naming is aligned to the type
of preferred stock that investors re-
ceive.

Early-Mid Stage Series B VCs
Late Stage VCs

Funding to help the company scale,
usually ranging from $5-35m.

Mid-Late Stage Series C+ Late Stage VCs
Buyout Funds (PE)
Hedge Funds
Banks

Later stage funding to help com-
pany scale operations further, usu-
ally ranging from $20-300m

Table 3.1: Overview of Startup Funding by Investment Stage, Funding Rounds and Investor Type

Table 3.1 shows how investors overlap in funding stages, but also that Venture Capital funds
tend to specialise in particular funding rounds. As startup companies grow and progress to sub-
sequent funding stages, the ultimate goal for Venture Capital investors is to realise a return from
their investment, which is referred to as the exit strategy (or exit event).

3Crowdfunding can also be structured as debt. Crunchbase data covers only equity crowdfunding
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Venture Capital Investment Process

We will now try to formalise the microstructure for Venture Capital investments, which will form
the basis on how various outcomes are represented in data and finally use this to formulate a target
variable for quantitative models. The microstructure we assume to hold is:

1. Investments into early stage companies (funding rounds) happen at discrete time intervals.

2. When an early stage company receives a funding round, the investors commit capital and so
enter into the initial investment.

3. There are (generally) no liquid markets investors can use to exit the initial investment, hence
they must wait for a secondary event, i.e. the exit event in order to crystallize returns. Exit
events include4:

(a) Initial Public Offering (IPO): The startup’s shares start trading on a public exchange
and so provide liquidity for investors to sell all or part of their shares acquired in the
pre-IPO funding rounds. The assumption is that the value of the initial investment has
increased.

(b) Strategic Acquisition: The startup’s shares are acquired by a company, which provides
an opportunity for investors to sell all or part of the shares they acquired prior to the
acquisition. The assumption is that the value of the initial investment has increased.

(c) Sale of Shares (Other): While IPOs and strategic acquisitions are the most common
exit routes, investors can exit investments by selling their shares directly to another
investor (direct placement) or by selling their shares to the company’s management
(management buyout). The change in value in these instances is unclear, however for
simplicity we assume that the value of the initial investment has increased.

(d) Additional Funding Round: Although not typically listed as an exit event, most startups
only receive additional funding if they are successful. [22, p. 8] shows that 70-80% of
startups receive a higher valuation in the next funding round (known as an up round),
while data from Fenwick & West5 shows that valuations increase between funding rounds
on average by 61% (median 32%). Thus we can reasonably assume that the value of
the initial investment has increased and investors have made a (theoretical) gain.

(e) Company Failure: The company fails and it’s assumed that the value of the initial
investments drops to 0. We will refer to this as a negative exit event, as at this point
investors typically write-off the value of their shares and the investment is closed out.

Targeted Outcome (Variable)

Under this microstructure framework quantitative models should predict whether a company will
have an initial investment event in order for an investor to acquire shares in the startup (Point 2)
and a positive exit event (Points 3a-3d). The positive exit event requirement can be interpreted
in the stricter sense of looking only at exit events 3a-3c or in a more lenient sense by looking
for exit events 3a-3d. While the stricter exit event options are more in line with the traditional
guidelines for successful Venture Capital investments, we will also look also look at the somewhat
more lenient definition. Doing this will not only provide insights into the differences in predictive
ability for each definition, but will also allow us to better place the results from this research into
the context of existing research as discussed in Section 5.4.

This 2 step prediction approach contrasts to the general approach taken in quantitative models
in public markets, which, in oversimplified terms, aim to predict a single future event for an asset
(e.g. price increase, flat, decrease). This means public market strategies generally aim to predict
what is analogous to the initial investment (Point 2), as the assumption is that the same asset
can be invested in prior to this future event via a market order at the current price. Both of these
processes are represented in Figure 3.1 for comparison.

At this point, one could make the argument that after the initial event, active management
by Venture Capital investors is a contributing factor to a positive exit event and so influences the
data that is used for predictive purposes. In other words, one can question how a model should

4We exclude instances where companies continue operating without additional funding, as this is not an oppor-
tunity for investors to exit and the change in value for the investor is unclear

5https://www.fenwick.com/insights/publications/silicon-valley-venture-capital-survey-second-quarter-2020

15



Figure 3.1: Public Market and Venture Capital Investment Microstructure

predict 2 company events into the future, when the outcome of the initial investment could alter
the outcome of the exit event. This means one would ideally first model how an initial investment
changes the data of the company under consideration and then use these predicted data to forecast
whether this will result in a positive exit event. Taking this approach would potentially produce
models with better predictive ability and model insights for investors.

However, given the limitations of the data available we will take a more simplistic approach. We
will focus on developing models to predict companies which have an initial investment opportunity
and a positive exit event using the company data as it was before both of these events occurred,
assuming that all Venture Capital investors are equally able to guide a company from an initial
investment to a successful exit event. Given the discussion in 3.1, which showed that the majority
of Venture Capital investors rank the importance of the management/ founding team and the
investment selection as the most important factor when assessing an investment target, using the
people related data from Crunchbase should provide a reasonable basis for the development of
quantitative models for this purpose. Given this aim, the target variable will take on the stricter
form in Table 3.2 or the more lenient form in Table 3.3.

Current Funding
Status

Next Event Final Event Target
Variable

Seed or Series A+
(excl. exit events)

Series A+ (excl. exit
events)

Events listed in 3a-3c 1

Seed or Series A+
(excl. exit events)

Any (e.g. funding, exit,
etc.) or no event

None 0

Table 3.2: Strict Target Variable Formulation

Current Funding
Status

Next Event Subsequent Event Target
Variable

Seed or Series A+
(excl. exit events)

Series A+ (excl. exit
events)

Events listed in 3a-3d 1

Seed or Series A+
(excl. exit events)

Any (e.g. funding, exit,
etc.) or no event

None 0

Table 3.3: Lenient Target Variable Formulation

Further details on the use of the target variable (dependent variable) is provided in Section 3.3.
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3.3 Venture Capital Model Development

With the market microstructure for Venture Capital firms in mind, we now turn to the models
that can be used to predict whether a company will have both an initial investment and a positive
exit event. This sequence of events can be encoded in many different ways, however we will look at
a binary variable indicating whether both events have happened (1) or not (0). The four machine
learning models developed to predict the target variable are: logistic regression (LR), random
forest (RF), support vector machines (SVM) and extreme gradient boosting (XGB). LR results
provide a baseline for performance, given its relative simplicity compared to the other models.

3.3.1 Logistic Regression

Logistic regression is used to model the probability of the outcome of a categorical response variable
(i.e. target or dependent variable). In contrast to linear regression, it is a nonparametric technique
and so doesn’t make any assumptions about the distribution of the data or the residuals (errors)
of the fitted model. Focusing on the simpler case, where Y is a binary response variable (assuming
outcomes of 0 or 1) and writing p = probability(Y = 1) given X, we then have the odds of the
event Y = 1 given by:

odds(Y = 1) =
p

1− p
,where 0 < p < 1

Taking the logarithm of the odds (typically using base e), yields the logistic unit measurement
(aka logit). Logistic regression assumes a linear relationship between the logit of the dependent
response variable Y and the K independent variables X . The equation describing this relationship,
as per [23, p. 14], is given by (3.3.1).

logit(Y ) = α+ β1X1 + β2X2 + ...+ βKXK

= α+ βTX (3.3.1)

The relationship described in (3.3.1) is fit by maximising the log likelihood of the observations.
Assuming observations xi and responses yi where i = 1, ..., N , the log-likelihood is given by:

l(α,β) =

N∑
i=1

{yi log(p) + (1− yi) log(1− p)} (3.3.2)

where p is a function of α,β and X. Once the maximum log likelihood parameters have been
found, the estimated probability p̂ can be calculated by reversing the logit-unit transformation,
yielding:

p̂ =
eα̂+β̂

TX

1 + eα̂+β̂TX

=
1

1 + e−(α̂+β̂TX)
(3.3.3)

The logistic function has a characteristic S-shape, such that probabilities close to 0/ 1 are
associated with their corresponding 0/ 1 response. The exact point, or decision point, to use for
classifying the predicted probabilities from (3.3.3) as either 0 or 1 depends on the aim of the
exercise, however a default value of 0.5 is generally used.
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Figure 3.2: Example of Logistic Function with Toy Data

The relationship between the logit(Y ) and the independent variables can be extended to cover
curvilinear interactions between the variables X1, X2, ..., XK , increasing the complexity of both
the model and the relationships that might exist in the data (see [24, p. 275]). However, for the
purpose of establishing a baseline value for the various machine learning models in this paper, we
will consider the linear relationship given by (3.3.1).

3.3.2 Random Forest

The basis of the random forest (RF) algorithm is decision trees, which take on the form of either
regression or classification trees. Given the aim of this paper and the format of the dependent
variable, we will present the categorical classification tree algorithms, although the same algorithm
can handle both categorical and numerical data both as inputs and outputs. We will start with a
brief background on tree-based methods before analysing the classification tree algorithm. Subse-
quently, we will discuss the advantages and disadvantages of this approach before looking at the
random forest algorithm as a way to improve on these drawbacks.

Tree-Based Methods

”Tree-based methods partition the feature space into a set of rectangles, and then fit a simple
model (like a constant) in each one.” [25, p. 305]. These rectangular regions however, can only
be created through recursive binary partitions which places some restrictions on the way the
regions are defined. This concept is best illustrated visually, using a hypothetical example with 2
independent variables X1 and X2, with partitions at t1− t4 as per the example [25, p. 306, Figure
9.2], reproduced in Figure 3.3.

What this means is that we look for groupings (’rectangles’ or ’regions’) of data points for
which the best response is their most frequent response6. These regions are created by taking each
independent variable and sequentially introducing a binary split into their values to see which split
best separates the responses contained within the dependent variables. The formulation of this
sequence of splits of the independent variable values and how to define what the ’best’ separation
of responses in the dependent variable is, is essence of the Classification Tree algorithm. The
terminology used for Classification Trees is provided in Table 3.4.

6This is not the only definition of the ’best’ response for categorical and numerical dependent variables
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(a) Partition that’s not possible with
decision trees

(b) Possible decision tree partition us-
ing recursive binary splitting

(c) Corresponding decision tree for Fig-
ure 3.3 (b), creating 5 rectangular re-
gions R1 −R5

(d) 3 dimensional representation of the
regions in Figure 3.3 (b)

Figure 3.3: Illustrative Example of a Decision Tree and the Regions

Term Meaning

Branch A binary partition of the data (e.g. X1 ≤ t1 and X1 > t1), indicated by two
lines leading away from a root node or decision node

Root Node Initial partition of the tree, corresponding to X1 ≤ t1 in Figure 3.3 (c). If a
root node does not have any branches (i.e. does not partition the data), it is
referred to simply as a leaf.

Decision Node Subsequent partition points within the tree, corresponding to X2 ≤ t2, X1 ≤
t3 and X2 ≤ t4 in Figure 3.3 (c). A decision node must have branches leading
away from it, otherwise it is a leaf.

Split Point The values used by the root node and decision nodes to partition the data,
corresponding to the values t1 − t4 in Figure 3.3 (c)

Leaf A terminal point where a node does not split, indicated by no branches leading
away from it. E.g. R1 −R5 in Figure 3.3 (c)

Stump A tree with only a root node and 2 leaves is a stump

Pruning Pruning reduces overfitting of decision trees by removing leaves and decision
nodes starting from the bottom of the tree (e.g. R4 and R5 in Figure 3.3 (c))
and moving upwards. Pruning removes a decision node if the corresponding
leaves don’t meet a certain criteria, such as achieving a minimum decrease
in gini impurity or other penalty functions that take the number of leaves
into account (cost complexity pruning). In an extreme scenario, pruning can
remove all leaves in a tree leaving only the root node.

Table 3.4: Tree-based Methods Terminology
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Classification Trees

[25, Chapter 9.2], [26, Chapter 8] and [27] cover this topic in various degrees of detail, so we
will borrow from their approaches and notation to cover how the Classification Tree algorithm
quantifies and selects the root node, decision node, split points and leaves.

Let xi = (xi1, xi2, ..., xip) represent the ith observation vector of p independent variables and
yi represent the observation of the ith dependent variable. For i = 1, ..., N observations we end up
with a matrix of observed independent and dependent variables. While the independent variables xi
can be either continuous or categorical data, the dependent variable yi in this case is categorical.
The aim is now to find M ≥ 1 regions R1, ..., RM , with corresponding number of observations
N1, ..., NM , into which to partition the data, so that for each of these regions the response variable
is a constant value cm,m ∈ [1, ...,M ]. The resulting model f(x) for responses from each of these
M regions can then be written as:

f(x) =

M∑
m=1

cm11x∈Rm

Given that most data sets contain numerous independent variables, which can take on many
more values on which to partition the data, it is often computationally infeasible to consider all
possible data partitions to compute the global optimal partitioning. Therefore, this algorithm
is implemented using a greedy algorithm, which selects the node split point by only considering
what the ’best’ possible data partition is at current node under consideration. With a categorical
dependent variable y, the quantitative measure for the ’best’ possible split is often based on the
Gini impurity, although other measures such as the misclassification error and cross-entropy loss are
also considered. The Gini impurity is a measure of the proportion p̂m,k of correctly and incorrectly
classified dependent variables for each partition under consideration, where k represents the number
of categories the dependent variable y can take. The formal definitions are:

p̂m,k =
1

Nm

∑
xi∈Rm

11yi=k

Gini Impurity =

K∑
k=1

p̂m,k(1− p̂m,k)

The greedy algorithm to find the best binary partition of the data to produce the regions Rm
starts by finding the initial partition of the data (i.e. the root of the tree). To do this, each of the
independent variables xi,j , j ∈ [1, ..., p] (subsequently denoted xj) are considered sequentially and
for each independent variable, the best splitting point s (categorical or numerical) to determine
the half-planes is determined.

The half-planes at the splitting point s, producing leaves a and b, are written as:

Ra(j, s) = {x|xj ≤ s}
Rb(j, s) = {x|xj > s}

(3.3.4)

Since each potential half-plane in (3.3.4) will have its own impurity, the overall Gini impurity
for any proposed splitting value s is calculated as the weighted average Gini impurity of the half-
planes (weighted on the proportion of observations per leaf). To determine the splitting value s,
the overall Gini impurity is calculated for each splitting value s within xj and the minimum is
selected. Finally, the lowest overall Gini impurity for independent variables xj is selected as the
splitting point for the root of the tree. The same procedure is repeated to identify subsequent
decision nodes until a stopping criteria is reached - such as a minimum number of observations
within a region. This will produce M leaves, each of which is a decision node where a stopping
criteria was reached, or where no further split of the data is possible. Each of the regions (3.3.4)
defined by the M leaves will then be labelled as the region Rm,m ∈ [1, ...,M ]. This procedure is
summarised in Algorithm 1.

