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Abstract

We examine the differences between two default time simulation procedures: (a) single simula-

tion of multivariate default times throughout the whole time frame, the correct procedure and

(b) iterated simulation which means we break down the simulation in the first procedure into N

consecutive and identical time steps. The second approach is an approximation that is often used

in the industry for logistic / IT reasons. To calculate default probability, we utilise copula function

as it could capture dependence structure among entities with arbitrary margins. With regard to

our study, default time of an entity is defined as a random variable with exponential distribution

as in the intensity model. Likewise, we divide the problems into two big cases: all survival case,

where we calculate the probability that all names survive at terminal time and mixed survival case,

where we compute the probability that some names default and other survive. We then focus on

2 and 3-dimensional copula for each case.

According to Brigo and Chourdakis [16], computing default probability with either procedure 1 or

2 is indistinguishable if the copula has self-chaining characteristic. Indeed, the idea of self-chaining

copula originally comes from Multivariate Lack of Memory (MLOM) property which can be found

in Marshall-Olkin (or multivariate exponential) distribution. In this thesis, we expand the results

in [16] by analysing the error pattern as a function of Kendall’s tau rank correlation in the bivariate

case. We further numerically examine the error in trivariate case and mixed survival/default states.

We also compute the error analytically when N goes to infinity for a few copulas.
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4

1 Introduction

1.1 Background

In the last decade, uncertainty problems of the financial sector have been dramatically increasing.

A considerable amount of giant companies suffered great losses or, even worse, went bankrupt. The

phenomenon started in late 2007 when the global financial crisis hit most of the countries and has

not fully recovered until now. The collapse of Lehman Brother, the fourth-largest United States

investment bank, in September 2008 is one of the most tragic stories in the financial industry. A

related point to be considered is a significant rise of sensitivity level of the industry with respect

to political and social issues. Take the recent case where Britain voted to leave the European

Union as an example; several industries have already experienced financial effects although the

new regulations have not been fully settled. This sensitivity issue has a great impact on credit

exposure levels, which is considered as a trigger of systemic risk. Learning from the past events,

investment banks and financial service companies are now dedicating a huge effort to improve their

risk management system, especially in credit risk area.

According to McNeil, Frey and Embrechts [58, page 3] the term credit risk means the possibility

that we will not receive the payments which are previously settled in specific agreement due to

borrower’s default. As we can see from the definition, the word default has a significant role in credit

risk area. Brigo, Morini and Pallavicini [20, page 47] describe default as an event where a company

could not fulfil the promised payments to its counter-party. Modelling and simulating default

probability of several dependent entities are challenging tasks even for an expert quantitative

analyst. Referring to Brigo and Mercurio in [19], there are three types of default probability

models:

• Firm Value models: At first, Merton [59] constructed such models based on a stochastic

process of the firms value in 1974. Whenever the value of that firm drops such that the

firm could not pay its liability at maturity time, default does occur. In the next 2 years,

Black and Cox [10] improved these models in order to make them more applicable to the real

industry. Development of the latter models was inspired by barrier options pricing models.

Nevertheless, some experts think that these approaches are less natural compared with the

following models.

• Intensity models: the second models, which will be used in this thesis, were developed to

overcome some shortages in firm value models. By adapting intensity models, default event

does not relate to default-free market data. Moreover, a default time is interpreted as Poisson

process’ initial jump time with constant, deterministic time-varying, or stochastic intensity.

This topic will be discussed more precisely in the following section.
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• Hybrid models: a combination of the first two approaches.

Everyone might agree that financial disaster in 2008 was undoubtedly caused by simple yet pow-

erful mathematical model which is known as the Gaussian copula. In fact, the disaster would not

have happened if people had carefully looked at the model assumptions. Frequent misuse of math-

ematical models in the financial industry becomes one of our motivation to do further research

in the related area. In spite of its shortage, the copula framework is still very popular among

analysts due to its ability to describe the dependence structure of several random variables with

arbitrary marginal distributions. Besides the copula function, there is also a single number that

measures dependency level among several random variables which is usually called as rank correla-

tion. Kendall’s tau, one of the most famous examples of rank correlation, is used as a benchmark

to determine parameter values of our default model.

We are interested in analysing consistency between 2 different simulation procedures of several

famous copulas. In the first (or correct) procedure, default probability within the specified time

frame, from 0 to final time T , is calculated directly in single copula simulation. Whereas in the

second (or approximation) procedure, default probability is computed iteratively. This means the

time interval is broken down into N identical sub-intervals. We then simulate local copula function

along all consecutive sub-intervals leading to the terminal time T . In particular, this topic is divided

into two main cases: (1) analysing and comparing iteration error for the case where all companies

survive at final time T , (2) studying iteration error for the case in which some companies default

and the rests survive. Additionally, the effect of iterating 2-dimensional copula on its dependency

structure is also examined in this study.

In order to solve those problems, Multivariate Lack of Memory (MLOM) property is introduced. It

leads us to several more complex mathematical terms such as self-chaining copula, Marshall-Olkin

distribution function, markovian survival indicator, and so on. This study has been first aimed

by Brigo and Chourdakis [16] which is then extended to a more challenging problem by Brigo,

Mai, Scherer in [18]. As stated by the latter paper, there are two main reasons why the second

simulation approach is more convenient than the other:

• Basel III, which is issued to resolve vagueness in liquidity risk area, is a set of banking reg-

ulations published in June 2011 by the Basel Committee on Banking Supervision. However,

these regulations do not have legal force since they are only designed as standard banking

guidelines. According to BIS consultative documents in [9], Basel III proposes that ”Banks

trading book exposures be assigned to a small number of liquidity horizon categories. [10

days, 1 month, 3 months, 6 months, 1 year][. . . ]”. In order to implement this guideline, a fi-

nancial institution needs to develop a proper multivariate default simulation with the shorter

time steps as proposed in Basel III.
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• In Mathematical Finance theory, Brownian Motion (BM) is the most fundamental stochastic

processes describing asset movements. Since asset movements are random processes, it is

common that the values are updated progressively according to the predetermined time

steps; consider stock prices evolutions in Binomial tree method as an example. On the other

hand, the default times in intensity model are usually treated as random variables which

are static and usually simulated once during the whole time frame. The problem may arise

if we want to simulate default probabilities of assets which are driven by BM. Therefore,

approximation procedure is preferable in the real industry.

1.2 Literature Review

In this part of the paper, we introduce and discuss several basic mathematical concepts needed for

the rest of the paper. From the very basic idea such as copula to the more sophisticated theory like

stochastic survival indicator. All of these materials are summarised from the past related literature

to integrate the main problems we try to figure out.

While discussing mathematical concepts, notations are crucial things that could not be ignored.

Therefore, we would like to introduce them in short. Generally, we are working with probability

space (Ω,F ,P), where Ω is a set of all feasible outcomes, F is the set of events, and P is a probability

whose value lies inside [0, 1] interval. Moreover, a random variable τi taking values in T = R+

is denoted as default time of company i. Another important notation taken from [16] is survival

function. One-dimensional survival function at deterministic point t is defined as

S(t) = P(τ > t) = 1− F (t), (1.1)

where F is cumulative distribution function of τ .

1.2.1 Intensity Models

We refer to [8, page 221] and [20, page 65] as our general references. It has been stated that there

are three ways to model default events. The first one, Firm Value model, was first introduced

by Merton [59] in 1974. Default event is described as ”an event where the value of debt is larger

than equity at terminal time”, see [59, page 9]. Hence, default time is predictable. This seems to

be an appropriate primary model when modelling default time at first until we need to deal with

short-term credit spreads.

In the next 2 years from the time Merton proposed his model, Black and Cox [10] announced their

version of Firm Value model. The main difference of their set-up and the former is a consideration

of earlier default time. Brigo, Morini, Pallavicini [20, page 51-53] shows that these two models

result in relatively different outcomes. Although the latter closely resembles empirical data, this
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model still has some shortcomings, especially if Credit Default Swap (CDS) calibration comes to

our concern.

In order to overcome those problems, Intensity model was first mentioned at the beginning of

nineties. This model, which sometimes known as Reduced Form model, has been widely used and

developed since then. Jarrow and Turnbull [44], the first two experts who introduced Intensity

models, describe this set-up as a modification of Merton’s Firm Value model embedded with more

sophisticated interest rates dynamics and Poisson process. Inspired by the previous works of some

experts in this area, Lando [43] was then generalised the model by considering credit spread effect.

Instead of Poisson process, Cox process is utilised in his model so that random form of intensities

can be incorporated. Moreover, Lando’s set-up is classified as ”affine term structure” model which

is related to Duffie and Singleton [31] framework. Even though affine models are popular among

credit rating agencies due to its simplicity, Jarrow and Yu [45] shows that the aforementioned

models are not accurate for some common cases. Recently, plenty of scholars have been doing a

lot of researches in hybrid models. Broadly speaking, such models link hazard rate in Intensity

models to firm’s value of equity, see Duffie and Lando [30] as well as Fadugba and Edogbanya [32]

for more detail.

After short introductory part above, a more mathematical section is presented in the following

paragraphs. First, the definition of Homogeneous Poisson process, which taken from [64, Definition

5.1, page 313] will be explained below.

Definition 1.1 (Homogeneous Poisson Process). A counting process {N(t), t ≥ 0} is called a

Poisson process if its initial value is 0, the process has independent increments, and the number of

defaults in any period of length ∆T has Poisson distribution with parameter λ∆T .

The term λ is defined as Poisson process rate, or in this context known as hazard rate whose value

is always positive. If we look at the definition carefully, it also infers that the process has not

only independent increments but also stationary increments. A small modification of the former

process leads us to the Non-Homogeneous Poisson process. The latter is more popular since it is

more likely to occur in real situations. Indeed, we can convert the Homogeneous Poison process

into Non-Homogeneous one by making hazard rate as a function of time. Next, we also define

cumulative hazard rate (or hazard function) as is defined in [20, page 66], reads

t→
∫ t

0

λudu =: Λt.

