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Abstract

In this thesis, we show how the efficient Monte Carlo methods could be devised for finance by

using the so-called Malliavin calculus. We propose a new method of computing Greeks for a wider

class of options, the Malliavin weighted scheme, which was originally introduced by Fournié et

al. in 1999. This approach is based on the Malliavin integration-by-parts formula on the Wiener

space. Several numerical experiments with applications of Monte Carlo method are conducted,

and our method is compared to the finite difference approximation to illustrate its efficiency. It is

shown that the Malliavin weighted scheme significantly outperforms the finite difference method

in the case of discontinuous payoff functionals, as expected.
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1 Introduction

1.1 Brief literature review about Malliavin calculus

In 1976, the celebrated paper “Stochastic calculus of variation and hypoelliptic operators” [1]

written by Paul Malliavin was published, in which the author initiated the theory of stochastic

calculus of variations (i.e., the so-called Malliavin calculus). In particular, to explore a probabilistic

proof of Hörmander’s “sum of squares” theorem is the original motivation of this theory. Moreover,

it is an infinite-dimensional differential calculus for functions on a Wiener space, and Malliavin’s

technique has been further developed by Stroock, Bismut, Watanabe, and others. One of the

important applications of this theory is to investigate the existence and regularity properties of

smooth densities for solutions to stochastic differential equations (SDEs) (see e.g. Ikeda and

Watanabe [4, 7]). The Malliavin calculus was developed in the context of a symmetric diffusion

semigroup by Stroock [5, 6]. Furthermore, in [3], Bismut provided a direct method for proving

Hörmander’s theorem by applying the Malliavin integration-by-parts formula on the Wiener space.

Over the last few decades, Malliavin calculus has been applied to diverse fields. For exam-

ple, consider the Heisenberg-Weyl algebra, Franz et al. [8] applied Malliavin calculus to quantum

stochastic processes; by the use of Girsanov’s theorem and the integration-by-parts formula of

Malliavin calculus, they derived a diffusion equation served as the sufficient condition their Wigner

densities need to satisfy. Besides, the convergence rate of the Euler discretization scheme on the

solution to an SDE is discovered by Bally and Talay [9]. Furthermore, Malliavin calculus has

been introduced a lot in economics and finance (e.g., [10–12]). In particular, Fournié et al. [13,14]

applied Malliavin calculus to calculate Greeks.

1.2 Why a new approach to evaluating Greeks?

Greeks are quantities representing partial derivatives of the estimated price of derivatives (e.g.,

options) with respect to various model parameters (risks), and are also called (risk) sensitivities.

The growing emphasis on hedging and risk-management issues has indicated a greater need to

efficiently compute Greeks, which are also very useful for the pricing of a product. Due to the fact

that in general financial models (including stochastic volatility models), these risk ratios do not

have explicit closed-form expressions, one often uses Monte Carlo methods to simulate the results

(see [15–19]).

Various approaches have been used to estimate Greeks. First, finite difference method is a

traditional way. Glynn [20] shown that under the central difference scheme and using common

random variables, the optimal convergence rate is arbitrarily close to n−1/2 in the number of

observations required when the objective function is sufficiently smooth. Glasserman and Yao [21],

and L’Ecuyer and Perron [22] all suggested that this rate is the best to be expected by Monte
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Carlo simulation. The finite difference method is universally applicable; however, it may lead to

a slow convergence rate and perform badly when the payoff function is discontinuous, e.g., in the

case of digital, corridor, Asian or lookback options (see for example, [23]). We refer the reader

to [24] for more details about finite difference method. To overcome this poor convergence rate,

Broadie and Glasserman [25] proposed two different unbiased methods, a pathwise method and a

likelihood ratio method, which can considerably increase the computational speed. Both methods

require an interchange of a derivative and are exhibited to have remarkably better convergence

than the finite difference method. However, the pathwise method cannot handle discontinuous

(non-differentiable) payoffs, and the likelihood ratio method can only be useful when the density

of the underlying model is explicitly known. We refer the reader to [26] for more details of the

pathwise method, and [27,28] for the likelihood ratio method.

To avoid the above limitations, Fournié et al. [13, 14] used an integration-by-parts formula to

derive expressions of Greeks based on Malliavin calculus. They represented the Greeks as the

expectation of the payoff function multiplied by a weight function

Malliavin Greek := EQ[e−
∫ T
0
rsdsf(XT ) · weight], (1.1)

where EQ[·] is the expectation under the risk-neutral measure Q, Xt the underlying price at time

t, f the payoff function (for instance, for European Call options, f(XT ) =: (XT − K)+), and

rs the risk-free interest rate. We note that the Malliavin weight is independent of the payoff

function. We call this method the Malliavin weighted scheme, which is applicable to complicated

and discontinuous payoffs. It has been shown that this method outperforms the finite difference

method for discontinuous payoff functionals (e.g., in the case of digital, simple, double barrier and

many other exotic options) (see [29–32]). Moreover, it performs well when we do not have an

explicit knowledge of the underlying density. See section 3 for more details of Malliavin weighted

scheme.

1.3 Aims and structure of the thesis

The main purpose of this thesis is to apply Malliavin calculus to compute Greeks and use Monte

Carlo method to conduct numerical experiments to demonstrate the efficiency of our method.

The rest of this thesis is organised as follows. In Section 2, we briefly review the Malliavin

calculus. Section 3 presents few related assumptions, and the detailed derivations of the Malli-

avin Delta and Gamma. We then apply the results derived to several models: classical Heston

model, fractional Black-Scholes model, and finally the rough Heston model (needs further research).

Closed-form Greeks, finite-difference Greeks and Malliavin Greeks are all derived, which are used

in Section 4 to conduct numerical experiments and to illustrate their performance. Finally, we

conclude the thesis in Section 5.
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2 Malliavin calculus

In this section, we recall the basics of Malliavin calculus. The material covered here was taken

from [10,13,29,30,34,35].

Let W = {Wt, t ∈ [0, T ]} be a continuous Gaussian process with mean zero and covariance

function E[WtWs] = R(t, s) such that W0 = 0. In addition, W is defined in a complete probability

space (Ω,F ,P) with F generated by W . Let H1 be the first Wiener chaos, i.e., the closed Gaussian

subspace of L2(Ω) generated by W . As stated in [60,61], we denote by E the set of step functions

on [0, T ], and let H be the Hilbert space defined as the closure of E with respect to the scalar

product

〈1[0,t],1[0,s]〉H =: R(t, s).

Then the mapping 1[0,t] 7→Wt can be extended to a linear isometry between H and H1 associated

with W . We denote by W (h) the image in H1 of an element h ∈ H.

Definition 2.1. A function f : Rd → R is of polynomial growth if there exist constants C > 0,

β > 0 such that

|f(x)| ≤ C(1 + |x|)β , ∀x ∈ Rn. (2.1)

We denote by C∞p (Rn) the set of all infinitely continuously differentiable functions f : Rn → R

such that f and all of its partial derivatives have polynomial growth.

Let S designate the class of smooth and cylindrical random variables such that a random

variable F ∈ S has the form

F = f(W (h1), · · · ,W (hn)), (2.2)

where f ∈ C∞p (Rn), h1, · · · , hn ∈ H, and n ≥ 1.

2.1 Malliavin derivatives

Definition 2.2 (Malliavin derivative). The derivative of a smooth and cylindrical random variable

F of the form (2.2) is the H-valued random variable given by

DF =

n∑
i=1

∂f

∂xi
(W (h1), · · · ,W (hn))hi(t), (2.3)

where D is called the Malliavin derivative on S.

Remark 2.1. As stated in [30, page 15], since f has only polynomial growth, we have DF ∈

L2([0, T ]× Ω). Sometimes we write (2.3) as

DtF =

n∑
i=1

∂f

∂xi
(W (h1), · · · ,W (hn))hi(t). (2.4)

Due to the fact that hi ∈ H is only defined up to a set of Lebesgue measure 0, Dt is not really

well-defined. We will use both Dt and D (defined with different domains and ranges) in this thesis.
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We denote the domain of D in Lp(Ω) by the Sobolev space D1,p for any p ≥ 1, which means

that D1,p is the closure of S with respect to the norm

||F ||1,p = (E[|F |p] + E[||DF ||pH])
1
p .

One can interpret D1,p as an infinite-dimensional weighted Sobolev space. In particular, for p = 2,

the space D1,2 is obviously a Hilbert space with the scalar product

〈F,G〉1,2 = E[FG] + E[〈DF,DG〉H].

Proposition 2.1 (chain rule). Let φ : Rn → R be a continuously differentiable function with

bounded partial derivatives and F = (F1, · · · , Fn) a random vector whose components belong to

D1,2. Then φ(F ) ∈ D1,2 and

Dtφ(F ) =

n∑
i=1

∂φ(F )

∂xi
DtFi, t ≥ 0 a.s.

Proof. The proof follows similar steps as in [37, page 97]. When φ is smooth, the result is

consistent with the chain rule in classical analysis. If φ is not smooth, we define a non-negative

function ρ(x) := ce
1

x2−1 belonging to C∞0 (Rn) whose support is a unit ball with c chosen such that∫
Rn ρ(x)dx = 1, and take a sequence of regularisation kernels of the form ρε := εnρ(εx) to get a

smooth approximation φ∗ρε for φ. Let us take the smooth approximations F in of F i, then we have

(φ ∗ ρε) ◦ F in → φ ∗ F i as ε ∧ n→∞ in Lp,

and the closeness of D implies

||D(φ ◦ F )−
n∑
i=1

∂

∂xi
φ(F )DF i||p

≤||D(φ ◦ F )−D((φ ∗ ρε) ◦ F )||p + ||D((φ ∗ ρε) ◦ F )−
n∑
i=1

∂

∂xi
(φ ∗ ρε)(F )DF in||p

+ ||
n∑
i=1

∂

∂xi
(φ ∗ ρε)(F )DF in −

n∑
i=1

∂

∂xi
φ(F )DF i||p

→ 0.

Lemma 2.1. Let Fn, n ≥ 1 be a sequence of random variables in D1,2 that converges to F in L2(Ω)

and such that

sup
n

E[||DFn||2H] <∞.

Then F belongs to D1,2, and the sequence of derivatives {DFn, n ≥ 1} converges to DF in the weak

topology of L2(Ω;H).