After a classification tree has been constructed, it generally contains a large number of decision
nodes and leaves, which often leads to overfitting but can be managed through pruning.
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Algorithm 1 Classification Tree (using Gini Impurity)

Set stopping criteria (e.g. node from binary splitting has less than specified number of observations)
Create Classification Tree():

while stopping criteria not reached do
Perform Binary Data Split on lowest Decision Nodes
for pre-binary split region R(j) and post-binary split regions Ra(j, s) and Rb(j, s) do

Calculate Gini impurities
end
if Gini impurity pre-binary split ≤ Weighted Gini impurity post-binary split then

Make pre-binary split region a leaf
else

Split region by independent variable j and splitting point s
end

end
End Create

Function Binary Data Split():
for each independent variable j do

for each splitting point s do
Calculate Gini impurity

end
Select splitting point s yielding lowest Gini impurity

end
Return independent variable xj and splitting point s with lowest Gini impurity

Pros and Cons of Classification Trees

We summarise the discussion on these models from [26, Chapter 8.1.4]:

+ Classification trees are considered ’white box’ models, meaning the model can be interpreted
and explained in meaningful ways.

+ The models are well suited for both quantitative and qualitative variables (e.g. categorical
and numerical measures)

+ Inputs for tree methods are not affected by the scale of input variables, reducing errors that
can occur due to normalisation or a lack thereof.

− Classification trees are prone to overfitting, which generally leads to poor performance on
validation or other unseen data. Consequently, these tree models are often unstable and
exhibit high variance, so that a small change in the data used to construct the tree can cause
large changes in the tree model it produces.

− In a number of instances, trees have been found to have less predictive accuracy than other
models, such as simple regression.

Random Forest (RF) Algorithm

The random forest algorithm addresses most of the drawbacks of classification trees while only
sacrificing some of the interpretability. The algorithm starts by creating what is called a boot-
strapped dataset. If the original data set contains N observations for p dependent variables
xi,j , where i ∈ [1, N ] and j ∈ [1, p], the bootstrapped data set is created by randomly selecting,
with replacement, N rows from the original data set. The matrix representations of the original
and bootstrapped data can be represented as Figure 3.4:

Next, a classification tree T, as per Algorithm 1 is constructed with the bootstrapped data set,
with the modification that instead of using all independent variables j, only a random selection
of these j independent variables is used to determine the variable and splitting point for a deci-
sion node, leading to a Modified Binary Data Split. As per the recommendations of [25,
Chapter 15.3], the default number of independent variables to use in the random forest algorithm
for the Modified Binary Data Split is m = b√pc, although m is often treated as a tuning
parameter that should be optimised.
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(a) Original Data Set (b) Bootstrapped Data Set

Figure 3.4: Illustration of Data Bootstrapping

This process is repeated B times to produce an ensemble of trees {Tb}B1 , each of which produces
a prediction of the dependent (target) variable y using the independent variables xi. The predicted
values from this ensemble of trees are then tallied and the predicted value that occurs most often
is used as the random forest output - this is called the majority voting rule. The summary of this
algorithm, adapted from [25, Algorithm 15.1, p. 588] is provided in Algorithm 2.

Algorithm 2 Random Forest

Set stopping criteria
Create Ensemble {Tb}B1 ():

for b = 1 to B do
Create bootstrap data set Z
Build Classification Tree Tb using Algorithm 1 with data set Z and Modified Binary
Data Split

end
End Create

Prediction Using Ensemble {Tb}B1 ():
for b = 1 to B do

Let Ĉb(xi) be predicted class of tree Tb
end

Final prediction ĈBRF (xi) = majority vote {Ĉb(xi)}B1
Return ĈBRF (xi)

Function Modified Binary Data Split():
Set m = b√pc
for m randomly selected independent variables do

for each splitting point s do
Calculate Gini impurity

end
Select splitting point s yielding lowest Gini impurity

end
Return independent variable xj and splitting point s with lowest Gini impurity

An analysis on the performance of the random forest algorithm vs. classification trees (and
other variants) is contained in [25, Chapter 15, p. 587]. It highlights that the advantages of this
algorithm lie in the way that the random selection of independent variables to grow the trees
reduces the variance of the resulting prediction. Intuitively, this means that allowing trees to
grow with different roots and decision nodes in each iteration builds an ensemble of trees, which
collectively contains better approximations of what the optimal decision tree should be.
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3.3.3 Support Vector Machines (SVM)

SVM is a classification method that develops non-linear classification boundaries. It works best
with categorical dependent variables, in particular dependent variables with a binary response
(K = 2), although this can be extended to K > 2 outcomes.

Similar to the random forest algorithm, SVM is based on simpler concepts known as maximal
margin classifiers and subsequently support vector classifiers. The weaknesses of these simpler
methods is their inflexibility to deal with complex separation boundaries, which the SVM ap-
proach overcomes by including higher-dimensional representations of the original data set in its
estimation of these boundaries. We will therefore start by looking at maximal margin classifiers
and support vector classifiers before discussing their advantages and disadvantages. Based on this
understanding, we will then look at the SVM approach and how this overcomes these disadvantages.

Maximal Margin Classifiers (MMC) and Support Vector Classifiers (SVC)

Starting with the formal definition of a hyperplane, [26, p. 338] states that ”[i]n a p-dimensional
space, a hyperplane is a flat affine subspace of dimension p−1” and has the mathematical definition:

β0 + β1X1 + β2X2 + ...+ βpXp = 0 (3.3.5)

In other words, any point (X1, X2, ..., Xp)
T in the p-dimensional space which satisfies (3.3.5) is

a point on the hyperplane. This definition means that any point X∗ not on the hyperplane falls
into one of two categories:

{
β0 + β1X

∗
1 + β2X

∗
2 + ...+ βpX

∗
p > 0 or

β0 + β1X
∗
1 + β2X

∗
2 + ...+ βpX

∗
p < 0

(3.3.6)

If we consider trying to classify a categorical dependent variable y ∈ {−1, 1} , then this feature
of hyperplanes can be exploited to establish boundaries within the independent variables xi =
(xi1, xi2, ..., xip) for i = 1, ..., N . How to establish this boundary is first addressed by maximal
margin classifiers (MMC).

Starting with any hyperplane that separates the data, we can calculate the perpendicular
distances between the observed data points and the hyperplane. MMC then sets the hyperplane
parameters β so that the perpendicular distances between the hyperplane and the observed data is
maximised. Hence using this MMC-hyperplane, any observation x∗ can be classified using (3.3.6)
by taking the sign y∗ ∈ {−1, 1} from (3.3.7).

y∗ = sign(f(x∗) = sign(β0 + β1x
∗
1 + β2x

∗
2 + ...+ βpx

∗
p) (3.3.7)

Another approach to establishing the MMC is by looking at the margin, which is the smallest
distance between a separating hyperplane and the observed data. The MMC is constructed to
maximise the margin between the hyperplane and the observed data. This leads to the conclusion
that the only data points which matter in MMC are those which are involved in maximising the
margin. These data points are referred to as support vectors. These concepts are best illustrated
using an example, such as the one provided in [26, Figure 9.3, p. 342], which is reproduced in
Figure 3.5 and illustrates the MMC separating hyperplane, the margin and the support vectors in
a 2-dimensional space (X1, X2).

MMC is useful when data can be perfectly separated by a hyperplane, however in most instances
this will not be the case. Support vector classifiers (SVC) build on the ideas of MMC and add
flexibility to the linear separating hyperplane construction by allowing for some misclassifications.
To understand how this is achieved in SVC, we first look at the formal definition on how to
construct the MMC, given in (3.3.8)-(3.3.10) as per [26, p. 343].
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Figure 3.5: Example illustrating the MMC hyperplane as the solid black line, the margin as
distance between the MMC hyperplane and dashed lines and the support vectors as the 1 purple
and 2 blue dots that lie on the dashed lines

max
(β0,β1,...βp,M)

M (3.3.8)

subject to

p∑
j=1

β2
j =1 (3.3.9)

y∗i (β0 + β1xi1 + β2xi2 + ...+ βpxip) ≥M ∀i = 1, ..., N (3.3.10)

Since y∗i (β0 + β1xi1 + β2xi2 + ... + βpxip) > 0, which is evident from (3.3.6) and (3.3.7),
condition (3.3.10) ensures data is correctly classified under MMC. In contrast, SVC introduces
slack variables εi into (3.3.10) that allow some observations to be misclassified (if needed), so that
the formal definition for SVC is given in (3.3.11)-(3.3.14) as per [26, p. 346].

max
(β0,β1,...βp,ε0,...,εN ,M)

M (3.3.11)

subject to

p∑
j=1

β2
j =1 (3.3.12)

y∗i (β0 + β1xi1 + β2xi2 + ...+ βpxip) ≥M(1− εi) ∀i = 1, ..., N (3.3.13)

εi ≥ 0,

N∑
i=1

εi ≤ C, where C ≥ 0 (3.3.14)

C in (3.3.14) is a tuning parameter and SVC again aims to find a linear separating hyperplane,
while allowing for some misclassification of data (via the slack variables in (3.3.14)). To better
understand the role of the slack variables, their interpretation is provided in (3.3.15).

εi


> 1 : observation is on the wrong side of the hyperplane

> 0 : observation is on the wrong side of the margin

= 0 : observations is on the right side of the margin

(3.3.15)

The resulting model is subsequently better able to deal with potentially ambiguous data (clas-
sification overlaps) and so is less sensitive to any changes in the training data. [26, Figure 9.6, p.
346], reproduced in Figure 3.6, provides further details on this interpretation.
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Figure 3.6: The black solid line represents the separating hyperplane. The dashed lines represent
the margins. Points 2-6, 7, 9 and 10 are on the right side of (or on) their respective margins. 1
and 8 are on the wrong side of their respective margins. 11 and 12 are on the wrong side of the
hyperplane and their respective margin

From [25, Chapter 12.2.1, p. 420], we also have that the solution of the SVC equations (3.3.11)
- (3.3.14) depends only on the inner product of the observations:

〈xi, xi′〉 =

p∑
j=1

xijxi′j (3.3.16)

so that the solution of the linear SVC decision boundary can be represented as [26, p. 351]:

f(x) = β0 +
∑
i∈S

αi〈x, xi′〉 (3.3.17)

where S is the collection of indices from the solution’s support vectors. Thus after finding the
linear decision boundary of the SVC, one can again classify any observations x∗ based on the sign
of f(x∗) = β0 + β1x

∗
1 + β2x

∗
2 + ...+ βpx

∗
p as per (3.3.7). Additional technical details on MMC and

SVC can be found in [26, Chapter 9.1.4, p. 342 and Chapter 9.2.2, p. 345] and [25, Chapter 12.2,
page 417].

Support Vector Machines (SVM)

Support vector machines (SVM) build on the SVC linear classification method and generalise the
approach to cases where where linear decision boundaries are not appropriate, such as the case
illustrated by Figure 3.7 taken from [26, Figure 9.8, p. 349].

One of the ways to create non-linear decision boundaries is by enlarging the input feature space
of the data. For example, for data of the format X1, X2, ..., Xp, we can derive the additional
data points X2

1 , X
2
2 , ..., Xp

2. Then, using both sets of points X1, X
2
1 , X2, X

2
2 , ..., Xp,Xp

2 we can
fit an SVC and create a non-linear decision boundary. In more general terms, SVM enlarges the
feature space of the data in a systematic way by using what is known as kernels. A kernel is
simply a function K used in the generalised form of the inner product (3.3.16), which we denote
by K(xi, xi′).

Thus, as in [25, Chapter 12.3, p. 423] and [26, Chapter 9.3.2, p. 351], the solution of the SVM
using the generalization of the inner product is represented by:

f(x) = β0 +
∑
i∈S

αiK(x, xi) (3.3.18)
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Figure 3.7: Example of Data with a Non-linear Decision Boundary and the Resulting Poor Fit
from the SVC Approach

The 2 most common functions used in the kernel of the SVM are the polynomial functions:

K(xi, xi′) = (r + γ

p∑
j=1

xijxi′j)
d (3.3.19)

and radial function:

K(xi, xi′) = exp(−γ
p∑
j=1

(xij − xi′j)2) (3.3.20)

Thus when a SVC is fit to data represented in a higher-dimensional space using non-linear
kernels, the resulting classifier is referred to as a SVM. Figure 3.8(a) shows an example of an SVM
classifier using a polynomial basis with d = 3 and Figure 3.8(b) shows the resulting SVM classifier
using a radial basis.

(a) Polynomial kernel with d = 3 (b) Radial kernel

Figure 3.8: SVM Decision Boundaries Using Different Kernels
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3.3.4 Extreme Gradient Boosting

Extreme gradient boosting (XGB) is quite an intricate algorithm that builds on the concepts used
in a number of other algorithms. XGB could be seen as a highly modified version of the Gradient
Boosting (GB) algorithm, which in turn is based on the concept of classification trees already
discussed in the RF algorithm Section 3.3.2. The extreme part of XGB is due to the lengths
the algorithm goes to in order to optimise and speed up calculations when compared to the GB
algorithm. We will therefore start this section by analysing the GB algorithm. Subsequently, we
will discuss the advantages and disadvantages of this approach, before looking at how the XGB
algorithm improves on GB’s drawbacks. As with the RF algorithm, given the aim of this paper
and the format of the dependent variable, we will present the categorical classification versions
of the GB and XGB algorithms. The same algorithms however, can handle both categorical and
numerical data as both inputs and outputs.

Gradient Boosting (GB) Algorithm

The Gradient Boosting (GB) algorithm is another ensemble tree algorithm, similar to the RF algo-
rithm discussed in Section 3.3.2. However the algorithms have fundamental differences particularly
around how the trees are constructed, which will become evident as the details of the algorithm
are explained.

Starting with a 2-class dependent (target) variable y (e.g. ’No’ and ’Yes’) encoded with values
0 and 1 and using the notation as per Section 3.3.2, where xi = (xi1, xi2, ..., xip) represents the ith

observation vector of p independent variables and yi represents the observation of the ith dependent
variable, then for i = 1, ..., N observations we end up with a matrix of observed independent and
dependent variables.

Similar to logistic regression in Section 3.3.1, this algorithm focuses on predicting the log-odds
(and hence the probability) of the dependent variable y’s outcome. One could then interpret a
predicted probability above 0.5 as one of the outcomes (e.g. ’Yes’) and any predicted probability
below 0.5 as the other outcome (e.g. ’No’), although any other boundary for this classification
is also possible. The outline of the GB algorithm is given in Algorithm 3 and each step will be
explained using [25, Algorithm 10.3, p. 361] and [28] as a basis.

Algorithm 3 Gradient Boost, Based on [25, Algorithm 10.3, p. 361] and [28]

Inputs:

* Data {(xi, yi)}Ni=1

* A differentiable Loss Function L(yi, F (x))

Initialise: F0(x) = argmin
γ

∑N
i=1 L(yi, γ)

for m = 1 to M do

Compute rim = −
[
∂L(yi,F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

for i = 1, ..., N

Fit a regression tree to the rim values and create terminal regions Rjm for j = 1, ..., Jm

for j = 1, ..., Jm do
Compute γjm = argmin

γ

∑
xi∈Rij

L(yi, Fm−1(xi) + γ)

end

Update Fm(x) = Fm−1(x) + ν
∑Jm
j=1 γm11{x ∈ Rjm}

end
Output: FM (x)

The differentiable Loss Function L(yi, F (x)) most commonly used in the classification version
of the GB algorithm is based on the log-likelihood function also used to fit the logistic regression
parameters, given in (3.3.2). However, in contrast to the logistic regression setting where param-
eters are fit based on maximising the log-likelihood function, the GB classification algorithm is
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initialised by minimising the negative log-likelihood function:

F0(x) = argmin
γ

N∑
i=1

L(yi, γ) = argmin
γ

(
−

N∑
i=1

{yi log(p) + (1− yi) log(1− p)}

)
(3.3.21)

In (3.3.21), γ is the log(odds), so that the loss function is given by (3.3.22)

L(yi, γ) = −yi log(p) + (1− yi) log(1− p)

= −yi (log(p)− log(1− p))− log(1− p)

= −yi log(odds) + log(1 + elog(odds)) (3.3.22)

(
since log(1− p) = log(1− elog(odds)

1 + elog(odds)
) = − log(1 + elog(odds))

)
This function is differentiable, since:

dL(yi, γ)

d(log(odds))
= −yi +

elog(odds)

1 + elog(odds)
(3.3.23)

= −yi + p (3.3.24)

To initialise the algorithm, we need to find the γ that minimises F0(x) = argmin
γ

∑N
i=1 L(yi, γ).