Until now, we have not clearly described the link between the Poisson process and default time. In

fact, this is absolutely clear. Again, we follow [20, page 66] and [13, page 662] by defining default

time as the inverse of hazard function on an independent exponential random variable ξ ∼Exp(1).
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Mathematically, we write the previous definition as

τ := Λ−1(ξ).

From basic probability theory, exponentially distributed random variable has cumulative distribu-

tion function: P{ξ ≤ u} = 1− e−u, or write it in different way as P{ξ > u} = e−u. Therefore, by

applying simple transformation we can easily see that

P{τ > t} = P{Λ(τ) > Λ(t)} = P{ξ > Λ(t)} = e−Λ(t) = e−
∫ t
0
λ(s)ds.

It might be recognised without going too far from our main point that default probability under

Intensity models has a relatively similar form with the continuously compounded discount factor

in Interest Rate theory. We refer interested reader to [19] for more detail on this topic.

1.2.2 Multivariate Lack of Memory (MLOM)

Reliability theory is a part of statistics focused on modelling the probability of a system to work

properly under a predetermined time frame. The Multivariate Lack of Memory (MLOM) property,

which is used as our foundation to build default probability model in this thesis, is the core concept

of reliability theory. Most materials in this part are taken from [55, page 30-44], [54], and [16].

Random variable τ has an univariate lack of memory property if

P(τ ≥ a+ b|τ ≥ b) = P(τ ≥ a), for any a, b ∈ T . (1.2)

In particular, Equation (1.2) could be generalised to the multivariate case (MLOM) easily. We

illustrate 2-dimensional case for the sake of simplicity in the following equation:

P(τ1 ≥ a+ b, τ2 ≥ c+ b|τ1 ≥ b, τ2 ≥ b) = P(τ1 ≥ a, τ2 ≥ c) (1.3)

for all a, b, c ∈ T . If we simplify Equation (1.3) by setting a = c, the bivariate vector (τ1, τ2) is

then said to fulfill a Multivariate Homogeneous Lack of Memory (MHLOM) condition. For the

rest of this study, we utilise MHLOM instead of MLOM property. We define MHLOM concept

formally, in that

P(τ1 ≥ a+ b, τ2 ≥ a+ b, |τ1 ≥ b, τ2 ≥ b) = P(τ1 ≥ a, τ2 ≥ a)

for any a, b ∈ T . Readers may be questioning what kind of multivariate distribution has MHLOM

property. The answer is obvious, Marshall-Olkin distribution.

Marshall-Olkin Distribution

The exponential distribution is a remarkable distribution function as it has the lack of memory

property which is suitable for reliability (or survival) modelling. In 1967, Professor Marshall

and Olkin [55] made an advance breakthrough in this area by proposing a generalisation of the
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exponential distribution with particular exponential margins. This is the reason why sometimes

Marshall-Olkin distribution is also known as multivariate exponential distribution. Marshall-Olkin

bivariate survival function evaluated at non-negative point (t1, t2) is defined as

S(t1, t2) = e(−λ1t1−λ2t2−λ12 max (t1,t2)),

where λ1, λ2, and λ12 are non-negative parameters. It also has exponential margins with survival

function

S(t1) = e−(λ1+λ12)t1 and S(t2) = e−(λ2+λ12)t2 .

As Marshall-Olkin distribution is derived from the exponential distribution, it still has the lack of

memory feature. This fact is summarised by Marshall and Olkin in [55] as a simple yet brilliant

theorem as follows.

Theorem 1.2. Consider a default time vector of m companies (τ1, ..., τm).

(τ1, ..., τm) has Marshall Olkin multivariate distribution ↔ MLOM condition holds.

Proof. See [55, page 37].

The study of MLOM concept including its relation with Marshall-Olkin distribution is a bottom

line of this paper. Under particular MLOM condition, we can obtain similar results from those 2

simulation procedures described earlier in this chapter (see [16]). This will be explained precisely

in chapter 2.

Remark 1.3. In some literature, parameters of bivariate Marshall-Olkin distribution are described

in terms of α1 and α2, where

α1 =
λ12

λ12 + λ1
and α2 =

λ12

λ12 + λ2
.

1.2.3 Copula

Copula is a joint distribution function of several random variables with uniform margins. This

concept has been widely used since the 19th century due to its powerful feature, especially in

financial modelling. The concept of copula itself has been introduced by Fréchet [37] in 1951 to

overcome some problems with linear correlation theory. In the next 8 years, Sklar [68] came out

with the basic definition of copula which is still used until now. As copula will be our primary tool

here, it is more convenient for readers to gain more understanding about this topic. So, we shall

point out several important basic concepts which mostly quoted from [58, page 184-234].

For the rest of this thesis, we would denote n-dimensional copula with C(u1, u2, ...un). Referring

to [58] and [63], a mapping C : [0, 1]n → [0, 1] can be identified as an n-dimensional copula if it

satisfies all of the following:
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• C(u1, . . . , un) is an increasing function for each ui with i ∈ {1, . . . , n}.

• Let uj = 1 for all j ∈ {1, . . . , n}, j 6= i. Then the following equation holds

C(u1, . . . , ui−1, ui, ui+1, . . . , un) = ui.

• For any (a1, ...an), (b1, ..., bn) ∈ [0, 1]n with ai <= bi,

Σ2
i1=1...Σ2

i1=1(−1)Σnk=1ikC(u1i1 , ..., unin) >= 0 (1.4)

where uj1 = aj and uj2 = bj for any j = 1, ..., n.

Remark 1.4. Equation (1.4) can be found in [58, page 185] or [63, page 5]. In general, condition

(1.4) is related to Schwartz distribution in the framework of measure theory, see [16, page 7].

The next theorem, which is known as Sklar’s theorem, links multivariate distribution function F

with a copula function C (proof of this theorem could be seen in [58, page 187]).

Theorem 1.5 (Sklar’s Theorem (1959)). Let F be an n-dimensional distribution function with

marginals F1, ..., Fn and also let R̄ = [−∞,∞]. There is a copula C : [0, 1]n → [0, 1] such that :

F (x1, x2, ...xn) = C(F1(x1), ..., Fn(xn)), x1, ...xn ∈ R̄. (1.5)

Equation (1.5) is then defined as a joint distribution function with marginals F1, ..., Fn. It is also

worth mentioning that a discrete copula function does exist. The interested reader can refer to

Mesiar (2005) for more detailed explanation in discrete copula case. Furthermore, we would like

to introduce copula’s boundaries which are usually recognised as Fréchet-Hoeffding bounds.

Proposition 1.6. (Fréchet-Hoeffding bounds) The following condition holds for every copula

C(u1, ..., un):

min {u1, ..., un} ≥ C(u1, ..., un) ≥ max {Σni=1ui + 1− d, 0}.

The upper and lower copula boundaries are usually known as a comonotonicity and counter-

monotonicity copula respectively. The comonotonicity copula describes a condition where all ele-

ments are perfectly positive dependent on each other. On the other hand, the counter-monotonicity

copula is associated with perfect negative dependence structure.

Copula theory is one of the famous mathematical tools which are still developed by many scholars,

especially in the financial industry, see for instance [25] and [48]. A plenty of copula types are

arising and sometimes they resemble each other. As for clarity reason, we properly restrict this

discussion to some particular copula classes. There are three categories of copulas based on their

construction procedure: fundamental copulas, implicit copulas, and explicit copulas. The main

differences between these three types are described below.
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• Implicit copulas

According to the name, copulas in this category do not have simple explicit expressions.

Therefore, simulation method is needed to assess such copula. Gaussian copula,

CGaρ (u1, u2) = Φρ(Φ
−1(u1),Φ−1(u2)),

is a famous example of implicit copulas, where Φρ is a bivariate normal distribution function

with a correlation matrix ρ. Another familiar example is t copula with ν degrees of freedom,

Ctν,ρ(u1, u2) = tν,ρ(t
−1(u1), t−1(u2)) (1.6)

where tν,ρ is a bivariate t distribution function with a correlation matrix ρ. Both Gaussian

and t copula will be discussed further in the following chapter.

• Explicit copulas

In contrast with implicit copulas, each explicit copula has a closed-form representation de-

scribing the joint distribution function. Mostly in this study, we are dealing with three

well-known explicit copulas: Gumbel, Frank, and Clayton. Each of them has a single param-

eter called α which describes the dependence structure. See Table 1 in section 2 for more

detail. Later on, we would frequently cope with the archimedean copula. It is very often

the term archimedean copula and explicit copula are used interchangeably. This is because

almost all of the archimedeans have explicit forms. To illustrate this, consider 2-dimensional

Gumbel copula

CGuα (u1, u2) = e−[{−ln(u1)}α+{−ln(u2)}α]1/α (1.7)

with α ∈ [1,∞). Compared to t copula in Equation (1.6), we could directly compute the

probability on (u1, u2) using Gumbel copula’s formula in Equation (1.7) without the necessity

to do some simulations.

• Fundamental copulas

There are three Fundamental copulas in total. Indeed, we have already mentioned two

examples of fundamental copulas: comonotonicity and counter-monotonicity copula. The

other member of such copulas is independence copula. In particular, bivariate independence

copula is written as

Ĉ(u1, u2) = u1 · u2.

Fundamental copulas can be constructed by modifying dependency parameter(s) of implicit

and explicit copulas. Consider 2-dimensional Gaussian copula. If the parameter ρ is fixed

to be −1, we can get the counter-monotonicity copula. Similarly, if we set ρ = 0 and ρ = 1,
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the independence and comonotonicity copula are obtained respectively. One can observe

fundamental copulas’ surface plots in Figure 1 below.

Figure 1: Surface plots of the comonotonicity copula, independence copula, and counter-

monotonicity copula.