Proof. see Nualart [35, page 28-29].
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Proposition 2.2 (generalised chain rule). Let φ : Rn → R be a function such that

|φ(x)− φ(y)| ≤ K|x− y|

for any x, y ∈ Rn. Suppose that F = (F 1, · · · , Fn) is a random vector whose components belong

to the space D1,2. Then φ(F ) ∈ D1,2, and there exists a random vector G = (G1, · · · , Gn) bounded

by K such that

D(φ(F )) =

n∑
i=1

GiDF
i.

Proof. Here we follow the ideas in [35, page 29] and [37, page 98]. When the function φ is

continuously differentiable, the result is consistent with that of Proposition 2.1 with Gi = ∂iφ(F ).

We take the same modifier similar to that for Proposition 2.1, φ ∗ ρε converges to φ uniformly on

compacts. Since

|O(φ ∗ ρε)| ≤ K

for ε large enough, we have that the sequence D((φ∗ρε)◦F ) is bounded in L2(Ω,F ,P)⊗H. Hence,

applying Lemma 2.1 gives φ ◦ F ∈ D1,2 and D((φ ∗ ρε) ◦ F ) converges to D(φ ◦ F ) weakly. On the

other hand, O(φ ∗ ρεk) ◦F converges weakly to some G ∈ Rn, |G| < K. Therefore, taking the weak

limit in

D((φ ∗ ρε) ◦ F ) =

n∑
i=1

∂

∂xi
(F )DF i

yields the result.

Definition 2.3 (directional derivative). Let h ∈ L2([0, T ]) be a deterministic function and consider

functions in C0([0, T ]) of the form

γt =

∫ t

0

hsds for t ∈ [0, T ], (2.5)

which are called directions. The set of all such directions in L2([0, T ]) is called Cameron-Martin

Space. Note that the map t 7→ γt is continuous on [0, T ] and γ0 = 0; hence, γ ∈ C0([0, T ]). Then

consider a random variable F : [0, T ]× Ω→ R, the directional derivative of F at the point ω ∈ Ω

in the direction γt is defined by

(DγF )t(ω) = lim
ε→0

Ft(ω + εγ)− Ft(ω)

ε

if the limit exists in L2([0, T ]× Ω).

Remark 2.2. (see [36, page 14]) If F is differentiable, then for every t ∈ [0, T ], there exists a

random variable DtF : [0, t]× Ω→ R such that

(DγF )t(ω) =

∫ T

0

(DtF )t(ω)htdt (2.6)

for all ω ∈ Ω and γ ∈ C0([0, T ]) of the form in Equation 2.5.
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Proposition 2.3 (product rule). If F,G ∈ D1,2([0, T ]× Ω), then FG ∈ D1,2([0, T ]× Ω) and

Dt(FG) = (DtF )G+ F (DtG).

In other words,

(Dt(FG))t(ω) = (DtF )t(ω)Gt(ω) + Ft(ω)(DtG)t(ω)

for all (t, ω) ∈ [0, T ]× Ω.

Proof. Here we apply the same method as in [36, page 17]. Let ω ∈ Ω and γt be of the form (2.5).

Then according to Definition 2.3, we have that

(Dγ(FG))t(ω) = lim
ε→0

Ft(ω + εγ)Gt(ω + εγ)− Ft(ω)Gt(ω)

ε

= lim
ε→0

Ft(ω + εγ)Gt(ω + εγ)− Ft(ω)Gt(ω + εγ) + Ft(ω)Gt(ω + εγ)− Ft(ω)Gt(ω)

ε

= lim
ε→0

(
Ft(ω + εγ)− Ft(ω)

ε
Gt(ω + εγ) + Ft(ω)

Gt(ω + εγ)−Gt(ω)

ε

)
= (DγFt(ω))Gt(ω) + Ft(ω)(DγGt(ω))

=

(∫ T

0

(DtF )t(ω)htdt

)
·Gt(ω) + Ft(ω)

(∫ T

0

(DtG)t(ω)htdt

)
(by Remark 2.2)

=

∫ T

0

[(DtF )t(ω)Gt(ω) + Ft(ω)(DtG)t(ω)]htdt

and LHS =
∫ T

0
(DtFG)t(ω)htdt, which holds for any h ∈ L2([0, T ]). Thus, for all (t, ω) ∈ [0, T ]×Ω,

we have

(DtFG)t(ω) = (DtF )t(ω)Gt(ω) + Ft(ω)(DtG)t(ω),

that is,

Dt(FG) = (DtF )G+ F (DtG).

Lemma 2.2. Suppose that F is a smooth random variable and h ∈ H. Then

E[〈DF, h〉H] = E[FW (h)]. (2.7)

Proof. Here we follow the steps similar to [35, page 26]. It suffices to prove the result for H with

||h|| = 1 since otherwise we can normalise Equation 2.7. Let us set e1, · · · , en to be orthonormal

elements of H satisfying e1 = h. Also, consider F to be a smooth random variable of the form

F = f(W (e1), · · · ,W (en)),

where f ∈ C∞p (Rn). Moreover, let φ(x) denote the probability density function (PDF) of the

standard normal distribution on Rn, i.e.,

φ(x) =
1

(2π)
n
2

exp

(
−1

2

n∑
i=1

x2
i

)
.
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Then,

E[〈DF, h〉H] =

∫
Rn

∂f(x)

∂x1
φ(x)dx

=

∫
Rn
f(x)x1φ(x)dx

= E[FW (e1)]

= E[FW (h)].

Proposition 2.4 (partial integration). Suppose that F and G are smooth random variables, and

let h ∈ H. Then it holds that

E[G〈DF, h〉H] + E[F 〈DG,h〉H] = E[FGW (h)]. (2.8)

Proof. Since F and G are smooth random variables, we have

E[FGW (h)] = E[〈D(FG), h〉H] (by Lemma 2.2)

= E[〈(DF )G+ F (DG), h〉H] (by Proposition 2.3)

= E[G〈DF, h〉H] + E[F 〈DG,h〉H].

Proposition 2.5. The derivative operator D is a closable operator from Lp(Ω) to Lp(Ω;H).

Proof. See Nualart [35, page 26].

2.2 Skorohod integral

Definition 2.4 (Skorohod integral). We denote by δ the adjoint of the operator D, called the

divergence operator. That is, δ is an unbounded operator on L2(Ω;H) with values in L2(Ω) such

that the domain of δ, denoted by Dom(δ), is the set ofH-valued square integrable random variables

u ∈ L2(Ω;H) satisfying

|E[〈DF, u〉H]| = E
[∫ ∞

0

DtFu(t)dt

]
≤ K(u)||F ||2, (2.9)

for all F ∈ D1,2, where K(u) is some constant depending on u but independent of F . If u belongs

to Dom(δ), then the Skorohod integral, δ(u), is defined as the element of L2(Ω) characterized by

E[Fδ(u)] = E[〈DF, u〉H] (2.10)

for any F ∈ D1,2. Equation 2.10 is called the dual relationship.

Remark 2.3. (1) The elements of Dom(δ) ⊂ L2([0, T ]×Ω) are square integrable processes, and

δ(u) =

∫ T

0

u(t)δWt,

which is called the Skorohod integral of the process u.
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(2) The Skorohod integral can be considered as an extension of the Itô integral for non-adapted

process (see Proposition 2.7 below for more details).

(3) The operator δ is closed.

(4) If u ∈ Dom(δ), then taking F = 1 in Equation 2.10 will lead to E[δ(u)] = 0. In addition, δ

is a linear operator in Dom(δ).

If u is a simple H-valued random variable of the form

u =

n∑
j=1

Fjhj ,

where Fj ∈ D1,2 and hj ∈ H, then from Proposition 2.4 we can deduce that u ∈ Dom(δ) and

δ(u) =

n∑
j=1

(FjW (hj)− 〈DFj , hj〉H). (2.11)

Remark 2.4. In details, Equation 2.11 can be proved as follows: For an arbitrary F ∈ D1,2 we

have

E[Gδ(u)] = E[〈DG,u〉H] (by Equation 2.10)

=

n∑
j=1

E[Fj〈DG,hj〉H]

=

n∑
j=1

E[GFjW (hj)− E[G〈DFj , hj〉H]]. (by Proposition 2.4)

≤ K(u)||G||2.

In Equation 2.11, the expression FjW (hj) − 〈DFj , hj〉H is called the Wick product (see e.g.,

[10, 38]) of the random variables Fj and W (hj), which is denoted by Fj �W (hj). Then, with this

notation Equation 2.11 can be written as

δ(u) =

n∑
j=1

Fj �W (hj).

Later, we will apply the following notation

δ(u) =

∫ T

0

ut � dWt, (2.12)

where u belongs to the domain of δ.

Proposition 2.6. Let F ∈ D1,2. For all u ∈ Dom(δ) such that E[
∫ T

0
F 2u2

tdt] < ∞, we have

Fu ∈ Dom(δ) and

δ(Fu) = Fδ(u)− 〈DF, u〉H

= Fδ(u)−
∫ T

0

DtFutdt
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whenever the right hand side belongs to L2(Ω). In particular, if u is moreover adapted, we will

have

δ(Fu) = F

∫ T

0

utdWt −
∫ T

0

DtFutdt. (2.13)

Proof. Let G ∈ S0 be any smooth random variable. Then, we have

E[〈DG,Fu〉H] = E[〈FDG, u〉H]

= E[〈D(FG)−GDF, u〉H] (by Proposition 2.3)

= E[〈D(FG), u〉H − 〈GDF, u〉H] (by linearity)

= E[(Fδ(u)− 〈DF, u〉H)G], (by Definition 2.4)

which implies the results.

Proposition 2.7. Let (t, ω) ∈ [0, T ]× Ω and let u ∈ L2([0, T ]× Ω) be a stochastic process on the

probability space (Ω,F ,P) such that

E

[∫ T

0

u2(t, ω)dt

]
<∞,

and suppose that u(t, ω) is Ft-adapted for t ∈ [0, T ]. Then, u ∈ Dom(δ) and

δ(u) =

∫ T

0

u(t, ω)δWt =

∫ T

0

u(t, ω)dWt (2.14)

for all (t, ω) ∈ [0, T ]× Ω.

Proof. The proof follows from Proposition 2.6 by setting F = 1.

Proposition 2.8. Let u(s, ω) be a stochastic process such that

E

[∫ T

0

u2(s, ω)ds

]
<∞

and assume that u(s, ·) ∈ D1,2 for all s ∈ [0, T ], that Dtu ∈ Dom(δ) for all t ∈ [0, T ], and that

E

[∫ T

0

(δ(Dtu))2dt

]
<∞.