To find this γ we therefore take sum of the derivatives for each observation i = 1, ..., N and set
them equal to 0, to yield (3.3.25).

N∑
i=1

dL(yi, γ)

d(log(odds))
=

N∑
i=1

(
−yi +

elog(odds)

1 + elog(odds)

)
=

N∑
i=1

(−yi + p) = 0

Thus

p =
1

N

N∑
i=1

yi

which is the empirical probability of Y=1. Hence, in terms of log-odds

F0(x) = log

(
p

1− p

)
= log

( ∑N
i=1 yi

N −
∑N
i=1 yi

)
(3.3.25)

Hence using this loss function, the algorithm is initialised with the empirical log(odds) of the
dependent variable y, encoded with values 0 and 1. The loop then starts by computing rim. The
dependent variable y has been encoded with values 0 and 1, so that a low predicted probability
(e.g. below 0.5) corresponds to 0 and a high predicted probability (e.g. above 0.5) corresponds to
1. Therefore, since the negative derivative of the loss function is nothing but the difference between
the observed value y and the predicted probability p, rim is a pseudo residual:

rim = −
[
∂L(yi, F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

=

[
yi −

elog(odds)

1 + elog(odds)

]
F (x)=Fm−1(x)

= [yi − p]F (x)=Fm−1(x)

The F (x) = Fm−1(x) specification means that pseudo residuals are calculated using the esti-
mated value of y from the previous iteration. In case of m = 1, the initialised value F0(x) (3.3.25)
is used and for m > 1, the value derived from the previous loop-iteration is used.

The next step builds regression trees for the pseudo residuals in each of the terminal regions.
The regression tree roots, decision nodes and leaves usually differ in each iteration m as they are
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fit to predict new pseudo residuals to try and correct any misclassifications from the previous
iteration. Also, the trees are generally restricted to have between 8 to 32 leaves through the input
parameter Jm, although in the simplest setting Jm = J for all m. Regression trees are similar
to classification trees, but use different loss functions, predict numerical rather than categorical
outcomes for the dependent variable y and use an averaging rule rather than the majority voting
rule. More details on regression trees can be found in [26, Chapter 8.1.1, p. 304], [25, Chapter
9.2.2, p. 307] and [28].

As the algorithm progresses, new γ’s are calculated for each new leaf created by the regression
trees for the terminal regions. This is often achieved by using a Taylor expansion of the loss function
L(yi, Fm−1(xi) + γ), details of which can be found in [28]. Finally, the predicted log(odds) of an
observation are updated using the learning rate ν (typically set to 0.1) multiplied by the γ that
belongs to each applicable terminal region.

Pros and Cons of GB Algorithm

The RF algorithm constructs trees using random selection of independent variables in each itera-
tion, which leads to a reduction in the variance of its predictions. In contrast, the GB algorithm
constructs trees sequentially using outcomes (and their pseudo residuals) from the previous tree
to build new trees that aim to improve upon any misclassifications. Thus, while the GB algo-
rithm shares a number of strengths of classification trees and the RF algorithm, it also has some
weaknesses that we will briefly outline:

+ Each iteration of the GB algorithm improves its predictive ability

+ Due to the restricted size of each GB tree via the tuning parameters Jm, the trees can be
quicker to construct than the larger RF trees

− Due to the sequential improvement of each GB tree, the algorithm can lead to overfitting

− GB models can be harder to tune successfully as the algorithm relies on more tuning param-
eters than the RF algorithm

− In each iteration, the GB algorithm needs to minimise the loss function (e.g. based on the
log(odds)) before updating the predicted value, which can slow down its implementation and
(depending on the data) require more resources than the RF algorithm.

Extreme Gradient Boosting (XGB) Algorithm

Extreme gradient boosting (XGB) is a highly modified version of the GB algorithm with a number
of differences and additional steps that aim to improve its speed and predictive accuracy. Due
to the number of features and optimisations in XGB, we present a simplified version of the XGB
classification algorithm in Algorithm 4. This algorithm is based on using a 0/ 1 encoded version
of the dependent variable y. As with the GB algorithm, XGB updates the log-odds of y in each
iteration, with the corresponding probability being interpreted as the probability of the categorical
outcome (e.g. probability below 0.5 means the categorical outcome encoded with 0 and probability
above 0.5 means the categorical outcome encoded with 1).

In order to understand the algorithm conceptually, we will present a simplified regression tree
objective function (3.3.27) and then work through some of the details before relating it to the steps
in Algorithm 4. We use the conceptual overview presented in [29] and start with the objective
function used in the tree construction given in (3.3.26):

argmin
Om

value

[
N∑
i=1

L(yi, l
m
i ) + γ T +

1

2
λ(Omvalue)2

]
(3.3.26)
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where:

li = log (odds) of yi

L(yi, li) = −yili + log(1 + eli)

γ = penalty parameter to encourage tree pruning

λ = regularisation term

Ovalue = log(odds) output value of regression tree

The (γ T )-term in (3.3.26) is not used in the tree construction process, so in order to focus on
providing conceptual insights this term will be ignored. As with GB in Algorithm 3, each iteration
updates the predicted log(odds) using lmi = lm−1i + (Ovalue)mi , so that the objective function can
be written as (3.3.27).

argmin
Om

value

[
N∑
i=1

L(yi, l
m−1
i +Omvalue) +

1

2
λ(Omvalue)2

]
(3.3.27)

To make finding the optimal Omvalue efficient, the Taylor expansion of L(yi, p
m−1
i + Omvalue) is

utilised, as per (3.3.28).

L(yi, l
m−1
i +Omvalue) ≈ L(yi, l

m−1
i ) +

d

dli
L(yi, l

m−1
i )Omvalue +

1

2

d2

dl2i
L(yi, l

m−1
i )(Omvalue)2

= L(yi, l
m−1
i ) + (g)Omvalue +

1

2
(h)(Omvalue)2 (3.3.28)

Hence, in each XGB-iteration m, the regression tree should be built to minimise (3.3.29)

N∑
i=1

L(yi, l
m−1
i +Omvalue) +

1

2
λ(Omvalue)2 ≈

N∑
i=1

L(yi, l
m−1
i ) +

1

2
λ(Omvalue)2[

N∑
i=1

(g)

]
Omvalue +

1

2

[
N∑
i=1

(h)

]
(Omvalue)2 (3.3.29)

The derivative for g = d
dli
L(yi, l

m−1
i ) is given in (3.3.23)-(3.3.24), while the derivative in terms

of log(odds) and p for h = d2

dl2i
L(yi, l

m−1
i ) can also be derived as per (3.3.30)-(3.3.31) [28].

d2

dl2i
L(yi, l

m−1
i ) =

−e2 l
m−1
i

(1 + el
m−1
i )2

+
el

m−1
i

1 + el
m−1
i

=
el

m−1
i

1 + el
m−1
i

1

1 + el
m−1
i

(3.3.30)

= pm−1i (1− pm−1i ) (3.3.31)

Hence, taking the derivative in (3.3.29) with respect to Omvalue and setting this equal to 0 yields
the optimal value O∗mvalue as per (3.3.32).

d2

d(Omvalue)2

{
N∑
i=1

L(yi, l
m−1
i ) +

[
N∑
i=1

(g)

]
Omvalue +

1

2

[
N∑
i=1

(h) + λ

]
(Omvalue)2

}

=

N∑
i=1

(g) +

[
N∑
i=1

(h) + λ

]
(Omvalue) = 0
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Hence

O∗mvalue =
−
∑N
i=1(g)∑N

i=1(h) + λ

=

∑N
i=1 [yi − pmi ][∑N

i=1 p
m−1
i (1− pm−1i )

]
+ λ

(3.3.32)

=

∑N
i=1 residualmi[∑N

i=1 p
m−1
i (1− pm−1i )

]
+ λ

By first looking at some of the mathematical details on how the XGB-regression tree finds the
optimal output value for each leaf, we can now analyse XGB presented in Algorithm 4 and make
more sense of the steps and criteria used to construct the regression trees.

Algorithm 4 Simplified eXtreme Gradient Boost (Classification), Based on [29]

Inputs:

* Data {(xi, yi)}Ni=1

* A differentiable Loss Function L(yi, F (x))

* γ for pruning

* λ for regularisation

Initialise: m = 1 and p0i = 0.5 for all i = 1, ..., N

while (residuals > stopping criteria) OR (# trees built m ≤M) do
Compute rmi = yi − pm−1i = observed - predicted classification

Fit a regression tree to the rmi values and create terminal regions Rmj for j = 1, ..., J using
similarity score instead of Gini impurity

Calculate gain for each level of the regression tree

Prune regression tree using γ as minimum gain threshold

Calculate output at each leaf

Update log(odds)i for observation yi: l
m
i = lm−1i + ε O∗mvalue

Calculate leaf probabilities: pmi = elog(odds)
m
i

1+elog(odds)
m
i

Set m = m + 1
end
Output: pmi for each leaf to be used for predicted classification

The data format and Loss Function are the same as used in GB and so we will focus on the
new concepts introduced in XGB, starting with the initialisation of pi. By default, XGB initialises
the probability associated with each yi in the observed data to 0.5, although this default value
can be changed to something more meaningful such as the empirical probability derived from the

data (i.e.
∑N

i=1 yi
N ). γ and λ are input parameters that can be tuned to optimise the in- and

out-of-sample performance of the algorithm.
Next, XGB calculates the residuals of the dependent variable using the previous probability

from the algorithm (for m = 1, it uses the default p0i and for m > 1 it uses the probabilities
estimated in the previous iteration). A regression tree is fit, using the criteria called similarity
score, rather than the gini impurity as for the previous algorithms. The similarity score is related
to the last 2 terms in (3.3.29) and aims to set the split in the decision node at the point which
maximises the negative sum of g and h at the optimal value O∗mvalue (i.e. set at the minimum value
of their positive sum). The similarity score is given by (3.3.33)

S = −

{[
N∑
i=1

(g)

]
O∗mvalue +

1

2

[
N∑
i=1

(h)

]
(O∗mvalue)2

}
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substituting (3.3.32)

=
1

2

[∑N
i=1(g)

]2
∑N
i=1(h) + λ

=
1

2

[∑N
i=1 residualmi

]2
[∑N

i=1 p
m−1
i (1− pm−1i )

]
+ λ

(3.3.33)

In practice, to reduce computation times, the 1
2 is ignored, as the algorithm is only looking for

the largest similarity score S. The similarity score aims to create splits in the tree so that each new

sub-group of observations is clustered together. This is achieved through the
[∑N

i=1 residualmi

]2
term which increases if observations are ’on the same side’ of the probability being used and
decreases (due to the offset in residuals) if the observations are ’on different sides’ of the probability
being used. The trees created by splitting the decision nodes along the highest similarity score are
by default (in Python) limited to no more than 6 levels.

Next, the gain for each level is computed as the difference between the sum of the similarity
scores in the new leaves and the similarity score of the original decision node:

Gain = Sleft leaf + Sright leaf − Sdecision node (3.3.34)

Using the gain, the regression trees are pruned from the bottom (lowest level) upwards. If the
gain of a level is less than γ, the split (leaves) is removed (pruned). The gain of the new, higher
regression tree level after pruning (i.e. the previous decision node) is again compared to γ and
pruning continues unless gain > γ. If the gain in a level exceeds γ pruning stops along the branch.
However, in an extreme scenario, the pruning process could reduce the regression tree to a single
leaf (i.e. no splits).

After establishing the regression tree, XGB calculates the output, which is just the value O∗mvalue
calculated in (3.3.32). Using this output value, the log(odds) estimate of each yi is updated as
lmi = lm−1i + ε O∗mvalue, where ε is the learning rate and has a default value of 0.3.

Finally, the probability for each dependent variable observation yi is calculated from the
log(odds), from which the predicted outcome (category) can be inferred. This process is repeated
until either the residuals fall below a certain level (stopping criteria) or a maximum number of
trees M has been built.

XGB is considered one of the best performing machine learning algorithms, both in terms of
predictive ability (in- and out-of-sample) as well as speed of calibration. By 2016 XGB had been
used in 17 of the 29 winning submissions for Kaggle Machine Learning competitions with 8 of
these 17 winning submissions using only XGB and no other approach (i.e. ensemble of multiple
algorithms) [30]. Furthermore, tests on large data sets such as those by [31] have also shown XGB
can run up to 17 times faster than the RF algorithm and up to 86 times faster than the GB
algorithm and still achieve a higher predictive accuracy. Figure 3.9 taken from [31] shows this
comparison.

Figure 3.9: Comparison of Theoretical Model Speeds and Accuracies
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Chapter 4

Data and Analysis

4.1 Data Overview

We used academic access to Crunchbase data [18] to access 17 data sets covering various company
features. In its raw format, the data contains a snapshot of all companies as at the extract date as
well as some historical event information. After an analysis of the features, the 7 data sets listed
in Table 4.1 were selected to construct a time series view of the startups before the external data
listed in Table 4.2 was appended in an attempt to enhance the predictive ability of the models.

Data set Description of data used

Acquisitions Company level data on acquisition activity including: acquiree (company)
unique ID and acquisition date.

Degrees Per person data including: person unique ID, degree held, degree completion
date and degree issuing institution.

Funding rounds Company level data on funding activity including: company unique ID, fund-
ing round and funding round date.

IPOs Company level data on IPOs including: company unique ID and IPO date.

Jobs Per person data including: person unique ID, company unique ID, job title,
employment start date, employment end date and current job indicator.

Organizations Company level data including: company unique ID, country, current status,
company industry, founded date, closed date, company legal name, facebook
url, twitter url and linkedin url.

People Per person data including: person unique ID, gender and nationality.

Table 4.1: Overview of Data Sets Used from Crunchbase

Data Set Description

Economic data Consumer price index (CPI), average 10 year government bond yield, GDP
growth rates, M1 money supply, M3 money supply, unemployment rates, gov-
ernment asset purchase levels (quantitative easing), private household con-
sumption and expenditure.

These macro-ecnomic indicators are added per country on a 3-month lagged
basis to ensure they would be available both historically and for future cali-
bration purposes. They aim to capture broad macro-economic developments
which could impact the success or failure of startups.

Table 4.2: Overview of External Data Added
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4.2 Analysis

4.2.1 Context

To understand the data that we will be working with, it is important to first understand what the
Crunchbase data represents and its context within the population of all startup companies.

As listed in Table 1.1, the broad aim of venture capital funds is to ”acquire minority stakes
in early-stage, high-growth potential technology and life sciences companies (startups) to provide
financing for continued growth”. Crunchbase in turn describes itself as ”a directory of technology-
related companies and people”1 and is a ”platform for professionals to discover innovative compa-
nies, connect with the people behind them, and pursue new opportunities”2. Crunchbase therefore
represents a key segment of companies that Venture Capital investors would typically be interested
investing in.