The next important concept is survival copula. Consider survival function in Equation (1.1). Using

the fact that S(t) is a decreasing function and applying quantile transformation theory, we then

generalise the function becomes n-dimensional (joint) survival function:

S(t1, ..., tn) = P(τ1 ≥ t1, ...τn ≥ tn) = P(S1(τ1) < S1(t1), ..., Sn(τn) < Sn(tn)) (1.8)

= P(U1 < S1(t1), ..., Un < Sn(tn)) =: C(S1(t1), ..., Sn(tn)),

where C is a survival copula and Ui is uniform random variable. For convenience reason we set

ui = Si(ti), so (1.8) can be written as

S(t1, ..., tn) =: C(u1, ..., un).

Indeed, there is a complicated relation between the original copula and survival copula. Keen

reader is encouraged to refer to [58, page 196] or [19, page 716].

Besides those aforementioned copulas, there are several other copula classes such as archimedean

copulas, extreme value copulas, and self-chaining copulas. Since these three copula types are

involved in our study, we briefly explain each of them in the following paragraph.

1. Archimedean copulas

Many experts in both mathematical and finance areas have done a lot of research for this

copula class. Archimedean copulas are really convenient since they allow us to do high-

dimensional mathematical modelling with a single parameter. A copula is classified as

archimedean group if it takes form (for 2-dimensional case)

C(u, v) = ψ−1(ψ(u) + ψ(v))
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where ψ is a generator function, see [58, page 221-222] or [16]. As explained before, most of

explicit copulas are also categorised as archimedean copulas, for example, Frank, Gumbel, and

Clayton copula. Figure 2 illustrates surface plots of probability distribution function (pdf)

of the three aforesaid archimedean copula. One can see that Frank copula’s pdf is radially

proportional while Gumbel and Clayton copula’s show the opposite. Gumbel and Clayton

have more probability concentrated in their tails than Frank copula does. It is also evident

that Clayton copula exhibits lower tail dependence. In contrast, Gumbel copula indicates

upper tail dependence. As Clayton and Gumbel have lower and upper tail dependence

respectively, they are frequently used in risk modelling area.

Figure 2: Surface plots showing the pdf of 3 archimedean copulas. (a) Frank copula with α = 10.

(b) Gumbel copula with α = 7. (c) Clayton copula with α = 7.

2. Extreme value copulas

For this part, we use the definition from [41, page 2] and rewrite it here for reader’s convenient.

Supposed we have a vector Yi = (Yi1, ..., Yim) with i ∈ {1, ..., n}, drawn from iid random

variables with joint distribution function F and copula CY . Also let

Mn = (Mn1, ...,Mnm), with Mnj = max (Y1j , Y2j , ..., Ynj).

A copula of Mn, CM , is defined as

CM (u1, . . . , um) = CY (u
1/n
1 , . . . , u1/n

m )n.

Next, if we can find a copula CY which satisfies

lim
n→∞

CY (u
1/n
1 , ..., u1/n

m )n = C(u1, ..., um)

for all (u1, ..., um) ∈ [0, 1]m, the copula C is then said to be extreme value copula. Moreover,

as is described in classic extreme value theory, a copula C is max-stable if and only if

C(u1, ..., um) = C(u
1/k
1 , ..., u1/k

m )k
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holds for all positive integer k larger than 1 and (u1, ..., um) ∈ [0, 1]m. The connection between

extreme value and max-stable copula is also explained in [41, Theorem 2.1, page 3], namely

if a copula is max-stable, it must be an extreme value copula. Similarly, every extreme value

copula is max-stable. Although extreme value copula is not our main concern here, one shall

realise that the characteristic of max-stable copula (or extreme value copula) coincides with

self-chaining copula, see Definition 1.7 or [16, page 18]. In addition, Genest and Rives [39]

as well as McNeil and Neslehova [57] state that Gumbel-Hougaard (or Gumbel) copula is the

only copula which can be classified as both archimedean and extreme value copula.

3. Self-chaining copula

The term self-chaining copula was first introduced by Brigo and Chourdakis in [16]. Recall

our purpose of this study, we intend to analyse errors between the single and iterated default

probability simulations. This problem is related to MHLOM concept described earlier in this

chapter. To apply MHLOM theory in default simulation procedure, one shall have MHLOM

representation for copula. We outline Brigo and Chourdakis’ [16, page 9] brilliant concept

which is addressed to link MHLOM and copula theory. Consider a single default simulation

of d different companies whose dependency structures are described by copula C over the

period of T years, write

C(u1..., ud), u1 = S1(T ), . . . , ud = Sd(T ). (1.9)

The time interval is then split into N equally sized sub-intervals so that we have

C(u
1/N
1 , ..., u

1/N
d )N , u1 = S1(T ), . . . , ud = Sd(T ). (1.10)

In order to obtain consistency in both methods, Equation (1.9) and (1.10) should come up

with similar results. This brings us to the definition of self-chaining copula which is formally

defined in the following.

Definition 1.7. A copula is said to be self-chaining if it satisfies

C(u1..., ud) = C(u
1/N
1 , ..., u

1/N
d )N . (1.11)

Not only defining a self-chaining term, Brigo and Chourdakis in [16, page 11] were also

presenting their main invention in the form of proposition below.

Proposition 1.8. A survival copula satisfies MHLOM condition if and only if it is self-

chaining.

Furthermore, one shall recognise that extreme-value copula indeed satisfies MHLOM criteria.

Hence, Gumbel-Hougaard copula belongs to self-chaining copula class. The other example

of self-chaining copula is Marshall-Olkin copula. Figure 3 illustrates Marshall Olkin copula

surface and contour plot.
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Figure 3: Surface plot and contour plot of Marshall Olkin copula with λ1 = 0.01, λ2 = 0.03, and

λ3 = 0.02.

Copula Simulation

People who work in risk and financial areas should be familiar with copula simulation. Here, we

properly explain what exactly copula simulation is. Then, we also demonstrate how to do such kind

of simulation as we need this technique for computing default probabilities, especially for implicit

copulas. The most basic yet important concept for copula simulation is probability and quantile

transformation, see [27, page 203-212], [58, page 186], [62], and [63, page 6]. We illustrate a case

where this concept is required. Suppose we would like to simulate iid observations of Exponential

distribution. However, there only exists Standard Normal iid random variables generator. By

applying probability transformation followed by quantile transformation, we finally have solved

the problem.

Next, assume we want to simulate two random variables X and Y whose marginal distributions

are given by FX and FY respectively, with copula C. Broadly speaking, there are 2 main steps

involved in copula simulation process.

1. Generate a pair of Uniform random variables U and V from copula C.

2. Do the quantile transformations

X = F←X (U) and Y = F←Y (V ).

At first glance, this procedure looks really straightforward. However, generating Uniform random

variables from specified copula is not as easy as it seems. For instance, we need to put more effort

when working with archimedean copula and Marshall-Olkin copula. Let we demonstrate the first

simulation step (i.e. generate a pair of random variables U and V ) for Gaussian, Clayton, and

Marshall-Olkin copula.
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1. Gaussian copula

Gaussian copula is the most known copula due to its simplicity. The procedure below is

taken from [6, page 1].

• Firstly, perform Choleski’s decomposition to get a pair of correlated random variables

X and Y , which are normally distributed.

• Secondly, by applying probability transformation, we have had a couple of uniform

random variables U = Φ(X) and V = Φ(Y ) drawn from Gaussian copula. The symbol

Φ represents cumulative distribution function of Normal distribution.

2. Clayton copula

As for this copula, the procedure is also borrowed from [6, page 2] using conditional distri-

bution approach.

• Generate two iid samples U and W from Uniform distribution.

• With α being the archimedean’s parameter, let

V =
[
U−α

(
W−

α
1+α − 1

)
+ 1
]− 1

α .

For another archimedean copula, Gumbel copula say, the procedure is more complicated. See

[62] and [39] for clear explanation.

3. Marshall-Olkin copula

Devroye’s [29] algorithm is applied to generate a pair of Uniform random variables of Marshall-

Olkin copula. Let we first denote λ1, λ2, and λ12 as Marshall-Olkin’s parameters. After that,

draw three iid random variables a, b, c from Uniform(0, 1) distribution. Lastly, set

U = min (− ln(a)/λ1,− ln(c)/λ12) and V = min (− ln(b)/λ1,− ln(c)/λ12) .

As we can see from Figure 4, all copulas depict different dependency patterns. Gumbel copula has

upper tail dependence while Clayton copula has lower tail dependence. This means, for Gumbel

copula, U and V are more closely related to each other when their values grow larger. Moreover,

one may identify that t copula has both upper and lower tail dependence; on the contrary, Gaussian

and Frank copula do not show any sign of tail dependency. Interestingly, Marshall-Olkin copula

shows unique dependency pattern which resembles a smooth curve, see [62, page 54]. Eventually,

we transformed those points in Figure 4 using quantile transformations of Exponential distribution

function to get Figure 5.

Remark 1.9. In order to produce Figure 4 and 5, we initially fixed Kendall’s tau to be 0.5.

Copulas’ parameters can then be obtained according to the predetermined Kendall’s coefficient. As

a consequence, various patterns in both Figure 4 and Figure 5 are purely triggered by dependency

structure of each copula.
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Figure 4: Six hundred simulated points from six bivariate copulas with λ1 = 0.01, λ2 = 0.03,

and λ12 = 0.02 in 10 years time frame. (a) Gaussian copula with ρ = 0.7071. (b) t copula with

ρ = 0.7071 and ν = 4. (c) Gumbel copula with α = 2. (d) Frank copula with α = 5.7363. (e)

Clayton copula with α = 2. (f) Marshall-Olkin copula with α1 = 0.8, α2 = 0.5714.

Figure 5: Six hundred simulated points from six bivariate copulas with Exponential marginals for

λ1 = 0.01, λ2 = 0.03, and λ12 = 0.02 in 10 years time frame, transformed from points in Figure 4.

