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Abstract

Feature extraction for time sequential data is not a new topic in machine learning. The Signature

transform which is derived from the theory of controlled differential equations is one of the powerful

methods in this domain. In practice, we usually use the truncated Signature to describe the pattern

of the time sequential data. Large truncated order can provide a more detailed description, but it

also brings the risk of over-fitting. Thus, a theoretical explanation for the selection of truncated

order can be interesting.

Empirical processes theory comes from the need for generalizations for Glivenko-Cantelli theo-

rem and Donsker theorem. Many problems in statistics and machine learning can be regarded as

an empirical risk minimization problem. Study the asymptotic performance of the estimator is a

commonly recurring theme in statistics. Some theorems in this domain provide us a powerful way

to study the rate of convergence for the empirical risk minimizer.

In this thesis, we would like to learn the solution of some controlled differential equations by

the least square regression method. The main result of this thesis provides a theoretical formula

to describe the selection of truncated order as a function of the observation size using empirical

process theory. To the best knowledge of the author, this theoretical formula is first

proposed in this thesis. The whole theoretical proof is the completely original work

of the author

Keywords: Machine Learning, Signature Transform, Truncated Order, Empirical Process, Rate

of Convergence
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List of symbols

Pn Empirical measure

Gn Empirical process

Pon Symmetrized empirical measure

Gon Symmetrized empirical process

B(·) Standard Brownian bridge

N(ε,Θ, d) ε-covering numbers for the semi-metric space (Θ, d)

D(ε,Θ, d) ε-packing numbers for the semi-metric space (Θ, d)

N[ ](ε,F , ‖ · ‖) ε-bracketing numbers for the normed space of real functions (F , ‖ · ‖)

‖ · ‖L2(Pn) or ‖ · ‖n L2 semi-norm generated by empirical measure Pn

OP (1) Stochastic boundedness

BVc
(
[a, b];Rd

)
Class of continuous bounded variation path [a, b] 7→ Rd

S(γ)[a,b] Signature for the continuous bounded variation path γ : [a, b] 7→ Rd

SN (γ)[a,b] N order truncated Signature for the continuous bounded variation path γ

S̃N (γ)[a,b] Flattened N order truncated Signature for the continuous bounded variation path γ

� Shuffle product operation

ΘN Class of linear regressors with respect to N -truncated Signature

I : N+ 7→ N+ Decision function witch decides the truncated order through data size
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Chapter 1

Introduction

Analysis of time series data is an important subject in finance. One popular topic is time series

forecasting due to its large number of practical applications in finance. From the perspective of

machine learning, the main challenge for feature engineering is how to efficiently extract historical

information and associated patterns to describe the time series data. The feature engineering we

would like to discuss in this thesis is path Signature. Daniel Levin, Terry Lyons, and Hao Ni

have used truncated Signature features to learn the solution of an SDE [1]. However, there is no

theoretical suggestion for the selection of truncated order for a general machine learning model.

In this thesis, we would like to find some theoretical explanations for truncated order selection in

the context of least square regression.

From a statistical point of view, least square regression problem can be classified as an empir-

ical risk minimization problem. This inspires us to use empirical process theory to study this

problem. The main theorem we use to solve our problem is the extensional rate of convergence

theorem [2, Page 57, Theorem 6.1]. Another important tool required by our solution is the maxi-

mal inequalities which is one of the core parts of empirical process theory.

We will start with the basics of the empirical process in Chapter 2. We first define the main

object of study (i.e., the empirical process, Glivenko-Cantelli class, and Donsker class [3][4][5]) and

associated applications. Glivenko-Cantelli class and Donsker class are two important classes in

the empirical process theory that answer the two essential convergence problems [3][4] in empirical

process theory. A fundamental finding of empirical process theory shows that the complexity of

an underlying function class is the key for it to be Glivenko-Cantelli class or Donsker class. The

Different measures(covering numbers, packing numbers and bracketing numbers) for the complex-

ity of a class are also defined in this Chapter.

In Chapter 3, we will introduce some maximal inequalities which act as a bridge between an

empirical process and its underlying index class. To build the maximal inequalities we need for

this thesis, we will first introduce Dudley’s metric entropy bound in detail (Section 3.2 ). This

result will be used to prove a maximal inequality (with uniform entropy) which will be used in

deriving rates of convergence theorem (Chapter 4).

For the last Chapter (which is the original work of the author), we will start with the basics

of rough path theory. We would like to learn a controlled ODE using Signature features. We

expect that the solution of the ODE can be expressed as a continuous function of Signature, then

rough path theory tells us that this continuous function can be arbitrary well approximated by a
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linear functional. This inspires us to build a least square regression model with truncated Signature

as an explanatory variable. This thesis aims to find some mapping I : N+ 7→ N+ to decide the

truncated order N as a function of input data size n. We will carefully explain the solution by

several steps in the section 5.4. Generally speaking, the main finding of this thesis shows that the

rate of convergence with a decision function I is OP

(√
dI(n)

n

)
where d is the dimension of input

path and OP (·) denotes the stochastic boundedness. This derives that the suggested truncated

order can be chosen by rules like I : n 7→ dlog logd ne or I : n 7→ d
√

logd ne.
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Chapter 2

Basics of Empirical Process

2.1 Introduction to empirical processes

We first start with the history of the empirical process theory. This theory first developed in the

1930’s and 1940’s motivated by the study of the empirical distribution function and its extension.

In this section, we introduce some important concepts and results in the empirical process theory.

We mainly use the notations and conceptions of [2, Chapter 1, page 4-9].

We first start with some classical statistic concepts. Let X1, ...Xn are i.i.d. random variables

in R with common cumulative distribution function (c.d.f.) F then the empirical distribution

function (e.d.f.) Fn is defined as

Fn(x) :=
1

n

n∑
i=1

1(−∞,x] (Xi) , x ∈ R (2.1.1)

Then we can define the corresponding empirical process Gn as :

Gn(x) :=
√
n (Fn(x)− F (x)) , x ∈ R (2.1.2)

It is clear that the strong law of large numbers and the central limit theorem give us the following

two classical results:

Fn(x)
a.s.→ F (x)

Gn(x)
d→ N (0, F (x)(1− F (x)))

Furthermore, empirical process theory gives two other further results concerning Fn and Gn.

Theorem 2.1.1 (Glivenko-Cantelli 1933 [3][6]).

‖Fn − F‖∞ := sup
x∈R
|Fn(x)− F (x)| a.s.→ 0

Theorem 2.1.2 (Donsker 1952 [4][5]).

Gn
d→ B(F ) in D (R, ‖ · ‖∞)

Where where B(·) is the standard Brownian bridge process 2.4.8 on [0, 1] and D (R, ‖ · ‖∞) is the

space of cadlag functions on R

In the 1950’s and 1960’s, the need for generalizations of theorems 2.1.1 and 2.1.2 appeared. More

precisely, it became apparent that when the observations take values in more general space (such
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as Rd, or some space of functions, etc.). The e.d.f can no longer be defined as equation 2.1.1.

Instead, we can define empirical measure as an extension of e.d.f.

Now, lets consider X1, ...Xn are i.i.d. random variables take values in a general space X . Then we

can define the empirical measure Pn indexed by some class of real-valued measurable functions F
defined on X :

Pn :=
1

n

n∑
i=1

δXi (2.1.3)

where δx denotes the Dirac measure at x. Then, for any Borel set A ⊂ X , we write:

Pn(A) :=
1

n

n∑
i=1

1A (Xi) =
| {i ≤ n : Xi ∈ A} |

n

Similarly, for any real-valued function f on X , we define:

Pn(f) :=

∫
fdPn =

1

n

n∑
i=1

f (Xi)

Moreover, we use the following operator notation for the integral of each function f ∈ F with

respect to P (we assume the integrability holds):

Pf :=

∫
fdP

Then it is nature to define the empirical process Gn by:

Gn :=
√
n (Pn − P ) (2.1.4)

The collection of random variables {Gn(f) : f ∈ F} is called the empirical process indexed by

F [2, Chapter 1, page 4-9].

Remark 2.1.3. It is not difficult to check that the classical e.d.f. and empirical process for

real-valued random variables can be obtained by setting X = R and F =
{
1(−∞,x](·) : x ∈ R

}
With the above extension, we can briefly conclude that the main subject of empirical process

theory is to analyse the approximation of Pf by Pn(f). Mainly, we focus on the convergence of

following two objects:

� The supremum of the approximation error: ‖Pn − P‖F := supf∈F |Pnf − Pf |

� The probabilistic limit theorems for the process:
√
n (Pnf − Pf) , f ∈ F

We can easily find out that these two objects are the extension problems for theorems 2.1.1 and

2.1.2. In order to study these problems, we need to introduce two kinds of function class. Let

F := {f : X → R : P |f | <∞} a class of measurable functions.

� We say F is a P -Glivenko-Cantelli class [3] if: ‖Pn − P‖F
a.s.−−−→
n↑∞

0

� We say F is a P -Donsker class [4] if: {Gn(f) : f ∈ F} converge to some limiting object in

distribution in the space l∞(F).

A natural question is that what are the conditions to make a function class to be a P -Glivenko-

Cantelli class or a P -Donsker class? This is one of the most important subjects in empirical process

theory, it will be discussed in the following sections.
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2.2 Empirical Process and Machine Learning

Some regression problems in statistics and machine learning can be generalized as the optimisation

problems with M -estimator [7] of the form

θ̂n := arg max
θ∈Θ

Pn [mθ] = arg max
θ∈Θ

1

n

n∑
i=1

mθ (Xi) (2.2.1)

where X1, ..., Xn are i.i.d variables which take values in a general space X , Θ is the class of

candidates for estimator (i.e parameter space), and mθ is a real valued function (loss function) on

X which evaluates the performance of corresponding estimator θ ∈ Θ. In particular, some well

known methods like maximum likelihood estimation or least square regression are just special cases

with some choices of function mθ.

Example 2.2.1. Let mθ = log pθ, where pθ is the density of the observations. Then we have

θ̂n := arg max
θ∈Θ

Pn [mθ] = arg max
θ∈Θ

1

n

n∑
i=1

logθ p (Xi)

Which is the form of maximum likelihood estimator.

More over, let {Xi}ni=1 = {(Zi, Yi)}ni=1 be the observations of a regression model. We choose the

square error function for mθ, i.e. mθ (x) = − (y − θ (z))
2

where θ is a regression function in some

class of regressor Θ. Then we build the least square regression estimator with the form of

θ̂n := arg max
θ∈Θ

Pn [mθ] = arg max
θ∈Θ
− 1

n

n∑
i=1

(Yi − θ (Zi))
2

In chapter 5, we will build our main problem of this thesis with the form of least square regression

estimation like above example.

In M -estimator problems with form 2.2.1, we are interested in the “true parameter”

θ0 := arg max
θ∈Θ

P [mθ]

By the law of large numbers, it is clear chat we can approximate the P [mθ] with a fixed parameter

θ by the empirical risk Pn [mθ] which depends only on the data. Moreover, if the class of all

possible mθ is P -Glivenko Cantelli (i.e. F := {mθ(·) : θ ∈ Θ} is P -Glivenko Cantelli), then by its

definition [3], P [mθ] and Pn [mθ] are uniformly close as n increasing. However, we don’t know if

their argmax (i.e. θ0 andθ̂n) are close. This problem is what we called consistency of M -estimator.

The following simple lemma shows that M -estimator is consistent with some assumptions.

Lemma 2.2.1. [2, Page 30] Let (Θ, d) is a metric space, let θ̂n be a M -estimator with the form of

2.2.1. We assume that F := {mθ(·) : θ ∈ Θ} is P -Glivenko Cantelli and θ0 := arg maxθ∈Θ P [mθ]

is a well-separated maximizer i.e. P [mθ0 ] > supθ∈Θ:d(θ,θ0)≥δ P [mθ], for every δ > 0. Then we

have d
(
θ̂n, θ0

)
P→ 0.

Proof. For a fixed δ > 0, let

φ(δ) := P [mθ0 ]− sup
θ∈Θ:d(θ,θ0)≥δ

P [mθ]
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d(θ̂n, θ0) > δ can imply that

P
[
mθ̂n

]
≤ sup
θ∈Θ:d(θ,θ0)≥δ

P [mθ]

⇔P
[
mθ̂n

]
− P [mθ0 ] ≤ −φ(δ)

⇒P
[
mθ̂n

]
− P [mθ0 ] +

(
Pn [mθ0 ]− Pn

[
mθ̂n

])
≤ −φ(δ)

⇒2 sup
θ∈Θ
|Pn [mθ]− P [mθ]| ≥ φ(δ)

As we assumed that F is P -Glivenko Cantelli, we have

P
(
d
(
θ̂n, θ0

)
≥ δ
)
≤ P

(
2 sup
θ∈Θ
|Pn [mθ]− P [mθ]| ≥ φ(δ)

)
→ 0 as n→∞

The conditions of the above lemma maybe too strict sometimes, a more general theorem called

the Argmax Theorem is discussed in [8, Pages 285-289, Section 3.2.1]. Assume that we have the

consistency for an M -estimator, another problem we are interested in is that how fast the θ̂n

approach to θ0 as n increasing. We call this problem the convergence rate of M -estimator. The

convergence rate theorems are the most important tools to solve the main problem of this thesis.

These theorems will be discussed with details in Chapter 4.

2.3 Complexity of a function class

We have seen that the P -Glivenko Cantelli class and P -Donsker class give some interesting statis-

tical properties, but we still have no idea how to check a class is P -Glivenko Cantelli or P -Donsker.