To understand what proportion startups Crunchbase represents, we can look at the total number
of new startups each year and compare this to the number of startups listed on Crunchbase by
founding year. Starting with the United States, the Census Bureau [32], [33], [34] reports 3 key
measures:

Measure Definition

Business Application Application for an Employer Identification Number (EIN), which is a
company tax identification number for the IRS.

Business Formation A company that reports wage payment (after receipt of EIN).

Nonemployer Company Businesses that have no paid employment or payroll, are subject to
federal income taxes, and have receipts of $1,000 or more ($1 or more
for the Construction sector).

Table 4.3: Key Startup Measures Reported by the US Census Bureau

Using figures reported up to 2019Q1, the number of business applications has risen from ca. 2.5
million in 2005 to ca. 3.5 million in 2019. However, over the same period, the number of businesses
formed over the next 12 months (4 quarters) has decreased significantly, so that the number of new
businesses formed over the same period has fallen from ca. 0.8 million to ca. 0.6 million. Another
phenomenon in the US, is the number of nonemployer companies which make up over 80% of all
companies. From the definition in Table 4.3, these companies would clearly not be of interest to
Venture Capital investors. Applying this 80% haircut to the number of business formations within
4 quarters each year, means there are only around 60,000 new startups being formed each year
(not accounting for any other exclusions Venture Capital investors might apply). Comparing this
to the number of companies listed on Crunchbase (by founding year), implies Crunchbase captures
around 12% of relevant companies within 1 year of formation and around 25% within 5 years after
formation. Data supporting these statements are presented in Tables A.3, A.4 and A.5.

For the UK, data is only only available for company incorporations rather than company for-
mations. Given that the proportion of nonemployer companies in the UK3 (76%, see Table A.8) is
similar to that of the US at (80%), we can compare the proportion of all new businesses (applica-
tions/ incorporations) covered by the Crunchbase data set as per Tables A.6 and A.7. This shows
that the proportion of all US and UK companies covered by Crunchbase is similar, albeit slightly
higher in the UK, from which we could infer that Crunchbase covers at least the same proportion
(or more) of relevant UK companies within 1 and 5 years of founding.

4.2.2 Data Reliability

Before starting with data cleaning, processing and predictive modelling, some checks for reliability
were performed on the Crunchbase data. Of the 989,122 companies covered by Crunchbase globally
on 2020/06/06 only 33,778 (3.4%) are listed as being closed, while the remaining 955,344 (96.6%)
are either still operating (84.7%), acquired (9.6%) or had an IPO (2.3%). While the obvious

1https://support.crunchbase.com/hc/en-us/articles/360001464407-Hi-
2https://about.crunchbase.com/
3UK definition: sole proprietorships and partnerships with only a self-employed owner-manager(s) and companies

with one employee, assumed to be an employee director
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interpretation of this is one of survivorship bias, we first address the question also raised in [17,
Section III-B, p 124237] on whether the Crunchbase data is potentially not being updated for closed
companies. In other words, there is a question of whether or not the Crunchbase company status
is accurate. To address this question, we first focus on the 70,659 UK-based companies listed on
Crunchbase. The reason for this choice is that Companies House4 releases a quarterly snapshot of
all UK-based companies [35] that includes their current status. We can therefore compare this to
the status listed on Crunchbase and so assess the accuracy of the data. We limit this assessment to
UK-based companies founded between 2000-2017 and companies which have at least one entry in
the ’funding rounds’ data base, as these criteria will be the basis for developing predictive models.
Applying these filters leaves 10,168 companies, of which 9,913 (97.5%) are active and 255 (2.5%)
are closed.

For each company, Crunchbase has both a company name and a legal (registered) name. For
the UK-based companies under consideration, Crunchbase lists the company name for all compa-
nies, but the legal name for only 2,677 (26.3%) companies. In order to merge the 2 data sets,
a combination of either a company’s cleaned5 legal name (where available) or cleaned company
name together with the founded year and postcode was used. Where data couldn’t be matched on
this basis, further attempts to use only cleaned legal/ company name and founded year and only
cleaned legal/ company name were made. A final attempt included matching the previous 1, 2 and
3 cleaned company names held by Companies House against the cleaned legal/ company name on
Crunchbase. The results of this matching process are shown in Table 4.4.

Match Method Matched Match Rate

Cleaned legal/ company name, founded year and postcode 1,144 11.3%

Cleaned legal/ company name and founded year 735 7.2%

Cleaned legal/ company name 3,801 37.4%

Previous 1 cleaned legal/ company name 374 3.7%

Previous 2 cleaned legal/ company name 42 0.4%

Previous 3 cleaned legal/ company name 4 0.0%

Total 6,100 60.0%

Table 4.4: Overview of Crunchbase and Companies House Matches

The statuses for the 6,100 (60.0%) companies were subsequently compared, showing that for
cases that were matched using cleaned legal/ company name, founded year and postcode close to
100% of the companies with a status of operating, acquired or IPO were listed as being active
on Companies House. This alignment however, decreases as the certainty of the match decreases
although the statuses still match in at least 90% of cases. In the sample of 6,100 companies, only
79 (1.3%) had a closed status on Crunchbase and accordingly the match between the Crunchbase
and Companies House status is relatively volatile. Interestingly, the majority of closed cases on
Crunchbase are indicated as being active on Companies House. A manual review of a sample of
these cases revealed that some acquired companies had a closed status on Crunchbase while in
fact still being operational - meaning the owners considered the old company closed as they were
operating under the acquirer company’s name.

Another interesting observation is the increased number of companies classified as being closed
on Companies House when data was matched only on the company name. Although the match in
these cases is less certain, it does suggest there should be up to ca. 200% more companies (1.3%
vs. 4.1%) listed as being closed. However, if we increased the number of closed UK companies
(2.5%) from the 10,168 sample by 200%, this would still imply only 7.5% are closed while 92.5%
are active. A summary of the status comparisons is provided in Figure 4.1.

The reliability of most of the other data listed in Table 4.1 is difficult if not impossible to
verify independently. A description of potential validation sources and procedures is provided in
Table A.9. A summary of the results from checking a random sample of US companies’ acquisition,
IPO and organizations data is also provided below this table.

4Companies House is an executive agency, sponsored by the Department for Business, Energy & Industrial
Strategy responsible for incorporating and dissolving limited companies.

5Company names were cleaned by removing: non-word characters, non-Unicode whitespaces, leading spaces,
trailing spaces and any instances of ’LTD’ and ’LIMITED’
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Figure 4.1: Comparison of Crunchbase and Companies House Statuses, By Match Type

4.2.3 Survivorship Bias

The implication that the number of closed, UK-based companies should potentially be increased
by 200% still leaves ca. 92.5% of companies being classified as operational, which shows a definite
survivorship bias in the Crunchbase data set. Models built on data with survivorship bias can
overstate the positive outcomes that can be achieved (due to the data overstating positive out-
comes/ understating negative outcomes). While there are many ways one can deal with this type
of data, in the Venture Capital context this data feature may actually be beneficial. A 2019 review
of funding activity by PitchBook reveals that the age at which startup companies receive early
stage funding is increasing, as illustrated in Figure 4.2 [36, p. 10]. This shows that the median
age of companies receiving angel & seed, series A and series B funding has increased to 2.85 years,
3.83 years and 5.19 years respectively and means Venture Capital firms require startup companies
to prove their ability to survive before providing them with funding. The survivorship bias in the
Crunchbase data could therefore be a consequence of companies only listing on Crunchbase after
they have demonstrated their ability to survive.

Figure 4.2: Median Years Since Founding by Funding Series, 2008-2018.

Also, when looking at this data more closely, even though the majority of companies are still
active, the number of companies receiving more than 1 funding round is quite limited, as illustrated
in Figure 4.3.
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Figure 4.3: Number of Funding Rounds for UK and US-based Companies, Founded Between 2000-
2017 with at least 1 Funding Round.

We can interpret this to mean:

1. The Crunchbase platform acts as a filtering mechanism for startups. Mostly startups that
have had some previous success are included and this seems to be a strong indicator of being
able to remain operational.

2. A startup company remaining operational in most cases is not the mark of a successful
investment for a Venture Capital firm. As illustrated in Figure 3.1, these firms need an exit
point in order to crystallise their returns. Hence firms using the Crunchbase platform to
identify investments are still left with a significant challenge of finding the right investments,
as the majority of startups do not offer profitable investment entry and exit points.

These insights would suggest that companies captured by Crunchbase are filtered towards
companies that are both better able to survive and are more aligned to the profile of companies that
Venture Capital investors would want to invest in. Therefore, as long as this data generating process
for Crunchbase continues, we can see the survivorship bias as a positive feature for modelling, rather
than a negative one that needs to be corrected for.

4.2.4 Data Overview

Overview

The 17 databases available from Crunchbase were split by topic and connected by various unique
ID keys. Of these 17 data sets, the 7 listed in Table 4.1 were deemed most relevant for the purposes
of this paper and so will be the focus of this section. Since most of the 989,122 startups are either
US-based (327,401 or 33%) or UK-based (70,659 or 7%), we will focus on companies from these
countries. Using the same criteria as in Section 4.2.2 for including companies in the model data
(companies founded between 2000-2017 with at least one entry in ’funding rounds’ data base), we
end up with 58,260 US-based startups and 10,168 UK-based startups, for a total of 68,428 startups.
We choose only companies with ’funding rounds’ entries, as the premise for the target variable is
that a company must already have either seed or series A+ funding in order to be considered by
the Venture Capital investor.

An overview of the latest funding status is shown in Figures 4.4 and 4.5. The number of data
points matched from 4 of the data sets to the 68,428 companies is shown in Table 4.5. We exclude
’organizations’ as this is the base file, while the ’degrees’ and ’people’ data bases need to be matched
to ’jobs’ first to extract the employment period, which is done in the time series processing and is
therefore out of scope for this section.
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Figure 4.4: Overview of the Latest Funding Round for UK Startups, by Founding Year

Figure 4.5: Overview of the Latest Funding Round for US Startups, by Founding Year

Country Data Point Distrib. Acquisitions IPOs Funding Rounds Jobs

UK

1 865 184 5,802 1,949
2 56 6 1,927 1,680
3+ 8 0 2,439 4,446

Total Data Points 1,003 196 20,289 36,043
Unique Companies 929 190 10,168 8,075

USA

1 8,039 1,426 29,889 10,280
2 271 50 11,482 9,443
3+ 25 4 16,889 31,718

Total Data Points 8,658 1,540 130,147 318,797
Unique Companies 8,335 1,480 58,260 51,441

Total

1 8,904 1,610 35,691 12,229
2 327 65 13,409 11,123
3+ 33 4 19,328 36,164

Total Data Points 9,661 1,736 150,436 354,840
Unique Companies 9,264 1,670 68,428 59,516

Table 4.5: Overview of the UK and US-based Startups Matched Across Different Databases
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Companies with multiple ’Acquisitions’ are those companies which have been acquired by mul-
tiple acquirers at different points in time. Similarly, companies with multiple ’IPOs’ reflects a
company moving its listing from one stock exchange to another (e.g. NASDAQ to NYSE). In the
construction of the time series data, only the first acquisition or IPO event will be considered.

Missing Data

When data is not populated for some or all of independent and dependent variables, the results
derived from this data can be skewed or misleading. Missing data can be an extensive topic in
itself, covering areas such as identifying the type(s) of missing data and how to best deal with
these. However, because of the discussion on context and survivorship bias above, we can already
conclude that Crunchbase has various forms of missing data (e.g. not all successful startups are
included and companies that have survived are more likely to be included than ones that fail).
Assuming that Crunchbase data will continue to be generated in the same way going forward, we
can then instead interpret these features as a filtration of the opportunity set for Venture Capital
investors.

To simplify the time series construction, the variables listed in Table 4.1 and A.13 were chosen
on the basis of having no missing data. While other variables with missing data could be included
after applying imputation methods, the 124 independent variables used in the time series already
provide a good baseline to assess the predictive ability of the various models.

4.2.5 Data Processing

Before converting the data for the 68,428 UK and US companies’ data into a time series, the
data are cleaned to remove any anomalies such as startups which only have debt financing, post-
IPO funding or Initial Coin Offering (ICO) funding round entries, startups which have a funding
round, acquisition, IPO or closure event listed before the founding date and startups without a
name. Removing these anomalies leaves 64,197 startups (9,541 UK and 54,656 US-based).

Next, the various disjointed Crunchbase data sets for these remaining startups were transformed
into a single, coherent time series that aims to capture the dynamic state of startups over time
and relates these to whether or not a Venture Capital investment would be successful or not (via
the target variable). The time series is created on the principals that:

1. All dates for all events are pushed to the end of the quarter (in each year), essentially creating
a uniform, coarse grid of dates that can be used across all companies.

2. The time series has data in each quarter, for all relevant companies, ranging from the founding
date to the most recent event (IPO, acquisition, funding, none, etc.) ending on 2020/06/30.

3. The data captured at each quarter end summarises the dynamic state of the company (e.g.
number of employees, gender balance, net number of employees with PhD’s, funding round,
etc.), as well as reflecting a handful of static variables (e.g. industry, country and social
media presence).

4. The data at each quarter end has an accompanying target variable which indicates whether
a company has both an investment entry point and exit point (target=1 ) or not (target=0 ),
as per Figure 3.1.

The use of a coarse grid of event dates (i.e. the quarter ends) can be justified by the operational
realities: company changes (e.g. personnel) don’t happen instantly but often take months, while
Venture Capital investments take time to evaluate and execute. Therefore, pushing all time series
data entries to the end of a quarter gives enough time for any company changes to be reflected in
the data. Furthermore, making predictions at each quarter-end for a target variable that reflects
events happening over the next 3 or more months, leaves enough time for Venture Capital investors
to evaluate and invest in companies identified from these predictive models. A simplified example
of this data processing for a single company is illustrated in Figures 4.6-4.7.

Figure 4.6 shows some of the typical features of the raw Crunchbase data: a sequence of events
over time (funding/ hires) and some data flaws, such as missing values for job start and/ or end
dates (highlighted in orange) and duplicate entries (highlighted in grey). For the time series data,
data flaws such as missing job start and/ or end dates mean that this data has to be excluded as
it cannot be correctly assigned to the corresponding timeline values.
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Figure 4.6: Simplified Example of Raw Data from Crunchbase for GENWI

Figure 4.7: Simplified Example of Processed Time Series Data from Crunchbase for GENWI,
Showing Both the Strict and Lenient Target Variable Derivation (in this case they overlap).

Figure 4.7 shows a typical example of how the Crunchbase data were converted into a time
series, as well as how the target variable was assigned. The coarse quarterly grid for the time
series captures the dynamic states of the company GENWI, while the target variable’s design
gives Venture Capital investors sufficient time to act on a prediction of a successful investment
opportunity, as well as ensuring both an investment entry and exit point. Because we take the
view that Venture Capital investments are made from series A onward and given that the data
were selected on the basis of companies having at least 1 funding round, the target variable is set
to 0 for all data points before the first funding event.
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Data Imbalance

The target variable is skewed towards the value 0, as fewer startups present an investment target
with both an initial investment and exit event. Figure 4.8 illustrates that even for the oldest
startups, the target variable = 1 only makes up around 30% of the data using the strict definition
and 40% with the more lenient definition. The cost-sensitive learning approach, discussed in
Section 5.1, will be used in the models to compensate for this.