(a) Gaussian copula with ρ = 0.7071. (b) t copula with ρ = 0.7071 and ν = 4. (c) Gumbel copula

with α = 2. (d) Frank copula with α = 5.7363. (e) Clayton copula with α = 2. (f) Marshall-Olkin

copula with α1 = 0.8, α2 = 0.5714.
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1.2.4 Kendall’s Tau

When it comes to financial modelling, we always deal with dependency problems. In the previous

section, we show that copula is the ultimate solution for such problems as long as people use it

correctly. Besides linear correlation (i.e. Pearson coefficient) and copula function, there also exists

a simple dependence measure called rank correlation. It allows us to measure dependency level

according to the order of the data. Similar with linear correlation, the value of rank correlation can

vary between -1 and 1. For particular copulas, Gumbel copula for example, Kendall’s tau values

might only lie within [0, 1] range.

It is well known that Kendall’s tau and Spearman’s rho are two of the most famous examples

of rank correlation. Before going too far, it is better to know the importance of this concept to

our study. Having mentioned the purpose of this paper earlier, the reader might notice that we

would compare some copula functions later. By picking particular Kendall’s tau quantities for

the copulas, their dependence parameters can be determined directly. Off course there exist a

lot more advanced methods in parameter selection process rather than the one we used here (i.e.

methods-of-moment), see Genest and Rives paper in [39]. Despite copula parameterisation is not

our primary concern here, it is really an important area, especially in Financial industry. See [1],

[50], and [54] for instance.

We would briefly discuss Kendall’s tau quantity since we utilise it for 2-dimensional copula case

later in this study. The measure which was introduced by Sir Maurice Kendall in 1938 evaluates

concordance level for random vectors. We shall then see the formal definition of Kendall’s tau of

a pair of random variables which is borrowed from [57, page 206].

Definition 1.10 (Kendall’s Tau). Let (X1, X2) be a random vector and (Y1, Y2) be an independent

copy of the former pair. Kendall’s rank correlation is defined as

Kτ (X1, X2) = P{(X1 − Y1)(X2 − Y2) > 0} − P{(X1 − Y1)(X2 − Y2) < 0}.

Moreover, if X1, X2 are continuous random variables and has a unique copula C, then

Kτ (X1, X2) = 4

∫ ∫
[0,1]2

C(u, v) dC(u, v)− 1. (1.12)

From the definition above, a calculation of Kendall’s tau value for each copula seems too abstract

to be applied. Fortunately, literature and MATLAB help us solving this problem. Kendall’s tau

explicit formulas of the 6 copulas involved in this study are shown later in chapter 3.
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1.3 Layout of Thesis

The rest of this study is organised as follows: section 2 introduces the problems in a more technical

way (i.e. mathematical expressions), the cases are classified into two main groups: all survival

and mixed survival. Within each group, we try to solve the 2-dimensional (bivariate) case and 3-

dimensional (trivariate) case. Moreover, there are six copulas examined in this analysis: Gaussian,

t, Clayton, Frank, Gumbel, and Marshall-Olkin. Problem-solving procedures are also explained

carefully.

The results of our simulations are shown and discussed intensively in the following section 3. As ex-

pected, there are numerous graphs, tables, and figures to visualise simulation errors. Additionally,

this section presents some formulas used to obtain the results. Compared to the previous section,

this part contains more complex materials including computation of copula parameter(s), copula

functions, and so on. Lastly, section 4 concludes the paper and gives some recommendations to

the further researches.
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2 Problem Description

In this section, all problems are explained and illustrated step by step. In addition, technical

procedures and some mathematical tools which are applied to analyse the errors can also be found.

To start with, we describe two simulation procedures used in this thesis as follows: let C be a

copula of m-dimensional random default time vector, τ = (τ1, τ2, ..., τm), with exponential margins

and default parameters λ1, ..., λm. Also, let T as terminal simulation time and define ∆T = T/N.

1. In the first procedure (or single simulation), we compute the probability P(τ1 ≥ T, . . . , τm ≥

T ) via

C(S1(T ), ..., Sm(T )) = C(e−λ1T , ..., e−λmT ).

2. While for the second procedure (or iterated simulation), the probability is approximated

using P (τ1 ≥ ∆T, . . . , τm ≥ ∆T )
N

, in terms of copula function we have

C(S1(∆T ), . . . , Sm(∆T ))N = C(e−λ1∆T , ..., e−λm∆T )N .

Figure 6 illustrates how the first and second simulation are held. As described above, Figure

6(a) depicts a direct simulation over the period of T years while Figure 6(b) illustrates N times

sequential local simulations. Next, our main purposes are simplified into 2 points:

1. Studying errors between the single and iterated simulation for all survival cases. As for this

objective, we only calculate the probability that all entities survive until final time T . For

example, in bivariate case, we calculate the probability P(τ1 ≥ T, τ2 ≥ T ).

2. Evaluating differences between single and iterated simulation for mixed cases (some entities

default and others survive at terminal time T ). For instance, in trivariate case, we compute

the probability that company 1, 2 survive but company 3 default, namely

P(τ1 ≥ T, τ2 ≥ T, τ3 < T )

or company 1 survives and company 2, 3 default, reads

P(τ1 ≥ T, τ2 < T, τ3 < T ).

Brigo, Mai, and Scherer [18] show that Markovian survival indicator process is a core concept

for evaluating survival probability in mixed default problems. On the other hand, we apply

a basic probability rule to transform mixed default case into all survival case. Hence, we can

implement the similar method to solve both the first and second cases.
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Figure 6: Illustration of: (a) simulation procedure 1 and (b) simulation procedure 2 for T years

period and m entities involved.

According to Brigo and Chourdakis [16], those two simulation methods described above coincide if

the multivariate distribution function of default times has MHLOM property. When the presence

of MHLOM characteristic is neglected, the following inequality holds.

P(τ1 ≥ T, ..., τm ≥ T ) ≥ P(τ1 ≥ ∆T, ..., τm ≥ ∆T )N .

Our next task is to transform MHLOM property into copula (or survival function) representation.

For simplicity reason, we illustrate 1-dimensional case here. From basic probability theory, it is

clear that

P(τ ≥ A+B|τ > A) =
P(τ ≥ A+B, τ ≥ A)

P(τ ≥ A)
=

P(τ ≥ A+B)

P(τ ≥ A)
(2.1)

where A,B ∈ T . By applying MHLOM property described in Equation (1.2) to Equation (2.1),

we could then write

P(τ ≥ A+B) = P(τ ≥ B) · P(τ ≥ A)

which means, in terms of survival function,

S(A+B) = S(A) · S(B).
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Another way to link MHLOM concept and copula is by applying Proposition (1.8). Consequently,

we know that self-chaining (or extreme-value) copula possesses MHLOM property. From previous

studies ([16] and [18]), it has been known that Marshall-Olkin copula and Gumbel copula are

the examples of self-chaining copulas. We then want to justify this statement by checking the

consistency levels of procedure 1 and 2 with various T , N , and parameter values. The same

analyses are conducted for non-self-chaining copulas such as Gaussian, t, Clayton, and Frank.

The following Table 1, which is summarised from [19, page 716], describes six copulas parameters

range and their value regarding dependence structures. It is evident that parameter values vary

significantly across the copulas. According to the table, Frank copula has the widest range of

parameter while Gaussian and t copula have the narrowest ones. Fundamental copulas such as

comonotonicity, independence, and counter-monotonicity copula could be constructed by varying

other copulas’ parameters. This is why copula parameter is considered as a degree of dependence.

But sometimes, there exist some copulas which could not be transformed into one of the funda-

mental copulas, for example, Gumbel copula.

Table 1: Parameter values of copulas

Copula Parameter Range Parameter Value

comonotonicity counter-monotonicity independence

Gaussian ρ ∈ (−1, 1) 1 -1 0

t ρ ∈ (−1, 1) 1 -1 0

Gumbel α ∈ [1,∞) ∞ - 1

Clayton α ∈ [− 1,∞), α 6= 0 ∞ -1 0

Frank α ∈ (−∞,∞), α 6= 0 ∞ -∞ 0

It has been mentioned that almost all of the problems in this study are solved quantitatively using

MATLAB software. We refer the keen reader to have a look at [16] as well as [18] for analytical

explanations.

Remark 2.1. In the one-dimensional case, it is obvious that procedure 1 and procedure 2 would

match each other under exponential distribution. It comes as no surprise since exponential distri-

bution has lack of memory property, in that

S(T ) = e−λT = (e−λ∆T )N = S(∆T )N .
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2.1 All Survival Case

As mentioned before, the first task in this thesis is studying errors of survival probability of

some names at terminal time T . We first examine the bivariate case before moving to the more

challenging task, trivariate case. MHLOM concept and self-chaining copula are indeed our basic

foundation in interpreting simulation results. For both bivariate and trivariate case, the effects of

modifying copula parameters on iterated errors are analysed. Next, we try to find a connection

between self-chaining copulas and fundamental copulas. Regarding the bivariate case, particularly,

the changes in dependency structure of iterated copulas for large N are also our main concern.

2.1.1 Bivariate Problem

Consider bivariate copula function of the first simulation procedure with T as maturity time and

λ1, λ2 as non-negative parameters, namely

C(S1(T ), S2(T )) = C(e−λ1T , e−λ2T ).

Before going too far, it is worth mentioning that survival function has this particular form since

default times are exponentially distributed. As for the second procedure, the time path is divided

into N identical sub-intervals, in that

[0,∆T ], [∆T, 2∆T ], . . . , [(N − 1)∆T,N∆T ].

Thus, copula function for the latter simulation procedure can be written as

C(S1(∆T ), S2(∆T ))N = C(e−λ1∆T , e−λ2∆T )N .

Another essential term is relative error (εr) between the two simulation procedures which is de-

scribed in the following:

εr :=
P(τ1 ≥ T, τ2 ≥ T )− P(τ1 ≥ ∆T, τ2 ≥ ∆T )N

P(τ1 ≥ T, τ2 ≥ T )
=
C(e−λ1T , e−λ2T )− C(e−λ1∆T , e−λ2∆T )N

C(e−λ1T , e−λ2T )
.