A part of the main findings of the empirical process shows that the complexity of the underlying

function class is closely relevant to the convergence problems we have discussed in section 2.1. More

precisely, consider F some class of measurable real-valued functions defined on a general space X ,

the complexity of the class determines whether F is P -Glivenko Cantelli class or P -Donsker class.

We can define the following quantities [2, Chapter 2, page 14-17] to help us describe how complex

the class F is.

2.3.1 Covering numbers and Packing numbers

Covering numbers and packing numbers are two relatively simple ways to measure the complexity

of space. For any semi-metric space (Θ, d), we can first define its ε-cover

Definition 2.3.1 (ε-cover). [2, Page 14-16, Section 2.1] We say the set {θ1, ..., θN} is a ε-cover of

the set Θ with respect to the semi-metric d if any θ ∈ Θ can be covered by a ε-ball with respect

to the semi-metric d such that its centre is in the set {θ1, ..., θN}, i.e. for any θ ∈ Θ, there exists

i ∈ {1, ..., N} such that d(θ, θi) < ε.

With the above conception, we can define the ε-covering numbers of the set Θ

Definition 2.3.2 (Covering numbers). [2, Page 14-16, Section 2.1] We note the ε-covering numbers

of Θ as N(ε,Θ, d) which is the minimum number of ε-balls (with respect to the semi-metric d) we

need to cover the set Θ. More precisely,

N(ε,Θ, d) := inf {N ∈ N : ∃ a ε-cover {θ1, . . . , θN} of Θ}
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As the above definition stated, the basic idea of covering numbers is to find how many balls of

radius ε > 0 we need to cover the set. On the contrary, we can also define another related measure

of complexity that represents how many disjoint balls of radius ε > 0 we can place into the set. In

order to do that, we can first define the ε-packing of set Θ.

Definition 2.3.3 (ε-packing). [2, Page 14-16, Section 2.1] We say the set {θ1, ..., θN} is a ε-packing

of the set Θ with respect to the semi-metric d if all the ε-ball with centre θ1, ..., θN are disjoint,

i.e. for all i, j ∈ {1, ..., N}, we have d(θi, θj) > ε.

Like covering number, we can now define the ε-packing number of the set Θ by ε-packing:

Definition 2.3.4 (Packing number). [2, Page 14-16, Section 2.1] We note the ε-packing numbers

of Θ as D(ε,Θ, d) which is defined by the maximum number of disjoint ε-balls(with respect to the

semi-metric d) can be placed in the set Θ, i.e.

D(ε,Θ, d) := sup {N ∈ N : ∃ a ε-packing {θ1, . . . , θN} of Θ}

Remark 2.3.5. There are also equivalent way to define ε-covering and ε-packing. Let B(θi, ε) be

a ε-ball of the semi-metric space (Θ, d). Then we can also say the set {θ1, ..., θN} is a ε-cover if

Θ ⊂ ∪Ni=1B (θi, ε). We apply the same idea to ε-packing, we say the set {θ1, ..., θN} is a ε-packing

if ∩Ni=1B (θi, ε/2) = ∅

Following the above definitions, there is an important fact that covering numbers and packing

numbers are closely related as a consequence of their constructions. More precisely, the following

lemma shows that these two measure have the same scaling with the radius ε.

Lemma 2.3.6. [2, Page 14-16, Section 2.1] For any ε > 0, we have:

D(2ε,Θ, d) ≤ N(ε,Θ, d) ≤ D(ε,Θ, d)

Proof. We first consider the second inequality. Let ∆ ⊂ Θ be a maximal ε-packing. Then by

the construction of maximal ε-packing, for every θ ∈ Θ \ ∆, there always exists i ∈ {1, ..., |∆|}
such that d(θ, θi) ≤ ε (| · | notes the cardinal number of the set). Thus, ∆ satisfies the definition

of ε-covering which means that ∆ is also a ε-covering. By the definition of ε-covering numbers,

N(ε,Θ, d) is the minimal cardinal number of all possible ε-covering sets. Hence, we have the in-

equality: N(ε,Θ, d) ≤ D(ε,Θ, d).

Now we move to the first inequality. Let {α1, ..., αD} a 2ε-packing and {β1, ..., βN} an ε-covering

such that D ≥ N + 1. By pigeonhole principle, there must exists αi, αj and a ε-ball B(βk, ε) such

that αi, αj ∈ B(βk, ε) for some i 6= j and k. Hence, the distance between αi and αj can not be

larger than the diameter of the ε-ball (βk, ε). Thus we get d(αi, αj) ≤ 2ε, which is a contradiction

due to the fact that {α1, ..., αD} is a 2ε-packing implies that d(αi, αj) > 2ε. As a consequence, we

can conclude that the cardinal number of any 2ε-packing is less or equal to the cardinal number

of any ε-covering.

The above lemma can be useful when we would like to construct some inequalities with complexity

(which is actually very common in empirical process theory). For example, assume that we have

an upper bound with ε-covering numbers, but it is not easy to be calculated. However, it is not dif-

ficult to construct an ε-packing, then we can quickly have the upper bound with ε-packing numbers.

Now let us see an example based on the metric space (L, ‖ · ‖∞) where L is a Lipschitz ball

defined by

L := {f : [0, 1]→ [0, 1]|f is 1− Lipschitz} (2.3.1)
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As we showed in lemma 2.3.6, covering numbers and packing numbers are closely related and they

are in the same scale, we just consider the ε-covering number of this class in the following example.

Example 2.3.1. [2, Page 14-16, Section 2.1] Let us consider the ε-covering number of the metric

space (L, ‖ · ‖∞) we defined in 2.3.1. We will show an upper bound for N(ε,L, ‖ · ‖∞) for all ε > 0.

Firstly, let ε ≥ 1, it is nature to choose f0 ≡ 0 and we have ‖f − f0‖∞ ≤ 1 ≤ ε for any f ∈ L. As

a consequence, N(ε,L, ‖ · ‖∞) ≡ 1 for all ε ≥ 1.

Now let us set ε < 1. We construct a partition of interval [0, 1]: 0 = t0 < t1 < ... < tN = 1

where tk = k · ε for k = 0, 1, 2, ..., N − 1. We define the intervals A1 := [t0, t1] and Ak := (tk−1, tk]

for k = 2, 3, ...N . Then we approach any f ∈ L by f̃ which is defined by the linear interpolation:

f̃(x) =

N∑
k=1

{
f(tk)− f(tk−1)

tk − tk−1
(x− tk−1) + f (tk−1)

}
1Ak(x)

It is clear that f̃ ∈ L and f̃ can only take values of form k · ε. By this construction, we have

|f(x)− f̃(x)| ≤ |f(x)− f (tk−1)|+
∣∣∣f (tk−1)− f̃ (x)

∣∣∣ ≤ 2ε ∀x ∈ Ak ∀k ∈ {1, 2, ..., N}

This is equivalent to ‖f − f̃‖∞ ≤ 2ε which implies that the collection of all f̃ is a 2ε-covering of

L. Now, we can consider the number of distinct f̃ can be constructed as f varies over L. For the

first point t1, due to the construction of f̃ , there are at most b1/εc + 1 possible choices of f̃(t1).

Moreover, considering the fact that∣∣∣f̃ (tk)− f̃ (tk−1)
∣∣∣ = |f (tk)− f (tk−1)| ≤ ε

Thus, there are 3 choices for the next value f̃(tk) once f̃(tk−1) is fixed. As a conclusion, we can

conclude that we have the inequality

N (2ε,L, ‖ · ‖∞) ≤
(⌊

1

ε

⌋
+ 1

)
3b1/εc+1

which provides an upper bound for the covering numbers of L.

2.3.2 Bracketing numbers

We have defined the covering numbers and packing numbers for any semi-metric space (Θ, d).

Now let us move to (F , || · ||) which is some subset of some normed space of real functions

({f : X → R} , || · ||). We would like to introduce the third quantity which measures the com-

plexity of the subset F . We first need the conception of the ε-bracket.

Definition 2.3.7 (ε-bracket). [2, Page 17-18, Section 2.2] Let l(·) and u(·) two real valued functions

on X . We define the bracket [l, u] := {f : l(x) ≤ f(x) ≤ u(x), ∀x ∈ X}. We say [l, u] is an ε-

bracket if ||l − u|| < ε.

Definition 2.3.8 (Bracketing numbers). [2, Page 17-18, Section 2.2] We define the ε-bracketing

number as the minimal number of ε-brackets we need to cover F with respect to the notation

N[ ](ε,F , ‖ · ‖), i.e.

N[ ](ε,F , ‖ · ‖) := inf
{
N : ∃ε-brackets [li, ui] such that F ⊂ ∪Ni=1 [li, ui]

}
One remark of this definition is that the two bound functions l(·) and u(·) of any bracket [l, u] are

11



not necessary belong to F , but we assume that they have finite norms. Another important concept

we will need is the envelop function of class F :

Definition 2.3.9 (Envelope function). [2, Page 17-18, Section 2.2] We say F (·) is an envelope

function of a class of functions F if |f(x)| ≤ F (x) for every x ∈ X and f ∈ F . Moreover, it is

nature to define the minimal envelope function as x 7→ supf∈F |f(x)|.

Now let us consider the class F :=
{
ft := 1(−∞,t](·)

∣∣ t ∈ R̄} which is the collection of all indicate

functions. We have mentioned in Remark 2.1.3 that the empirical process Gn indexed by this

collection is the classical empirical process:

Gn(ft) =
√
n (Fn(t)− F (t))

with X1, ..., Xn i.i.d. random variables with c.d.f F under measure P . We will show an upper

bound of bracketing number for this class.

Example 2.3.2. [2, Page 17-18, Section 2.2] Let (F , ‖ · ‖r) be a metric space where F :={
ft := 1(−∞,t](·)

∣∣ t ∈ R̄} is the collection of indicate functions and ‖ · ‖r is Lr(P ) norm. We would

like to consider the bracketing number of this space. Let −∞ = t0 < t1 < ... < tk =∞ be a sequence

of grid point. Then we can construct a sequence of brackets:
[
1(−∞,ti−1],1(−∞,ti]

]
, i = 1, 2, ...k. It

is clear that this sequence of brackets cover the F due to the construction. Now we control the size

of brackets by choosing the grids points such that

‖1(−∞,ti−1] − 1(−∞,ti]‖r =
[
F (t−i )− F (ti−1)

] 1
r ≤ ε

Thus, we need at most
⌊

1
εr

⌋
+ 1 grid points. As a consequence, we can conclude that

N[ ] (ε,F , Lr(P )) ≤
⌊

1

εr

⌋
+ 1

We have build a connection for the ε-covering numbers and the ε-packing numbers by lemma 2.3.6.

It is nature to ask if we can build a relation which involves the ε-bracketing numbers. In order to

build a connection for these three measures of complexity, we now present a inequality between

the ε-covering number and the ε-bracketing numbers.

Theorem 2.3.10. [2, Page 17-18, Section 2.2] Let (F , ‖ · ‖) be a metric space where F is an

arbitrary class of function and ‖ · ‖ is an arbitrary norm on F . Then we have:

N(ε,F , ‖ · ‖) ≤ N[ ](ε,F , ‖ · ‖) ∀ε > 0

Proof. We first fix the ε > 0. We simply note the ε-bracketing number N[ ](ε,F , ‖ · ‖) of as N .

Let B1, B2, ...BN be a sequence of brackets which cover the F . For each bracket Bi, we choose one

function gi such that gi ∈ Bi ∩ F . Then we define the collection G := ∪Ni=1 {gi}. We remark that

the cardinal number of G is N due to its construction. Now we will show that G is a ε-covering.

Consider any f ∈ F , there exists a bracket Bi such that f ∈ Bi since the sequence {Bi}i=1...N

covers the F . Hence, ‖f − gi‖ ≤ ε due to the definition of ε-bracket which implies that G is an

ε-covering. Since the ε-covering number is the minimal cardinal number of all possible ε-covering

sets, we have N(ε,F , ‖ · ‖) ≤ N which is the desired result.

2.4 Glivenko-Cantelli classes and Donsker classes

As we have mentioned in the previous section, the complexity of a class determines whether it is

a Glivenko-Cantelli class or a Donsker class. We have also defined three different measures for

12



the complexity of a class. In this section, we will show how the complexities determine a class

by some important theorems in the empirical process theory. However, the sufficient or necessary

conditions for a class to be Glivenko-Cantelli or Donsker are not the key for this thesis and the

proofs of most of these theorems are very long. For simplicity, we only give a brief introduction

for this part, more details can be found in [8, Section 2.4, 2.5 and 2.13].

2.4.1 Glivenko-Cantelli classes

Let us first start with the Glivenko-Cantelli classes. We would like to introduce two Glivenko-

Cantelli theorems. The first one is relatively simple which is based on the ε-bracketing numbers.

We will simply show its proof. The second theorem is based on the ε-covering numbers which is

much more difficult to prove. We will only introduce the theorem without proof.

Theorem 2.4.1. [2, Page 19-20, Section 3.1] Let F be a class of measurable functions with finite

ε-bracketing numbers with respect to L1(P ) norm for any ε > 0 (i.e. N[ ](ε,F , L1(P )) <∞, ∀ε >
0). Then F is Glivenko-Cantelli.