Then δ(u) ∈ D1,2 and

Dt(δ(u)) = u(t, ω) +

∫ T

0

Dtu(s, ω)dWs.

Assume in addition that u(s, ω) is Fs-adapted. Then

Dt

(∫ T

0

u(s, ω)dWs

)
= u(t, ω) +

∫ T

t

Dtu(s, ω)dWs. (2.15)

Proof. See Øksendal [10, page 5.6-5.8].
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2.3 Stochastic differential equations

Let Xt ∈ Rn be an Itô diffusion process with the dynamic:

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, X0 = x, x ∈ Rn, (2.16)

where {Wt, 0 ≤ t ≤ T} is a d-dimensional standard Brownian motion, and the coefficients b and σ

represent the deterministic drift and diffusion (volatility) of our process, respectively. Its integral

form is given by

Xt = x+

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs. (2.17)

Assumption 2.1. b and σ in (2.16) are continuously differentiable with bounded derivatives, and

they also satisfy the following Lipschitz conditions:

|b(t, x)|+ |σ(t, x)| ≤ K1(1 + |x|),

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ K2|x− y|
(2.18)

for any x, y ∈ Rn and t ∈ [0, T ] with K1,K2 positive constants.

Since X0 is independent of the σ-algebra σ(Ws, s ≥ 0) and E[|X0|2] is finite, Assumption 2.1

guarantees that the SDE (2.16) admits a unique strong continuous solution on [0, T ], adapted

to the filtration (FX0
t )t∈[0,T ] generated by X0 and (Wt), such that E[

∫ T
0
|Xs|2ds] < ∞. Then

(Xt, t ∈ [0, T ]) belongs to D1,2.

Assumption 2.2. The diffusion matrix σ is uniformly elliptic, that is, there exists ε > 0 such

that for every t ∈ [0, T ] and ξ, x ∈ Rd with ξ 6= 0, we have ξTσT (t, x)σ(t, x)ξ ≥ ε|ξ|2, where ξT

and σT denote the transpose of ξ and σ, respectively.

Assumption 2.2 ensures that the process {σ−1(t,Xt)Yt, 0 ≤ t ≤ T} belongs to L2([0, T ] × Ω).

Let {Yt, 0 ≤ t ≤ T} denote the first variation process associated to {Xt, 0 ≤ t ≤ T}, which is

defined by the SDE:

dYt = b′(t,Xt)Ytdt+ σ′(t,Xt)YtdWt,

Y0 = In,
(2.19)

where In is the identity matrix of Rn and the prime denotes the derivatives with respect to the

second variable. It is easy to see that the first variation process is the derivative of (Xt)t∈[0,T ] with

respect to its initial condition x, that is, Yt = ∂Xt
∂x .

Corollary 2.1. Let u(s, ω) be an Fs-adapted stochastic process and assume that u(s, ·) ∈ D1,2 for

all s. Then Dtu(s, ω) is Fs-adapted for all t and Dtu(s, ω) = 0 for s < t.

Proof. See Øksendal [10, page 5.4].
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Proposition 2.9. Let u(t, ω) be an Ft-adapted process and let 0 ≤ t < T . Then,

Dt

(∫ T

0

u(s, ω)ds

)
=

∫ T

t

Dtu(s, ω)ds.

Proof. This is an immediate consequence of Corollary 2.1.

Proposition 2.10. Let (Xt)t∈[0,T ] be the solution to the SDE (2.16). Then the Malliavin derivative

can be written as an expression of the first variation process (Yt)t∈[0,T ] as well as the diffusion

(volatility) matrix σ:

DsXt = YtY
−1
s σ(s,Xs)1{s≤t} a.s. (2.20)

Proof. The proof is based on the idea exhibited in [30, page 23]. Assume that the solution Xt

(see Equation 2.17) belongs to D1,2. Taking the Malliavin derivative on the both sides of (2.17)

by Proposition 2.9 and 2.8, we have for s < t,

DsXt = Ds

(∫ t

0

b(r,Xr)dr

)
+Ds

(∫ t

0

σ(r,Xr)dWr

)
=

∫ t

s

Dsb(r,Xr)dr + σ(s,Xs) +

∫ t

s

Dsσ(r,Xr)dWr.

Then applying the chain rule (see Proposition 2.1), we obtain

DsXt =

∫ t

s

b′(r,Xr)DsXrdr + σ(s,Xs) +

∫ t

s

σ′(r,Xr)DsXrdWr.

Fix r and set Zt := DsXt for s < t, we have SDE

dZt = b′(t,Xt)Ztdt+ σ′(t,Xt)ZtdWt, (2.21)

with initial condition Zs = σ(s,Xs). By Itô’s formula, we can obtain the solution to (2.21):

Zt = σ(s,Xs) exp

{∫ t

s

[b′(r,Xr)−
1

2
(σ′(r,Xr))

2]dr +

∫ t

s

σ′(r,Xr)dWr

}
. (2.22)

Applying Itô’s formula again to (2.19), we get the exact solution

Yt = exp

{∫ t

0

[b′(u,Xu)− 1

2
(σ′(u,Xu))2]du+

∫ t

0

σ′(u,Xu)dWu

}
.

The solution to Equation 2.22 for any fundamental matrix Yt with initial value y at time t = s is

YtY
−1
s y. Note that Zt = DsXt is such a solution. Therefore,

DsXt = YtY
−1
s σ(s,Xs)1s≤t.

Remark 2.5. When σ is hypoelliptic, we have for s ≤ t,

Yt = DsXtYsσ
−1(s,Xs),

that is,

Yt =

∫ T

0

Yt
T

ds =
1

T

∫ T

0

DsXtYsσ
−1(s,Xs)ds.
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3 Computation of Greeks

In this section we will be concerned with applications of the Malliavin calculus to finance;

in particular, we calculate the price sensitivity, i.e., Greeks. We first introduce the so-called

Malliavin weighted scheme, where we prove the integration-by-parts formula on the Wiener space,

the Bismut-Elworthy-Li formula and the eqation for Gamma. Then, we apply the theory to

the classical Heston model and the fractional Black-Scholes (fBS) model (driven by a fractional

Brownian motion (fBM)). We derive the closed-form Greeks, finite-difference Greeks and Malliavin

Greeks for these two models, respectively.

We now briefly summarise the Greeks we are going to investigate.

Greeks Notation Definition

Delta ∆ ∂C0

∂S0

Gamma Γ ∂2C0

∂S2
0

Vega V ∂C0

∂σ

Table 1 The Greeks for Call options at time 0 with Call price C0, initial underlying stock price S0 and

volatility σ.

3.1 Malliavin weighted scheme

In this part, we introduce the Malliavin weighted scheme in more details. The key propositions

and theorems stated here are known in the literature and they were taken from [13,29,39].

Recall the Malliavin Greek:

Malliavin Greek = EQ[e−
∫ T
0
rsdsf(XT ) · weight]

Assume that the payoff depends on a finite set of payment dates, t1, · · · , tn, n = 1, 2, · · · , with

t0 = 0 and tn = T . Then, given the initial underlying price x, the price of the contingent claim is

computed as follows:

P (x) = EQ[e−
∫ T
0
rsdsf(Xt1 , · · · , Xtn)|X0 = x]

Let F denote the discounted payoff, F := e−
∫ T
0
rsdsf(Xt1 , · · · , Xtn). Then

P (x) = EQ[F |X0 = x].

Let us write the weight function weight as a Skorohod integral, and call weight function gen-

erator w the Skorohod integrand:

weight = δ(w)

We assume that the weight function is L2-integrable, i.e.,

E[weight2]1/2 <∞. (3.1)
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This ensures the existence of the Skorohod integral. To avoid the degeneracy of the integration-by-

parts formula used when computing the Malliavin Greeks with the probability one, we introduce

the set Λn defined by

Λn =

{
a ∈ L2([0, T ])|

∫ ti

0

a(t)dt = 1, ∀i = 1, · · · , n
}
. (3.2)

Lemma 3.1. [30, page 38] Let a ∈ Λn and Xti ∈ D1,2. Then∫ T

0

DtXtia(t)σ−1(t,Xt)Y (t)dt = Y (ti), i = 1, · · · , n.

Proof. The lemma can be easily proved by applying Proposition 2.10:

LHS =

∫ T

0

DtXtia(t)σ−1(t,Xt)Y (t)dt

=

∫ T

0

Y (ti)Y (t)−1σ(t,Xt)1{t≤ti}a(t)σ−1(t,Xt)Y (t)dt (by Proposition 2.10)

=

∫ T

0

Y (ti)Y (t)−1Y (t)σ(t,Xt)σ
−1(t,Xt)a(t)1{t≤ti}dt

=

∫ T

0

Y (ti)a(t)1{t≤ti}dt

=

∫ ti

0

Y (ti)a(t)dt

= Y (ti)

∫ ti

0

a(t)dt

= Y (ti) (by the definition of set Λn)

= RHS

Proposition 3.1 (integration-by-parts formula). Let F and G be two random variables such that

F,G ∈ D1,2. Consider a random variable u(t, ω) for fixed ω, u(t, ·) ∈ H such that 〈DF, u〉H 6= 0 a.s.

and Gu(〈DF, u〉H)−1 ∈ Dom(δ). Then for any continuously differentiable function f of polynomial

growth, we have

E[f ′(F )G] = E
[
f(F )δ

(
Gu

〈DF, u〉H

)]
. (3.3)

Proof. Here we follow the steps similar to [30, page 24]. Applying the chain rule (see Proposi-

tion 2.1) gives

〈Df(F ), u〉H = 〈f ′(F )DF, u〉H = f ′(F )〈DF, u〉H.

The condition 〈DF, u〉H 6= 0 implies f ′(F ) = 〈Df(F ),u〉H
〈DF,u〉H . Hence,

E[f ′(F )G] = E
[
〈Df(F ), u〉H
〈DF, u〉H

G

]
= E

[〈
Df(F ),

Gu

〈DF, u〉H

〉
H

]
,

Gu

〈DF, u〉H
∈ Dom(δ)

= E
[
f(F )δ

(
Gu

〈DF, u〉H

)]
. (by Equation 2.10)
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Remark 3.1. It is easy to see that when u = DF , Equation 3.3 becomes

E[f ′(F )G] = E
[
f(F )δ

(
GDF

||DF ||2H

)]
.

Bismut [3] and Elworthy and Li [40] obtained elliptic results of Delta, namely the so-called

Bismut-Elworthy-Li (BEL) formula.