It has been proved by Brigo and Chourdakis [16] that using self-chaining copulas in both simulation

procedures would generate the same results. However, self-chaining copulas are not as popular as

Gaussian or t copula. Hence, in practice, people often ignore self-chaining copula and use Gaussian

or t copula instead. We present a simple example of how large the iteration errors can be for

Gaussian copula and t copula with 4 degrees of freedom in Table 2. As we can see from the table,

relative errors between the first and second method for those 2 copulas are relatively significant. It

also can be observed that for all three parameter values, Gaussian copula always has larger errors

than t copula, which indicates that t copula is more likely to resemble self-chaining copula than
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Gaussian copula does. Lastly, iteration errors tend to be smaller as parameter values go to either

0 or 1. Indeed, selecting copula for default modelling is a critical issue even though there still a

lot of workers who underestimate this problem.

Table 2: Bivariate error tabel for Gaussian and t (ν = 4) copula with T = 10y and N = 500.

Copula λ1 λ2 Parameter (%) Relative Error

Gaussian

0.05 0.02

ρ = 0.1
1.99

t 1.55

Gaussian
ρ = 0.5

8.61

t 6.56

Gaussian
ρ = 0.9

6.472

t 4.45

The next principal concept in the bivariate case is Kendall’s tau rank correlation. One standard

measure needs to be specified since we intend to compare iteration errors of six different copulas.

To this end, one of the most well-known rank correlation measures, Kendall’s tau, is chosen. By

fixing a particular value of Kendall’s tau, one can calculate the copula parameter(s) using a specific

formula. For instance, the following is Kendall’s formula for Clayton copula:

Kτ =
α

α+ 2

where Kτ denotes Kendall’s value and α ∈ [−1,∞) is Clayton’s parameter. Undoubtedly, this

formula is obtained by deriving Equation (1.12). Kendall’s tau formulas of the six copulas used

in this study are summed up in Table 4. For further illustration, Figure 7 represents the relations

between several copula parameters and concordance measure, Kendall’s tau. It is evident that rho

(ρ) and alpha (α) have different relations with Kendall’s tau. On the left-hand side, we can see a

convex curve of t copula’s parameter while on the right-hand side there are two concave curves of

Clayton and Gumbel copula’s parameters. Concerning the latter, it can be seen that Clayton and

Gumbel’s alphas almost resemble each other for any Kendall’s tau quantities. This is in line with

Table 1 which shows the range of Gumbel and Clayton’s alphas are relatively close.

Eventually, we move to dependency problems. In real world matters, we could not foresee any

unpredictable events that confront us. Hence, academicians always anticipate such things by

finding more and more problems to be explored including this part of study. Limiting behaviour

copula studies are received an enormous amount of consideration presently. For example, see [24],

[41], [66]. Particularly in this section, we eager to know the impact of iterated simulation on

dependency issue. If the number of sub-intervals (N) increase to infinity or ∆T becomes smaller,

naturally the difference between iterated copula and the independence copula would decrease. This



2.1 All Survival Case 25

Figure 7: t, Clayton, and Gumbel copula parameters with respect to Kendall’s tau.

is true for several copula classes but self-chaining copulas. Mathematically, we write this problem

as

εl := | lim
N→∞

C(S1(∆T ), S2(∆T ))N − Ĉ(S1(T ), S2(T ))| (2.2)

where Ĉ is the independence copula and εl ∈ R+ ∪ {0}. Knowing the value of εl would help us

to justify whether dependence structure is destroyed by iteration or not. Indeed, εl must be large

enough to assure that iterated simulation does not eliminate dependence structure. For convenient,

we would then name εl as iterated limit error for the rest of this study. Also for this part, we

present both analytical and numerical approach to conclude the analyses.

2.1.2 Trivariate Problem

Generally speaking, in this part, we would examine simulation error which is defined similarly as

above, reads

εr : =
P(τ1 ≥ T, τ2 ≥ T, τ3 ≥ T )− P(τ1 ≥ ∆T, τ2 ≥ ∆T, τ3 ≥ ∆T )N

P(τ1 ≥ T, τ2 ≥ T, τ3 ≥ T )
.

In contrast to the previous case, Kendall’s tau measure is not utilised while evaluating trivariate

errors since multivariate Kendall’s tau (for n ≥ 3) calculation is not as simple as in the bivariate

cases, see [33]. Hence, comparison among copula types are not conducted here and we focus on

comparing errors between the bivariate and trivariate case instead. For instance, relative errors of

trivariate Gaussian and t copula can be observed in Table 3. As is expected, the errors between

those two simulation approaches with 3 entities included are higher than the former case. This

indicates that greater number of entities involved in simulation leads us to the more significant
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errors. In chapter 3, we would illustrate more examples regarding such problems, including the

errors with various dependency levels.

Table 3: Trivariate error table for Gaussian and t (ν = 4) copula with T = 10y and N = 500.

Copula λ1 λ2 λ3 Parameter (%) Relative Error

Gaussian

0.05 0.02 0.03

ρ = 0.1
5.68

t 1.19

Gaussian
ρ = 0.5

20.31

t 3.51

Gaussian
ρ = 0.9

14.52

t 2.77

2.2 Mixed Survival Case

Mixed case is indeed a more challenging task compared to the previous one. This topic was first

raised up by Brigo, Mai, and Scherer [18]. In their paper, Markovian survival indicator process is

being suggested to be used as a tool to resolve mixed simulation problems. One thing needs to be

mentioned, the term ”mixed” in [18] is defined slightly differently compared to ours as the elimi-

nation of defaulted or liquidated entities cases is included in their models. The use of markovian

survival indicator process is incorporated with looping default model which is first introduced by

Jarrow and Yu [45]. Surprisingly, looping default model for bivariate case coincides with Freund

distribution, see [38]. As for the general n-dimensional case with n ≥ 3, it might be more com-

plicated since only a few multivariate distribution functions that are stable under marginalisation

(i.e. nested margining). This is an important issue considering stability is required to conserve

MHLOM characteristic. To this end, Brigo, Mai, and Scherer proved that Marshall-Olkin distri-

bution characteristics are preserved under marginalisation [18, page 11-13].

On the other hand, we try to alter mixed cases into all survival cases by utilising Venn diagram

(for low-dimensional cases) and the rule of inclusion for probability, see [61, page 53]. Similar to all

survival cases, mixed cases would be split into bivariate and trivariate cases. As for the trivariate

case, we would emphasise the effect of adding up numbers of entities involved on errors’ magnitude.

Intensities and terminal time, however, also accounts for the rise of iteration errors.

2.2.1 Bivariate Problem

In this last part of section 2, we directly focus on error’s definition instead of discussing Kendall’s

tau measure as in the previous section. Firstly, by looking at Figure 8 we could write mixed
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survival function in terms of all survival function, in that

P(τ1 ≥ T, τ2 < T ) = P {(τ1 ≥ T ) ∩ (Ω\(τ2 ≥ T ))}

= P(τ1 ≥ T )− P(τ1 ≥ T, τ2 ≥ T ).

Next, we describe the error as

εr : =
[P(τ1 ≥ T )− P(τ1 ≥ T, τ2 ≥ T )]− [P(τ1 ≥ ∆T )N − P(τ1 ≥ ∆T, τ2 ≥ ∆T )N ]

P(τ1 ≥ T )− P(τ1 ≥ T, τ2 ≥ T )
.

One shall notice that if the copula is self-chaining, the error becomes extremely small (or zero).

With regard to non-self-chaining copulas, iteration errors vary depending on several factors such

as the final time T , Kendall’s tau values, and so on.

Figure 8: Venn diagram of the bivariate mixed case.

2.2.2 Trivariate Problem

In trivariate case, there are 2 problems that would be looked into. Not only the descriptions but

also the procedures taken to solve these two problems are almost similar to the bivariate case. To

start with, consider the case where one company survives and 2 others default. With the help of

Figure 9(a) and 3-dimensional rule of inclusion, we can write

P(τ1 ≥ T, τ2 < T, τ3 < T ) =P {(τ1 ≥ T ) ∩ (Ω\(τ2 ≥ T )) ∩ (Ω\(τ3 ≥ T )}

=P(τ1 ≥ T )− P(τ1 ≥ T, τ2 ≥ T )− P(τ1 ≥ T, τ3 ≥ T )

+ P(τ1 ≥ T, τ2 ≥ T, τ3 ≥ T ).

Hence, for error term we have
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εr :=
Psingle − Pmulti

Psingle
, (2.3)

where

Psingle = P(τ1 ≥ T )− P(τ1 ≥ T, τ2 ≥ T )− P(τ1 ≥ T, τ3 ≥ T ) + P(τ1 ≥ T, τ2 ≥ T, τ3 ≥ T ) and

Pmulti = P(τ1 ≥ ∆T )N − P(τ1 ≥ ∆T, τ2 ≥ ∆T )N − P(τ1 ≥ ∆T, τ3 ≥ ∆T )N

+P(τ1 ≥ ∆T, τ2 ≥ ∆T, τ3 ≥ ∆T )N .

Regarding the second problem (i.e. 2 companies survive and 1 company default), again, by ob-

serving Figure 9(b) and applying the rule of inclusion one could describe the following:

P(τ1 ≥ T, τ2 ≥ T, τ3 < T ) =P{(τ1 ≥ T ) ∩ (τ2 ≥ T ) ∩ (Ω\(τ3 ≥ T )}

=P(τ1 ≥ T, τ2 ≥ T )− P(τ1 ≥ T, τ2 ≥ T, τ3 ≥ T ).

Error term is defined similarly as in Equation 2.3 but with

Psingle = P(τ1 ≥ T, τ2 ≥ T )− P(τ1 ≥ T, τ2 ≥ T, τ3 ≥ T ) and

Pmulti = P(τ1 ≥ ∆T, τ2 ≥ ∆T )N − P(τ1 ≥ ∆T, τ2 ≥ ∆T, τ3 ≥ ∆T )N .