Proof. The proof of this theorem is just an application of bracketing. Since we assume that any ε-

bracketing number is finite, we fix some ε > 0 and we can choose finitely many ε-brackets such that

their union cover the F . By this construction, for any f ∈ F , there exists a ε-bracket [li, ui] such

that li(x) ≤ f(x) ≤ ui(x). Then we have P (ui−f) ≤ P (ui−li) ≤ ε and P (li−f) ≥ P (li−ui) ≥ −ε.
Hence we have:

(Pn − P ) f ≤ (Pn − P )ui + P (ui − f) ≤ (Pn − P )ui + ε

which implies:

sup
f∈F

(Pn − P ) f ≤ max
i

(Pn − P )ui + ε (2.4.1)

On the other side, we can also build the inequality:

(Pn − P ) f ≥ (Pn − P ) li + P (li − f) ≥ (Pn − P ) li − ε

which implies:

inf
f∈F

(Pn − P ) f ≥ min
i

(Pn − P ) li − ε (2.4.2)

By strong law of large numbers, the right side of inequalities 2.4.1 and 2.4.2 almost surly converge

to ε and −ε respectively. Moreover,

‖Pn − P‖F := sup
f∈F
|(Pn − P ) f | = max

{
sup
f∈F

(Pn − P ) f,− inf
f∈F

(Pn − P ) f

}
(2.4.3)

Then we can conclude that lim sup ‖Pn − P‖F ≤ ε almost surely, for every ε > 0. Finally, taking

a sequence of εn such that εn ↓ 0 completes the proof.

Following theorem gives us another way to identify Glivenko-Cantelli by its covering numbers. Both

the statement and the proof of this theorem are more complicated than the previous theorem based

on the ε-bracketing numbers. However, the result gives a necessary and sufficient characterization

for a class of functions to be Glivenko-Cantelli.

Theorem 2.4.2. [2, Page 21-22, Section 3.2] Consider F a class of measurable functions with

an integrable envelope F . Let FM be a class of functions FM :=
{
f1{F≤M} : f ∈ F

}
. Then F is

Glivenko-Cantelli if and only if:

1

n
logN (ε,FM , L1 (Pn))

P→ 0, ∀ε > 0 and ∀M > 0

13



2.4.2 Donsker classes

Now we move to Donsker class. We will also show two theorems for checking Donsker classes. The

first one shows a sufficient condition for a class to be Donsker which is related to the grow speed

of ε-bracketing number as ε ↓ 0. In order to introduce this theorem, we first need to define the

conception of bracketing entropy integral.

Definition 2.4.3 (Bracketing entropy integral). [2, Page 126-127, Section 11.1] Let F be a class

of measurable functions equipped with L2 norm. We note J[ ] (δ,F , L2(P )) the bracketing entropy

integral which is defined as:

J[ ] (δ,F , L2(P )) :=

∫ δ

0

√
logN[ ] (ε,F ∪ {0}, L2(P ))dε

A nature question for the above definition is if the bracketing entropy integral is finite. This

question is actually the key for the following theorem.

Theorem 2.4.4 (Donsker theorem). [2, Page 126-127, Section 11.1] If F is a class of measurable

functions with square-integrable and measurable envelope F such that the bracketing entropy integral

J[ ] (δ,F , L2(P )) <∞. Then F is P -Donsker.

Instead of the proof, let us see a simple example of the application for the above theorem. Let us

continue with example 2.3.2.

Example 2.4.1. Let (F , ‖ · ‖1) be a metric space where F :=
{
ft := 1(−∞,t](·)

∣∣ t ∈ R̄} is the

collection of indicate functions and ‖ · ‖1 is L1(P ) norm. Remark that 0 ∈ F for this example.

With the result in example 2.3.2, we have

N[ ] (ε,F , L1(P )) ≤
⌊

1

ε1

⌋
+ 1

Then we have

J[ ] (δ,F , L1(P )) ≤
∫ δ

0

√⌊
1

ε

⌋
+ 1 dε

≤ δ +

∫ δ

0

√
1

ε
dε

≤ δ + 2
√
δ

Finally, by theorem 2.4.4, the class F :=
{
ft := 1(−∞,t](·)

∣∣ t ∈ R̄} is P -Donsker with respect to

L1(P ) norm.

The second theorem indicates that the ε-bracketing numbers term in the above Donsker theorem

can be replaced by the uniform covering numbers which are defined as supQN (ε‖F‖Q,2,F , L2(Q))

where Q runs over all probability measures such that Q
[
F 2
]
> 0. Then, we can first define the

uniform entropy integral as following.

Definition 2.4.5 (Uniform entropy integral). [2, Page 127-130, Section 11.2] Let F a class mea-

surable functions with square-integrable and measurable envelope function F , we note J(δ,F , F )

the uniform entropy integral which is defined by:

J(δ,F , F ) :=

∫ δ

0

sup
Q

√
logN (ε‖F‖Q,2,F ∪ {0}, L2(Q))dε, δ > 0

Then the following theorem shows another sufficient condition for a class to be Donsker.
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Theorem 2.4.6 (Donsker theorem). [2, Page 127-130, Section 11.2] If F is a pointwise-measurable

class of measurable functions with square-integrable (with respect to L2(P )) and measurable enve-

lope F such that J(1,F , F ) <∞, then F is P -Donsker.

In fact, the second theorem can be transferred by the first theorem using a maximal inequality

(theorem 3.3.4) which we will discuss in chapter 3. The details are discussed in [2, Page 127-129,

Section 11.2].

2.4.3 Functional central limit theorem

The Donsker class plays a key role in weak convergence, some results can derive some useful proper-

ties in rough path theory. We would like to explore more properties of Donsker class by simplifying

the index set of the empirical process which we consider. For the simplicity, here we assume that

the index set is some class of real valued functions in one dimension.

We first back to the classical case that X1, ...Xn are i.i.d random variables with c.d.f F and

the empirical process Gn is indexed by the real-valued function 1(−∞,x](·) where x ∈ R, then we

are in the case of the classical empirical process:

Gn(x) =
√
n (Fn(x)− F (x)) , x ∈ R

where Fn is the e.d.f of Xi. Then by the classic central limit theorem, we have

Gn(x)
d−−−→

n↑∞
N (0, F (x)(1− F (x)))

Now, let us focus on the classical case, i.e. regard the process Gn as a stochastic process indexed by

the real line x ∈ R. Functional central limit theorem (also known as Donsker’s invariance principle

[4] [5]) shows that the sequence Gn, as random elements of the Skorokhod space (the collection of

càdlàg functions) converges in distribution to a Gaussian process [9]. More precisely:

Theorem 2.4.7 (Functional central limit theorem). [5] Let X1, ..., Xn i.i.d random variables with

c.d.f F . The classical empirical process Gn(x) :=
√
n (Fn(x)− F (x)), x ∈ R converges in distribu-

tion to a Gaussian process G such that:

E[G(x)] = 0 ∀x ∈ R

cov[G(s),G(t)] = F (s) ∧ F (t)− F (s)F (t) ∀s, t ∈ R

In fact, we can rewrite the above theorem with the form of standard Brownian bridge. We fist

recall the definition of Brownian bridge process.

Definition 2.4.8 (Brownian bridge). [10] Let Wt be a Wiener process, we say a continuous-time

stochastic process {Bt}t∈[0,T ] is a Brownian bridge for t ∈ [0, T ] if

Bt := (Wt |WT = 0) , t ∈ [0, T ]

We remark that the expected value of the bridge is zero and the covariance of B(s) and B(t) is

(s ∧ t)(T − t)/T . Then we can see that G(·) can be represented as a Brownian bridge B(F (·)))
on the unit interval (i.e. T = 1) If we rephrase the above result implies, we have immediately the

following lemma [11, Page 14, Section 1]:

Lemma 2.4.9. [11, Page 14, Section 1] Let U(1), U(2), . . . , U(n) be the order statistics of family

on n independent uniform random variables on [0, 1]. Define a stochastic process Uni/(n+1) := U(i)
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for i = 1, 2, . . . , n with the setting Un0 := 0 and Un1 := 1. Taking the piece-wise linear interpolation

for all other points t in [0, 1]. Define the process Ûnt :=
√
n (Unt − t), then Ûn converges to the

Brownian bridge in distribution as n ↑ ∞.

Proof. This lemma is actually a direct application of theorem 2.4.7. Let X1, ...Xn i.i.d random

variables with c.d.f F . We the fact that F (Xi)
d
= U where U is a uniform random variable on

[0, 1]. We note F−1(·) as the inverse distribution function of F which is defined by

F−1(p) := inf{x ∈ R : F (x) ≥ p}

Then we consider the classical empirical process Gn(x) =
√
n (Fn(x)− F (x)), we note F (x) = t

and we have:
Gn
(
F−1(t)

)
=
√
n
(
Fn
(
F−1(t)

)
− t
)

=
√
n

(
1

n

n∑
i=1

1(−∞,F−1(t)] (Xi)− t

)

=
√
n

(
1

n

n∑
i=1

1(0,t)] (Ui)− t

)
=
√
n (Unt − t)

= Ûnt

(2.4.4)

By the theorem 2.4.7, we know that Gn(·) d−−−→
n↑∞

G(·) d
= B(F (·)). We apply this result to the

equation 2.4.4 we get Ûn(·) d−−−→
n↑∞

B(·) where B is a Brownian bridge on [0, 1], which is the desired

result.

The lemma 2.4.9 is also useful in rough path theory, with this property, we can obtain an asymptotic

results for the Signature. Another interesting result is about the convergence rate. Komlós, Major

and Tusnády[12][13] established a sharp bound for the speed of the weak convergence for theorem

2.4.7.

Theorem 2.4.10 (Komlós–Major–Tusnády approximation). [12][13] Let X1, ..., Xn i.i.d random

variables with c.d.f F . The classical empirical process Gn(x) :=
√
n (Fn(x)− F (x)) can be approx-

imated by a sequence of Brownian bridges Bn(F (x)) on [0, 1] such that

P
[
sup
x∈R
|Gn(x)−Bn(F (x))| > 1√

n
(a log n+ y)

]
6 be−cy (2.4.5)

for all positive integers n and all y > 0, where a, b, c are positive constants.

In the next chapter, we will introduce the maximal inequalities which is one of the important tools

we need for the main problem of this thesis.
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Chapter 3

Maximal Inequalities

3.1 Preliminary

As we have mentioned, maximal inequalities play an important role in empirical process theory. In

this chapter, we will introduce some useful maximal inequalities which serve the main problem of

this thesis. Before we start the inequalities, we first recall the concept of Sub-Gaussian processes

which is the base of maximal inequalities. There are several equivalent definitions, here we show

the two most commonly used.

Definition 3.1.1. [2, Page 22-27, Section 3.3] A zero-mean process indexed by T : {Xt : t ∈ T}
is a sub-Gaussian process with respect to a metric d on T if:

E
[
eλ(Xt−Xs)

]
≤ exp

(
λ2d2 (s, t)

2

)
, ∀s, t ∈ T, ∀λ ∈ R (3.1.1)

or equivalently:

P [|Xt −Xs| ≥ u] ≤ 2 exp

(
−u2

2d2(s, t)

)
, ∀s, t ∈ T, ∀u ≥ 0 (3.1.2)

An elementary bound for sub-Gaussian random variables indexed by a finite set is given by the

following lemma. It is based on the [2, Page 36, Proposition 4.2].

Lemma 3.1.2. [2, Page 22-27, Section 3.3] Let {Xt, t ∈ T} be a stochastic process indexed by a

finite set T such that

P (|Xt| ≥ u) ≤ 2 exp

(
− u2

2σ2

)
, ∀t ∈ T, ∀u ≥ 0 (3.1.3)

Where σ is a fixed constant. Then there exists a universal positive constant such that

E
[
max
t∈T
|Xt|

]
≤ Cσ

√
log(2|T |) (3.1.4)

Moreover, if |T | > 1 which is the normal case, we also have

E
[
max
t∈T
|Xt|

]
≤ Cσ

√
log(|T |) (3.1.5)

Proof. By integration by parts, E [maxt∈T |Xt|] can be computed by

E
[
max
t∈T
|Xt|

]
=

∫ ∞
0

P
[
max
t∈T
|Xt| ≥ u

]
du
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Then we can bound E [maxt∈T |Xt|] by bounding the tail probability of P [maxt∈T |Xt| ≥ u]:

P
[
max
t∈T
|Xt| ≥ u

]
= P [∪t∈T {|Xt| ≥ u}] ≤

∑
t∈T

P [|Xt| ≥ u] ≤ 2|T | exp

(
−u2

2σ2

)

This bounding method is not good for small u (e.g. u=0 ). Hence we split the integral by some

u0 > 0:

E
[
max
t∈T
|Xt|

]
=

∫ ∞
0

P
[
max
t∈T
|Xt| ≥ u

]
du

=

∫ u0

0

P
[
max
t∈T
|Xt| ≥ u

]
du+

∫ ∞
u0

P
[
max
t∈T
|Xt| ≥ u

]
du

≤ u0 +

∫ ∞
u0

2|T | exp

(
−u2

2σ2

)
du

≤ u0 +

∫ ∞
u0

2|T | u
u0

exp

(
−u2

2σ2

)
du

≤ u0 +
2|T |
u0

σ2 exp

(
−u2

0

2σ2

)
Now we can chose u0 to minimize the above inequality, notice that if |T | > 1, one simple solution

is to set

u0 =
√

2σ
√

log(|T |)

Then we have:

E
[
max
t∈T
|Xt|

]
≤
√

2σ

(√
log (|T |) +

1√
log (|T |)

)
≤ Cσ

√
log(|T |)

We already get the second maximal inequality we want, we notice that the this inequality is not

true if |T | = 1, hence we may set u0 =
√

2σ
√

log(2|T |) to avoid this problem(since log(2|T |) > 0,

∀T 6= ∅). Then we can build the first result due to the fact that there exists a universal constant

C such that

E
[
max
t∈T
|Xt|

]
≤
√

2σ

(√
log (2|T |) +

1√
log (2|T |)

)
≤ Cσ

√
log(2|T |)

3.2 Dudley’s entropy bound

In this section, we would like to extend lemma 3.1.2 to a maximal inequality called Dudley’s integral

entropy bound. Suppose (T, d) is a metric space and {Xt}t∈T a stochastic process indexed by T

with zero means. We would like to find upper bonds of E [supt∈T |Xt −Xt′ |] for any fixed t′. It is

clear that the upper bonds only depend on the structure of T . In order to get a general result, we

first constrain the index set T to be finite and try to extend it to infinite case.