Proposition 3.2 (BEL formula). Assume that b and σ in SDE (2.16) are continuously differ-

entiable with bounded partial derivatives and that the matrix σ satisfies the uniform ellipticity

condition, i.e., Assumption 2.1 and 2.2 hold. Then, for any f : Rd → R of polynomial growth and

a ∈ Λn, we have

∆ = E[e−rT f(Xt1 , · · · , Xtn)δ(wdelta)|X0 = x], (3.4)

where wdelta = a(t)(σ−1(t,Xt)Yt)
T , δ denotes the Skorohod integral, and r is the constant risk-free

interest rate.

Proof. This proof is based on the idea shown in [13, page 399] and [29, page 159]. To avoid heavy

notations, in this proof we denote wdelta by w.

Step 1: Weaker conditions on the payoff function f . Let C∞K represent the set of infinitely

differentiable functions with compact support. We first show that if the result holds for any

function in set C∞K , then it will also be true for any element of L2.

Assume that the result holds for any function in C∞K and take f that is only in L2. Then since

C∞K is dense in L2, there exists a sequence (fk)k∈N of C∞K elements converging to f in L2. Let us

denote by

uk(x) = E[e−rT fk(Xt1 , · · · , Xtn)|X0 = x] = E[Fk|X0 = x]

and

u(x) = E[e−rT f(Xt1 , · · · , Xtn)|X0 = x] = E[F |X0 = x]

the price associated with Fk and F (discontinuous payoff functions) with the initial asset price

x, respectively. Since uk satisfies the L2 convergence, it is clear that uk simply converges to the

function u, i.e., uk(x)→ u(x) as k →∞, ∀x ∈ R.

This result holds for any payoff function in C∞K , which will lead to the fact that we can write

the derivative of uk as the expectation of the product of Fk and a Malliavin weight δ(w):

∂

∂x
uk(x) = E[Fkδ(w)|X0 = x],

where w = a(t)(σ−1(t,Xt)Yt)
T is the weight function generator. Define also the function

g(x) := E[Fδ(w)|X0 = x].

Then by the Cauchy-Schwartz inequality we have∣∣∣∣ ∂∂xuk(x)− g(x)

∣∣∣∣ = |E[(Fk − F )δ(w)|X0 = x]| ≤ εk(x)h(x), (3.5)
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where

εk(x) = (E[(Fk − F )2])
1
2 , h(x) = (E[(δ(w))2)])

1
2 .

Since uk converges in L2, then by definition, we have that εk(x)→ 0 as k →∞. Hence,

∂

∂x
uk → g uniformly on compact subsets of Rn.

Thus, we can conclude that the function u is continuously differentiable and that

∂

∂x
E[F |X0 = x] = E[Fδ(w)|X0 = x].

Step 2: Interchanging the order of differentiation and expectation. By Step 1, we assume

that f is an element of C∞K , then it is continuously differentiable with bounded partial derivatives,

and we have

e−rT f(Xx+h
t1 , · · · , Xx+h

tn )− e−rT f(Xx
t1 , · · · , X

x
tn)

||h||
−
〈e−rT

∑n
i=1

∂
∂xi

f(Xt1 , · · · , Xtn)Yti , h〉
||h||

→ 0 a.s.

as ||h|| → 0, where Yti =
∂Xti
∂x and Xx+h

t denotes the solution Xt satisfying the initial condition

Xx+h
0 = x+ h. This can also be written as follows:

F x+h − F x

||h||
−
〈 ∂∂xF, h〉
||h||

→ 0 a.s. as ||h|| → 0

Since the payoff function f is assumed to have bounded partial derivatives, the term
〈 ∂∂xF,h〉
||h|| is

uniformly integrable in h. Let M denote a uniform bound of the partial derivatives of f , then by

the Taylor-Lagrange theorem, we have

||F x+h − F x||
||h||

≤M
n∑
i=1

||Xx+h
ti −Xx

ti ||
||h||

.

Moreover, we can show that
∑n
i=1

||Xx+hti
−Xxti ||
||h|| is uniformly integrable (see [41, page 246]), implying

the uniform integrability of ||F
x+h−Fx||
||h|| . Then by the Dominated Convergence Theorem, it tells us

that Fx+h−Fx
||h|| − 〈

∂
∂xF,h〉
||h|| converges to zero in L1. Therefore, we conclude that

∂

∂x
E[F |X0 = x] = E

[
∂

∂x
F |X0 = x

]
.

Step 3: Malliavin integration by parts. Following Step 2, we now compute Delta as follows:

∆ =
∂

∂x
E[e−rT f(Xt1 , · · · , Xtn)|X0 = x]

= E

[
e−rT

n∑
i=1

∂

∂xi
f(Xt1 , · · · , Xtn)

∂Xti

∂x
|X0 = x

]

= E

[
e−rT

n∑
i=1

∂

∂xi
f(Xt1 , · · · , Xtn)Yti |X0 = x

]
,
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where Yti is the first variation process associated with Xti . Assume that Xti ∈ D1,2 and let

a(t) ∈ Λn, then by Lemma 3.1 we have

Yti =

∫ T

0

DtXtia(t)σ−1(t,Xt)Ytdt.

Therefore, we have

∆ = E

[∫ T

0

e−rT
n∑
i=1

∂

∂xi
f(Xt1 , · · · , Xtn)DtXtia(t)σ−1(t,Xt)Ytdt|X0 = x

]

= E

[∫ T

0

Dt(e
−rT f(Xt1 , · · · , Xtn))a(t)σ−1(t,Xt)Ytdt|X0 = x

]
(by Proposition 2.1)

= E

[
e−rT f(Xt1 , · · · , Xtn)

∫ T

0

a(t)(σ−1(t,Xt)Yt)
TdWt|X0 = x

]
(by Proposition 3.1)

= E
[
e−rT f(Xt1 , · · · , Xtn)δ(w)|X0 = x

]
,

where wdelta = a(t)(σ−1(t,Xt)Yt)
T .

Proposition 3.3. Let Assumption 2.1 and 2.2 hold and let f : Rd → R be a function of polynomial

growth. Then for any a ∈ Λn we have

Γ = E[e−rT f(Xt1 , · · · , Xtn)δ(wgamma)|X0 = x]

= E
[
e−rT f(Xt1 , · · · , Xtn)δ

(
wdeltaδ(wdelta) +

∂

∂x
wdelta

)
|X0 = x

]
,

(3.6)

where wdelta = a(t)(σ−1(t,Xt)Yt)
T , δ denotes the Skorohod integral, and r is the constant risk-free

interest rate.

Proof. We assume that f is continuously twice differentiable with bounded first and second order

derivatives. We have

Γ =
∂2

∂x2
E[e−rT f(Xt1 , · · · , Xtn)|X0 = x] (by the definition of Gamma)

=
∂

∂x
E[e−rT f(Xt1 , · · · , Xtn)δ(wdelta)|X0 = x]

= E

[
e−rT δ(wdelta)

n∑
i=1

∂

∂xi
(f(Xt1 , · · · , Xtn))

∂Xti

∂x
|X0 = x

]

+ E
[
e−rT f(Xt1 , · · · , Xtn)

∂

∂x
(δ(wdelta))|X0 = x

]
(by Proposition 2.1)

The first term on the RHS can be calculated very similar to the one in the computation of Delta,

which is equal to E[e−rT f(Xt1 , · · · , Xtn)δ(wdelta)δ(wdelta)|X0 = x]. Therefore,

Γ = E
[
e−rT f(Xt1 , · · · , Xtn)

(
δ(wdelta)δ(wdelta) +

∂

∂x
(δ(wdelta))

)
|X0 = x

]
= E

[
e−rT f(Xt1 , · · · , Xtn)

(
δ(wdelta)δ(wdelta) + δ

(
∂

∂x
(wdelta)

))
|X0 = x

]
,
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where we used the fact that one could invert the Skorohod integral operator δ(·) and the differential

operator ∂
∂x by the Dominated Convergence Theorem. Moreover, applying the linearity of the

Skorohod integral operator can lead to the following:

Γ = E
[
e−rT f(Xt1 , · · · , Xtn)δ

(
wdeltaδ(wdelta) +

∂

∂x
wdelta

)
|X0 = x

]

Next, we are going to apply the above theories to both the classical Heston model and the fBS

model.

3.2 Example 1: Classical Heston model

We now consider the classical Heston model. Here we assume that the stochastic volatility

in the model is mean reverting to make sure that the volatility will not settle to become zero or

infinite. In addition, we assume that the model follows a square root diffusion.

Definition 3.1 (classical Heston model [42]). Heston’s stochastic volatility model is specified as

follows: 
dSt = St(rdt+

√
vt)dW

1
t , (3.7)

dvt = κ(θ − vt)dt+ ν
√
vtdW

2
t , (3.8)

d〈W 1,W 2〉t = ρdt, ρ ∈ (−1, 1), (3.9)

where St is the asset spot price at time t (t ∈ [0, T ]), r is the drift coefficient (const risk-free

interest rate). vt is the variance driven by a square-root process with κ > 0 the mean reversion

rate, θ > 0 the long-run variance and ν > 0 the volatility of variance. Moreover, W 1 and W 2

denote two correlated Wiener processes (standard Brownian motions) with correlation parameter

ρ. We assume that the dynamics of the Heston model above are under a risk-neutral measure

chosen by the market.

In this subsection, we will consider both European and digital (also called binary) Call options

under the Heston model.

Closed-form Greeks First, we state Gatheral’s [43, page 16] explicit solution to European-type

option price for Heston model, which closely follows the original derivation of the Heston formula

in [42] but with some changes in intermediate definitions.

Theorem 3.1. In the classical Heston model, let S0 denote the initial stock price, K the strike

price, r risk-free interest rate, T maturity, F = S0erT the time T forward price of the spot asset

and x = log
(
F
K

)
. Then the closed-form European Call option price at time 0 is

C0 = Ke−rT (exP1 − P0) = S0P1 −Ke−rTP0, (3.10)
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where the first term is the present value of the asset upon optimal exercise, and the second term is

the current value of the strike-price payment. Moreover, for j = 0, 1,

Pj =
1

2
+

1

π

∫ ∞
0

Re

{
exp(Cjθ +Djv0 + ikx)

ik

}
dk

is Heston’s characteristic function and

Cj = κ

{
r−(j)T − 2

ν2
log

(
1− g(j)e−d(j)T

1− g(j)

)}
,

Dj = r−(j)
1− e−d(j)T

1− g(j)e−d(j)T
,

g(j) =
r−(j)

r+(j)
,

r±(j) =
β(j)± d(j)

ν2
,

α(j) = −k
2

2
− ik

2
+ ijk,

β(j) = κ− ρνj − ρνik,

d(j) =
√
β2(j)− 4α(j)γ,

γ =
ν2

2
.