(a) UK Target Variable Distribution (Strict) (b) US Target Variable Distribution (Strict)

(c) UK Target Variable Distribution (Lenient) (d) US Target Variable Distribution (Lenient)

Figure 4.8: UK and US Target Variable Distributions

The differences in model performance predicting these different definitions of the target variable
will be illustrated in the subsequent sections.
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Chapter 5

Model Implementation and
Results

We now turn our attention to the implementation of models discussed in Chapter 3 that aim to
predict successful Venture Capital investments based on the time series data discussed in Chapter 4.
We will first discuss the metrics used to evaluate the models, then present and interpret the
numerical results and end by comparing the performance of the various models, highlighting the
strengths and drawbacks in each case.

5.1 Model Implementation

All models were implemented in Python using the relevant Scikit-learn1 libraries, taking into ac-
count the class imbalance in the target variable where necessary. For logistic regression, random
forest, SVM and XGB models, weighted penalties for the classes were used to correct for the
classification class imbalance, as this could otherwise bias the model predictions. While alterna-
tives to overcome the class imbalance exist, such as Synthetic Minority Oversampling Technique
(SMOTE) and Adaptive synthetic sampling approach (ADASYN), research by [37] shows that in
almost all cases a cost-sensitive learning approach (i.e. weighted penalties) outperforms over- and
undersampling techniques.

Before implementing the models, categorical variables were transformed using one-hot encoding
and where appropriate, one of the dummy-variables was dropped to avoid multicollinearity in the
data set. For example, categorical variables such as the industry group could be one-hot encoded
without dropping any dummy variables, as a company can belong to multiple industries and each
company has its own combination of industries that it belongs to (i.e. membership of a particular
industry is not implied by the absence of membership in another industry). On the other hand,
the funding status (seed, series A, etc.) and country (USA or UK) were encoded by dropping one
of the encoded dummy variables.

The list of variables in Table A.13 shows which variables were one-hot encoded with and without
dropping of one of the dummy variables.

5.2 Evaluation Metrics and Testing

Evaluation Metrics

Each of the models from Chapter 3 was calibrated to predict the target variable outlined in Sec-
tion 3.2. Given the imbalance of the target variable and use-case of these models, a discussion
around how to evaluate the predictions made by each model is necessary. The binary nature of the
target variable means that model predictions can be classified into 4 categories. Using terminology
which labels the target variable value of 0 as ’negative’ and a value of 1 as ’positive’, translates into
the definitions given in Table 5.1. These 4 categories make up what is called a confusion matrix,
as represented in Figure 5.1.

1https://scikit-learn.org/
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Figure 5.1: Confusion
Matrix

Category Description
True Negative (TN) Correctly predict negative outcome.

(Actual = 0, Predicted = 0)
False Negative (FN) Incorrectly predict negative outcome.

(Actual = 1, Predicted = 0)
True Positive (TP) Correctly predict positive outcome.

(Actual = 1, Predicted = 1)
False Positive (FP) Incorrectly predict positive outcome.

(Actual = 0, Predicted = 1)

Table 5.1: Confusion Matrix Categories

Given the discussion around the success rate on investments for Venture Capital funds in
Section 1.1, we use an optimistic estimate of a 30% success rate as a benchmark for the models
being reviewed. Given this relatively low success rate, it is clear that returns in these portfolios
can be improved significantly by either increasing the number of successful companies identified
or (to some extent) decreasing the number of unsuccessful companies identified. Connecting these
aims with the confusion matrix categories means that we want to either increase the number of
true positives, decrease the number of false positives or decrease the number of false negatives
identified. The 2 measures that focus on these outcomes are precision as defined in (5.2.1) and
recall as defined in (5.2.2).

Precision =
TP

TP + FP
(5.2.1)

Recall =
TP

TP + FN
(5.2.2)

Borrowing the descriptions of these measures from the Scikit-learn documentation, precision
can be intuitively understood to measure ”the ability of the classifier not to label as positive a
sample that is negative”2, while the recall can intuitively be understood to measure ”the ability
of the classifier to find all the positive samples”3. Essentially, the higher the precision and recall
are, the better the classifier will be at correctly identifying and correctly finding successful Venture
Capital investments.

Similar considerations in [17, Section IV-A, p. 124239] and [16, Section 5.4, p. 7], also highlight
that there is no single measure which can be used to separate a good from a bad classifier. Instead
if we examine the operational meaning of each of these classifiers, we can see that a high precision
translates into an increased ability of the classifier to correctly identify successful investments. Since
the average number of investments that the median Venture Capital fund will make is relatively
small (10-30), the precision rate needs to be high as one cannot rely on the proportion of correct
decisions ’averaging out’ across a large sample. On the other hand, recall is a measure of how many
successful investments the classifier flags to investors. Again considering that average number
of Venture Capital portfolio investments is relatively small, the recall in this case is of lesser
importance, as long as enough successful investments are flagged by the classifier for evaluation by
the investor.

In summary, we prefer classifiers that have a high precision and a high enough recall, so
that a sufficient number of successful investments are flagged and correctly identified.

Test Set Up

An important practical consideration for these models is that they are calibrated using historical
data but must produce actionable predictions on unseen, future data. To assess the performance
of the models on this basis, we split the data set into a number of mutually exclusive groups:

Group 1: Training data. All companies which have data up to a calibration date (e.g. 2010/12/31)
are split into 2 groups: a training and test set. For all companies in the training set, the
historical time series data up to the calibration date (e.g. 2001/01/01 - 2010/12/31)
is extracted and used to calibrate the models. We will also consider varying the time

2https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision score.html
3https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall score.html
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window used for calibration (e.g. 5 years: 2006/01/01 - 2010/12/31), to assess whether
more recent data produces better predictive models based on out-of-time tests.

Group 2: Test data (historical). The time series data up to the calibration date (e.g. 2010/12/31)
is extracted for all companies excluded from the training data. This data is then
grouped into annual test sets (e.g. 2000, 2001, ..., 2009, 2010).

Group 3: Test data (future). For all companies from Group 2 and for all companies founded after
the model calibrations date (which by definition are not in Group 1), the time series
data is extracted and grouped into annual test sets (e.g. 2011, 2012, ..., 2017, 2018).
The models calibrated on the training data (Group 1) are then applied to this test
data (future) (Group 3) and the target variable predictions are compared to the actual
target variables. It must be noted that for each future annual test set, there is less time
for the model predictions to be realised (since the data was extracted on 2020/06/06),
so that we can expect the precision and recall of these test data sets (future) to decline.
For example, predictions of the target variable for the annual test set 2015 have ca. 5
years’ time to be realised, while the predictions for the annual test set 2017 only have
3 years’ time.

This grouping of training data, test data (historical) and test data (future) is represented in
Figure 5.2.

Figure 5.2: Overview of training set, test set (historical) and test set (future) splits, for the example
calibration date 2010/12/31.

All companies which become acquired, closed or have an IPO (’ACIs’) are removed from the data
set following the event. The roll-forward of this calibration/ test procedure to (e.g.) 2011/12/31
is constructed so that newly founded companies from 2011 are also included in the new training
data (Group 1), while test sets (Groups 2 and 3) are constructed in the same way as described
above, taking care not to include any companies from the training set in historical or future test
sets. This roll-forward is represented in Figure 5.3.

The models will therefore aim to classify out-of-time test data, covering US and UK companies
across all funding stages. The number of companies used for the training and testing are provided
in Section A.5, while the list of data fields available for all the models is presented in Table A.13.

44



Figure 5.3: Overview of training set, test set (historical) and test set (future) roll-forward to the
example calibration date 2011/12/31.

5.3 Numerical Results

Test Procedure Overview

We start by setting up all model calibrations to use a cost-sensitive learning approach. Fortu-
nately, all Sci-kit learn libraries for the models under consideration have built-in functions that
enable this approach. Even though the cost-sensitive approach compensates for the class imbal-
ance and consequently the predicted probabilities of the target variable, we still aim to improve the
precision-recall trade-off of these models by adjusting the decision point of the predicted classifica-
tion probabilities. We therefore adjust the decision point to achieve a precision that is as high as
possible, while the recall is still high enough for the model to identify enough companies as invest-
ment targets. Most models set the decision point for the predicted probability to 0.5 by default,
so that probabilities below 0.5 are classified as a target variable = 0 and vice versa. However, by
increasing this decision point one increases the number of true positives and decreases the number
false positives, thereby increasing the precision (since only predictions with higher probabilities of
being a target variable = 1 are classified as such). This increased precision comes at the cost of
a lower recall, since using a higher decision point means that the model classifies fewer cases as
target variable = 1, which by implication creates more false negatives (actual target variable = 1
cases classified as target variable = 0).

Given the size of data and custom evaluation metric, only a limited number of hyperparameters
are tested to see if they improve the precision-recall trade off on future test data sets. Also, the
number of true positive cases identified is evaluated to see whether the model identifies enough
investment opportunities for the Venture Capital investor to assess and act on, which should be
at least 5-30 per year, based on Figure 5.4 from [38] (within the Series A band). Noting that the
quarterly time grid in the data could mean that the same company is identified up to 4 times as
an investment target within a given year, we take the conservative approach and require that the
model identify at least 20-120 investment targets for each yearly test set.

To align the calibrations and assessments to how the models would be used in practice, we focus
on the precision achieved on the Group 3 data, particularly for the calibration dates 2015/12/31
and 2016/12/31 and forecast years 2016 and 2017, respectively. These calibration and forecast
pairs will be labelled (C/F)2015/16 and (C/F)2016/17, respectively and provide ca. 4 years’ and 3
years’ time for predictions to be realised. These calibration and forecast pairs should give the best
indication of the model performance, given the difficulties present in evaluating the most recent
company predictions (as outlined in the description of Group 3) and so will be used to select the
best parameters and compare models. In the event that performance between these calibration
and forecast pairs is too similar, the tie-breaker consisting of the calibration date 2017/12/31 and
forecast year 2018 ((C/F)2017/18) will be used. These metrics are compared for models using
different calibration windows (e.g. 2, 5, 10 or all years before the calibration date) to assess which
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Figure 5.4: Number of Investments per Year (x-axis), by Assets Under Management (bubble size,
max = $1bn, min = $0.1bn) and Average Deal Value (y-axis)

calibration window performs best in predicting future investment targets.
Finally, using these hyperparameters, the (C/F)2015/16 and (C/F)2016/17 results from 10

train-test iterations are analysed to assess whether the median precision levels surpass the 30%
benchmark success rate and whether at least 20-120 investment targets are identified. To make
results comparable across models and time frames, the 10 train-test iterations are performed using
10 fixed (but randomly selected) random state values, which are used for the test-train data split
and models (where applicable).

5.3.1 Logistic Regression (LR)

Apart from using a ’balanced’ class weight to implement a weighted penalty function (cost-sensitive
learning approach), no other hyperparameters were adjusted. To aid with the convergence of the
logistic regression calibration, the data used for training the model were scaled using Sci-kit learn
StandardScaler’s fit transform method. This method ensures all data points are normalised by
subtracting the mean and dividing by the standard deviation. Data for all test samples were
normalised separately using only the test sample data to avoid any information leakage. The
parameters used in this model, as well as their results, are listed in Table 5.2.

Parameter & Description Selected Values

Decision point Strict: 0.9875 Lenient: 0.9875

Cut-off point for the classification probability.
All observations with a predicted classification
probability below this point were classified as
target variable = 0, while all above this point
were classified as target variable = 1.

These values provided the highest precision
while still identifying sufficient investment tar-
gets.

Calibration window Strict: 10 years Lenient: 10 years

The number of years’ of data, prior to the cal-
ibration date, to use for the model calibration.

Values in the range [8,12]/ [8,12] years also per-
formed well for the strict/ lenient target defi-
nition.

Table 5.2: Logistic Regression Parameters and Selected Values

The median precision and recall achieved with these hyperparameters is shown in Table 5.3.
Additional statistics are provided in Table A.10.

(C/F) 2015/16 (C/F) 2016/17 (C/F) 2017/18

S L S L S L

Median Precision 0.16 0.43 0.11 0.40 0.07 0.22

Median Recall 0.03 0.02 0.03 0.02 0.03 0.03

Median Targets 201 233 184 232 155 184

Table 5.3: Median LR Statistics for Strict (S ) and Lenient (L) Target Definitions
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For these hyperparameters, Figure 5.5 shows the precision-recall curves for (C/F)2016/17 and
highlights how the decision point influences this trade-off, with the chosen decision point labelled
’P-R @ Dec. Pt.’. Increasing (decreasing) the decision point would increase (decrease) precision
while decreasing (increasing) the recall and so move this point to the left (right). The line labelled
’No Skill’ indicates the precision that would be achieved by a classifier that ”predict[s] a random
class or a constant class in all cases”4, in this instance a classifier that always predicts the positive
case. Hence the ’No Skill’ precision is the proportion of positive cases in the dataset, as per (5.3.1).

No Skill =
Positive Cases

Positive Cases + Negative Cases
(5.3.1)

The corresponding confusion matrices in Figure 5.6 show the number of investment targets
identified (predicted = 1). Figures 5.7 and 5.8 show the precision and recall levels for each year
after calibration for the calibration dates 2015-2017/12/31. Outputs for different calibration dates
are provided in Section A.5.

(a) Strict Target Variable (b) Lenient Target Variable

Figure 5.5: Precision-Recall Curve Examples for (C/F)2016/17

(a) Strict Target Variable (b) Lenient Target Variable

Figure 5.6: Confusion Matrix Examples for (C/F)2016/17

The total number of outcomes reported in these confusion matrices (62,556) represents the
outcomes for startups with up to 4 entries in the forecast year. In comparison, the figures reported
in Table A.10 represent the unique number of startups in the forecast year. One could infer from
this that startups have on average ca. 3.5 entries in the forecast year, however this figure is
understated as startups founded later in the forecast year naturally contribute fewer entries.

4https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-classification-in-python/
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(a) Strict Target Variable (b) Lenient Target Variable

Figure 5.7: Example Precision per Year After Calibration Date. Group 2 (3) = − (+) x-axis

(a) Strict Target Variable (b) Lenient Target Variable

Figure 5.8: Example Recall per Year After Calibration Date. Group 2 (3) = − (+) x-axis

5.3.2 Random Forest (RF)

The random forest algorithm can use either a ’balanced’ or ’balanced subsample’ class weight to
implement a weighted penalty function. The difference between these methods is that ’balanced’
uses the entire training set’s imbalance value as a weighting, while ’balanced subsample’ uses the
imbalance weighting for the bootstrapped sample used to grow each tree. The ’balanced subsample’
was used as it performed slightly better in most cases. The default number of features m = b√pc is
used to construct the trees. The remaining hyperparameters tested and their results are provided
in Table 5.4

Parameter & Description Selected Values

n estimators Strict: 75 Lenient: 20

Number of trees to use in the random forest,
corresponding toB in {Tb}B1 from Algorithm 2.
The default value for this is set at 100

Values in the range [50,100]/ [15,25] also per-
formed well for the strict/ lenient target defi-
nition. Before and after these ranges, the pre-
cision and recall both decrease.
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Parameter & Description Selected Values

Max depth Strict: 20 Lenient: 15

The longest path between the root node and
the leaf node. The default value for this is set
to None, which means the tree is expanded un-
til all leaves are pure or until all leaves contain
less than a specified number of samples

Values in the range [16,20]/ [10,20] also per-
formed well for the strict/ lenient target defi-
nition.