Figure 9: Venn diagram of the trivariate mixed case. (a) 1 survival and 2 defaults. (b) 2 survivals

and 1 default.
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3 Results and Discussion

In this section, we show default probability calculation results of both cases including all survival

and mixed survival in the form of tables and graphs. Some basic technical stuff such as Kendall’s

tau coefficient calculation and explicit copula distribution function are also clearly presented. Ad-

ditionally, comments and discussions are provided for each sub-case.

3.1 All Survival Case

To simulate survival copulas, we first need to determine their parameters. There exist some copula

parameter estimation methods and particularly, in this study, Kendall’s tau measure is utilised to

specify dependence parameter values. Table 4, which is summarised from [50, page 20], shows the

formulas of Kendall’s tau rank correlation of some bivariate copulas.

Table 4: Kendall’s tau of Gaussian, t, Gumbel, Frank, Clayton, and Marshall-Olkin copula.

Copula Parameter(s) Kτ
Gaussian / t ρ ∈ (−1, 1) 2

πarcsin(ρ)

Gumbel α ∈ [1,∞) 1− 1
α

Frank α ∈ (−∞,∞), α 6= 0 1 + 4(D(α)−1)
α , with D(α) = 1

α

∫ α
0

u
eu−1

Clayton α ∈ [−1,∞), α 6= 0 α
α+2

Marshall-Olkin α1, α2 ∈ [0, 1] α1α2

α1+α2−α1α2

After fixing Kendall’s Tau and obtaining dependency parameter, survival probability can be cal-

culated easily. As for explicit copulas such as Gumbel, Clayton, Frank, and Marshall-Olkin, we

could calculate the numbers by directly substitute the parameter (α) into the following formulas:

1. Gumbel copula

CGuα (u1, u2) = e−[{−ln(u1)}α+{−ln(u2)}α]1/α .

2. Clayton copula

CClα (u1, u2) = max( u−α1 + u−α2 − 1, 0)−1/α.

3. Frank copula

CFrα (u1, u2) = − 1

α
ln

{
1 +

(e−αu1 − 1)(e−αu2 − 1)

e−α − 1

}
.

4. Marshall-Olkin copula

C(u1, u2) = min (u1−α1
1 u2, u1u

1−α2
2 )

However, implicit copulas such as Gaussian and t copula require a little more effort to obtain the

results, see copula simulation in Chapter 1. As an illustration, Table 5 presents relative errors
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of six copulas with a specific Kendall’s tau value (Kτ = 0.5). Dependence parameter values are

calculated using the formulas provided in Table 4. Gaussian copula, as expected, has the highest

relative error at 2.38%. It is then followed by Frank copula at 2.20% and Clayton copula at 1.24%.

Moreover, the error of t copula with 4 degrees of freedom is slightly higher than the one produced

by t copula with 3 degrees of freedom. Unsurprisingly, both Gumbel and Marshall-Olkin errors

are the lowest among others as they own self-chaining property. For a deeper understanding, we

compare all 6 copula errors as a function of Kτ in the following paragraph.

Table 5: Relative error table of 6 different copulas with T = 5y, N = 1000, λ1 = 0.01, λ2 = 0.03,

and Kτ = 0.5.

Copula Parameter(s) (%) Relative Error

Gaussian ρ = 0.7071 2.38

t ν = 3, ρ = 0.7071 0.23

ν = 4, ρ = 0.7071 0.48

Gumbel α = 2 2.99E-12

Frank α = 5.7362827 2.20

Clayton α = 2 1.24

MO α1 = 0.8, α2 = 0.5714 2.59E-12

The line chart in Figure 10 shows relative errors between simulation procedure 1 and procedure 2

for Gaussian, t, Gumbel, Frank, Clayton, and Marshall-Olkin copula between Kτ = 0 and Kτ = 1.

From this graph, we can observe whether a copula holds self-chaining property or not. Indeed,

we expect errors of self-chaining copulas as small as possible. Overall, the copulas show relatively

similar patterns for whole Kendall’s tau values. They start at around 0 for Kτ = 0, keep increasing

until particular levels, and begin decreasing before finally reaching their endpoints.

Gaussian copula has the highest errors for Kτ smaller than 0.5 while for Kτ exceed 0.55, both

Frank and Clayton copula overtake Gaussian’s errors. From its relative errors, one might indicate

that Gaussian copula is not a proper model to be used for iterated simulation. Moreover, both t

copula with 3 and 4 degrees of freedom exhibit better performances than the Gaussian one since

their errors are smaller. Regarding t copula itself, the graph depicts that the lower degrees of

freedom it has, the more self-chaining it becomes.

As for Gumbel and Marshall-Olkin copula, they remain unchanged at extremely low error levels

for whole Kendall’s tau ranges. These results are not surprising since both Gumbel and Marshall-

Olkin copula are self-chaining. Next, we are moving to Clayton and Frank copula which show

moderately different patterns than other copulas. From Kτ = 0 to around Kτ = 0.55, we can infer
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Figure 10: Relative error line charts of several different copulas: Gaussian, t(ν = 3), t(ν = 4),

Gumbel, Frank, Clayton, and Marshall-Olkin with respect to Kendall’s tau (Kτ ) values for T = 5y,

N = 1000, λ1 = 0.01, and λ2 = 0.03.

that both Clayton and Frank are more self-chaining than the Gaussian does. However, there are

significant increments in Clayton and Frank’s errors from Kτ = 0.55 until Kτ = 0.99 before they

start falling to particular points at the end of the graph.

Broadly speaking, it is clear that all copulas resemble self-chaining copula for both Kτ = 0 and

Kτ = 1. One may relate this fact to the fundamental copula terms by converting Kendall’s tau

values using the formulas provided in Table 4. Once parameters are obtained, we shall see Table

1 to conclude that the independence and comonotonicity copula are indeed self-chaining.

Furthermore, we would like to discuss Clayton and Frank copula cases. According to Table 1, the

two copulas shall tend to be closer to self-chaining copula (i.e. errors become extremely smaller) as

Kendall’s tau approaches 1, although we could not see this fact clearly from Figure 10. This is due

to numerical error problems for higher Kendall’s tau values, especially for Clayton and Frank case.

Therefore we illustrate relative error graphs for these two copulas with respect to their parameter

values, instead of Kendall’s tau quantities.

Figure 11 illustrates Clayton and Frank’s errors as a function of α. Generally, these two plots

indicate that as alpha goes larger, error terms are also lessening. This is exactly what we expect

from Clayton and Frank copula according to Table 1. In Figure 11(a), there is a significant rise in

the error’s magnitude of Clayton copula from around 0 to just under 0.05. This increasing part
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Figure 11: Relative error line charts of: (a) Clayton copula and (b) Frank copula with respect to

α for T = 5y, N = 1000, λ1 = 0.01, and λ2 = 0.03.

corresponds to the previous line chart in Figure 10. Moreover, Clayton’s deviation starts dropping

to its lowest point when its parameter reaches the value of 50000 and remains stable for the rest

of alpha values. From Table 1 we know that for α relatively high, Clayton copula becomes the

comonotonicity copula, which is actually self-chaining. When it comes to Frank’s copula, decreas-

ing pattern could still be observed although it is not as substantial as in Clayton’s graph. Needless

to say, this occurs as a consequent of numerical problems since we could only observe the plot until

α = 740. Therefore, an analytical approach is more favourable to solve Frank’s copula issue. At

last, we shall mention that similar errors analysis using Spearman’s rho instead of Kendall’s Tau

were conducted in [36].

We are now moving to iterated limit problems, where error term εl is described in Equation (2.2).

Later on, it can be seen that dependence structures of some copulas are destroyed whenever N

grows larger. Therefore, the choice of copulas for our default modelling could be determined by

analysing iterated limit. To begin with, Gaussian and t copula’s limit errors are illustrated in

Figure 12 below.

Figure 12(a) illustrates the errors of t copula with 3 degrees of freedom while Figure 12(b) depicts

4 degrees of freedom t copula’s errors. Both graphs show relatively identical pattern. Starting at

their highest points, then plunge to particular points and stay at almost the same level until the

end of their x-axis. However, if we look at these two figures cautiously, we shall notice a slight

difference between these two graphs. The second graph shows a minor decreasing trend which
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Figure 12: Iterated limit error line charts of: (a) t copula (ν = 3), (b) t copula (ν = 4), and (c)

Gaussian copula with Kτ = 0.5, λ1 = 0.01, and λ2 = 0.03.

indicates its limit error goes smaller as N increases. Moreover, it also can be seen that t copula

with 4 degrees of freedom always has fewer errors than the ones with 3 degrees of freedom. Thus,

iterating t copula with higher degrees of freedom terminates dependence structure.

Regarding Gaussian copula in Figure 12(c), one might notice that its errors are evidently lower

than both t copula with 3 and 4 degrees of freedom. Furthermore, Gaussian graph experiences

downward trend for all N values which, again, indicates its dependence structure is destroyed by

iteration. This is in line with Brigo and Chourdakis’ [16, page 9-10] simulation results on Gaus-

sian copula. Hence, we might urge that this undeniable fact regarding Gaussian copula is really

important and shall be recognised by the industry in order to prevent unwanted mistakes as in the

recent financial crisis.

Secondly, Clayton and Frank’s iterated limit errors can be observed in Figure 13. From the very

first glance, it is evident that both Clayton and Frank copula limit seem rather close to the in-

dependence limit. At the beginning, Clayton and Frank’s errors start at relatively low points,

1.4 · 10−4 and 3 · 10−4 respectively. Eventually, there is a sudden drop in Clayton’s graph to near



3.1 All Survival Case 34

Figure 13: Iterated limit error line charts of: (a) Clayton copula and (b) Frank copula with

Kτ = 0.5, λ1 = 0.01, and λ2 = 0.03.

0 and remain stable for the rest of the graph. The same thing is also happened for Frank’s limit,

before reaching its lowest point, it falls significantly from 3 · 10−4 to around 0. To recapitulate, we

might say that both Clayton and Frank copula are not proper models to be considered in iterated

simulation procedure.