Theorem 3.2. The closed-form Greeks for European Call options at time 0 under the Heston

model have the form:

∆ =
∂C0

∂S0
=
∂C0

∂x

∂x

∂S0
= Ke−rT (exP1 + exP ′1 − P ′0) · 1

S0
,

Γ =
∂2C0

∂S2
0

= Ke−rT (exP ′1 + exP ′′1 + exP ′0 − P ′′0 ) · 1

S2
0

,

where for j = 0, 1:

P ′j =
∂Pj
∂x

=
1

π

∫ ∞
0

Re[exp(Cjθ +Djv0 + ikx)]dk,

P ′′j =
∂2Pj
∂x2

=
1

π

∫ ∞
0

Re[ik exp(Cjθ +Djv0 + ikx)]dk.

Proof. Notice that both Cj and Dj are independent of x, we can easily drive the above results

from Equation 3.10. We omit the details.

By applying the same technique as in Gatheral’s paper [43], we can derive the following result.

Theorem 3.3. In the classical Heston model, the closed-form price at time 0 for a digital Call

option with payoff 1{ST>K} is

D0 = e−rTP0 (3.11)

with P0 and other parameters as in Theorem 3.1.



24 3.2 Example 1: Classical Heston model

Equation 3.11 can also be derived from Equation 3.10 as follows. Note that for sufficiently

small ε > 0, we have the approximation

1{ST>K} ≈
(ST − (K − ε))+ − (ST −K)+

−ε
,

that is, the digital Call price can be expressed as the negative derivative of European Call price

with respect to the strike K:

D0 = −dC0

dK
(see Equation 3.10 for C0)

= e−rTP0

Based on this, we can easily derive the following Greeks.

Theorem 3.4. The closed-form Greeks for digital Call options at time 0 under the Heston model

are

∆ =
∂D0

∂S0
=
∂D0

∂P0

∂P0

∂x

∂x

∂S0
= e−rTP ′0 ·

1

S0
,

Γ =
∂2D0

∂S2
0

= e−rTP ′′0 ·
1

S2
0

with P ′0 and P ′′0 as in Theorem 3.2.

Finite-difference Greeks The form of the finite difference approximation is well-known.

Theorem 3.5. The Greeks for options with price C0 at time 0 computed by using finite difference

method (central difference scheme) have the form

∆ ≈ C0(S0 + h)− C0(S0 − h)

2h
,

Γ ≈ C0(S0 + h)− 2C0(S0) + C0(S0 − h)

h2
,

V ≈ C0(σ + h)− C0(σ − h)

2h

with sufficiently small h.

Malliavin Greeks Now we drive the Malliavin Greeks for the Heston model. First, we state the

Novikov’s condition [44].

Theorem 3.6 (Novikov’s condition). Suppose that (Xt)0≤t≤T is a real-valued adapted process on

the probability space (Ω,F ,P), and (Wt)0≤t≤T is an adapted Brownian motion. Define the following

stochastic process:

ε

(∫ t

0

XsdWs

)
= exp

(∫ t

0

XsdWs −
1

2

∫ t

0

X2
sds

)
, t ∈ [0, T ],

where ε denotes the Doléans-Dade exponential. Then it is a martingale under the probability

measure P and the filtration F if the condition E
[
e

1
2

∫ T
0
|X|2tdt

]
<∞ is satisfied.
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Theorem 3.7 (Malliavin Delta for the classical Heston model). In the classical Heston model

(see Definition 3.1), let the initial stock price S0 = x > 0. Suppose that b, κ, θ, ν and the initial

variance v0 are all strictly positive, and the parameters satisfy 2κθ > ν2, then for any f : Rd → R

of polynomial growth we have

∆ = E

[
e−rT f(ST )

∫ T

0

1

xT
√

1− ρ2σs
dZs

]
, (3.12)

where Z is a standard Brownian motion independent of W 2.

Proof. Here we follow the idea stated in [30, Section 3.5]. In order to ensure the existence and

uniqueness of the solution to the Heston model, the parameters b, κ, θ, ν and initial variance v0

all need to be strictly positive. In addition, the condition 2κθ > ν2 (Novikov’s condition in this

special case) enables that

sup
0≤t≤T

E[σ−2
t ] <∞,

which was proved by Cass and Friz in [31, page 17]. This condition guarantees that the variance

process is always positive, i.e., vt > 0 for all t > 0, and that∫ T

0

1

σs
dWs ∈ L1,

where W denotes an arbitrary standard Brownian motion. Consider the square root process

σt :=
√
vt. (3.13)

Applying Itô’s lemma:

dσt =
∂

∂t
(
√
vt)dt+

∂

∂v
(
√
vt)dvt +

1

2
ν2vt

∂2

∂v2
(
√
vt)dt

=
1

2
√
vt

dvt −
ν2

8
√
vt

dt

=
1

2σt
κ(θ − σ2

t )dt+
1

2σt
νσtdW

2
t −

ν2

8σt
dt (substituting (3.8) and σt in)

=

(
κθ

2σt
− κσt

2
− ν2

8σt

)
dt+

ν

2
dW 2

t

=

{(
κθ

2
− ν2

8

)
1

σt
− κσt

2

}
dt+

ν

2
dW 2

t (3.14)

In particular, we note that the Novikov’s condition implies that the factor appearing in the drift

term of σt satisfies
κθ

2
− ν2

8
≥ 0.

According to Yamada-Wanaatabe’s lemma (see for example, [45, page 291, Proposition 2.13]),

under the Novikov’s condition, we have that vt admits a unique strong solution to the SDE (3.8)

for volatility process.
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Assume that the volatility σt is Malliavin differentiable, i.e., σt ∈ D1,2. Let

W 1
t = ρW 2

t +
√

1− ρ2Zt, (3.15)

where Z is a standard Brownian motion independent of W 2. Then substituting (3.15) into the

SDE (3.7) we get

dSt = St(rdt+
√
vt(ρdW 2

t +
√

1− ρ2dZt)), S0 = x.

Define the logarithmic price Xt = logSt to ensure that the asset price is always positive. By Itô’s

lemma, we have

dXt =
∂(logSt)

∂St
dSt +

∂(logSt)

∂t
dt+

1

2

∂2(logSt)

∂S2
t

dStdSt

=
1

St
dSt −

1

2S2
t

dStdSt

= rdt+
√
vt(ρdW 2

t +
√

1− ρ2dZt)−
1

2
(vtρ

2dt+ vt(1− ρ2)dt)

=
(
r − vt

2

)
dt+

√
vtρdW 2

t +
√
vt
√

1− ρ2dZt.

=

(
r − σ2

t

2

)
dt+ σtρdW 2

t + σt
√

1− ρ2dZt. (3.16)

SDEs (3.14) and (3.16) can be written in integral forms as follows:

Xt = log x+

∫ t

0

(
r − σ2

s

2

)
ds+

∫ t

0

ρσsdW
2
s +

∫ t

0

√
1− ρ2σsdZs (3.17)

σt = σ0 +

∫ t

0

((
κθ

2
− ν2

8

)
1

σs
− κσs

2

)
ds+

∫ t

0

ν

2
dW 2

s (3.18)

Then, writing (3.17) and (3.18) in matrix form:Xt

σt

 =

log x

σ0

+

∫ t

0

 r − σ2
s

2(
κθ
2 −

ν2

8

)
1
σs
− κσs

2

 ds+

∫ t

0

√1− ρ2σs ρσs

0 ν
2


︸ ︷︷ ︸

A

 dZs

dW 2
s

 (3.19)

The inverse matrix of A is calculated as follows:

detA =
ν
√

1− ρ2σs
2

,

A−1 =
1

detA

ν
2 −ρσs
0

√
1− ρ2σs

 =

 1√
1−ρ2σs

−2ρ

ν
√

1−ρ2

0 2
ν

 := σ(s,Xs)
−1

The first variation process Yt of

Xt

σt

 is Yt := ∂
∂x

Xt

σt

 =

 1
x

0

. Then, by the BEL formula

(see Proposition 3.2), for function f∗ : Rd → R of polynomial growth, we have

∆ = E

[
e−rT f∗(XT )

∫ T

0

a(s)(σ−1(s,Xs)Ys)
TdWs|X0 = log x

]
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= E

e−rT f∗(XT )

∫ T

0

a(s)

 1√
1−ρ2σs

−2ρ

ν
√

1−ρ2

0 2
ν

 1
x

0

T  dZs

dW 2
s


 .

Choosing a(s) = 1
T and applying (AB)T = BTAT , we obtain

∆ = E

e−rT f∗(XT )

∫ T

0

1

T

(
1
x 0

) 1√
1−ρ2σs

0

−2ρ

ν
√

1−ρ2
2
ν


 dZs

dW 2
s




= E

e−rT f∗(XT )

∫ T

0

1

T

(
1

x
√

1−ρ2σs
0

) dZs

dW 2
s


= E

[
e−rT f∗(XT )

∫ T

0

1

T

1

x
√

1− ρ2σs
dZs

]
.

Finally, by applying it to the function f := f∗ ◦ exp we get the result

∆ = E

[
e−rT f(ST )

∫ T

0

1

T

1

x
√

1− ρ2σs
dZs

]
.

Remark 3.2. Cass and Friz have carefully proved in [31] that the conclusion in Theorem 3.7 holds

for any function f ∈ J (R) as an application of the extended BEL formula. This enables us to deal

with European-type option payoffs as well as exotic ones, for instance, digital payoffs.