Decision point Strict: 0.50 Lenient: 0.70

As per Table 5.2. These values provided the highest precision
while still identifying sufficient investment tar-
gets.

Calibration window Strict: 10 years Lenient: 10 years

As per Table 5.2. 10 years was consistently the best perform-
ing calibration window for the strict defini-
tion. Although no single value performed
consistently well for the lenient definition,
10 years also produced the best compromise
across the (C/F)2015/16, (C/F)2016/17 and
(C/F)2017/18 tests.

Table 5.4: Random Forest Hyperparameters and Selected Values

The median precision and recall achieved with these hyperparameters is shown in Table 5.5.
Additional statistics are provided in Table A.11.

(C/F) 2015/16 (C/F) 2016/17 (C/F) 2017/18

S L S L S L

Median Precision 0.24 0.45 0.23 0.37 0.00 0.15

Median Recall 0.05 0.12 0.03 0.09 0.00 0.02

Median Targets 220 1,223 74 791 3 196

Table 5.5: Median RF Statistics for Strict (S ) and Lenient (L) Target Definitions

Sci-kit learn allows for an analysis of feature importance in the calibrated RF-models, with
Figures 5.9-5.10 showing the top 15 features over time (by calibration year). We use the standard
feature-importance classifier based on mean decrease in Gini impurity even though it is indicated
to be ”biased; i.e. it tends to inflate the importance of continuous or high-cardinality categorical
variables”5. More advanced analysis of feature importance is possible, such as permutation and
drop-column importance however, we omit this as the paper focuses on comparing the performance
of machine learning models to predict successful investment targets.

We present the same outputs as for the logistic regressions, showing precision-recall (Fig-
ure 5.11) and confusion matrices (Figure 5.12) for (C/F)2016/17 as well as the precision and
recall levels for each year after the calibration dates 2015-2017/12/31 (Figures 5.13 and 5.14).
Additional outputs are again listed in Section A.5.

5https://explained.ai/rf-importance/index.html
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Figure 5.9: Top 15 RF Model Features over time. Strict Target Variable Definition

Figure 5.10: Top 15 RF Model Features over time. Lenient Target Variable Definition

(a) Strict Target Variable (b) Lenient Target Variable

Figure 5.11: Precision-Recall Curve Examples for (C/F)2016/17
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(a) Strict Target Variable (b) Lenient Target Variable

Figure 5.12: Confusion Matrix Examples for (C/F)2016/17

(a) Strict Target Variable (b) Lenient Target Variable

Figure 5.13: Example Precision per Year After Calibration Date. Group 2 (3) = − (+) x-axis

(a) Strict Target Variable (b) Lenient Target Variable

Figure 5.14: Example Recall per Year After Calibration Date. Group 2 (3) = − (+) x-axis

51



5.3.3 Support Vector Machines (SVM)

A ’balanced’ class weight is used to implement a weighted penalty function. Given that SVM tries
to maximise the distance between the separating hyperplane and the observations, it is important
to scale the input data to avoid features with larger values dominating the SVM calibration.
Therefore, as with logistic regression, the data used for training the SVM model were scaled
using Sci-kit learn StandardScaler’s fit transform method. This method ensures all data points
are normalised by subtracting the mean and dividing by the standard deviation. Data for all test
samples were normalised separately using only the test sample data to avoid information leakage.

While SVM has a rich theoretical background and can produce high accuracy results, it also
has a number of drawbacks. For example, SVM is not well-suited to large data sets, such as
the one we are using in this paper, as the standard SVM algorithm has O(n3) time and O(n3)
space complexities [39]. Given the 124 independent variables and large data set size, the training
time for the SVM was unfeasible and so this algorithm was implemented using a sub-sampling
technique, which relies on choosing a stratified random sample of all companies in the calibration
window. However, even when limiting the data to a stratified sample of 1,000 companies, the
SVM training time was far longer than any of the other models under consideration and so was
prohibitively time-consuming to calibrate and tune to produce satisfactory results. Nevertheless,
the hyperparameters were tuned using a stratified sample of 1,000 companies, and then validated
using a larger stratified sample of 5,000 companies. Only a single train-test iteration was performed.
This approach produced unsatisfactory results as the hyperparameters were sensitive to the 1,000
companies chosen for the tuning sample and subsequently, the validation using the larger sample
of 5,000 companies.

Another consideration is the fact that SVM’s separating hyperplane produces a binary clas-
sification output for the target variable, which in this case may not be well-suited to the task at
hand. This means that tuning the model to increase precision can only be achieved by tuning the
hyperparameters (in particular C and γ). However given the difficulty and time-consuming nature
of this endeavour, no satisfactory precision-recall values beyond those in Table 5.6 could be found
within a practical amount of time. The hyperparameters tested to find the optimal precision-recall
trade off on future test data sets and their results are provided in Table 5.6.

Parameter & Description Selected Values

C Strict: 0.9 Lenient: 1.0

C is listed as a regularisation parameter, where
the strength of the regularisation is inversely
proportional to C (C > 0). This means that,
as per (3.3.14), the parameter controls the de-
gree to which misclassifications are allowed in
the model calibration and so small values of
C create wider margins (which translates to
smaller slack variables) and vice versa. It’s de-
fault value is set to 1.0

Values in the range [0.9,1.0]/ [0.9,1.0] per-
formed best for the strict/ lenient target defi-
nition, although only marginal precision gains
could be made.

γ Strict: 0.00006 Lenient: 0.00006

This parameter applies to the radial basis func-
tion (rbf), polynomial and sigmoid kernels,
whose influence can be seen in the equations
(3.3.19) and (3.3.20). Focusing on the rbf, γ
defines how far the influence of a single train-
ing example reaches. Hence γ can be seen as
the inverse of the radius of influence of sam-
ples selected by the model as support vectors.
The default value is set to ’scale’, which sets
γ = 1

(n features∗X.var())

Values in the range [0.00004,0.00007]/
[0.00004,0.00007] performed best for the
strict/ lenient target definition. The resulting
precision was very sensitive to this parameter
and only marginal precision gains could be
made.
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Parameter & Description Selected Values

Kernel Strict: rbf Lenient: rbf

The kernels used for the generalised inner
products, as described in Section 3.3.3, with
examples as per (3.3.19) and (3.3.20). Options
available are linear, rbf, polynomial and sig-
moid kernels, with the default value being the
rbf

Rbf kernel performed best for the strict/ le-
nient target definition.

Calibration window Strict: 5 years Lenient: 10 years

As per Table 5.2. Although no single value performed con-
sistently well, these values produced the
best compromise across the (C/F)2015/16,
(C/F)2016/17 and (C/F)2017/18 tests.

Table 5.6: SVM Hyperparameters and Selected Values

The precision and recall achieved with these hyperparameters is shown in Table 5.7. Due to
the excessive run-times for this model, only a single train-test iteration was performed.

(C/F) 2015/16 (C/F) 2016/17 (C/F) 2017/18

S L S L S L

Precision 0.12 0.36 0.07 0.26 0.03 0.11

Recall 0.14 0.09 0.29 0.20 0.20 0.28

Targets 3,514 2,946 7,111 6,594 4,236 9,973

Table 5.7: Example SVM Output for Strict (S ) and Lenient (L) Target Definitions

We present the same outputs as in previous sections for the 1,000 company stratified tuning
sample (5,000 company stratified validation sample in Section A.5), showing precision-recall (Fig-
ure 5.15) and confusion matrices (Figure 5.16) for (C/F)2016/17 as well as the precision and recall
levels for each year after the calibration dates 2015-2017/12/31 (Figures 5.17 and 5.18). Additional
outputs are again listed in Section A.5.

(a) Strict Target Variable (b) Lenient Target Variable

Figure 5.15: Precision-Recall Curve Examples for (C/F)2016/17
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(a) Strict Target Variable (b) Lenient Target Variable

Figure 5.16: Confusion Matrix Examples for (C/F)2016/17

Note: The total number of outcomes in the confusion matrices in Figure 5.16 is higher, as we
include all startups not contained in the downsampled training set in the subsequent year’s test
set (subject to not being ACIs).

(a) Strict Target Variable (b) Lenient Target Variable

Figure 5.17: Example Precision per Year After Calibration Date. Group 2 (3) = − (+) x-axis

(a) Strict Target Variable (b) Lenient Target Variable

Figure 5.18: Example Recall per Year After Calibration Date. Group 2 (3) = − (+) x-axis
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5.3.4 Extreme Gradient Boosting (XGB)

A cost-sensitive learning implementation of the XGB algorithm is achieved by first calculating the
ratio between the number of target variable = 0 and target variable = 1 data points and then using
this ratio for the scale pos weight parameter. The hyperparameters tested and their results are
provided in Table 5.8

Parameter & Description Selected Value

Max depth Strict: 6 Lenient: 9

As per Table 5.4, except that the default
value is set to 6.

Values in the range [6,9]/ [6,9] also performed
well for the strict/ lenient target definition.

Min child weight Strict: 20 Lenient: 20

This is the minimum sum of the hessians
in a leaf node during the tree construction.
This corresponds to the minimum value that
(e.g.)

∑N
i=1 p

m−1
i (1− pm−1i ) needs to have in

(3.3.33). The default value is set to 1.

Values in the range [20,50]/ [20,50] also per-
formed well for the strict/ lenient target def-
inition.

γ Strict: 1.00 Lenient: 3.33

Gain threshold each node-split is required to
achieve in order to avoid pruning, where the
gain is given as in (3.3.34). Any node-split
that does not achieve this minimum gain is
removed from the tree. The default value is
set to 0.

Values in the range [0,10]/ [0,10] also per-
formed well for the strict/ lenient target def-
inition.

Colsample bytree Strict: 0.25 Lenient: 0.25

The proportion of features (columns) to use
in constructing each XGB-tree, similar to the
RF-algorithm. The default value is set to 1.

Values in the range [0.25,0.50]/ [0.25,0.50]
also performed well for the strict/ lenient tar-
get definition.

Decision point Strict: 0.86 Lenient: 0.85

As per Table 5.2. These values provided the highest precision
while still identifying sufficient investment
targets.

Calibration window Strict: 7.5 years Lenient: 7.5 years

As per Table 5.2. Values in the range [5,10]/ [5,10] years also
performed well for the strict/ lenient target
definition.

Table 5.8: XGB Hyperparameters and Selected Values

The median precision and recall achieved with these hyperparameters is shown in Table 5.9.
Additional statistics are provided in Table A.12.

(C/F) 2015/16 (C/F) 2016/17 (C/F) 2017/18

S L S L S L

Median Precision 0.49 0.52 0.23 0.41 0.09 0.16

Median Recall 0.01 0.04 0.01 0.03 0.01 0.03

Median Targets 30 368 16 261 31 267

Table 5.9: Median XGB Statistics for Strict (S ) and Lenient (L) Target Definitions
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XGB has built-in functionality to extract the feature importance of the calibrated XGB-models,
with Figures 5.19-5.20 showing the top 15 features over time (by calibration year). We use the
standard feature-importance classifier based on the number of times a feature appears in a tree.
We again omit more detailed feature analysis for the same reasons provided in Section 5.3.2.

Figure 5.19: Example Top 15 XGB Model Features Over Time. Strict Target Variable Definition

Figure 5.20: Example Top 15 XGB Model Features Over Time. Lenient Target Variable Definition

We present the same outputs as in previous sections, showing precision-recall (Figure 5.21),
confusion matrices (Figure 5.22) for (C/F)2016/17 as well as the precision and recall levels for
each year after the calibration dates 2015-2017/12/31 (Figures 5.23 and 5.24). Additional outputs
are again listed in Section A.5.

(a) Strict Target Variable (b) Lenient Target Variable

Figure 5.21: Precision-Recall Curve Examples for (C/F)2016/17
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(a) Strict Target Variable (b) Lenient Target Variable

Figure 5.22: Confusion Matrix Examples for (C/F)2016/17

(a) Strict Target Variable (b) Lenient Target Variable

Figure 5.23: Example Precision per Year After Calibration Date. Group 2 (3) = − (+) x-axis

(a) Strict Target Variable (b) Lenient Target Variable

Figure 5.24: Example Recall per Year After Calibration Date. Group 2 (3) = − (+) x-axis
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5.4 Summary of Results

Model Forecasts

We focus on the results obtained for the calibration-forecast pairs (C/F)2015/16 and (C/F)2016/17
(over 10 train-test iterations), as these are recent data points and the predictions have 4 and 3
years, respectively, to materialise. We exclude results for SVM, as only 1 train-test iteration could
be run due to the prohibitive model training time requirement. To compare the predictive ability
of various models, we plot their precision for the first year after the calibration date. Figure 5.25
shows these results for all calibration dates from 2010-2017/12/31. For example, the point 2016 on
the x-axis corresponds to the (C/F)2016/17 pair, 2015 to the (C/F)2015/16 pair, etc.. The last 3
points on the x-axis correspond to the precision values from Tables 5.3, 5.5 and 5.9. Full statistics
for the 10 train-test iterations and a box-plot of the precision rates are given in Tables A.10, A.11
and A.12, as well as Figures A.7, A.9 and A.13

(a) Strict Target Variable (b) Lenient Target Variable

Figure 5.25: Median Precision per Calibration-Forecast Pair: 2010-2017

While this graph represents the precision each model is able to achieve in the first year after
calibration, each precision value is determined for an increasing number of years over which the
predictions are allowed to materialise (right = lowest (2 years), left = highest (9 years)). Reading
this graph from right to left could then be indicative of the proportion of the machine learning
models’ year 1 predictions that would materialise as correctly identified investment targets, given
a certain amount of time. The same graphs could be constructed for the various models’ year 2, 3,
etc. forecasts, however this will always decrease the amount of time available for the predictions
to materialise. For this reason (and others discussed below) we will analyse the precision levels of
the models’ year 1 forecasts and discuss the results and their interpretation for each target variable
separately.

Strict Target Variable

We can see that the XGB and random forest (RF) models achieved the highest precision levels
in the first 3 calibration-forecast pairs. However, the precision declines for the (C/F)2014/15
pair, which appears to be an outlier as the precision levels rebound and increase to around 50%
for XGB and 40% for RF. Looking at the precision values furthest to the left (towards 2010) in
Figure 5.25(a), we see that logistic regression (LR) actually achieves a higher precision value. Using
the interpretation discussed above, when reading the graph from right to left, this would suggest
that, given enough time, the LR model’s predictions actually produce the highest proportion of
correctly identified investment targets (although closely matched by XGB).

However, what this interpretation ignores is the fact that there could be (and likely are) fun-
damental changes in the underlying data that generate these results. Thus we must decide what
is more important: a model that has a higher precision over a shorter outcome period or one that,
given enough time, has the highest precision level eventually? We take the view that a higher
precision over a shorter period of time is more important, since:
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1. The precision rates achieved on older calibration-forecast pairs may not be representative of
the precision rates these models can achieve on more recent calibration-forecast pairs as the
volume of data and breadth of companies covered by Crunchbase is much greater in the last
few years than (e.g.) 10 years ago.

2. Assuming the exit event (acquisition or IPO) generates the same value for investors regardless
of when it happens, then a shorter holding period increases the internal rate or return (IRR)
for investors and so improves the Venture Capital portfolio returns.