Besides numerical approach explained above, analytical way to resolve the questions are also pro-

vided. Generally, we would like to prove that iterated Clayton and Frank copula tend to the

independence copula as N approaches infinity. Now, for iterated limit of Clayton copula, write the

equation as

lim
N→∞

CClα (S1(∆T ), S2(∆T ))N = Ĉ(S1(T ), S2(T ))

where Ĉ(S1(T )2(T )) is the independence copula and also let λ1 = λ2 = λ for simplicity reason.

Proof. Consider a Clayton copula CClα (S1(T ), S2(T )) and write the iterated version as

lim
N→∞

CClα (S1(∆T ), S2(∆T ))N = lim
N→∞

(
eλ

T
N α + eλ

T
N α − 1

)−N/α
= lim
N→∞

(
2eλ

T
N α − 1

)−N/α
.

Next, let y := (2eλ
T
N α − 1)−N/α and take the natural logarithm of both sides to get

ln y = −N
α

ln
(

2eλ
T
N α − 1

)
.
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Apply limit on each side of the equation

lim
N→∞

ln y = lim
N→∞

−N
α

ln
(

2eλ
T
N α − 1

)
= lim
N→∞

ln
(

2eλ
T
N α − 1

)
−α/N

L
= lim
N→∞

1(
2eλα

T
N − 1

) ·
(

2eλα
T
N

)
·
(
−λ T

N2α
)

α/N2

= −2λT.

Finally, we obtain

lim
N→∞

(
2eλ

T
N α − 1

)−N/α
= e−2λT = e−λT · e−λT = S1(T ) · S2(T ) = Ĉ(S1(T )2(T )).

After calculating Clayton copula’s limit, we found out the confirmation of this result later in a

textbook edited by Dey and Yan’s [47, Remark 6.2.3]. Not only Clayton copula, but they also

prove that Gaussian copula is belong to the domain of attraction of independence copula in [47,

Example 6.2.4]. As for Frank copula, the same technique is applied to solve the limit. Similarly,

write the equation as

lim
N→∞

CFr(S1(∆T ), S2(∆T ))N = Ĉ(S1(T ), S2(T ))

where Ĉ(S1(T )2(T )) is the independence copula and set λ1 = λ2 = λ for the sake of simplicity.

Proof. Consider a Frank copula CFrα (S1(T ), S2(T )) and write its iterated limit as

lim
N→∞

CFrα (S1(∆T ), S2(∆T ))N = lim
N→∞

− 1

α
ln

1 +
(e−αe

−λ T
N − 1)(e−αe

−λ T
N − 1)

e−α − 1


N

.

Now, by letting

y :=

− 1

α
ln

1 +
(e−αe

−λ T
N − 1)(e−αe

−λ T
N − 1)

e−α − 1


N

and applying the natural logarithm of each side, we would obtain

ln y = N

 ln

(
− 1

α

)
+ ln

 ln

1 +
(e−αe

−λ T
N − 1)(e−αe

−λ T
N − 1)

e−α − 1


 .
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The next step is to take the limit of both sides, in that

lim
N→∞

ln y = lim
N→∞

ln
(
− 1
α

)
+ ln

{
ln

(
1 + (e−αe

−λ T
N −1)(e−αe

−λ T
N −1)

e−α−1

)}
1/N

L
= lim
N→∞

1

ln

{
1 + (e−αe

−λ T
N −1)2

e−α−1

} · 1

1 + (e−αe
−λ T

N −1)2

e−α−1

· 2(e−αe
−λ T

N − 1)

e−α − 1

· (e−αe
−λ T

N ) · (−αe−λ TN ) · λ T

N2
· (−N2)

=− 1

α
· 1

e−α
· 2 · e−α · (−α) · (−λT )·

=− 2λT.

Thus, at last we get

lim
N→∞

− 1

α
ln

1 +
(e−αe

−λ T
N − 1)(e−αe

−λ T
N − 1)

e−α − 1


N

= e−2λT

= S1(T ) · S2(T )

= Ĉ(S1(T ) · S2(T )).

Thirdly, Marshall-Olkin and Gumbel copula limit error are presented in Figure 14. As illustrated

in Figure 14(a), Marshall-Olkin’s error fluctuates near 0.0334 for the whole N values. It is also

evident that the oscillation becomes larger when the value of N is raising. Thus, limit of Marshall-

Olkin copula does not resemble the independence copula. In terms of Gumbel copula, its limit

error goes up and down widely, especially for large N . As Gumbel’s general pattern is rather

similar with the one shown by Marshall-Olkin, the same conclusion might be drawn directly from

Marshall-Olkin’s case, in that Gumbel copula does not tend to the independence copula as the

number of sub-intervals goes to infinity.

One might notice a relation between iterated limit problem and self-chaining copula concept. Figure

12 illustrates that Gaussian copula has smaller limit errors than t copula. As for t copula, the

lower degrees of freedom it has, the higher its errors can be. This behaviour shall seem familiar to

the reader. Moreover, Figure 13 shows that limit errors of Clayton and Frank copula are extremely

small compared to others. On the other hand, Marshall-Olkin and Gumbel copula have the most

critical limit errors. All of these are pieces of evidence that self-chaining copulas tend to have the

more significant limit errors than other copulas without self-chaining property. Actually, this fact

is completely obvious as limit of iterated self-chaining copula is self-chaining copula itself, namely
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Figure 14: Iterated limit error line charts of: (a) Marshall-Olkin copula and (b) Gumbel copula

with Kτ = 0.5, λ1 = 0.01, λ2 = 0.03, and λ12 = 0.04.

lim
N→∞

CSC(S1(∆T ), S2(∆T ))N = CSC(S1(T ), S2(T ))

where CSC(S1(T ), S2(T )) denotes self-chaining copula. For instance, we will prove bivariate Gum-

bel copula case with intensities λ1 and λ2.

Proof. Consider a Gumbel copula CGuα (S1(T ), S2(T )) and write its iterated limit as

lim
N→∞

CGuα (S1(∆T ), S2(∆T ))N = lim
N→∞

e−N[(λ1
T
N )

α
+(λ2

T
N )

α
]
1/α

.

The next step is letting y := e−N[(λ1
T
N )

α
+(λ2

T
N )

α
]
1/α

and taking the natural logarithm of all sides,

hence we get

ln y = −N
[(
λ1
T

N

)α
+

(
λ2
T

N

)α]1/α

.

Take the limit on the left and right side of the equation, in particular

lim
N→∞

ln y = lim
N→∞

[(λ1
T
N )α + (λ2

T
N )α]1/α

−1/N

L
= lim
N→∞

1/α · [(λ1
T
N )α + (λ2

T
N )α]

1−α
α · (−αT/N2) · [(λ1

T
N )α−1 · λ1 + (λ2

T
N )α−1 · λ2]

1/N2

= −(λα1 + λα2 )
1−α
α · (λα1 + λα2 ) · T

= −[(λ1T )α + (λ2T )α]1/α.

At last, we obtain the following

lim
N→∞

e−N[(λ1
T
N )

α
+(λ2

T
N )

α
]
1/α

= e−[(λ1T )α+(λ2T )α]1/α = CGuα (S1(T ), S2(T )).
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Additionally, we present an example of self-chaining copula iterated limit from the numerical point

of view. Now, define the difference between iterated self-chaining copula limit and self-chaining

copula itself as

εSC = | lim
N→∞

CSC(S1(∆T ), S2(∆T ))N − CSC(S1(T ), S2(T ))|.

The following table shows percentage εSC of Gumbel copula and Marshall-Olkin copula with 3

different N quantities. As we can observe from the table, the percentage errors of iterated self-

chaining copulas relative to themselves are extremely small and remain steady. Hence, the result

follows.

Table 6: Percentage limit error (εSC) of self-chaining copulas: Gumbel and Marshall-Olkin, with

λ1 = 0.01, λ2 = 0.03, λ12 = 0.04, and Kτ = 0.5.

Copula N=1000 N=10000 N=1000000

Gumbel 1.9839E-12 1.59E-11 3.72E-11

Marshall-Olkin 4.73E-12 3.56E-11 4.41E-10

The next problem is the trivariate case of all survival entities. As in the bivariate case, we examine

errors for several copulas: Gaussian, t, Gumbel, Frank, Clayton, and Marshall-Olkin. The following

are explicit formulas for some trivariate copulas:

1. Gumbel copula

CGuα (u1, u2, u3) = e−[(−ln(u1))α+(−ln(u2))α+(−ln(u3))α]1/α .

2. Clayton copula

CClα (u1, u2, u3) = max (u−α1 + u−α2 + uα3 − 2, 0)−1/α.

3. Frank copula

CFrα (u1, u2, u3) = − 1

α
ln

{
1 +

(e−αu1 − 1)(e−αu2 − 1)(e−αu3 − 1)

(e−α − 1)2

}
.

4. Marshall-Olkin copula

Trivariate Marshall-Olkin formula in the following is taken from Li (2006: 5-7), reads

C(u1, u2, u3) =u1u2u3 ·min (u
−α12

1
1 , u

−α12
2

2 ) ·min (u
−α13

1
1 , u

−α13
3

3 )

·min (u
−α23

2
2 , u

−α23
3

3 ) ·max (u
α123

1
1 , u

α123
2

2 , u
α123

3
3 )

where αJi ≥ 0, i ∈ J , and J ⊆ {1, 2, 3}.



3.1 All Survival Case 39

Figure 15: Relative error εr tables Gaussian, t, Gumbel, Frank, Clayton, and Marshall-Olkin

copula with λ1 = 0.01, λ2 = 0.03, λ3 = 0.05, and T = 5y. (a) Copulas with low-level dependency.

(b) Copulas with moderate-level dependency. (c) Copulas with high-level dependency.