3.2.1 Dudley’s entropy bound for finite index set

Theorem 3.2.1 (Dudley’s integral entropy bound for finite space). [2, Page 22-27, Section 3.3]

Let (T, d) be a finite metric space and {Xt : t ∈ T} be a sub-Gaussian process. Then we have the

inequality:

E
[
max
t∈T
|Xt −Xt0 |

]
≤ C

∫ ∞
0

√
logN(ε, T, d) dε, ∀t0 ∈ T (3.2.1)
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Proof. The main methodology of the proof is an idea called chaining. We use the fact that T is

finite, then the diameter of T is well defined, let us note it as D which is clearly a finite number.

For each m = 1, 2, ... define εm = D · 2−m. Let Tm :=
{
t1, ..., tN(εm,T,d)

}
⊂ T be a minimal

εm-covering of T . It is clear that εm is decreasing and the cardinal number of Tm is increasing

and there always exists some εm small enough such that |Tm| = |T |. In this case, we can chose

Tm = T . We define M is the minimal number such that TM can be chosen as T , i.e.

M := min {m ≥ 1 : |Tm| = |T |}

We define the mapping πm : T → Tm as:

πm(t) = argmin
s∈Tm

d(t, s)

i.e. map each point t ∈ T to a point in Tm which is the closest to t. For the simplicity of notation,

we define π0(t) := t0. By the construction, we have πM (t) = t for every t ∈ T , then we can

decompose Xt −Xt0 by the technique called chaining:

Xt −Xt0 =
M∑
k=1

(
Xπk(t) −Xπk−1(t)

)
, ∀t ∈ T

Then it is clear that:

max
t∈T
|Xt −Xt0 | = max

t∈T

∣∣∣∣∣
M∑
k=1

Xπk(t) −Xπk−1(t)

∣∣∣∣∣
≤ max

t∈T

M∑
k=1

∣∣Xπk(t) −Xπk−1(t)

∣∣
≤

M∑
k=1

max
t∈T

∣∣Xπk(t) −Xπk−1(t)

∣∣
Taking the expectation, we obtain

E
[
max
t∈T
|Xt −Xt0 |

]
≤

M∑
k=1

E
[
max
t∈T

∣∣Xπk(t) −Xπk−1(t)

∣∣] (3.2.2)

Now we would like to bound the terms E
[
maxt∈T

∣∣Xπk(t) −Xπk−1(t)

∣∣]. Since {Xt}t∈T is a sub-

Gaussian process, by inequality 3.1.2 we have:

P
[∣∣Xπn(t) −Xπn−1(t)

∣∣ ≥ u] ≤ 2 exp

(
−u2

2σ2

)
where σ is chosen as

σ = d (πn(t), πn−1(t)) ≤ d (πn(t), t) + d (πn−1(t), t) ≤ D2−n +D2−(n−1) = 3D2−n

Then we can apply the maximal inequality 3.1.5 of Lemma 3.1.2 to find an upper bound for

19



E
[
maxt∈T

∣∣Xπk(t) −Xπk−1(t)

∣∣] by

E
[
max
t∈T

∣∣Xπk(t) −Xπk−1(t)

∣∣] ≤ 2 · C 3D

2k

√
log |Tk|

≤ 3CD2−(k+1)
√

logN (D2−k, T, d)

≤ 3C

∫ D·2−k

D·2−(k+1)

√
logN(ε, T, d) dε

(3.2.3)

However, we should be attention to the case k = 1 since the maximal inequality 3.1.5 cannot be

applied for this situation. However, this inequality still holds for our situation. When k = 1, there

is only one element in T1, which implies that E
[
maxt∈T

∣∣Xπ1(t) −Xt0

∣∣] = 0 while the integral term

is always non negative. As a consequence the above inequality holds for every k. Then we have

E
[
max
t∈T
|Xt −Xt0 |

]
=

|T |∑
k=1

3C

∫ D·2−k

D·2−(k+1)

√
logN(ε, T, d) dε

≤ 3C

∫ D/2

0

√
logN(ε, T, d)dε

≤ 3C

∫ D

0

√
logN(ε, T, d)dε

The proof will be completed the fact of covering numbers that:∫ ∞
0

√
logN(ε, T, d)dε =

∫ D

0

√
logN(ε, T, d)dε (3.2.4)

3.2.2 Dudley’s entropy bound for infinite index set

Now, we would like to extend the theorem 3.2.1 to the case where the index set T is infinite. In

order to do that, we need to make an assumption of separability for the process {Xt}t∈T . We first

recall the definition of the separable stochastic process.

Definition 3.2.2 (Separable stochastic process). [2, Page 22-27, Section 3.3] Suppose (T, d) is a

metric space and {Xt, t ∈ T} a stochastic process indexed by T . We say {Xt} is separable if there

exists a null set Ω0 and a countable dense subset T̃ of T such that for all ω /∈ Ω0 and t ∈ T , there

exists a sequence of {tn} in T̃ with limn→∞ d (tn, t) = 0 and limn→∞Xtn(ω) = Xt(ω).

With the assumption of separability, we can easily build the following lemma by the separability

and continuity.

Lemma 3.2.3. [2, Page 22-27, Section 3.3] If {Xt, t ∈ T} is a separable stochastic process, then

we have

sup
t∈T
|Xt −Xt0 | = sup

t∈T̄
|Xt −Xt0 | , ∀t0 ∈ T almost surly

where T̃ is a countable dense subset of T .

Now we can state Dudley’s bound for the separable process.

Theorem 3.2.4. Suppose (T, d) is a separable metric space and {Xt, t ∈ T} a separable stochastic

process indexed by T . If {Xt} is also a sub-Gaussain process, then for any t0 ∈ T , we have

E
[
max
t∈T
|Xt −Xt0 |

]
≤ C

∫ ∞
0

√
logN(ε, T, d)dε, ∀t0 ∈ T (3.2.5)
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Proof. Let T̃ be a countable subset of T such that lemma 3.2.3 holds. Moreover, we can also add

t0 into T̃ . Then for each n ≥ 1, we define T̃n be the finite subset of T̃ by taking the first n elements

of T̃ in some enumeration of T̃ such that t0 ∈ T̃n for every n. Then we can apply the Dudley’s

bound for finite index set (Theorem 3.2.1) and the equation 3.2.4.

E
[
max
t∈T̃n
|Xt −Xt0 |

]
≤ C

∫ ∞
0

√
logN

(
ε, T̃n, d

)
dε

≤ C
∫ diam(T̃n)

0

√
logN

(
ε, T̃n, d

)
dε

≤ C
∫ D

0

√
logN(ε, T, d)dε

≤ C
∫ ∞

0

√
logN(ε, T, d)dε

It is clear that the right side is independent of n. Letting n → ∞, we apply the Monotone

Convergence Theorem to the left side, then we can obtain the desired result.

E
[
max
t∈T
|Xt −Xt0 |

]
≤ C

∫ ∞
0

√
logN(ε, T, d)dε

3.3 Maximal inequality with uniform entropy

With the results we obtained in previous sections, we can finally build the most important maximal

inequality for this thesis. The maximal inequality we will state in this section serves to drive the

rate of convergence in the next chapter. In piratical application, we usually consider the need to

bound the uniform entropy of empirical process Gn indexed by some function space F when we

study the convergence problem. In order to construct this inequality, we first need to introduce a

technique called symmetrization.

3.3.1 Symmetrization

Let us consider an arbitrary empirical process Gn indexed by some class of functions F . The

main idea of symmetrization is to build a symmetric empirical process to approximate the process∑n
i=1 (f (Xi)− Pf) for some f ∈ F . With this construction, we can also build a symmetric

empirical process to approximate Gn. The symmetric process we use here is called the Rademacher

process.

Definition 3.3.1 (Rademacher process). [2, Page 22-27, Section 3.3] Let ε1, ...εn i.i.d Rademacher

variables (i.e. P (εi = 1) = P (εi = −1) = 1
2 ). The following process Xn is called a Rademacher

process:

Xa :=

n∑
i=1

aiεi, a := (a1, . . . , an) ∈ Rn

A very important fact of Rademacher process is that a Rademacher process is also a sub-Gaussian

process. The following lemma will show this fact by checking the second definition of the sub-

Gaussian process (equation 3.1.1).

Lemma 3.3.2 (Hoeffding’s inequality). [2, Page 22-27, Section 3.3] Let a = (a1, ..., an) be a real
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constant vector, ε1, ..., εn be Rademacher random variables. Then we have

P

[∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣ ≥ x
]
≤ 2e−x

2/(2‖a‖22)

which implies that {
∑n
i=1 aiεi}n=1,2,... is a sub-Gaussian process.

Proof. It is not difficult to show that for any β ∈ R, we have the inequality

E
[
eβε
]

=
(
eβ + e−β

)
/2 ≤ eβ

2/2

Then by Markov’s inequality

P

[∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣ ≥ x
]

= 2 · P

[
n∑
i=1

aiεi ≥ x

]
= 2 · P

[
eβ
∑n
i=1 aiεi ≥ eβx

]
≤ 2 · e−βx · E

[
eβ
∑n
i=1 aiεi

]
≤ 2 · e−βx · e

(
β2

2

)
·||a||22

≤ 2e−x
2/(2‖a‖22)

As we mentioned at the beginning, the idea of symmetrization is to replace
∑n
i=1 (f (Xi)− Pf)

by
∑n
i=1 εif (Xi). By this construction,

∑n
i=1 εif (Xi) is a sub-Gaussian process conditionally on

X1, ...Xn. We define the symmetrized empirical measure and the symmetrized empirical process

by:

f 7→ Ponf :=
1

n

n∑
i=1

εif (Xi) , f 7→ Gonf :=
1√
n

n∑
i=1

εif (Xi) (3.3.1)

The reason we use approximation is that we can find an upper bound for E [‖Pn − P‖F ] by the

upper bound for the expectation of its corresponding symmetrized empirical process. Moreover,

the symmetrized empirical process is a sub-Gaussian process (due to the lemma 3.3.2), we can

then use the maximal inequalities like 3.2.5 to express the upper bond. This fact is stated by the

following theorem which is also discussed in [2, Page 27-28, Theorem 3.14].

Theorem 3.3.3. [2, Page 22-27, Section 3.3] Let X1, ..., Xn i.i.d random variables, ε1, ...εn i.i.d

Rademacher variables inpedent to Xi and F be a class of measurable function, then

E [‖Pn − P‖F ] ≤ 2E

[∥∥∥∥∥ 1

n

n∑
i=1

εif (Xi)

∥∥∥∥∥
F

]
(3.3.2)

Proof. Let Y1, ..., Yn independent copies of X1, ..., Xn. For fixed values of X1, ..., Xn, by Jensen’s

inequality we have

‖Pn − P‖F = sup
f∈F

1

n

∣∣∣∣∣
n∑
i=1

[f (Xi)− E [f (Yi)]]

∣∣∣∣∣ ≤ EY

[
sup
f∈F

1

n
|
n∑
i=1

[f (Xi)− f (Yi)]

]

Where EY denotes the expectation with respect to Y1, ..., Yn. Then we take the expectation with

respect to X1, ..., Xn, we obtain

E [‖Pn − P‖F ] ≤ E

[∥∥∥∥∥ 1

n

n∑
i=1

[f (Xi)− f (Yi)]

∥∥∥∥∥
F

]
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We notice that adding a minus sign in front of a term [f (Xi)− f (Yi)] has the effect of exchanging

Xi and Yi because of the independent copy construction. Hence we can build the following equality

E

[∥∥∥∥∥ 1

n

n∑
i=1

[f (Xi)− f (Yi)]

∥∥∥∥∥
F

]
= Eε

[
EX,Y

[∥∥∥∥∥ 1

n

n∑
i=1

εi [f (Xi)− f (Yi)]

∥∥∥∥∥
F

]]

where ε1, ...εn are i.i.d Rademacher variables. Hence, with triangle inequality we have

E [‖Pn − P‖F ] ≤ Eε

[
EX

[∥∥∥∥∥ 1

n

n∑
i=1

εi [f (Xi)− f (Yi)]

∥∥∥∥∥
F

]]

≤ 2Eε

[
EX,Y

[∥∥∥∥∥ 1

n

n∑
i=1

εif (Xi)

∥∥∥∥∥
F

]]

≤ 2E

[∥∥∥∥∥ 1

n

n∑
i=1

εif (Xi)

∥∥∥∥∥
F

] (3.3.3)

As a consequence of the above theorem, we can always use E [‖Pon‖F ] as an upper bond for

E [‖Pn − P‖F ].

3.3.2 Uniform entropy inequality

In last section, we already showed that we have E [‖Pn − P‖F ] ≤ E [‖Pon‖F ]. With inequality 3.2.5,

we can directly build the maximal inequality with covering numbers 3.3.5. In this section, we

would like to develop this results to find more maximal inequalities. We first recall definition of

the uniform entropy for a measurable functions class F with a square integrable and measurable

envelope function F

J(δ,F , F ) :=

∫ δ

0

sup
Q

√
logN (ε‖F‖Q,2,F ∪ {0}, L2(Q)) dε, δ > 0

The following theorem states a maximal inequality with uniform entropy.