Theorem 3.8 (Malliavin Gamma for the classical Heston model). In the classical Heston model

(see Definition 3.1), let the initial stock price S0 = x > 0. Suppose that b, κ, θ, ν and the initial

variance v0 are all strictly positive, and the parameters satisfy 2κθ > ν2, then for any f : Rd → R

of polynomial growth we have

Γ = E

 e−rT f(ST )

x2T
√

1− ρ2

 1

T
√

1− ρ2

(∫ T

0

1

σs
dZs

)2

−
∫ T

0

1

σ2
s

ds

− ∫ T

0

1

σs
dZs


 . (3.20)

Proof. According to Proposition 3.3, we have

Γ = E
[
e−rT f(ST )

(
δ(wdelta)δ(wdelta) + δ

(
∂

∂x
(wdelta)

))
|S0 = x

]
,

where δ(wdelta) =
∫ T

0
1

xT
√

1−ρ2σs
dZs. Then

δ

(
∂wdelta

∂x

)
=

∂

∂x
δ(wdelta) = −

∫ T

0

1

x2T
√

1− ρ2σs
dZs,

and

δ(wdelta)δ(wdelta) =

(∫ T

s=0

1

xT
√

1− ρ2σs
dZs

)(∫ T

t=0

1

xT
√

1− ρ2σt
dZt

)

=

(∫ T

0

1

xT
√

1− ρ2σs
dZs

)2

−

∫ T

0

E

( 1

xT
√

1− ρ2σs

)2
 ds
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=
1

x2T 2(1− ρ2)


(∫ T

0

1

σs
dZs

)2

−
∫ T

0

1

σ2
s

ds

 .

Therefore,

Γ = E

 e−rT f(ST )

x2T
√

1− ρ2

 1

T
√

1− ρ2

(∫ T

0

1

σs
dZs

)2

−
∫ T

0

1

σ2
s

ds

− ∫ T

0

1

σs
dZs


 .

3.3 Example 2: Fractional Black-Scholes model

Many studies have indicated that the so-called long-range dependence property is widespread in

economics and finance (see e.g., [46,47]). However, the standard Brownian motion has no memory.

Thus, the classical Black-Scholes model could be modified by replacing with a process that has

long memory. We will see later that the fBM with an additional parameter H ∈ (1/2, 1) has such

property and is a suitable source of randomness. After such replacement, we obtain the so-called

fractional Black-Scholes model (driven by fBM).

3.3.1 Fractional Brownian motion

The fBM was first introduced by Kolmogorov [48] in a study of turbulence [47] and developed

by Mandelbrot and van Ness [49], in which the author demonstrated a stochastic integral repre-

sentation of fBM in terms of a standard Brownian motion. We refer the reader to [35, 50, 52, 53]

for further applications of fBM. Now we give its definition.

Definition 3.2 (fBM). The fBM {WH
t , t ≥ 0} is a continuous and centered Gaussian process with

covariance function

E[WH
s W

H
t ] = RH(s, t) =

1

2
(t2H + s2H − |t− s|2H)

for all s, t ≥ 0, where H is a real number in (0, 1) and is called Hurst index or Hurst parameter

associated with the fBM. H models the dependence structure in the stock price.

Due to the fact that fBM is not a semimartingale for H 6= 1/2 (see for example, [35, page

275]), we cannot apply the classical stochastic calculus. However, as stated in [35, 54, 55], the

stochastic calculus of variations is valid on general Wiener spaces (i.e., valid for an arbitrary

Gaussian process). Therefore, since the fBM is indeed a Gaussian process, we can apply the

Malliavin calculus (e.g., Section 2) to it. Moreover, the so-called fractional white-noise theory has

been constructed by many authors; based on this, the stochastic (Wick-Itô) integration and the

Malliavin differentiation for fBM can be introduced. We refer the reader to [56–59] for details of

white-noise theory, and to [35,55,60–62] for detailed Malliavin calculus with respect to fBM; here

we list some basic definitions and properties taken from them.
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Definition 3.3 (self-similarity). A stochastic process X = (Xt)t≥0 such that Xt ∈ R is said to be

self-similar if for any a ≥ 0, there exists a function g : R+ → R such that

Xat
d
= g(a)Xt.

Property 3.1. (see for example, [62]) By Definition 3.2, we can obtain that a fBM (WH
t )t≥0 with

Hurst parameter H ∈ (0, 1) has the following properties:

(1) WH
0 = 0 and E[WH

t ] = 0 for all t ≥ 0.

(2) WH is a Gaussian process and E[(WH
t )2] = t2H , that is, WH

t ∼ N (0, t2H) for all t ≥ 0.

(3) WH is a self-similar process satisfying WH
at

d
= aHWH

t for any a ≥ 0, where WH
at ∼ N (0, (at)2H).

(4) WH has stationary increments, i.e., WH
t+s−WH

s has the same law of WH
t (i.e., WH

t+s−WH
s

d
=

WH
t ∼ N (0, t2H)) for s, t ≥ 0. This can be shown by the following:

E[(WH
t −WH

s )2] = E[(WH)2
t ] + E[(WH)2

s]− 2E[WH
s W

H
t ]

= t2H + s2H − (t2H + s2H − |t− s|2H)

= |t− s|2H ,

so taking t := t + s, we can obtain WH
t+s − WH

s ∼ N (0, t2H); hence, WH has stationary

increments.

(5) WH has continuous trajectories.

Definition 3.4 (long-range dependence). A stationary sequence (Xn)n∈N exhibits long-range de-

pendence if the autocovariance functions ρ(n) := Cov(Xk, Xk+n) satisfy

lim
n→∞

ρ(n)

cn−α
= 1

for some constant c and α ∈ (0, 1). In this case, the dependence between Xk and Xk+n decays

slowly as n tends to infinity and
∞∑
n=1

ρ(n) =∞.

Now we set Xk := WH
k −WH

k−1 and Xk+n := WH
k+n −WH

k+n−1 for k ≥ 1. Then {Xk, k ≥ 1} is

a Gaussian stationary sequence, which has unit variance and the covariance function as follows:

ρH(n) = E[XkXk+n] = E[(WH
k −WH

k−1)(WH
k+n −WH

k+n−1)]

= E[WH
k W

H
k+n]− E[WH

k W
H
k+n−1]− E[WH

k−1W
H
k+n] + E[WH

k−1W
H
k+n−1]

=
1

2
(k2H + (k + n)2H − n2H)− 1

2
(k2H + (k + n− 1)2H − (n− 1)2H)

− 1

2
((k − 1)2H + (k + n)2H − (n+ 1)2H) +

1

2
((k − 1)2H + (k + n− 1)2H − n2H)

=
1

2
[(n+ 1)2H + (n− 1)2H − 2n2H ]

≈ H(2H − 1)n2H−2 → 0, as n→∞.
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The last line above can be obtained easily by binomial expansion or the central difference approx-

imation of the second derivative of f(n) := n2H with h = 1.

In particular,

lim
n→∞

=
ρH(n)

H(2H − 1)n2H−2
= 1.

For H > 1/2, ρH(n) > 0 and
∞∑
n=1

ρH(n) =∞,

and for H < 1/2, ρH(n) < 0 and
∞∑
n=1

|ρH(n)| <∞.

Therefore, by Definition 3.4 we can conclude that the sequence {Xk, k ≥ 1} has the long-range

dependence property for H > 1/2.

The long-range dependence and the self-similarity properties make the fBM (with H ∈ (1/2, 1))

a suitable model to describe financial quantities. Hence, from now on, we only consider the Hurst

parameter H ∈ (1/2, 1).

Remark 3.3. If the Hurst parameter H = 1/2, it is easy to derive that the covariance R 1
2
(s, t) =

min(s, t), and the process W
1
2 is just a standard Brownian motion. Thus, the increments of the

process are independent for H = 1/2. When H > 1/2 (H < 1/2), the increments of the process

are positively (negatively) correlated.

It is then clear that the second partial derivative of the covariance function RH is integrable

and has the form
∂2RH
∂t∂s

= H(2H − 1)|t− s|2H−2.

We denote the coefficient by H(2H − 1) := αH . Then, we can write

RH(t, s) = αH

∫ t

0

∫ s

0

|r − u|2H−2dudr. (3.21)

From Equation 3.21 we can obtain the scalar product in the Hilbert space H:

〈ϕ,ψ〉H = αH

∫ T

0

∫ T

0

|r − u|2H−2ϕrψududr

for any pair of step functions ϕ and ψ in E .

We denote by |H| the linear space of measurable functions ϕ : [0, T ]→ R such that

||ϕ||2|H| = αH

∫ T

0

∫ T

0

|r − u|2H−2|ϕr||ψu|dudr <∞.

From this we can find a linear space of functions contained in H. In addition, |H| can be shown

to be a Banach space with the norm || · |||H|.

Remark 3.4. As in the case of the classical Brownian motion (see Equation 2.12), we can also

interpret the divergence operator associated with fBM WH as a stochastic integral (see [55, 57, 58,

60]).
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3.3.2 Fractional Black-Scholes model

Definition 3.5 (fBS market). [57, page 24] The fractional Black-Scholes market consists of two

investment probabilities:

(1) A bank account or a bond with the short rate of interest r > 0 (constant):

dBt = rBtdt, t ≥ 0.

(2) A stock, which has price dynamics modelled by geometric fractional Brownian motion (GfBM):

dSt = µStdt+ σStdW
H
t , t ≥ 0 (3.22)

with S0 = x > 0, where the volatility σ > 0 and the underlying rate µ is greater than the

short rate r, i.e., µ > r > 0.

Remark 3.5. [57, Example 3.14] The GfBM St (see Equation 3.22) has the solution

St = x exp

(
µt+ σWH

t −
1

2
σ2t2H

)
, t ≥ 0. (3.23)

There are two possibilities defining a stochastic integral with respect to the fBM: path-wise

integrals and Wick-type integrals. Using the path-wise integral concept, the existence of arbitrages

in the fBS model have been proved by many people, e.g., Roger [63], Shiryaev [47] and Cheridito

[64]. On the other hand, Hu and Øksendal in [57], and Elliott and van der Hoek in [59] (see

also [51, 58]) have suggested that the fBS model is “free of arbitrage” if we use Wick integral

instead, that is, Equation 3.22 becomes

dSt = µStdt+ σSt � dWH
t , t ≥ 0. (3.24)

Applying the fractional white noise calculus with respect to the Wick integral, the following

results were derived in [57,59].

Theorem 3.9 (fBS formula). The European Call option price at time t ∈ [0, T ] under the fBS

model is

Ct = StΦ(d+)−Ke−r(T−t)Φ(d−),

where Φ denotes the CDF of the standard normal distribution and

d± =
log(St/K) + r(T − t)± σ2

2 (T 2H − t2H)

σ
√
T 2H − t2H

.

Remark 3.6. At time 0, the Call price is

C0 = S0Φ(d+)−Ke−rTΦ(d−) (3.25)

with

d± =
log(S0/K) + rT ± σ2

2 T
2H

σTH
.
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Proof. Here we prove the fBS formula at time 0. We have the pricing formula:

C0 = e−rT
∫
R

(
S0 exp

[
rT + σy − 1

2
σ2T 2H

]
−K

)+

︸ ︷︷ ︸
=:(ST−K)+=:f(ST )

· e
− y2

2T2H

TH
√

2π
dy. (3.26)

To derive the fBS formula, we need to evaluate the integral. First, (· · · ) > 0, where

S0 exp

[
rT + σy − 1

2
σ2T 2H

]
−K > 0,

which leads to

y >
log(K/S0)− rT + 1

2σ
2T 2H

σ
:= c.