3. Regime changes in the underlying data (such as macro-economic, regulatory or political policy
changes that can impact the success rate of startups) are likely to have a smaller influence
on the performance of the model in the short term. Hence the precision rate over longer time
periods (older calibration dates) can be heavily influenced by historical factors that may not
apply going forward.

Therefore, focusing on the (C/F)2015/16 and (C/F)2016/17 pairs suggests that XGB and RF-
models are the best suited for predicting successful investment targets. Furthermore, using the
30% success benchmark discussed in Section 1.1 we can also say that the average/ median models
trained using the XGB algorithm actually outperform the average Venture Capital firm even over
a relatively short 4 year outcome period (excluding any further upside from additional model
predictions materialising as correct) by over 50% (30% vs. average of 46%/ median of 49%).

Table A.12 also shows that the same model would identify a median of 30 investment targets for
(C/F)2015/16 and a median of 16 for (C/F)2016/17. As discussed, we would conservatively divide
this number by 4 to compensate for the possibility of the same targets being identified in each of
the 4 quarters in a year, which would still leave 7 and 4 investment targets, which a suitably high
volume given the discussion in Section 5.3. Given the precision levels achieved, the decision-point
could be reduced to produce more targets.

It is perhaps somewhat surprising that these models are able to identify a relatively high
proportion of successful investment targets using a relatively simple data set. However, as we’ve
seen in Section 3.1, evaluating the management/ founding team in a company is considered to be
(one of) the most important factors in Venture Capital investing. Thus it is possible that these
models, which include Crunchbase data covering people, degrees and job movements, are able to
establish causal links between these factors and a company’s success. It is therefore interesting to
see that of the 5 most important features for the XGB model, 3 consistently relate to the company
employee profile (e.g. number of international employees, number of male executives and number
of male employees) while 2 are macro-economic features relating to the level of monetary stimulus
from the government (asset purchases (quantitative easing) and the total M1 money supply) -
as shown in Figure 5.19. The RF-model shows a slightly different picture, with the number of
international employees becoming less important over time, while the level of monetary stimulus
from the government becoming more important over time. The top 5 features still relate to the
employee profile (number of male executives and employees from top universities (see Table A.14)),
monetary stimulus (total M1 and M3 money supplies) while also including the presence on LinkedIn
as an important feature - as shown in in Figure 5.9.

Lenient Target Variable

For this target variable definition, XGB again appears to be the best performing model, although
the LR model is not very far off, suggesting either one could be used. We reach most of the
same conclusions here as we did for the strict target variable definition, however the interpretation
using the lenient target variable definition is slightly different. As discussed previously, a company
reaching another funding round is not necessarily an indicator of success for Venture Capital
investors. Nevertheless, identifying companies with the potential to reach a next funding round
(or exit) allows Venture Capital investors to widen the net on sourcing investment targets. In
particular, investors with a very active or superior investment management strategy might prefer
to identify targets of this nature and apply their skills in order to generate successful investments.
As their is no benchmark available for this approach, we highlight only the 50-60% precision rate
achievable from these models. We touch briefly on the model feature selection, which shows that
the top 5 features of the XGB-model, as per Figure 5.20, remain consistent between the different
target variable definitions, which is encouraging given the consistent performance of the XGB-
model. In contrast, the top RF-model features shown in Figure 5.10 are more erratic over time,
which makes the model hard to interpret.

59



Results in the Context of Previous Research

Even though this paper diverges from existing research in the derivation of the target variables, we
can provide some context for the results and discuss how these could be interpreted. Focusing on
the potentially most comparable research from [16] and [17], discussed in Section 2.4, the target
variables in these papers are defined by looking only at whether startups secure another funding
round, are acquired or have an IPO within a set period of time (1 year and 3 years). If we consider
the derivation of the lenient and strict target variables, then we can see that they are subsets of
the outcomes that these previous papers aim to predict.

This is because both the lenient and strict target variables only allow for a funding round as the
initial investment event, which is a subset of events allowed for in [16] and [17]. Furthermore, the
secondary exit event requirement is an AND condition, which makes the lenient and strict target
variables a further subset of outcomes (ignoring the differences in time horizons). If we denote the
target variables in these 2 papers by y[16] and y[17] and the lenient and strict target variables by
yL and yS respectively, then we can say that:

yS ⊆ yL ⊆ y[16], y[17] (5.4.1)

This means that the models developed in this paper are trying to identify a much more specific
set of investment targets. [16] reports precision levels (for y[16] within 1 year) of 0.626 and 0.535 for
the top-100 and top-200 companies identified by the models (ranked by predicted probabilities),
while [17] reports precision levels (for y[17] within 3 years) of 0.84-0.86. For the lenient target
variable definition we can achieve (median) precision levels up to 0.23 within 2 years (LR model
for (C/F)2017/18, Table A.10), 0.41 within 3 years (XGB model for (C/F)2016/17, Table A.12)
and 0.52 within 4 years (XGB model for (C/F)2015/16, Table A.12). The even smaller set of targets
available under the strict definition subsequently achieve (median) precision levels up to 0.09 within
2 years (XGB model for (C/F)2017/18, Table A.12), 0.23 within 3 years (RF/ XGB model for
(C/F)2016/17, Table A.11/ Table A.12) and 0.49 within 4 years (XGB model for (C/F)2015/16,
Table A.12).

Summary

The approach taken in this paper is believed to be much more reflective of the commercial require-
ments of Venture Capital investors so that the decrease in precision of the models is justifiable,
particularly in the context of (5.4.1). However, as already discussed, the precision levels achieved
are still significantly better than the benchmark success rate of current Venture Capital investors
(over a shorter time frame), so that the approach outlined in this paper could be implemented in
practice to construct startup investment portfolios that should generate much higher returns.

Furthermore, the results presented in this paper are based on targeting a high precision,
while providing a high enough recall, so that a sufficient number of successful investments are
flagged and correctly identified. However, these models can be easily adapted to Venture Capital
investors’ specific use-cases and risk-aversion preferences. For example:

1. Investors who choose to rely on the models to provide investment target recommendations
with a high risk-aversion would likely tune them to maximise precision and so minimise the
risk of an investment not reaching an exit event (strict or lenient).

2. Investors who aim to invest in a larger number of startup companies (e.g. larger funds) could
set a minimum target identification (per year) hurdle and optimise the precision levels for
this criteria.

3. Investors who believe that they have an edge in selecting investments could instead utilise
the raw model outputs (p̂ = probability (y = 1) given x). One approach would be to sort the
predicted probabilities p̂ to rank the companies from the highest to the lowest investment
potential and then overlay the investor’s own investment selection and evaluation criteria in
order to make investment decisions.
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Appendix A

Additional Tables and Figures

A.1 Introduction

Strategy

Buyout Growth
Venture

Capital
Real Estate Private Debt

Infrastructure

& Natural

Resources

Other

AUM ($ bn) Est 2019 H1 $ 2,067 $ 691 $ 988 $ 992 $ 813 $ 813 $ 107

Investment

Ownership

Full

Ownership
x x x x

Majority

Stake
x x x x x

Minority

Stake
x x x

Financing
Debt x x x x x

Equity x x x x x x x

Active

Management

of

Investments

Yes x x x x

Varying

Degrees
x x x

No x x x

Exit

Strategies

IPO x x x x

Stock

Relisting
x x

Sale to other

investor(s)
x x x x x x x

Amortisation x x

Table A.1: Overview of private capital investment strategies

This table summarises the information on the various private market investment strategies,
where the categories and AUM ($bn) figures are taken from [2], while the remaining information
is summarised from various sources including: [40], [41], [42], [43], [44], [45], [46], [47], [48], [49],
[50] and [51].

From this overview, it is clear that investment strategies are by no means mutually exclusive
as private market investments are not always clearly delineated and because fund managers adapt
their investment strategies if they believe this can generate additional returns.
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Figure A.1 is taken from [52], while Figures A.2 and A.3 are taken from [22, p. 8-9].

Figure A.1: Distribution of U.S. Venture Fund, by Size, 2008-2018

Figure A.2: Global Median Deal Size ($M) by Stage, 2012–2019 (Data as at 12/31/19)

Figure A.3: Global Median Deal Size ($M) for Seed-Series B, 2012–2019 (Data as at 12/31/19)
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A.2 Literature Review

Using the time series data created from [18], the 8 (out of the 18) winners in Table A.2 selected for
the portfolios in [15, p. 36-39] were identified as not providing an investor with the opportunity to
invest prior to the return generating event (acquisition).

Misidentified Winner All Funding Events Funding Date

Flutter Seed Round 2012/06/07

Acquired 2013/10/02

Funzio Series A 2011/05/05

Acquired 2012/05/01

Jybe Seed Round 2011/02/22

Acquired 2013/03/20

Leaky Seed Round 2011/08/02

Acquired 2013/08/31

Longboard Media Series A 2011/09/15

Acquired 2012/11/06

Metaresolver Seed Round 2012/03/19

Acquired 2013/02/21

Struq Series A 2012/04/19

Acquired 2014/10/01

ViewFinder Seed Round 2012/08/08

Acquired 2013/12/03

Table A.2: Misidentified Winners

Figure A.4 is a visual representation of the train and test procedure outlined in [16, p. 6].

Figure A.4: Training and Test Iterations for Models
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A.3 Quantitative Models for Venture Capital

Survey of Venture Capital firms, results taken from [19].

Figure A.5: Table 5 Reproduced: Important Factors for Investment Selection

Figure A.6: Table 13 Reproduced: Important Contributors to Value Creation
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A.4 Data and Analysis

US Business Applications and Formations

Table A.3 is based on data from [32].

Year Business Application
(All)

Business Formations
(Within 4 Quarters)

Business Formations
(Within 4 Quarters)

2005 2,502,014 470,052 19%

2006 2,644,204 425,014 16%

2007 2,659,813 386,987 15%

2008 2,556,042 322,563 13%

2009 2,401,128 288,503 12%

2010 2,463,839 290,965 12%

2011 2,537,102 289,092 11%

2012 2,542,219 280,092 11%

2013 2,582,539 282,436 11%

2014 2,689,139 289,360 11%

2015 2,786,711 291,663 10%

2016 2,945,758 297,778 10%

2017 3,176,109 304,906 10%

2018 3,472,126 324,928 9%

Table A.3: Overview of US Business Applications and Formations, Application Years: 2005-2018

US Employer and Nonemployer Company Data

Table A.4 is based on data from [33].

Year Employer Firms Nonemployer Firms Nonemployer Firms % Total

2012 5,726,160 22,735,915 80%

2013 5,775,055 23,005,620 80%

2014 5,825,458 23,836,937 80%

2015 5,900,731 24,331,403 80%

2016 5,954,684 24,813,048 81%

2017 5,996,900 25,701,671 81%

Table A.4: US Employer and Nonemployer Firms, Years: 2012-2017
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Estimated US Startup Coverage by Crunchbase

Table A.3 is based on data from [34] and [18].

Year Business Forma-
tions (Within 4
Quarters)

Haircut (Em-
ployer) Business
Formations

US Crunchbase
Companies

US Crunchbase
Companies %

(A) (B) = 0.2 x (A) (C) (C) / (B)

2012 280,892 56,178 14,138 25%

2013 282,436 56,487 14,385 25%

2014 289,360 57,872 14,625 25%

2015 291,663 58,333 13,322 23%

2016 297,778 59,556 10,998 18%

2017 304,906 60,981 10,166 17%

2018 324,928 64,986 7,716 12%

Table A.5: Estimated US Startup Coverage by Crunchbase, Assuming Only 10% of New Startups
are Employer Companies, Founding Years: 2012-2018

UK Business Applications and Formations

Table A.6 is based on data from [35] and [18].

Year Business Incorpora-
tions (All)

UK Crunchbase Com-
panies

UK Crunchbase Com-
panies (% All)

(A) (B) (B) / (A)

2013 208,753 3,061 6.1%

2014 256,225 3,173 5.2%

2015 292,091 3,217 4.6%

2016 327,818 2,778 3.5%

2017 376,180 2,444 2.7%

2018 495,011 1,796 1.5%

Table A.6: Overview of Total UK Business Incorporations vs UK Companies on Crunchbase,
Incorporation Years: 2013-2018

The analogous comparison of total US business applications vs. US companies on Crunchbase
is provided in Table A.7.

Year Business Applications
(All)

US Crunchbase Com-
panies

UK Crunchbase Com-
panies (% All)

(A) (B) (B) / (A)

2013 2,582,539 14,385 2.8%

2014 2,689,139 14,625 2.7%

2015 2,786,711 13,322 2.4%

2016 2,945,758 10,998 1.9%

2017 3,176,109 10,166 1.6%

2018 3,472,126 7,716 1.1%

Table A.7: Overview of Total US Business Applications vs US Companies on Crunchbase, Appli-
cations Years: 2013-2018
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Although total business applications (US) and business incorporations (UK) are not completely
comparable, these tables still show that there are between 1.4 (2018) to 2.2 (2013) times more
companies covered on Crunchbase, as a proportion of all business applications/ incorporations, in
the UK compared to the US. This would imply that the proportion of employer UK companies
covered by Crunchbase should at least match those figures listed in Table A.5.

UK Employer and Nonemployer Company Data

For completeness, we also include the UK non employer data in Table A.8, sourced from [53].

Year Employer Firms Nonemployer Firms Nonemployer Firms % Total

2013 1,210,910 3,684,745 75%

2014 1,277,360 3,965,775 76%

2015 1,311,865 4,077,585 76%

2016 1,325,485 4,172,185 76%

2017 1,366,835 4,327,680 76%

2018 1,389,285 4,278,225 75%

2019 1,409,950 4,457,820 76%

Table A.8: UK Employer and Nonemployer Firms, Years: 2013-2019

Additional Data Reliability Checks

Data set Description of data used

Acquisitions Could be verified by the publicity surrounding the event or from public dis-
closures by the acquiring company.

Degrees Cannot be independently validated without accessing the awarding institu-
tions’ records. Validating via LinkedIn could also be considered, although the
degree information is self-reported on this platform and so wouldn’t serve as
independent validation.

Funding rounds Can generally only be validated publicity surrounding the event.

IPOs Could be verified from the IPO’s listing venue.

Jobs Cannot be independently validated for the same reasons as given for Degrees.

Organizations Key information used in the data selection and quantitative model builds
(such as country, founding date and social media links) can be validated
through Companies House (UK), Secretary of State business entity searches
(US) and a review of social media sites.

People Cannot be independently validated for the same reasons as given for Degrees.

Table A.9: Suggested Additional Data Validation Sources and Procedures

Sample Check: US Acquisitions
On a sample of 20 acquisitions, all 20 were verified with only 1 instance where the acquirer name
differed due to the acquirer company changing its name.

Sample Check: US IPOs
On a sample of 20 IPOs, 16 were verified via the listing exchange and/ or the SEC, while the
remaining 4 had an equity sale event with shares trading via over the counter platforms, but no
IPO event registered with the SEC.
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Sample Check: Organizations
A sample of 50 US companies’ data (42 active and 8 closed) were reviewed on 2020/08/23. The
company status was checked against the relevant secretary of state (SOS) database, however not
all US SOS databases are freely accessible (or usable) so that only 41 statuses could be checked
(33 active, 8 closed). Of the 33 active, only 22 could be located. Of these 22, 16 were indeed active
while 6 were closed. 6 of the 8 closed companies could be located and of these all 6 were indeed
closed.
Social media profiles were also verified for the 27/ 28/ 32 companies that had data indicating a
Facebook/ LinkedIn/ Twitter address however, 4/ 3/ 4 of these landing pages did not exist.