Theorem 3.3.4 (Uniform entropy inequality). [2, Page 22-27, Section 3.3] Let F be a class of

measurable functions with a square integrable and measurable envelope function F , then

E [‖Gn‖F ] . E [J (θn,F , F ) ‖F‖n] . J(1,F , F )‖F‖P,2 (3.3.4)

where θn := supf∈F ‖f‖n/‖F‖n, ‖f‖2n := 1
n

∑n
i=1 f

2(Xi)

Here we use the idea of the proof for [2, Page 43-44, Theorem 4.8].

Proof. We use the idea of the proof of the theorem 3.3.3 (inequality 3.3.3), we can bound E [‖Gn‖F ]

by bounding E [‖Gon‖F ] where Gonf := 1√
n

∑n
i=1 εif (Xi). We remark that Gon is a sub-Gaussian

process due to the lemma 3.3.2. Then we have

P

(∣∣∣∣∣
n∑
i=1

εi
f (Xi)√

n
−

n∑
i=1

εi
g (Xi)√

n

∣∣∣∣∣ ≥ u | X1, . . . , Xn

)
≤ 2e−u

2/(2‖f−g‖2n),∀f, g ∈ F ,∀u ≥ 0

We note σ2
n,2 := supf∈F Pnf2 = supf∈F ‖f‖n the upper bound for the squared radius of F ∪ {0}

with respect to this norm. We add the function f ≡ 0 to F , so that the symmetrized process is
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zero at some parameter. Then we can apply the maximal inequality 3.2.5 with Xt0 = 0

Eε [‖Gon‖F ] .
∫ σn,2

0

√
logN (ε,F ∪ {0}, L2 (Pn)) dε (3.3.5)

where Eε is the expectation with respect to the Rademacher variables, given fixed X1, ...Xn and

L2 (Pn) is the semi-norm generated by the empirical measure Pn (also denoted as ‖ · ‖n for the

simplification of notation), in another word

‖f‖2L2(Pn) := ‖f‖2n =
1

n

n∑
i=1

f2 (Xi) . (3.3.6)

Making a change of variable and bounding the random entropy by a supremum we see that the

right side is bounded by∫ σn,2/‖F‖n

0

√
logN (ε‖F‖n,F ∪ {0}, L2 (Pn)) dε‖F‖n ≤ J (θn,F , F ) ‖F‖n

Taking the expectation over X1, ..., Xn, we obtain the first inequality we need. It is clear that

θn ≤ 1, so we have J (θn,F , F ) ≤ J(1,F , F ). Then we apply the Jensen’s inequality to the root

function E [‖F‖n] ≤
√

E [n−1
∑n
i=1 F

2 (Xi)] = ‖F‖P,2 which completes the proof.

The maximal inequality 3.3.4 and 3.3.5 are two important results that we will use in Chapter 4

and Chapter 5.
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Chapter 4

Rate of Convergence for

M-estimator

As we mentioned in section 2.2, the rate of convergence for M -estimator is an important topic in

statistical and machine learning problems. We first introduce the abstract result stated by the key

theorem [8, Page 322, Theorem 3.2.5] in the following section.

4.1 Rate of convergence theorem

We first state the setting for the problem. Let X1, ...Xn be i.i.d observations for M -estimation

model, we would like to estimate the true predictor θ0 by an M -estimator θ̂n in a class of candidates

Θ. We assume that there is a semi-metric d, and (Θ, d) is a semi-metric space. Let {Mn(θ) : θ ∈ Θ}
denote a stochastic process indexed by Θ and let {Mn(θ) : θ ∈ Θ} deterministic function such that

θ̂n = argmax
θ∈Θ

Mn(θ) =: arg max
θ∈Θ

P [mθ]

and

θ0 = argmax
θ∈Θ

M(θ) =: arg max
θ∈Θ

P [mθ]

where mθ is a function depends on the statistical model we use.

Then we assume that the metric d is appropriately chosen such that we may expect that the

asymptotic difference decreases quadratically when θ moves away from θ0, i.e. for every θ in a

neighborhood of θ0, there exists a c1 > 0 such that

M(θ)−M (θ0) ≤ −c1d2 (θ, θ0) (4.1.1)

We are interested in the situation that our estimator can δ closely approach to the real predictor θ0

when n is large, i.e. we only need to search the estimator in the candidates space {θ : d (θ, θ0) < δ}.
We assume that for a small δ > 0 and large n , the centred process Mn −Mn satisfies

E

[
sup

d(θ,θ0)<δ

√
n |(Mn −M) (θ)− (Mn −M) (θ0)|

]
≤ c2φn(δ) (4.1.2)
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for some c2 < ∞ and function φn such that δ 7→ φn(δ)/δα is decreasing for some α < 2 but not

depending on n. Moreover, if we can found a series δn such that

φn (δn) ≤ c3
√
nδ2
n (4.1.3)

for every n and some c3 <∞. Then δn is the rate of convergence for the M -estimator θ̂n. Before

we rephrase the above statement as the rate of convergence theorem, we first define the notation

for stochastic boundedness OP (1).

Definition 4.1.1 (Stochastic Boundedness). [14] Let {Xn}n∈N be a stochastic process, then we

define the notation

Xn = OP (1)⇐⇒ ∀ε ∃Nε, δε such that P (|Xn| ≥ δε) ≤ ε ∀n > Nε (4.1.4)

Theorem 4.1.2 (Rate of convergence). [2, Page 49, Theorem 5.2] Let {Mn(θ) : θ ∈ Θ} be a process

indexed by Θ and let {Mn(θ) : θ ∈ Θ} be a deterministic function such that the assumptions 4.1.1,

4.1.2 and 4.1.3 are satisfied. If the sequence θ̂n satisfies

Mn

(
θ̂n

)
≥Mn (θ0)−OP

(
δ2
n

)
(4.1.5)

and converges in probability to θ0, then we have the convergence rate:

δ−1
n d

(
θ̂n, θ0

)
= OP (1) (4.1.6)

Proof. [proof of Theorem 4.1.2] Here we restate the proof in a more detailed way based on the idea

of [15, Page 259-261].

We first fix some ε > 0. By the definition of stochastic boundedness, there exists some K such

that

P
[(
Mn

(
θ̂n

)
−Mn (θ0)

)
6 −K · δ2

n

]
6 ε.

For each n, we can decompose the range of δ−1
n d

(
θ̂n, θ0

)
into “peels” Sj,n which is defined by

Sj,n :=
{
θ : 2j−1 < δ−1

n d (θ, θ0) ≤ 2j
}

with j running over the integers.

For any η > 0, we have:

P
[
d
(
θ̂n, θ0

)
> 2Mδn

]
=

∑
j>M,2jδn≤η

P
[
θ̂n ∈ Sj,n

]
+ P

(
2d
(
θ̂n, θ0

)
> η

)

≤
∑

j≥M,2jδn≤η

P

[
sup
θ∈Sj,n

[
Mn(θ)−Mn (θ0) +Kδ2

n

]
≥ 0

]

+ P
[
2d
(
θ̂n, θ0

)
≥ η

]
+ P

[
Mn

(
θ̂n

)
−Mn (θ0) < −Kδ2

n

]
(4.1.7)

Taking n → ∞, the sum of the last two terms of 4.1.7 is smaller than 2ε due to the choose of K

and the consistency of θ̂n. Considering the centered process Un(θ) := Mn(θ) −M(θ) for θ ∈ Θ.

Using the fact that for every θ ∈ Sj,n, we have M(θ) −M (θ0) ≤ −c1d (θ, θ0) ≤ −c122j−2δ2
n, the
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rest term of right side of 4.1.7 can be written as:

∑
j≥M,2jδn≤η

P

[
sup
θ∈Sj,n

[
Mn(θ)−Mn (θ0) +Kδ2

n

]
≥ 0

]

=
∑

j≥M,2jδn≤η

P
[
‖Un(θ)− Un (θ0)‖Sj,n ≥ c1(22j−2 −K)δ2

n

]
≤
∑
j≥M

c2φn
(
2jδn

)
√
n (c122j−2 −K) δ2

n

≤
∑
j≥M

c2c32jα

(c122j−2 −K)

. C
∑
j≥M

2j(α−2)

(4.1.8)

It is clear that the above summation goes to zero as M → ∞ since α < 2. As a conclusion,

we showed that P
[
d
(
θ̂n, θ0

)
> 2Mδn

]
< 3ε by some choose of M and K, which is the desired

result.

Remark 4.1.3. At the beginning, we assumed that θ̂n is a M -estimator which maximizes Mn(θ).

The above theorem works for a more general case that we just request Mn

(
θ̂n

)
≥Mn (θ0)−OP

(
δ2
n

)
instead of being a global maximizer.

4.2 Existence for upper bound function

Let us back to a practical situation with X1, ...Xn are i.i.d observations. Let the statistical model

be an M -estimation with Mn(θ) = P[mθ] and M(θ) = P [mθ]. The centered and scaled process

√
n (Mn −M) (θ) =: Gn [mθ]

is exactly the empirical process at mθ. Let Gn indexed by the class of function which satisfies the

condition 4.1.1:

Mu := {mθ −mθ0 : d (θ, θ0) ≤ u}

In order to apply the rate of convergence theorem, we first need to find a bound function φn(·)
which satisfies 4.1.2, (i.e. E

[
‖Gn‖Mu

]
≤ φn(u)) and then construct a series δ which satisfies the

condition 4.1.3. If the model is well setted i.e. the estimator θ̂n converges to θ0 in probability, the

rate of convergence should only depend on the statistical model we used i.e. the class of estimation

functions with constraint candidatesMu. Thus, φn(·) should be a function witch depends onMu.

Then, the problem becomes to find a function of Mu as an upper bound for E
[
‖Gn‖Mu

]
. The

maximal inequalities 3.3.4 and 3.3.5 we showed in section 3 give us a direct solution.

Let Mn,u be a square integarable and measurable envelop function of class Mu. By applying

theorem 3.3.4, then we can set φn(·) as:

E
[
‖Gn‖Mn,u

]
. J (1,Mu,Mu)

[
P
(
M2
n,u

)]1/2
=: φn(u) (4.2.1)

where

J (1,Mu,Mn,u) =

∫ 1

0

sup
Q

√
logN

(
ε ‖Mn,u‖Q,2 ,Mu, L2(Q)

)
dε
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and

P
(
M2
n,u

)
= E

[
n−1

n∑
i=1

M2
n,u (Xi)

]
By applying maximal inequality 3.3.5, we have

E
[
‖Gn‖Mn,u

]
.
∫ u

0

√
logN (ε,Mn,u, L2 (Pn)) dε =: φn(u) (4.2.2)

For our main problem in Chapter 5, we will use the inequality 4.2.2 to build the upper bound

function φn(·).
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Chapter 5

Signature Method in Least Square

Regression

Feature extraction for time series is one of the preliminary steps for some machine learning problems

especially when we work on a financial data set. Various techniques have been developed in recent

years. The technique we are interested in this thesis is called path Signature transform which

allows describing a path by some tensor object in through iterated integration. We first introduce

the idea of path Signature in the following section.

5.1 Introduction to path Signature

Path Signature is first defined in rough path theory. Rough path theory is built to construct to

find the solution for controlled differential equations driven by classically irregular signals under

the form

dYt = f (Yt) dXt, Y0 = y0 (5.1.1)

which emphasises the linear dependence of the right-hand side with respect to Xt. This kind of

controlled differential equations can also be applied in financial modeling. For example, we may

consider a liquidating problem, let Xt be a cash process and Yt is the price of the underlying

asset. We may model the impact on price caused by the selling process as a linear dependence like

equation 5.1.1.

The rough path theory was developed in the 1990s by Terry Lyons [16][17][18]. The theory was

initially developed to capture and make precise the interactions between highly oscillatory and

non-linear systems. It allows a deterministic treatment of SDEs or even controlled differential

equations driven by much rougher signals than semi-martingales. The path Signature is a funda-

mental object in rough path theory. The Signature of a path Xt arises naturally when solving a

linear differential equation driven by Xt and it is also a basis to represent a solution to a general

controlled differential equation 5.1.1 with smooth vector fields as an analogy to Taylor expansion

[1]. Before we define the path Signature, we first recall the definition of bounded variation path.

Definition 5.1.1 (Bounded variation path). [19] Let f be a mapping f : [a, b] 7→ Rd where

[a, b] ⊂ R and d is some positive integer. We define the total variation of f by

V ba (f) = sup
P∈P

nP−1∑
i=0

|f (xi+1)− f (xi)|
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where P = {P = {x0, . . . , xnP } : P is a partition of [a, b] satisfying xi ≤ xi+1 for 0 ≤ i ≤ nP − 1}
is the collection of all partitions of the interval [a, b]. We say f is bounded variation with the

notation f ∈ BV
(
[a, b];Rd

)
if its total variation V ba (f) is finite.

We use the notation BVc
(
[a, b];Rd

)
= BV

(
[a, b];Rd

)
∩ C

(
[a, b];Rd

)
for the class of continuous

bounded variation functions.