Hence,

C0 = S0

∫ ∞
c

exp

(
σy − 1

2
σ2T 2H

)
e−

y2

2T2H

TH
√

2π
dy −Ke−rT

∫ ∞
c

e−
y2

2T2H

TH
√

2π
dy

= S0

∫ ∞
c

exp

{
− 1

2T 2H

(
y2 − 2σyT 2H + σ2T 4H

)} 1

TH
√

2π
dy −Ke−rT

∫ ∞
c/TH

e−
y2

2

√
2π

dy

= S0

∫ ∞
c

exp

{
− 1

2T 2H
(y − σT 2H)2

}
dy −Ke−rT

(
1− Φ

( c

TH

))
= S0

∫ ∞
c−σT2H

TH

e−
y2

2

√
2π

dy −Ke−rTΦ
(
− c

TH

)
= S0Φ

(
−c− σT

2H

TH

)
−Ke−rTΦ

(
− c

TH

)
.

Let

d+ := −c− σT
2H

TH
=

log(S0/K) + rT + σ2

2 T
2H

σTH
,

and

d− := − c

TH
=

log(S0/K) + rT − σ2

2 T
2H

σTH
.

Therefore, we obtain

C0 = S0Φ(d+)−Ke−rTΦ(d−).

Remark 3.7. Regarding the contradiction about “arbitrage” issue proposed by two groups of people,

Björk and Hult [65, page 198] analysed that this is because “[t]he very definitions of portfolio value

and/or self-financing portfolios are completely different from their standard counterparts”. They

also claimed that the definition of Wick-financing portfolios and hence the arbitrage concept were

not economically meaningful. This reveals one of the major drawbacks of the fBS model.

Since the main purpose of this thesis is to apply Malliavin weighted scheme to compute Greeks,

we ignore this aspect here. We then compute the Greeks in the fBS model.
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Closed-form Greeks

Theorem 3.10. The closed-form Greeks for European Call option at time 0 under the fBS model

are

∆ = Φ(d+),

Γ =
φ(d+)

S0σTH
,

V = S0T
Hφ(d+).

Proof. The results can be derived easily from Equation 3.25. We omit the details.

Finite-difference Greeks See Theorem 3.5.

Malliavin Greeks The Malliavin Greeks in the fBS model can be computed very similar to that

in the classical Black-Scholes’s case by applying Proposition 2.10 and Proposition 3.1.

Theorem 3.11. The Greeks for European Call option at time 0 computed by using Malliavin

weighted scheme under the fBS model are as follows:

∆ = e−rTE
[
f(ST )

WH
T

S0σT 2H

]
Γ = e−rTE

[
f(ST )

(
(WH

T )2

σT 2H
−WH

T −
1

σ

)
1

S2
0σT

2H

]
V = e−rTE

[
f(ST )

(
(WH

T )2

σT 2H
−WH

T −
1

σ

)]
Proof. Here we give a simpler proof by using the classical integration-by-parts formula (but with

the same ideology as in the Malliavin weighted scheme). We prove the expression for Delta only.

Gamma and Vega can be derived similarly. Let S0 = x > 0 and use Equation 3.26, we have

f(ST ) = (ST −K)+, ST = x exp

(
rT + σy − 1

2
σ2T 2H

)
.

Then
∂f(ST )

∂y
=

∂f

∂ST
· ∂ST
∂y

=
∂ST
∂y

= σST =⇒ ST =
1

σ

∂f

∂y
,

∂f(ST )

∂x
=
∂ST
∂x

=
ST
x

=
1

xσ

∂f

∂y
.

Therefore,

∆ =
∂C0

∂x
=

∂

∂x

∫
R

e−rT f(ST ) · e−
y2

2T2H

TH
√

2π
dy

= e−rT
∫
R

∂f(ST )

∂x
· e−

y2

2T2H

TH
√

2π
dy

= e−rT
∫
R

1

xσ

∂f

∂y
· e−

y2

2T2H

TH
√

2π
dy
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= e−rT
∫
R
f(ST )

y

xσT 2H
· e−

y2

2T2H

TH
√

2π
dy (classical integration by parts)

= e−rTE
[
f(ST )

WH
T

S0σT 2H

]
, y = WH

T ∼ N (0, T 2H).

4 Numerical experiments and discussions

In the previous sections, we have derived the closed-form, finite-difference and Malliavin Greeks

in the Heston model and the fBS model, respectively. In this section, we conduct the numerical

experiments in these two models to show the efficiency of the Malliavin weighted scheme by com-

paring it with the finite difference method. We first compute the closed-form Greeks by using

Mathematica (see Appendix A for the code). Then, we apply Monte Carlo methods to simulate

the (Malliavin and finite-difference) Greeks by using C++. Finally, the results as well as future

research are discussed.

4.1 Classical Heston model

Here, we consider the classical Heston model. We first compute the closed-form Greeks. The

parameters used and the outputs are summarised in Table 2 and Table 3, respectively.

S0 K r T v0 θ κ ν ρ

100 100 0 1 0.1 0.08 4.0 0.6 −0.7

Table 2 The parameters used in Heston model.

Call Price Delta Gamma

European Call 11.0659 0.6072 0.0142

Digital Call 0.4966 0.0142 −0.0001

Table 3 Exact values of both European and digital Call option prices and the associated Greeks at time

0 under the Heston model (accurate up to four decimal places).

It is notable that in our case, the exact Delta for a digital Call option with payoff 1{ST>K}

is the same as that for a European Call option with payoff (ST −K)+. As stated in [66, Section

17.4.1], the payoff of the digital Call option is identical (but not equal) to the Delta of a vanilla Call

option. As a consequence, according to [67, Section 8.3.2], Marroni and Perdomo pointed out that

“qualitatively, the Greeks of the digital option can be thought of higher orders of the Greeks of a

vanilla call option”; that is to say, for example, the Delta for a digital Call has the same shape as

the Gamma for a vanilla Call. In our case, we take the risk-free interest rate to be zero, i.e., r = 0.

All these support our findings. In particular, we give an easy example under the Black-Scholes

(BS) model.
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Call Price Delta Gamma

European Call S0Φ(d1)−Ke−rTΦ(d2) Φ(d1) ∂Φ(d1)
∂S0

Digital Call e−rTΦ(d2) = e−rTΦ(d1 − σ
√
T ) e−rT ∂Φ(d1−σ

√
T )

∂S0
< 0

Table 4 Closed-form expressions of Call price and the associated Greeks for European and digital Call

options (payoff 1{ST>K}) at time 0 in the BS model.

From Table 4, it is clear in the sense that the Call price of digital Call has the same shape of

the Delta for a European Call, and so on.

Now we introduce the key simulation procedures for both a European Call and a digital Call.

We first implement Equation 3.17 and 3.18, where X is the logarithmic price. From this, we

can obtain ST = exp(XT ) at time T . Then, the payoff f(ST ) = (ST − K)+ for European Call

and f(ST ) = 1{ST>K} for digital Call can be calculated. Finally, based on Theorem 3.5 and

Theorem 3.7, we can get the simulated Greeks by applying Monte Carlo methods. Note that

all the finite integrals involved here are approximated by using left Riemann sum method; each

integral is divided into n = 10000 small partitions and a numerical inversion is done for each

interval. In order to ensure that the volatility σ never hits zero, we tried two different methods:

the one is to keep generating a new Brownian motion W 2 until σ > 0 (since in Equation 3.18, W 2

is the only random number), the other is to set a small positive lower bound for σ, for example, we

can set σ = T/n when it is non-positive. As a result, they both perform well. Last but not least,

the number of simulations N from 1 to 80000 verses the value of Delta is plotted again by using

Mathematica. Notice that the step size is set to be s = 80, which means that we independently
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Figure 1 Delta for a European Call option with payoff function f(x) = (x−K)+ and parameters as in

Table 2 under the Heston model.
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Figure 2 Delta for a binary Call option with payoff function f(x) = 1{x>K} and parameters as in Table 2

under the Heston model.

conduct Monte Carlo N/s times in total. The purpose of this is to make the graph clear and save

some time. Furthermore, in the case of finite difference method, we choose the central difference

h = 1 for European Call and h = 0.7 for digital Call.

In the case of a European Call option, we tried several different small values of the central

difference h, e.g., h = 0.001, 0.02, 0.05, 0.07. However, the error of the difference between C0(S0+h)

and C0(S0 − h) is quite big, and the output Delta even becomes a large negative number. Due to

this, we then tried some bigger hs, e.g., h = 1, 1.2, 1.5. The results shown that when h = 1, Delta

converges the fastest and the graph is plotted below.

From Figure 1 we can see that the Malliavin weighted scheme significantly outperforms the finite

difference method. This is surprising since in theory, when the payoff function is smooth enough

(e.g., for vanilla options), the finite difference method would perform better than the Malliavin

calculus method. After discussing with Dr Thomas Cass, we tried a different strike price K = 80

and kept other parameters the same (i.e., starting from in-the-money). However, the Malliavin

calculus method still gives a better convergence. This is puzzling, and it is worth investigating the

reasons behind this output.

In the case of a digital Call (with discontinuous payoff), we again tried many hs when using

the finite difference method, and we found that h = 0.7 gives the best convergence. As can be

seen from Figure 2, the Malliavin weighted scheme is much more efficient than the finite difference

method, as expected. The reason is that the former has lower simulation variance and converges

faster (see for example, [29, Section 2.2.2]).



4.2 Fractional Black-Scholes model 37

4.2 Fractional Black-Scholes model

In this subsection, we implement the Greeks in the fBS model. First, we compute the closed-

form Greeks. The parameters used and the outputs are summarised in Table 5 and Table 6,

respectively.

S0 K r σ T H h

100 100 0.05 0.15 1 0.7 0.5

Table 5 The parameters used in fBS model.

Call Price Delta Gamma Vega

5.6560 0.6585 0.0245 36.7032

Table 6 Exact values of European Call option price and the associated Greeks at time 0 under the fBS

model (accurate up to four decimal places).