Summary
We can conclude that the data from Crunchbase is relatively reliable, particularly regarding acqui-
sitions. While some questions can be raised on the accuracy of the IPO indicator, whether shares
are sold via an equity sale event or IPO, this still provides an exit opportunity for investors and
so does not diminish the validity of the outcome.

We cannot draw too many conclusions from the social media checks, as these pages can be
taken down over time or the address could change which might not be updated on Crunchbase.
However, it is encouraging to see that in ca. 85-90% of the sample, the social media profiles listed
on Crunchbase did (still) exist.

With regards to the company status, the SOS databases don’t always list the date on which a
company became inactive or closed, so it is hard to assess whether companies listed as active on
Crunchbase but closed on the SOS database, have been closed for a while or if they closed recently
as a consequence of COVID-19’s impact on the US economy. Regardless of this, if companies listed
as being active are indeed closed, then these companies would not receive any further funding or
be acquired and much less have an IPO. As such, any potential shortcomings on the accuracy of
the company status do not impact the target variable or the results of the model predictions.
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A.5 Model Implementation and Results

In the output that follows, Training Companies represents the 70% sample of startups drawn from
the Group 1 data which fall within the relevant calibration window to train the model. The startups
selected in the training data will vary depending on the random draw, however the size of this data
will not vary due to being fixed at 70% of Group 1 companies. (C/F) Test Companies represents
the 30% of startups not drawn from Group 1 to train the model, which have still not been acquired,
closed or have had an IPO (’ACIs’) in the year after calibration plus all new startups founded in
the year after calibration (which are not ACIs). The size of this data will vary depending on the
random draw, as more/ fewer companies from the 30% of Group 1 companies not used for training
will be ACIs in the year after calibration.

Logistic Regression

(C/F) 2015/16 (C/F) 2016/17 (C/F) 2017/18

S L S L S L

Training Companies 29,156 33,557 37,879

(C/F) Test Companies [16, 547; 16, 640] [18, 046; 18, 180] [18, 001; 18, 137]

Model Precision: Median 0.16 0.43 0.11 0.40 0.07 0.22

Mean 0.15 0.42 0.11 0.40 0.05 0.23

Range [0.05; 0.22] [0.28; 0.48] [0.08; 0.15] [0.32; 0.47] [0.01; 0.08] [0.15; 0.33]

Model Recall: Median 0.03 0.02 0.03 0.03 0.03 0.03

Mean 0.03 0.02 0.03 0.03 0.03 0.03

Range [0.01; 0.04] [0.01; 0.03] [0.01; 0.05] [0.01; 0.04] [0.00; 0.06] [0.02; 0.04]

Targets: Median 201 233 184 232 155 184

Mean 202 231 170 214 149 190

Range [161; 249] [193; 290] [105; 231] [138; 286] [104; 197] [142; 265]

Table A.10: LR Statistics for Strict (S ) and Lenient (L) Target Definitions

(a) Strict Target Variable (b) Lenient Target Variable

Figure A.7: Precision Rate Box-Plots per Calibration-Forecast Pair for 10 Train-Test Iterations

(a) (C/F)2015/16 - Strict (b) (C/F)2015/16 - Lenient

Figure A.8: Additional Precision-Recall Curve Examples
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Random Forest

(C/F) 2015/16 (C/F) 2016/17 (C/F) 2017/18

S L S L S L

Training Companies 29,156 33,557 37,879

(C/F) Test Companies [16, 547; 16, 640] [18, 046; 18, 180] [18, 001; 18, 137]

Model Precision: Median 0.24 0.45 0.23 0.37 0.00 0.15

Mean 0.24 0.46 0.23 0.37 0.14 0.15

Range [0.16; 0.34] [0.43; 0.50] [0.15; 0.33] [0.33; 0.42] [0.00; 0.50] [0.11; 0.21]

Model Recall: Median 0.05 0.12 0.03 0.09 0.00 0.02

Mean 0.05 0.12 0.03 0.09 0.00 0.02

Range [0.04; 0.05] [0.09; 0.16] [0.02; 0.04] [0.07; 0.11] [0.00; 0.00] [0.02; 0.05]

Targets: Median 220 1,223 74 791 3 196

Mean 225 1,235 70 829 5 225

Range [152; 298] [934; 1,616] [40; 102] [559; 1,081] [0; 17] [145; 464]

Table A.11: RF Statistics for Strict (S ) and Lenient (L) Target Definitions

(a) Strict Target Variable (b) Lenient Target Variable

Figure A.9: Precision Rate Box-Plots per Calibration-Forecast Pair for 10 Train-Test Iterations

(a) (C/F)2015/16 - Strict (b) (C/F)2015/16 - Lenient

Figure A.10: Additional Precision-Recall Curve Examples
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Support Vector Machines (1000 stratified sample)

Due to the excessive run-times for this model, only a single simulation was performed.

(a) (C/F)2015/16 - Strict (b) (C/F)2015/16 - Lenient

(c) (C/F)2017/18 - Strict (d) (C/F)2017/18 - Lenient

Figure A.11: Additional Precision-Recall Curve Examples

Support Vector Machines (5000 stratified sample)

(a) (C/F)2015/16 - Strict (b) (C/F)2015/16 - Lenient

(c) (C/F)2017/18 - Strict (d) (C/F)2017/18 - Lenient

Figure A.12: Additional Precision-Recall Curve Examples

71



Extreme Gradient Boosting

(C/F) 2015/16 (C/F) 2016/17 (C/F) 2017/18

S L S L S L

Training Companies 28,708 32,937 37,044

(C/F) Test Companies [16, 555; 16, 687] [18, 024; 18, 180] [18, 018; 18, 141]

Model Precision: Median 0.49 0.52 0.23 0.41 0.09 0.16

Mean 0.46 0.52 0.22 0.41 0.09 0.16

Range [0.19; 0.71] [0.48; 0.56] [0.08; 0.42] [0.33; 0.50] [0.02; 0.17] [0.11; 0.19]

Model Recall: Median 0.01 0.04 0.01 0.03 0.01 0.03

Mean 0.01 0.04 0.01 0.03 0.01 0.03

Range [0.00; 0.03] [0.03; 0.05] [0.00; 0.01] [0.02; 0.04] [0.00; 0.02] [0.02; 0.03]

Targets: Median 30 368 16 261 31 267

Mean 31 371 19 259 30 248

Range [17; 69] [337; 400] [6; 31] [187; 312] [9; 50] [184; 287]

Table A.12: XGB Statistics for Strict (S ) and Lenient (L) Target Definitions

Due to the shorter calibration window (7.5 years), the number of Training Companies for XGB
is lower than what’s reported for LR and RF, while the number of (C/F) Test Companies remains
quite similar.

(a) Strict Target Variable (b) Lenient Target Variable

Figure A.13: Precision Rate Box-Plots per Calibration-Forecast Pair for 10 Train-Test Iterations

(a) (C/F)2015/16 - Strict (b) (C/F)2015/16 - Lenient

Figure A.14: Additional Precision-Recall Curve Examples
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A.6 List of Variables Used in Models

Variable Type Description

org uuid Text Unique organisation identifier
(excluded after company train/
test split)

event date coarse Date Quarterly time grid (excluded af-
ter company train/ test split)

cum debt fin events Integer Cumulative number of debt fi-
nancing events

facebook ind Binary Facebook (Y/N)

linkedin ind Binary LinkedIn (Y/N)

twitter ind Binary Twitter (Y/N)

Empl Int net cumu Integer Net number of local employees

Empl Loc net cumu Integer Net number of non-local employ-
ees

advisor female net cumu Integer Net [gender] advisors

advisor male net cumu Integer Net [gender] advisors

advisor other net cumu Integer Net [gender] advisors

board member female net cumu Integer Net [gender] board members

board member male net cumu Integer Net [gender] board members

board member other net cumu Integer Net [gender] board members

board observer female net cumu Integer Net [gender] board observers

board observer male net cumu Integer Net [gender] board observers

board observer other net cumu Integer Net [gender] board observers

employee female net cumu Integer Net [gender] board employees

employee male net cumu Integer Net [gender] board employees

employee other net cumu Integer Net [gender] board employees

executive female net cumu Integer Net [gender] board executives

executive male net cumu Integer Net [gender] board executives

executive other net cumu Integer Net [gender] board executives

top uni ind net cumu Integer Degree from Top University
(Y/N)

B net cumu Integer Net [degree type] employed at
company

BA net cumu Integer Net [degree type] employed at
company

BBA net cumu Integer Net [degree type] employed at
company

BCOM net cumu Integer Net [degree type] employed at
company

BE net cumu Integer Net [degree type] employed at
company

BENG net cumu Integer Net [degree type] employed at
company

BSC net cumu Integer Net [degree type] employed at
company

BTECH net cumu Integer Net [degree type] employed at
company
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Variable Type Description

CERTIFICATE net cumu Integer Net [degree type] employed at
company

DIPLOMA net cumu Integer Net [degree type] employed at
company

EMBA net cumu Integer Net [degree type] employed at
company

JD net cumu Integer Net [degree type] employed at
company

LLB net cumu Integer Net [degree type] employed at
company

M net cumu Integer Net [degree type] employed at
company

MA net cumu Integer Net [degree type] employed at
company

MBA net cumu Integer Net [degree type] employed at
company

MD net cumu Integer Net [degree type] employed at
company

MENG net cumu Integer Net [degree type] employed at
company

MPHIL net cumu Integer Net [degree type] employed at
company

MSC net cumu Integer Net [degree type] employed at
company

MTECH net cumu Integer Net [degree type] employed at
company

PHD net cumu Integer Net [degree type] employed at
company

UNKNOWN net cumu Integer Net [degree type] employed at
company

3ML CPI 2000 Integer (Index,
2000Q1 = 100)

3m lagged CPI Index

3ML CPI 2000 Change Decimal 3m lagged CPI change

Avg 10y Gov Yield Decimal Average 10y Gov Bond Yield In-
dex

Avg 10y Gov Yield Change Decimal Average 10y Gov Bond Yield
change

3ML M1 2000 Integer (Index,
2000Q1 = 100)

3m lagged M1 Money Value (Lo-
cal Currency) Index

3ML M1 2000 Change Decimal 3m lagged M1 Money Value (Lo-
cal Currency) change

3ML Unemployment Decimal 3m lagged Unemployment level

3ML Unemployment Change Decimal 3m lagged Unemployment change

3ML M3 2000 Integer (Index,
2000Q1 = 100)

3m lagged M3 Money Value (Lo-
cal Currency) Index

3ML M3 Change Decimal 3m lagged M3 Money Value (Lo-
cal Currency) change

Asset Purchase bns Decimal 3m lagged Gov Asset Purchases
(Quantitative Easing, Local Cur-
rency)
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Variable Type Description

Asset Purchase bns change Decimal 3m lagged Gov Asset Purchases
(Quantitative Easing, Local Cur-
rency) change

Pvt Cons Exp 2000 bns Integer (Index,
2000Q1 = 100)

3m lagged Private Final Con-
sumption (Local Currency) Index

Pvt Cons Exp change Decimal 3m lagged Private Final Con-
sumption (Local Currency)
change

Administrative Services One hot, drop
none

Company Industry

Advertising One hot, drop
none

Company Industry

Agriculture and Farming One hot, drop
none

Company Industry

Apps One hot, drop
none

Company Industry

Artificial Intelligence One hot, drop
none

Company Industry

Biotechnology One hot, drop
none

Company Industry

Clothing and Apparel One hot, drop
none

Company Industry

Commerce and Shopping One hot, drop
none

Company Industry

Community and Lifestyle One hot, drop
none

Company Industry

Consumer Electronics One hot, drop
none

Company Industry

Consumer Goods One hot, drop
none

Company Industry

Content and Publishing One hot, drop
none

Company Industry

Data and Analytics One hot, drop
none

Company Industry

Design One hot, drop
none

Company Industry

Education One hot, drop
none

Company Industry

Energy One hot, drop
none

Company Industry

Events One hot, drop
none

Company Industry

Financial Services One hot, drop
none

Company Industry

Food and Beverage One hot, drop
none

Company Industry

Gaming One hot, drop
none

Company Industry

Government and Military One hot, drop
none

Company Industry
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Variable Type Description

Hardware One hot, drop
none

Company Industry

Health Care One hot, drop
none

Company Industry

Information Technology One hot, drop
none

Company Industry

Internet Services One hot, drop
none

Company Industry

Lending and Investments One hot, drop
none

Company Industry

Manufacturing One hot, drop
none

Company Industry

Media and Entertainment One hot, drop
none

Company Industry

Messaging and Telecommunica-
tions

One hot, drop
none

Company Industry

Mobile One hot, drop
none

Company Industry

Music and Audio One hot, drop
none

Company Industry

Natural Resources One hot, drop
none

Company Industry

Navigation and Mapping One hot, drop
none

Company Industry

Payments One hot, drop
none

Company Industry

Platforms One hot, drop
none

Company Industry

Privacy and Security One hot, drop
none

Company Industry

Professional Services One hot, drop
none

Company Industry

Real Estate One hot, drop
none

Company Industry

Sales and Marketing One hot, drop
none

Company Industry

Science and Engineering One hot, drop
none

Company Industry

Software One hot, drop
none

Company Industry

Sports One hot, drop
none

Company Industry

Sustainability One hot, drop
none

Company Industry

Transportation One hot, drop
none

Company Industry

Travel and Tourism One hot, drop
none

Company Industry

Video One hot, drop
none

Company Industry

country Binary UK(0) / USA (1)
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Variable Type Description

corporate round One hot, drop
first

Funding Stage

equity crowdfunding One hot, drop
first

Funding Stage

grant One hot, drop
first

Funding Stage

pre seed One hot, drop
first

Funding Stage

private equity One hot, drop
first

Funding Stage

secondary market One hot, drop
first

Funding Stage

seed One hot, drop
first

Funding Stage

series a One hot, drop
first

Funding Stage

series b One hot, drop
first

Funding Stage

series c One hot, drop
first

Funding Stage

series d One hot, drop
first

Funding Stage

series e One hot, drop
first

Funding Stage

series f One hot, drop
first

Funding Stage

series g One hot, drop
first

Funding Stage

series h One hot, drop
first

Funding Stage

series i One hot, drop
first

Funding Stage

series j One hot, drop
first

Funding Stage

series unknown One hot, drop
first

Funding Stage

target Binary Successful (1)/ Unsuccessful (0)
Investment

Table A.13: List of All Variables Used in Models
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Top University Names

The list of top US universities is taken from [15, Appendix C, p. 34], while the top 10 UK
universities are taken from The Times Higher Education1 and US News2.

UK US

Imperial College London Berkeley

King’s College London Brown

London School of Economics and Political Science California Institute of Technology

University College London Carnegie Mellon

University of Bristol Columbia

University of Cambridge Cornell

University of Edinburgh Dartmouth

University of Manchester Duke

University of Oxford Harvard

University of Warwick Johns Hopkins

Massachusetts Institute of Technology

Northwestern

Princeton

Stanford University

University of Chicago

University of Pennsylvania

Wharton

Yale

Table A.14: Overview of Top UK and US Universities Encoded into the Data

1https://www.timeshighereducation.com/student/best-universities/best-universities-uk
2https://www.usnews.com/education/best-global-universities/united-kingdom
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