Definition 5.1.2 (Path Signature). [16] Let γ ∈ BVc
(
[a, b];Rd

)
, the path Signature of γ is defined

as a collection of tensors

S(γ)[a,b] =
(
1, S(γ)1

a,b, . . . , S(γ)ka,b, . . .
)
∈
∞∏
k=0

(
Rd
)⊗k

(5.1.2)

where

S(γ)k[a,b] :=

∫
a<t1<···<tk<b

dγt1 ⊗ · · · ⊗ dγtk ∈
(
Rd
)⊗k

(5.1.3)

More precisely, let i1, ..., ik ∈ {1, 2, ..., d}, then

S(γ)k;i1i2...ik
[a,b] =

∫
a≤t1≤t2≤...≤tk≤b

dγi1t1dγ
i2
t2 . . . dγ

ik
tkk

(5.1.4)

In piratical problem, another important object that we use is the truncated Signature.

Definition 5.1.3 (Truncated Signature). Let γ ∈ BVc
(
[a, b];Rd

)
, for a positive integer N , we

denote the N order truncated Signature SN (γ)[a,b] which is defined as

SN (γ)[a,b] =
(
1, S(γ)1

a,b, . . . , S(γ)Na,b)
)
∈

N∏
k=0

(
Rd
)⊗N

(5.1.5)

We can see that this definition make sense since γ ∈ BVc
(
[a, b];Rd

)
so that the iterated integral

5.1.4 is always well defined. The path Signature may seem a complex object, a nature problem is

that why we describe a path by its Signature? A remarkable fact of Signature discovered by Ben

Hambly and Terry Lyons in 2010 [20] is that the mapping γ 7→ S(γ)[a,b] is an injection under the

sense of tree-like equivalence. More precisely, we have following two theorems.

Theorem 5.1.4 (Uniqueness of Signature). Let γ ∈ BVc
(
[a, b];Rd

)
Then S(γ)[a,b] determines γ

up to the tree-like equivalence. [20]

Definition 5.1.5 (Stratonovich Signature of Brownian motion). [18] Let B = {Bt}t∈[0,T ] be

a Brownian motion in Rd. Let ◦ denote the Stratonovich integration. Then the Stratonovich

Signature of Brownian motion is defined as

S(B)[0,T ] :=

(
1,

∫
0<t1<T

◦dBt1 ,
∫

0<t1<t2<T

◦dBt1 ⊗ ◦dBt2 , · · ·
)

(5.1.6)

Theorem 5.1.6 (Uniqueness of Signature of Brownian motion). Let B denote a standard d-

dimensional Brownian motion and S(B)[0,T ] denote the Stratonovich Signatures of B up to time

T , where T > 0 as we defined above. Then all Brownian motion sample paths up to time T are

determined by their Signature S(B)[0,T ] up to time reparameterization almost surely. [20]

The above results imply that the countable infinite collections of component of S(γ)[a,b] describe

the uncountably infinite stream (γt)t∈[a,b]. This inspires us to use the Signature of a path as

features set to describe the path itself. However, the path Signature is still an infinite object, we

cannot use the whole collection as features for a path in piratical problems. The choice of truncated

order is an important problem when we use path Signature as features for a path. In practice,

30



we usually truncate the collection until some order N as a feature set. It is clear that the larger

N is, the more information we can extract for a path. However, the space required by Signature

increases exponentially with the growth of N . Another potential problem is over-fitting, let us

consider a linear regression model that takes truncated Signature as the explanatory variable. If

we do not have enough data and we use a large N , then we may actually build an interpolation

model instead of a regression model.

5.2 Basic properties of path Signature

The main problem of this thesis is under the framework of least square regression on truncated

Signature. In this section, we will introduce some properties of path Signature which supports

our model in the next section. We first introduce the concept of reparametrisation for a path

Signature.

Definition 5.2.1 (Reparametrisation). [21] Let λ : [a, b] 7→ [c, d] be a continuous increasing

function. We call λ a reparametrisation of [a, b] onto [c, d]. Let γ ∈ BVc
(
[a, b];Rd

)
be a continues

bounded variation path, the path ρ := γ ◦ λ ∈ BVc
(
[c, d];Rd

)
called a reparametrisation of γ.

The first property we want to introduce is the reparametrisation invariant of Signature transform.

Lemma 5.2.2. [21] Let γ ∈ BVc
(
[a, b];Rd

)
a continues bounded variation path and ρ ∈ BVc

(
[c, d];Rd

)
be any reparametrisation of γ. Then we have

S(γ)[a,b] = S(ρ)[c,d]

Proof. We use induction to prove the above lemma. Let t ∈ [a, b], λ : [a, b] 7→ [c, d] be a continuous

increasing function, the first order iterated integral satisfies∫ t

a

dγu = γt − γa = ρλ(t) − ρc =

∫ λ(t)

c

dρu, ∀t ∈ [a, b]

Make the induction hypothesis that for any word w = i1i2...im of length m ≤ k with ij ∈ {1, ..., d},
the following equation holds.

S(γ)j;w[a,t] = S(ρ)j;w[c,λ(t)] for all t in [a, b]

Let us consider the word w′ = i1i2...iki = wi with length k + 1 and i ∈ {1, ..., d}, we have

S(γ)k+1;w′

[a,t] =

∫ t

a

S(γ)k;w
[a,u]dγ

i
u =

∫ t

a

S(ρ)k;w
[c,λ(u)]dρ

i
λ(u) =

∫ λ(t)

c

S(ρ)k;w
[c,u]dρ

i
u = S(ρ)k+1;wi

[c,λ(t)] = S(ρ)k+1;w′

[c,λ(t)]

which completes the proof.

In some piratical machine learning problems (e.g. handwriting recognition), we may need to

consider the operation of the concatenation for paths. The next result is Chen’s formula which tells

us that the Signature of the concatenation path is the tensor product of the respective Signatures.

We first define the concatenation of two paths in a mathematical way.

Definition 5.2.3 (Concatenation). [21] If we have two path γ ∈ BVc
(
[a, b];Rd

)
and ρ ∈ BVc

(
[b, c];Rd

)
then we can define the concatenating path with the notation γ ∗ ρ ∈ BVc

(
[a, c];Rd

)
(γ ∗ ρ)(t) :=

{
γ(t) if t ∈ [a, b]

ρ(t)− ρ(b) + γ(b) if t ∈ [b, c]
(5.2.1)
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Then we introduce Chen’s theorem

Theorem 5.2.4 (Chen’s theorem). [22] Let γ ∈ BVc
(
[a, b];Rd

)
and ρ ∈ BVc

(
[b, c];Rd

)
be two

continuous and bounded variation paths, then the following identity holds

S(γ ∗ ρ)[a,c] = S(γ)[a,b] ⊗ S(ρ)[b,c] (5.2.2)

Proof. The proof is a direct application of Fubini’s theorem. Let us denote ζ = γ ∗ ρ, t0 = a,

tk+1 = b, then we split the iterated integral by [a, b] and [b, c] where b ∈ [tj , tj+1] for j = 0, 1, ..., k

S(ζ)k[a,c] =

∫
a≤t1≤t2≤...≤tk≤c

ζ̇t1 ⊗ . . .⊗ ζ̇tkdt1 . . . dtk

=

k∑
j=0

∫
a≤t1≤t2≤...≤tj≤b≤tj+1≤...≤tk≤c

γ̇t1 ⊗ . . .⊗ γ̇tj ⊗ ρ̇tj+1 ⊗ . . .⊗ ρ̇tkdt1 . . . dtjdtj+1 . . . dtk

=

k∑
j=0

∫
a≤t1≤t2≤...≤tj≤b

γ̇t1 ⊗ . . .⊗ γ̇tjdt1 . . . dtj ⊗
∫
b≤tj+1≤...≤tk≤c

ρ̇tj+1
⊗ . . .⊗ ρ̇tkdtj+1 . . . dtk

=

k∑
j=0

S(γ)j[a,b] ⊗ S(ρ)k−j[b,c]

(5.2.3)

Remark 5.2.5. The above theorem gives us a multiplicative property of the Signature. Let us

consider a continuous bounded variation path γ defined on [a, b], for any c ∈ [a, b], the path itself

we can be regarded as the concatenation γ = γ|[a,c] ∗ γ|[c,b] for any c ∈ [a, b]. Then by Chen’s

theorem, we have S(γ)[a,b] = S(γ)[a,c] ⊗ S(γ)[c,b].

Now we would like to discuss another important algebraic property of Signature which is called

shuffle products. We first define the (n,m)-shuffle.

Definition 5.2.6. An (n,m)-shuffle is a permutation σ of the set {1, 2, ..., n+m} such that

σ(1) < σ(2) < . . . < σ(n) and σ(n+ 1) < σ(n+ 2) < . . . < σ(n+m)

we use the notation Sh(n,m) as the set of all (n,m)-shuffles.

Lemma 5.2.7. [21] Let γ ∈ BVc
(
[a, b];Rd

)
be a continuous bounded path, let u = i1...in and

v = j1...jn be two words,then

S(γ)n;u
[a,b]S(γ)m;v

[a,b] =
∑

σ∈Sh(n,m)

S(γ)
n+m;σ(uv)
[a,b] (5.2.4)

32



Proof. We just need develop the left hand side by Fubini’s theorem

S(γ)n;u
a,b S(γ)m;v

a,b =

∫
a≤t1≤···≤tn≤b

dγi1t1dγ
i2
t2 . . . dγ

in
tn ·

∫
a≤s1≤...≤smb

dγj1s1dγ
j2
s2 . . . dγ

jm
sm

=

∫
a≤t1≤...≤tn≤s1≤...≤sm≤b

dγi1t1dγ
i2
t2 . . . dγ

in
tndγ

j1
s1 . . . dγ

jm
sm

+

∫
a≤t1≤...≤tn−1≤s1≤tn...≤sm≤b

dγi1t1dγ
i2
t2 . . . dγ

j1
s1dγ

in
tn . . . dγ

jm
sm

+ · · ·

+

∫
a≤s1≤...≤sm≤t1≤...≤tn≤b

dγj1s1dγ
j2
s2 . . . dγ

jm
smdγ

i1
t1 . . . dγ

in
tn

=
∑

σ∈Sh(n,m)

S(γ)
n+m;σ(uv)
[a,b]

The shuffle products property shows that the product of two truncated Signatures can be repre-

sented as a summation of higher order Signatures. The above property also motivates the definition

of the following shuffle product on the dual tensor space (T (Rd))∗ = T ((Rd)∗). Let u = i1, ..., in

and v = j1, ..., jm be two words and e∗u, e
∗
v ∈ T ((Rd)∗), then we define the following notation:

e∗u � e∗v =
∑

σ∈Sh(n,m)

e∗σ−1(uv) (5.2.5)

Remark 5.2.8. The usage of σ−1 may seem odd at first glance, let us see an example to see

how it works. Let σ ∈ Sh(n,m), denote k := n + m. Let u = i1...ik where ij ∈ {1, 2, ..., d} for

j ∈ {1, 2, ..., k} be a word and x = x1 ⊗ ...⊗ xk be a tensor in
(
Rd
)⊗k

, then we have

〈e∗σ−1u, x〉 = x
iσ−1(1)

1 . . . x
iσ−1(n)
n = xi1σ(1) . . . x

in
σ(n) = (e∗u, σx)

where σx := xσ(1) ⊗ . . .⊗ xσ(n).

With the above notation, we can express the product of two truncated Signatures (i.e. the left

hand side of equation 5.2.4) as a linear functional of the Signature.

Proposition 5.2.9. [21] Let u and v be two finite words, then we have〈
e∗u, S(γ)[a,b]

〉
·
〈
e∗v, S(γ)[a,b]

〉
=
〈
e∗u � e∗v, S(γ)[a,b]

〉
(5.2.6)

Proof. The proof is just a direct computation using lemma 5.2.7.〈
e∗u, S(γ)[a,b]

〉
·
〈
e∗v, S(γ)[a,b]

〉
= S(γ)n;u

[a,b]S(γ)m;v
[a,b]

=
∑

σ∈Sh(n,m)

S(γ)
σ(uv)
[a,b]

=
〈
e∗u � e∗v, S(γ)[a,b]

〉 (5.2.7)

The last property we would like to introduce ensures the consistence of Signature approximation.

We first need the concept of group-like elements.

Definition 5.2.10 (Group-like elements). [21] Let x ∈ T
(
Rd
)

be a tensor, we say x is group-like

if for every n, the canonical projection of x to Tn
(
Rd
)

belongs to Gn
(
Rd
)

where Gn
(
Rd
)

is step-n

nilpotent Lie group with d generators. We denote the collection of group-like elements as G∗.
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The above definition is given by a very theoretical way with Lie group, an equivalent definition can

be stated as follows. We say a continuous bounded variation path γ in Rd is group like if for any

truncated order N , there exist another path γ′ such that at least the first N terms of its Signature

are equal to γ’s.

With the Stone-Weierstrass Theorem, we have the following Signature approximation theorem:

Theorem 5.2.11. [21] Let K ⊂ G∗ be a compact subset, let A =
{
L|G∗ : L ∈ T

(
Rd
)∗}

be a set

of linear functionals. Then A is dense in C(K) with respect to the uniform topology. Equivalently,

for any continuous function f and any ε > 0, there exists L ∈ T
(
Rd
)∗

such that

sup
x∈K
|L(x)− f(x)| < ε

In order to prove this result, we first recall the Stone-Weierstrass Theorem.