We then simulate the Delta, Vega and Gamma for a European Call option, respectively. We first

apply the stock price at time T , ST = S0 exp
[
rT + σy − 1

2σ
2T 2H

]
, where y = WH ∼ N (0, T 2H).

Then based on Theorem 3.5 and 3.11, we apply Monte Carlo methods. We finally plot the number

of simulations N verses the value of Greeks in Figure 3, 4 and 5. Here N is from 1 to 20000 with

step size s = 80; beyond N = 20000, the convergence is not notably improved, so we only plot this

range of N . We find that for European Call options, Malliavin weighted scheme underperforms the

finite difference method, as expected. Moreover, the Malliavin calculus method is more efficient

for second-order Greeks (for example, Gamma) than first-order ones (for example, Delta).
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Figure 3 Delta for a European Call option with parameters as in Table 5 under the fBS model.
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Figure 4 Vega for a European Call option with parameters as in Table 5 under the fBS model (in this

case, h = 0.00025).
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Figure 5 Gamma for a European Call option with parameters as in Table 5 under the fBS model.

4.3 Wider implications and future research

So far, we have investigated the applications of Malliavin weighted scheme in both the classical

Heston model and the fBS model. As shown in [53], log-volatility can be well modelled using the

fBM with Hurst parameter of order 0.1. Now we consider the fractional versions of Heston model

as defined in [68], called the rough Heston model.
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Definition 4.1 (rough Heston model). The rough Heston model has dynamics:
dSt = St

√
vtdW

1
t , S0 = x > 0 (4.1)

vt = v0 +
1

Γ(α)

∫ t

0

(t− s)α−1κ(θ − vs)ds+
1

Γ(α)

∫ t

0

(t− s)α−1ν
√
vsdW

2
s (4.2)

d〈W 1,W 2〉t = ρdt, ρ ∈ (−1, 1) (4.3)

The parameters κ, θ, v0 and ν in (4.2) are all strictly positive and have the same meaning as in the

classical Heston model (see Definition 3.1). α ∈ (1/2, 1) denotes the smoothness of the volatility

sample paths. When α = 1, this becomes the classical Heston model. Here we set the risk-free

interest rate r = 0.

Following the similar procedures as in the proof of Theorem 3.7, we can obtain

Xt = log x−
∫ t

0

vs
2

ds+

∫ t

0

ρ
√
vsdW

2
s +

∫ t

0

√
1− ρ2

√
vsdZs, (4.4)

where Xt = logSt is the logarithmic price, W 2 and Z are two independent standard Brownian

motions. Applying again the left Riemann sum method to the integrals contained in Equation

(4.2) and (4.4), we can get the estimated value of XT , and hence the stock price at time T ,

ST = exp(XT ). Thus, the Call price can be calculated by simply implementing option’s payoff

function. From this, the finite difference approximation can be conducted straightforward.

Now we try to derive the Malliavin Greeks in this model. Consider the square root process

σt :=
√
vt and apply Itô’s lemma to it, and define g(s) := 1

Γ(α) (t− s)α−1 (s ∈ [0, t)), we can obtain

σt = σ0 +

∫ t

0

((
κθ

2
· g(s)− ν2

8

)
1

σs
− κσs

2
· g(s)

)
dt+

∫ s

0

ν

2
· g(s)dW 2

s . (4.5)

In this case, Novikov’s condition particularly implies that

κθ

2
· g(s)− ν2

8
≥ 0 (4.6)

for all s ∈ [0, t). It is easy to see that function g(s) is strictly increasing for α ∈ (1/2, 1).

Writing (4.4) and (4.5) in matrix form:Xt

σt

 =

log x

σ0

+

∫ t

0

 −σ
2
s

2(
κθ
2 g(s)− ν2

8

)
1
σs
− κσs

2 g(s)

 ds+

∫ t

0

√1− ρ2σs ρσs

0 ν
2 · g(s)


︸ ︷︷ ︸

σ(s,Xs)

 dZs

dW 2
s



Then, we can derive the following:

σ(s,Xs)
−1 =

 1√
1−ρ2σs

−2ρ

νg(s)
√

1−ρ2

0 2
νg(s)

 (4.7)

and the first variation process

Yt =

 1
x

0

 . (4.8)
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Choosing a(s) = 1
T and applying the BEL formula,

∆ = E

[
e−rT f(ST )

∫ T

0

a(s)(σ−1(s,Xs)Ys)
TdWs|X0 = log x

]

= E

e−rT f(ST )

∫ T

0

1

T

 1√
1−ρ2σs

−2ρ

νg(s)
√

1−ρ2

0 2
νg(s)

 1
x

0

T  dZs

dW 2
s




= E

e−rT f(ST )

∫ T

0

1

T

(
1
x 0

) 1√
1−ρ2σs

0

−2ρ

νg(s)
√

1−ρ2
2

νg(s)


 dZs

dW 2
s




= E

[
e−rT f(ST )

∫ T

0

1

T

1

x
√

1− ρ2σs
dZs

]
.

We finally get the Malliavin Delta in rough Heston model, which is the same as in the classical

Heston model (see Theorem 3.7).

Remark 4.1. In this rough Heston model, we also need to find the condition that ensures

P({vt > 0,∀t > 0}) = 1

and

sup
0≤t≤T

E[σ−2
t ] <∞.

This is what we may explore in the future.

At this state, we can only test some values of parameters to see how the graph may look like.

Choosing the value of parameters as reported in Table 7 (the same as in Table 2 under the classical

Heston model with an extra parameter α = 0.7; they satisfy (4.6)), we again plot the number of

simulations N verses the value of Delta for both a European Call and a digital Call (see Figure 6

and Figure 7).

S0 K T v0 θ κ ν ρ α

100 100 1 0.1 0.08 4.0 0.6 −0.7 0.7

Table 7 The parameters used in the rough Heston model.

We can see from Figure 6 that the performance of Malliavin calculus method and finite difference

method is debatable, while in the case of a digital Call option, the Malliavin weighted scheme clearly

gives better convergence, as expected.

After figuring out the Malliavin weights and the conditions parameters need to satisfy in the

rough Heston model, future research could be conducted in the general case of stochastic volatility

models driven by the fBM, and various option styles could be tested, e.g., vanilla, Asian, barrier,

binary, and exotic options.
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Figure 6 Delta for a European Call option with payoff function f(x) = (x−K)+ and parameters as in

Table 7 under the rough Heston model.
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Figure 7 Delta for a digital Call option with payoff function f(x) = 1{x>K} and parameters as in Table 7

under the rough Heston model.
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5 Conclusion

In this thesis, we have studied a new technique of computing Greeks based on the Malliavin

integration-by-parts formula, called the Malliavin weighted scheme. This approach was then com-

pared to the finite difference method (central scheme). The numerical experiments were conducted

in the classical Heston, the fBS, and the rough Heston models. We conclude that the Malliavin

weighted scheme remarkably outperforms the finite difference method for discontinuous payoff op-

tions. In particular, Malliavin calculus method is more efficient for the simulation of Gamma than

first-order Greeks.
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A Mathematica code for closed-form results

A.1 Classical Heston model: European Call and digital Call

A.1.1 Parameters and functions

������� ClearAll["Global`*"];

S0 = 100;

K = 100;

r = 0.0;

v0 = 0.1;

theta = 0.08;

kappa = 4.0;

nu = 0.6;

rho = -0.7;

T = 1;

F = S0 * Exp[r * T];

x = LogF  K;
gamma = nu^2  2;

�������� alpha[j_] := -k^2 2 - I * k 2 + I * j * k;

beta[j_] := kappa - rho * nu * j - rho * nu * I * k;

d[j_] := Sqrt[beta[j]^2 - 4 * alpha[j] * gamma];

r1[j_] := beta[j] + d[j] nu^2;

r2[j_] := beta[j] - d[j] nu^2;

g[j_] := r2[j] r1[j];

CC[j_] :=

kappa * r2[j] * T - 2 nu^2 * Log 1 - g[j] * Exp[-d[j] * T] 1 - g[j] ;

DD[j_] := r2[j] * 1 - Exp[-d[j] * T] 1 - g[j] * Exp[-d[j] * T] ;

P[j_] := 1 2 + 1 Pi * NIntegrate

Re Exp[CC[j] * theta + DD[j] * v0 + I * k * x] I * k , {k, 0, Infinity} ;

DP1[j_] := 1 Pi * NIntegrate[Re[Exp[CC[j] * theta + DD[j] * v0 + I * k * x]],

{k, 0, Infinity}];

DP2[j_] := 1 Pi * NIntegrate[Re[I * k * Exp[CC[j] * theta + DD[j] * v0 + I * k * x]],

{k, 0, Infinity}];

A.1.2 Closed-form Call price and the associated Greeks at time 0

�������� HEuroCallPrice = K * Exp[-r * T] * Exp[x] * P[1] - P[0] // N

	
������ 11.0659

�������� HEuroDelta = K * Exp[-r * T] S0 * Exp[x] * P[1] + Exp[x] * DP1[1] - DP1[0] // N

	
������ 0.607228
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�������� HEuroGamma = K * Exp[-r * T] S0^2 *

Exp[x] * DP1[x] + Exp[x] * DP2[1] + Exp[x] * DP1[0] - DP2[0] // N

	
������ 0.0142267

�������� HDigitalCallPrice = Exp[-r * T] * P[0] // N

	
������ 0.496569

�������� HDigitalDelta = Exp[-r * T] * DP1[0] S0 // N

	
������ 0.0142267

�������� HDigitalGamma = Exp[-r * T] * DP2[0] S0^2 // N

	
������ -0.000140434

A.2 Fractional Black-Scholes model: European Call

A.2.1 Parameters

������� Clear["Global`*"]

S0 = 100;

K = 100;

r = 0.05;

sigma = 0.15;

T = 1;

H = 0.7;

A.2.2 Closed-form Call price and the associated Greeks at time 0

������� d1 = LogS0  K r T sigma^2 T^ 2 H  2  sigma T^H;
d2 = LogS0  K r T sigma^2 T^ 2 H  2  sigma T^H;

����	��� C0 = S0 CDF NormalDistribution 0, 1], d1] K CDF NormalDistribution 0, 1], d2]


����	�� 5.65603

�������� fBSDelta = CDF[NormalDistribution[0, 1], d1]

�	
����� 0.658486

�������� fBSGamma = PDF[NormalDistribution[0, 1], d1] S0 * sigma * T^H

	
������ 0.0244688

�������� fBSVega = S0 * T^H * PDF[NormalDistribution[0, 1], d1]

	
������ 36.7032
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