Theorem 5.2.12 (Stone-Weierstrass Theorem). [23] Suppose X is a compact Hausdorff space and

A is a subalgebra of C(X) which contains a non-zero constant function. Then A is dense in C(X)

with the uniform topology if and only if it separates points.

proof of Theorem 5.2.11. We first show that A is an algebra. Let L1, L2 ∈ T
(
Rd
)∗

with the form:

Li =
∑
u∈FLi

λiue
∗
u

where FLi is a finite set of words. It is clear that for any λ, ν ∈ R, we have λL1 + νL2 ∈
T
(
Rd
)∗

. Let N = max {|u|+ |v| : u ∈ FL1
, v ∈ FL2

}, let x ∈ G∗, then there exists some paths

γ ∈ BVc
(
[a, b];Rd

)
such that at least the first N terms in the tensor series of S (γ)[a,b] agree with

those of x. We apply the shuffle products property on the product of L1 and L2:

L1(x)L2(x) = L1(S(γ)[a,b])L2(S(γ)[a,b])

=
∑

u∈FL1
,v∈FL2

λ1
uλ

2
v

〈
e∗u, S(γ)[a,b]

〉
·
〈
e∗v, S(γ)[a,b]

〉
=

∑
u∈FL1

,v∈FL2

λ1
uλ

2
v

〈
e∗u � e∗v, S(γ)[a,b]

〉
=

∑
u∈FL1

,v∈FL2

λ1
uλ

2
v

〈
e∗u � e∗v, S(γ)[a,b]

〉
= L1 � L2(x)

(5.2.8)

The above equation shows that the product of L1 and L2 is still a linear functional i.e. L1L1 ∈ A.

Hence, A is an algebra. It is also clear that A contains constant functionals (e.g. 1 : x 7→ x0) , we

still have one condition to verify. In order to see that it separates points we suppose that x and y

are two distinct tensor of G∗, then it is clear that there exist some n such that 0 6= xn 6= yn. We

assume that ‖yn‖ ≤ ‖xn‖, we define a linear functional L ∈ A such that L(·) := 〈πn(·), xn〉, we

notice that

|L (y)| = |〈yn, xn〉| ≤ 〈xn, xn〉 = |L (xn)|

This equality is strict unless yn = ±xn, since we have assumed xn 6= yn, we either have strict

inequality or xn = −yn. It is clear that L separates x and y in both two cases. Then by applying

theorem 5.2.12, A is dense in C(K) with respect to uniform topology.

The above result is remarkable since it indicates that any real-valued continuous function on a

compact subspace of the range of the Signature can be uniformly well-approximated by a continuous

linear functional. This result is also the theoretical support for our modelling in the next section.
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5.3 Learn ODE with truncated Signature

In this section, we would like to state the setting for the main problem of this thesis. We would

like to study the controlled differential equations driven by Lipschitz’s continuous control from the

perspective of least square regression. More precisely, we would like to find the approximation

value for the endpoint Yt=1 for the equation

dYt = V (Yt) dXt, Yt=0 = y0, {Xt}t∈[0,1] ∈ Lip
(
[0, 1] ;Rd

)
(5.3.1)

We make the assumption that V (·) is a Lipschitz vector field, then the equation 5.3.1 has a unique

solution on [0, 1]. Let f̃ : Lip([0, 1];Rd) 7→ Re be the mapping that describes the relation between

the input control process {Xt}t∈[0,1] and the final state of the output Yt=1 (i.e. the functional f̃

solves the equation 5.3.1). By the theorem 5.1.4, we have the uniqueness of Signature under the

sense of tree-like equivalence, then it is reasonable to expect we can express Y by the Signature of

X. More precisely, we expect there exists some mapping f :
∏∞
k=0

(
Rd
)⊗k 7→ Re such that

Yt=1 = f̃
(
{Xt}t∈[0,1]

)
= f

(
S(X)[0,1]

)
(5.3.2)

Moreover, we assume that f(·) is a continuous function on a compact subspace of the range of

the Signature, then by the theorem 5.2.11, ic can be uniformly well-approximated by a continuous

linear functional. Thus, we would like to approximate the final state Yt=1 by:

Yt=1 = f̃
(
{Xt}t∈[0,1]

)
= f

(
S(X)[0,1]

)
' θ

(
S (X)[0,1]

)
(5.3.3)

Where S (X)[0,1] is the N order truncated Signature of {Xt}t∈[0,1] and θ is a linear functional

which is belong to the candidates space

ΘN :=

{
θ ∈ Θ|θ(X) = a0 +

N∑
k=1

e∑
i=1

〈
aik, S(X)k[0,1]

〉
νi, a0 ∈ Re, aik ∈

((
Rd
)⊗k)∗}

(5.3.4)

Where (νi)i=1,...,e is the basis of Re.
By theorem 5.2.11, it is clear that when N →∞, the limit of ΘN is dense in Θ which is defined as

Θ :=
{
θ|θ : Lip([0, 1];Rd) 7→ Re

}
which is the class contains all candidate functions for f̃ .

In practice, we may need to choose one set ΘN in the increasing sequence Θi ⊂ Θi+1 ⊂ · · · ⊂ Θ

such that we can find a good predictor θ ∈ ΘN which approximates well the exact solution f̃ .

In another word, we may need a proper N such that we can approximate Yt=1 by the linear

combination for all components in N truncated Signature of {Xt}t∈[0,1]

Yt=1 ' Ŷt=1 :=

N∑
k=1

e∑
i=1

∑
j1···jn∈{1,··· ,e}

ak,ij1,··· ,jnS(X)k;j1,··· ,jn
[0,1] νi, ak,ij1,··· ,jn ∈ R (5.3.5)

In order to build the model, we assume that we have collected a training dataset (Xi;Yi)i=1,...,n

where the input Xi ∈ Lip
(
[0, 1] ;Rd

)
represents some Lipschitz continues control and the output

Yi ∈ Re is the final state under the control Xi. With a fixed N , we first computed the N or-

der truncated Signatures for every xi in the dataset. Then we would like to fit the coefficients

ak,ij1,··· ,jn ∈ R in equation 5.3.5 by least square method with explanatory variable
(
SN (xi)

)
i=1,2,...,n

and target variable (Yi)i=1,...,n. We have simply analysed the effect of truncated order N in pre-

vious sections. Here, with the point of view of Theorem 5.2.11, it is clear that the larger N can
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provide a more accurate approximation. For our problem, we assume that we have enough space to

store all the truncated Signature. However, it does not mean that a large N is a good idea. From

equation 5.3.5, we can observe that we need to fit dN+1−1
d−1 parameters for a fixed N which increases

exponentially with the growth of N . If we do not have enough data to fit those parameters, then

we will get an over fitting model. In a word, the challenge here is to get a balance between the

accuracy of the model and over fitting risk.

The goal of this thesis to give a theoretical result which explains how to find a proper trun-

cated order N for a given dataset with size n, i.e. to find some mappings I : N+ 7→ N+ which help

us decide the truncated order N by N = I(n).

5.4 Truncated order decision by empirical process theory

In this section, we will introduce the solution for the main problem of this thesis which is the

original work of the author. Before we state the solution, we need an extended version for the rate

of convergence theorem 4.1.2.

5.4.1 Extensional rate of convergence theorem

In this section, we would like to extend the rate of convergence theorem. For the following the-

orem, we will consider an increasing sequence of sets {Θn}n=1,2,... as the candidates set. More

precisely, we now consider the stochastic process {Mn(θ) : θ ∈ Θn} rather than the process in-

dexed by a fixed index set Θ. We suppose there exists a “true predictor” θn,0 for any fixed n. For

the generality, we do not need assume that Θn is a metric space, but we assume some mapping to

dn(·, θn,0) : Θn 7→ [0,∞) to measure the “discrepancy” between θ ∈ Θn and the “true predictor”

θn,0. The extensional rate of convergence theorem [2, Page 57, Theorem 6.1] states the following

idea.

Like theorem 4.1.2, we assume that our model is properly constructed, i.e. the stochastic pro-

cess {Mn(θ) : θ ∈ Θn}, the determined process {Mn(θ) : θ ∈ Θn} and the “discrepancy” function

dn(·, θn,0) is appropriately chosen such that for any fixed n, we have some δ̃n which represents

the smallest approximation error, for some δ > δ̃n we may expect Mn(θ) and Mn(θn,0) are δ-close

when the “discrepancy” between θ and θn,0 are in (δ/2, δ). In the other word

sup
θ∈Θn:δ/2<dn(θ,θn,0)≤δ

[Mn(θ)−Mn (θn,0)] ≤ −c1δ2

. Then, we construct the upper bond function φn(·) like equation 4.1.2 with the dynamic candidates

set Θn and “true predictor” θn,0. Moreover, we try to find the sequence δ which satisfied the

conditions we have in theorem 4.1.2, then we may build the convergence rate

dn

(
θ̂n, θn,0

)
= OP (δn) .

We show the complete theorem as following

Theorem 5.4.1 (Rate of convergence). [2, Page 57, Theorem 6.1] We keep the background and

notation of theorem 4.1.2. For each n, let Mn be a stochastic processes indexed by a set Θn ∪ θn,0,

and Mn a deterministic process indexed by the same set. Let dn(·, θn,0) : Θn 7→ [0,∞) be a mapping

to measure the difference between θ and θn,0. Let δ̃n > 0 and suppose that for every n and δ > δ̃n

sup
θ∈Θn:δ/2<dn(θ,θn,0)≤δ

[Mn(θ)−Mn (θn,0)] ≤ −c1δ2 (5.4.1)
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and

E

[
sup

θ∈Θn:dn(θ,θn,0)≤δ

√
n |(Mn −Mn) (θ)− (Mn −Mn) (θn,0)|

]
≤ c2φn(δ) (5.4.2)

for increasing functions φn :
[
δ̃n,∞

)
→ R such that δ 7→ φn(δ)/δα is decreasing for some α < 2 .

Let θn ∈ Θn and let δn satisfy

φn (δn) ≤
√
nδ2
n, δ2

n ≥Mn (θn,0)−Mn (θn) , δn ≥ δ̃n (5.4.3)

If the sequence θ̂n takes values in Θn and satisfies Mn

(
θ̂n

)
≥Mn (θn)−OP

(
δ2
n

)
, then we have

dn

(
θ̂n, θn,0

)
= OP (δn) (5.4.4)

The proof of this theorem is just a notational change for the proof 4.1. Roughly speaking, the

philosophy of the theorem can be concluded as following. We assume that the model is properly

constructed under the sense that condition 5.4.1 is satisfied. More precisely, for a fixed n, let δ̃n

be the “best approximation error”, our model has at least the ability to get an estimator δ-close

to the “true” predictor θn,0 where δ is some constant larger than δ̃n. With the increasing of n,

we expect that our estimator θ̂n can be closer to the “true” predictor θn,0 under the sense that

dn

(
θ̂n, θn,0

)
= OP (δn) where δn is a decreasing sequence which is smaller than δ but large than

δ̃n (δ > δn ≥ δ̃n) and towards 0 as n → ∞. In order to get this convergence rate δn we first

need to build the upper bound function φn(·) with the form of 5.4.2. Then, the sequence can be

constructed in a way that satisfies condition 5.4.3.

5.4.2 Suggested truncated order for least square regression model

In this section, we will state our solution for the truncated order problem that we raised at the

begging of this Chapter. To the best knowledge of the author, this solution is first

proposed in this thesis. The whole solution is the completely original work of the

author. The solution is divided into 5 steps. Step 1 aims to model the problem in a way that

corresponds to the framework of the Theorem 5.4.1. In step 2, we will show that our model is

properly constructed under the sense of condition 5.4.1. For step 3, we will apply the maximal

inequalities we have shown in Chapter 3 to build the upper bound function φn(·) which satisfies

the condition 5.4.2. Step 4, the convergence rate sequence δn will be found by verifying the 5.4.3.

In the end, we will analyze the relation between the convergence rate and the truncated order and

build the decision function I : N+ 7→ N+.

Step 1

First, for a fixed dataset size n, we would like to build a least square regression model with N

truncated Signature as explanatory variable. With the assumption we made in section 5.3, we

assume that we have regression model (for the simplicity, we denote S(X) for S(X)[0,1]):

Yi = θ0 (S (Xi)) + εi, for i = 1, · · · , n

where Yi ∈ Re is the observed response variable (i.e. solution computed by finite increments

method), Xi ∈ Rd×m is the corresponding control path where m is the number of the grid we

make on [0, 1], and ε is the error of approximation. The errors are assumed to be independent

identical distributed sub-Gaussian random variables with zero expectation and finite variation.

The function θ0 is unknown, but we assume that θ0 ∈ Θ :=
{
θ|θ : Lip([0, 1];Rd) 7→ Re

}
. This

assumption is reasonable because we expect that the solution of equation 5.3.1 can be expressed
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as some continuous function of Signature, then Theorem 5.2.11 indicates that it can be arbitrarily

approximated by a continuous linear functional with uniform topology.

As we mentioned in previous sections, we expect there exists some mapping I : N+ 7→ N+ which

logically decides the truncated order N = I(n). Hence, for a fixed n, we would like to find the

”true” predictor in the class Θn which is determined by the decision function I, i.e.

Θn := ΘI(n) = ΘN (5.4.5)

where ΘN is the class of regressor defined as equation 5.3.4.

Then, we may determine the process Mn and build the stochastic process Mn by the least square

model. More precisely,

θ̂n = arg min
θ∈Θn

1

n

n∑
i=1

‖Yi − θ (S (Xi)) ‖22

= arg min
θ∈Θn

1

n

n∑
i=1

‖ (θn,0(S (Xi))− θ(S (Xi)) + εi‖22

= arg min
θ∈Θn

1

n

n∑
i=1

{
‖ (θn,0 − θ) (S (Xi)) ‖22 + 2 〈(θn,0 − θ) (S (Xi)) , εi〉+ ‖εi‖22

}
(5.4.6)

which is equivalent to:

θ̂n = arg max
θ∈Θn

2

n

n∑
i=1

〈(θ − θn,0) (S (Xi)) , εi〉 − Pn
(
‖θ − θn,0‖22

)
=: arg max

θ∈Θn
Mn(θ) (5.4.7)

where Pn is the empirical measure we defined as 2.1.3. We have assumed that E[εi] = 0, then we

consider the process Mn(θ) which is defined as the expectation of Mn(θ), i.e.

Mn (θ) := E [Mn (θ)] = −Pn
(
‖θ − θn,0‖22

)
(5.4.8)

Moreover, we may choose the empirical measure as the “discrepancy” between two estimators. In

the other word, for any θ ∈ Θn, we define

Mn (θ)−Mn (θn,0) = −Pn
(
‖θ − θn,0‖22

)
=: −d2

n (θ, θn,0) (5.4.9)

With the above construction, it is clear that we have

sup
θ∈Θn:δ/2<dn(θ,θn,0)≤δ

[Mn(θ)−Mn (θn,0)] = sup
θ∈Θn:δ/2<dn(θ,θn,0)≤δ

−d2
n (θ, θn,0) ≤ −1

4
δ2 (5.4.10)

which implies that the condition 5.4.1 is satisfied.

Step 2

With our choice of Mn and Mn, we have

|(Mn −Mn) (θ)− (Mn −Mn) (θn,0)| = 2√
n

∣∣∣∣∣
n∑
i=1

〈(θ − θn,0) (S (Xi)) , εi〉

∣∣∣∣∣
Follow the Theorem 5.4.1, we would like to find some bounded function φn(·) such that

φn(δ) ≥ E

[
sup

Pn(θ−θn,0)2≤δ2,θ∈Θn

∣∣∣∣ 1√
n
〈(θ − θn,0) (S (Xi)) , εi〉

∣∣∣∣
]

(5.4.11)
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As we have assumed that the error εi is some sub-Gaussian random variable, then the process

Gn(θ) := 1√
n
〈(θ − θn,0) (S (Xi)) , εi〉 is also a sub-Gaussian process. By maximal inequality 3.3.5

and lemma 2.3.6, we can chose φn(·) by the following inequality:

E

[
sup

Pn(‖θ−θn,0‖)22≤δ2,θ∈Θn

∣∣∣∣ 1√
n
〈(θ − θn,0) (S (Xi)) , εi〉

∣∣∣∣
]

≤
∫ δ

0

√
logN (ε,Θn ∩ {θ : Pn (‖θ − θn,0‖22) ≤ δ2} , L2 (Pn))dε

≤
∫ δ

0

√
logD (ε,Θn ∩ {θ : Pn (‖θ − θn,0‖22) ≤ δ2} , L2 (Pn))dε

(5.4.12)

Where L2 (Pn) is the semi-norm generated by the empirical measure Pn which is defined as equation

3.3.6.

In order to compute the above integration, we first need an explicit expression (or an upper bound)

for the packing numbers of the set Θn ∩
{
θ : Pn

(
‖θ − θn,0‖2

)
≤ δ2

}
. To solve this problem, we

may change our point view of the problem. As ΘN is defined as a linear function space in 5.3.4, we

may flatten the N order truncated tensor to a vector in R
dN+1−1
d−1 , we denote S̃N (Xi) ∈ R

dN+1−1
d−1

as the flattened vector for N order truncated Signature of Xi. Under this simplification, for any

θ ∈ ΘN , we can rearrange the regression coefficients of θ to a matrix Wθ ∈ Re×
dN+1−1
d−1 such that

for any input path Xi, we have θ (S (Xi)) = Wθ ·S̃N (Xi) = Wθ ·S̃I(n)(Xi). Thus, to determine the

ε-packing numbers of the set Θn ∩
{
θ : Pn

(
‖θ − θn,0‖2

)
≤ δ2

}
is actually equivalent to determine

ε-packing numbers of the set

Ωn :=
{

Wθ : ‖Wθ −Wθn,0‖2L̃2(n)
≤ δ2

}
(5.4.13)

Where Wθn,0 is the matrix corresponds to θn,0 and the norm ‖ · ‖L̃2(n) is defined as

‖Wθ‖2L̃2(n)
:=

1

n

n∑
i=1

‖Wθ · S̃I(n)(Xi)‖22

=
1

n

n∑
i=1

‖θ(SI(n)(Xi))‖22

= Pn
(
‖θ(SI(n)(·))‖22

)
= ‖θ‖2L2(Pn)

for θ ∈ Θn and its corresponding matrix Wθ ∈ Re×
dI(n)+1−1

d−1

(5.4.14)

Remark 5.4.2. In our model, the explanatory variable is not the input {Xi}i=1,2,...,n but its

truncated Signature transform
{
SI(n)(Xi)

}
i=1,2,...,n

which makes ‖θ‖2L2(Pn) = Pn
(
‖θ(SI(n)(·))‖22

)
With above construction, we have transferred the packing number problem

D
(
ε,Θn ∩

{
θ : Pn

(
‖θ − θn,0‖22

)
≤ δ2

}
, L2 (Pn)

)
by the equivalent problem

D
(
ε,Ωn, ‖ · ‖L̃2(n)

)
Before we solve this problem, we first check that

(
D, ‖ · ‖L̃2(n)

)
is a metric space.

� ∀ Wθ ∈ Ωn it is clear that ‖Wθ‖2L̃2(n)
= 1

n

∑n
i=1 ‖Wθ · S̃I(n)(Xi)‖22 ≥ 0
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� ∀ Wθ1 ,Wθ2 ∈ Ωn we have

‖Wθ1 −Wθ2‖2L̃2(n)
=

1

n

n∑
i=1

‖(Wθ1 −Wθ2) · S̃I(n)(Xi)‖22

=
1

n

n∑
i=1

‖(Wθ2 −Wθ1) · S̃I(n)(Xi)‖22

= ‖Wθ2 −Wθ1‖2L̃2(n)

� ∀ Wθ1 ,Wθ2 ,Wθ2 ∈ Ωn we have

‖Wθ1 −Wθ2‖2L̃2(n)
=

1

n

n∑
i=1

‖(Wθ1 −Wθ2) · S̃I(n)(Xi)‖22

=
1

n

n∑
i=1

‖(Wθ1 −Wθ3 + Wθ3 −Wθ1) · S̃I(n)(Xi)‖22

≤ 1

n

n∑
i=1

‖(Wθ1 −Wθ3) · S̃I(n)(Xi)‖22 +
1

n

n∑
i=1

‖(Wθ3 −Wθ2) · S̃I(n)(Xi)‖22

≤ ‖Wθ1 −Wθ3‖2L̃2(n)
+ ‖Wθ3 −Wθ2‖2L̃2(n)

Now, we move to the ε-packing numbers. It is clear that Ωn is a δ-ball with centre Wθn,0 with

respect to the semi-norm ‖ · ‖L̃2(n). Let {W1, ...,WD} be a ε-packing of Ω, then the balls of radius
ε
2 around the Wi are disjoint, and their union is contained in the set Ω′n:

Ω′n :=

{
W ∈ Re×

dN+1−1
d−1 : ‖W − Ω‖L̃2(n) < ε/2

}
(5.4.15)

which is a ball with radius δ + ε
2 and centre Wn,0 with respect to ‖ · ‖L̃2(n). Hence, the sum of

the volumes of these balls is bounded by the volume of Ω′. Let Vu be the volume of unit ball with

respect to the semi-norm ‖ · ‖L̃2(n), we can build the following inequality

D
(
ε,Ωn, ‖ · ‖L̃2(n)

)
≤ D

(
ε,Ω′n, ‖ · ‖L̃2(n)

)
≤
Vu · (δ + ε

2 )e·
dI(n)+1−1

d−1

Vu ·
(
ε
2

)e· dI(n)+1−1
d−1

=

(
1 +

2δ

ε

)e· dI(n)+1−1
d−1

(5.4.16)

Combine the results of 5.4.12, 5.4.13 and 5.4.16, we have

E

[
sup

Pn(‖θ−θn,0‖)22≤δ2,θ∈Θn

∣∣∣∣ 1√
n
〈(θ − θn,0) (S (Xi)) , εi〉

∣∣∣∣
]

≤
∫ δ

0

√
logD (ε,Ω′, L2 (Pn))dε

≤
∫ δ

0

√
e · d

I(n)+1 − 1

d− 1
log

(
1 +

2δ

ε

)
dε

≤ 2

√
2e · d

I(n)+1 − 1

d− 1
· δ

(5.4.17)

We can choose the last term of 5.4.17 as the upper bound function φn(·), i.e. setting

φn(δ) := 2

√
2e · d

I(n)+1 − 1

d− 1
· δ (5.4.18)
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which is clearly an increasing function and δ 7→ φn(δ)/δα is decreasing for some α < 2 (e.g. α = 3
2 ).

Thus, the condition 5.4.2 is satisfied.

Step 3

We move to construct the a sequence of δn which satisfies the condition 5.4.3. Firstly, we need

φn (δn) ≤
√
nδ2
n ⇔ 2

√
2e · d

I(n)+1 − 1

n (d− 1)
≤ δn (5.4.19)

Then, as we mentioned, we assume that the predictor sequence θ̂n has the basic approxima-

tion ability which makes them δ-close to ”true predictor” θn,0 (i.e. we only need to find θ̂n in{
θ : Pn

(
‖θ − θn,0‖2

)
≤ δ2

}
). By setting δn ≥ δ, we directly have δ2

n ≥ δ ≥ Mn (θn,0) −Mn (θn)

holds for any θn ∈ Θn ∩
{
θ : Pn

(
‖θ − θn,0‖22

)
≤ δ2

}
⊂ Θn due to our construction. Hence, we can

chose δn as the maximum between δ and 2
√

2e · dI(n)+1−1
n(d−1) . As the we are considering the case that

our sequence of regressor θ̂n is close to the ”true predictor”, it is reasonable to simply the problem

by setting:

δn = 2

√
2e · d

I(n)+1 − 1

n (d− 1)
(5.4.20)

As a consequence, the condition 5.4.3 is also satisfied. For the last condition, it is straightforward

that θn takes value in Θn and Mn

(
θ̂n

)
≥ Mn (θn) − OP

(
δ2
n

)
due to the problem setting. By the

theorem 5.4.1, we have the convergence rate:

dn

(
θ̂n, θn,0

)
= OP

(
2

√
2e · d

I(n)+1 − 1

n (d− 1)

)
= OP

(√
·d
I(n)

n

)
(5.4.21)

Step 4

The above result 5.4.21 shows that the choice of truncated order can directly affect the convergence

rate. It is clear that when I(·) is a constant (i.e ordinary linear regression case), the above result

degenerates to the OP(n−1/2) which is exactly the convergence rate for linear regression.

As for the truncated Signature regression problem, we may choose the truncated order by rules

like I : n 7→ dlog logd ne or I : n 7→ d
√

logd ne which gives convergence rates OP

(√
dlogne
n

)
and

OP
(
n−1/4

)
respectively. In the other words, with the increasing of dataset size n, the increasing

order for truncated order could be choose like o(dlog logd ne) or o(d
√

logd ne) and the rate of con-

vergence rate for the model can be easily determined by equation 5.4.21.

In the other side, if we take truncated order N = dlogd ne, then we will have the correspond-

ing convergence rate OP (1), which implies that we will always hold the same “distance” between

the least square estimator θ̂n and the “true” predictor θn,0. In other words, the performance of

the model will not be improved as the input dataset size n increases. This is actually a natural

result, we have mentioned that we need to fit dN+1−1
d−1 parameters with truncated order N . If we

take N = dlogd ne, then we will actually have the situation that the number of parameters ' n

which almost an interpolation situation which is not desired for regression problem.
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Chapter 6

Conclusion and further research

In this thesis, we used truncated Signature features to build a least square regression model to

learn the solution for a controlled ODE with forms 5.3.1. Applying results in empirical process

theory, a theoretical explanation for the effect of truncated order is discovered. The main result

5.4.21 of this thesis tells us the relationship between the truncated order decision and the rate of

convergence. One can design any decision rules I : N+ 7→ N+ and easily get the corresponding rate

of convergence by this results. Some suggested truncated order examples are also given at the end

of the last section.

This result is not limited to the learning controlled ODE example we have discussed in this the-

sis. In fact, for problems that we can model with form y = f({Xt}t∈[a,b]) where y is the target,

{Xt}t∈[a,b] is some continuous bounded variation path and f is an ideal model, then we may expect

that there exists a continuous function f̃ such that y = f̃
(
S(X)[a,b]

)
. Theorem 5.2.11 tells us that

with some weak assumptions, f̃ can be uniformly approximated by a linear functional. Thus, we

can model this problem like section 5.3 and our final result still holds.

However, this result only holds for the regression models with form 5.3.5. Further research can

be expanded in other regression models. If we still choose square error as the loss function, then

we can still build an empirical process in the same way as this thesis. We will see that the

only thing that will be changed is the candidate space Θn. We may meet new challenge will

be build the upper bond function φn(·) using maximal inequalities since the ε-covering number

N
(
ε,Θn ∩

{
θ : Pn

(
‖θ − θn,0‖22

)
≤ δ2

}
, L2 (Pn)

)
for the new candidates space may not be trivial.

Another further work can be expanded on log Signature. The space in which the log Signature of

a path in Rd up to level N is equivalent to the free N -nilpotent Lie algebra. The log Signature

is like a compressed version of the Signature up to the same level [21]. In another word, one may

use the log Signature as an efficient representation of a path. Thus, the truncated order for log

Signature regression problem may be interesting to discuss.
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