Figure 15 shows the relative errors of six different copulas with different dependency levels. Gen-

erally, all copulas’ errors grow larger when the number of time steps increases. The increments

of errors are also be affected by the choice of dependency parameter(s). As can be seen in the

figure above, the raises of errors for copulas with moderate-level dependency are more substantial

than others. However, Gumbel and Marshall-Olkin’s errors are considerably unchanged for whole

dependence parameters’ values. It has been shown that Gaussian, Frank, and Clayton copula tend
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to come closer to the independence copula as N approaches infinity. Therefore, their errors go

larger when the value of N is switched, from 1000 to 10000. The important point here is errors

become smaller if we set dependence parameters to particular values so that the copulas tend to re-

semble either independence or comonotonicity copula. This fact is unsurprising as we have already

discussed this issue in terms of Kendall’s tau framework in bivariate case. One might also notice

that trivariate errors are always more significant than bivariate errors. Thus, the more entities

involved in this simulation, the higher error we expect.

3.2 Mixed Survival Case

After discussing all survival cases, we start examining the more ambitious tasks in mixed survival

case. It has been explained that in solving these problems, same technique as in all survival case is

utilised, by initially converting mixed survival case into all survival case. Regarding the bivariate

case, we would compare simulation errors with various dependence structures and times. Whereas

in the trivariate case, the effect of changing time period as well as intensities on relative errors are

thoroughly examined.

Table 7: Relative error table of bivariate copulas with λ1 = 0.01, λ2 = 0.03, N = 1000, and

T = 5y.

Copula
(%) Relative Error

Kτ = 0.1 Kτ = 0.5 Kτ = 0.9

Gaussian 0.3958 2.0129 0.0730

t(ν = 3) 0.0217 0.1962 0.0050

Gumbel 3.6970E-12 2.5979E-12 5.9952E-13

Clayton 0.1335 1.0275 3.7404

Frank 0.2742 2.2440 4.1068

MO 6.7945E-12 8.2045E-12 9.90319E-12

Percentage relative errors of six aforementioned copulas with various attributes are shown in Table

7 and Table 8. Firstly, from Table 7, it can be clearly seen that in 5 years period, iteration errors

across different copula types and tau quantities diverge considerably.

According to Table 7, as tau enlarges to particular points, relative errors of all copulas rise. Gaus-

sian and Frank copula have the most significant error increments from around 0% to 2% when

their tau values are ascended to 0.5, whereas Gumbel and Marshall-Olkin copula errors do not

exhibit any notable changes. Next, to see whether there is a changing pattern in simulation error,

the value of tau is raised again by 0.4, from Kτ = 0.5 to Kτ = 0.9. Interestingly, there are three

different effects on copula errors. Gaussian and t copula experience downward trend while Clayton
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and Frank copula’s errors level up to around 4%. As for Gumbel and MO copula, their errors

remain stable at very low level. One might be familiar with such kind of patterns. Indeed, it is

roughly similar to Figure 10 in the previous case. Numerical problems are also encountered as in

all survival case, especially for Clayton and Frank copula with high Kendall’s tau values. This

issue is addressed later in this chapter.

Table 8: Relative error table of bivariate copulas with λ1 = 0.01, λ2 = 0.03, N = 1000, and

T = 50y.

Copula
(%) Relative Error

Kτ = 0.1 Kτ = 0.5 Kτ = 0.9

Gaussian 1.7299 5.5881 0.0746

t(3) 0.6004 1.4136 0.0286

Gumbel 1.998E-13 1.3988E-12 5.9952E-13

Clayton 1.722 7.8620 8.5988

Frank 1.6176 7.5209 8.4101

MO 1.58E-13 9.9920E-13 8.99281E-13

Table 8 depicts relative errors of copulas with different degrees of dependency for T = 50 years.

It is obvious that if the time period is added up, the errors elevate as well. In particular, error

patterns are reasonably identical with the ones in Table 7. Gaussian copula still has the greatest

amount of discrepancies for Kτ = 0.1. It is then followed by Clayton and Frank copula with quite

substantial errors. t copula has relatively small errors, although it is not as insignificant as Gumbel

and Marshall-Olkin’s. When Kendall’s value reach 0.5, copula errors become more considerable,

except for self-chaining copulas whose errors remain stable near 0. However, as Kτ is set up to

be 0.9, the errors of all copulas but Clayton and Frank finally go down. Again, a numerical issue

comes up for Clayton and Frank copula. In order to overcome this problem, we calculate their

relative errors with respect to parameter values instead.

Table 9: Relative error table of bivariate Clayton and Frank copula relative to parameter (α) value

with λ1 = 0.01, λ2 = 0.03, N = 1000, and T = 5y.

Clayton Frank

α (%) Relative Error α (%) Relative Error

10000 1.3427599 340 4.6428781

30000 0.1264161 540 4.5115475

50000 0.0123309 740 4.4789916
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Table 9 shows errors of Clayton and Frank copula with high parameter values. It is evident that

Clayton’s error is prominently decreasing as its parameter value grows. Similar results hold for

Frank copula. Hence, the same conclusion is obtained as in all survival case, in that copula errors

reach their lowest whenever Kτ closest to 0 and 1. Furthermore, we can see that errors for the

bivariate mixed case are moderately higher than all survival case. Thus, involving default events

in copula simulation leads us to the less persistent results.

Regarding the trivariate case, there are several comparisons that need to be discussed. As in

all survival case, Kendall’s tau measure is not utilised due to numerical complexity. It has been

mentioned that the case is divided into 2 problems: simulation with 1 default (2 survivals) and

simulation with 2 defaults (1 survival).

Table 10: Relative error of trivariate copulas (1 default case) with λ1 = 0.01, λ2 = 0.03, λ3 = 0.05,

and N = 1000.

Copula Parameter(s)
(%) Relative Error

T = 5y T = 10y

Gaussian
ρ12 = 0.3, ρ23 = 0.5, ρ13 = 0.9

3.823 5.505

t(ν = 3) 0.551 1.187

t(ν = 4) 1.011 1.861

Gumbel

α = 10

4.207E-12 4.297E-12

Frank 7.977 11.599

Clayton 8.803 12.688

MO

α12
1 = 0.58 α12

2 = 0.48 α13
1 = 0.58

6.095E-12 1.550E-12α13
3 = 0.50 α23

2 = 0.63 α23
3 = 0.66

α123
1 = 0.19 α123

2 = 0.16 α123
3 = 0.16

Comonotonicity perfectly dependent 1.350E-12 9.470E-12

Independence independent 3.708E-12 3.997E-12

Table 10 illustrates copula errors in 1 default simulation case for T = 5 years and T = 10 years.

Instead of doing comparison across copulas, studying errors within similar copulas with different

time frame is more desirable. Generally, errors for longer time period simulations are greater than

the ones with shorter time period, which is in line with the previous bivariate mixed survival case

results. Frank copula has the most notable error rising by around 45.5 %. The second biggest

error increments come from Clayton and Gaussian copula, with elevations as high as 44.8 % and

44.1 % respectively. A common thing we can observe is t copula with 4 degrees of freedom has

relatively bigger errors than t copula with 3 degrees of freedom. Both t copula errors have relatively

similar increases of around 1%. Needless to say, Gumbel and Marshall-Olkin errors are not affected
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by the change of time period. Similarly, the comonotonicity and independence copula which are

categorised as self-chaining copula also have insignificant errors for both T = 5y and T = 10y.

Table 11: Relative error of trivariate copulas (2 defaults case) with T = 5y and N = 1000.

Copula λ1 λ2 λ3 Parameter(s) (%) Relative Error

Gaussian

0.01 0.01 0.01 0.335

0.01 0.01 0.03 ρ12 = 0.3 0.979

0.01 0.03 0.05 ρ23 = 0.5 2.661

t(ν = 3)

0.01 0.01 0.01 ρ13 = 0.9 0.0193989

0.01 0.01 0.03 0.0878247

0.01 0.03 0.05 0.4848366

Gumbel

0.01 0.01 0.01

α = 10

1.4877E-12

0.01 0.01 0.03 4.50751E-12

0.01 0.03 0.05 4.30767E-12

Frank

0.01 0.01 0.01

α = 10

0.5792797

0.01 0.01 0.03 1.3466057

0.01 0.03 0.05 4.8530275

Clayton

0.01 0.01 0.01

α = 10

0.6158312

0.01 0.01 0.03 1.4478716

0.01 0.03 0.05 5.4179188

MO

0.01 0.01 0.01 α12
1 = 0.58 α12

2 = 0.48 α13
1 = 0.58 8.99281E-12

0.01 0.01 0.03 α13
3 = 0.50 α23

2 = 0.63 α23
3 = 0.66 2.46025E-12

0.01 0.03 0.05 α123
1 = 0.19 α123

2 = 0.16 α123
3 = 0.16 7.69385E-12

Relative errors for the last case in this study, trivariate copulas with 2 companies default, can be

found in Table 11. In this table, we present each copula with various intensities (λ) in order to

show that a slight change in intensity values could result in significant difference. However, one

need to keep in mind that the difference is not only affected by intensities but also the copula

parameters. We can see that Gaussian copula with all intensities equal to 0.01 has relative error

0.335%. If one of the intensities is modified, in this case λ3 = 0.03, its error grows three times larger.

The same results hold for t, Frank, and Clayton copula although the changes vary depending on

their parameters. As is expected, the alteration of intensities does not have a big impact on self-

chaining copulas. It can be observed that Gumbel and Marshall-Olkin copula errors are consistently

unchanged around 0.
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Table 12: Relative error of trivariate Gaussian copula (2 defaults case) with T = 5y and N = 1000.

λ1 λ2 λ3 ρ (%) Relative Error

0.0001 0.0001 0.0001
0 2.998E-12

0.99999 8.538E-07

0.1 0.1 0.1
0 1.998E-12

0.99999 5.862E-07

More examples regarding self-chaining copulas can be seen in Table 12. To begin with, the trivariate

Gaussian copula parameters are set to be zeros, or, in other words, we obtain independence copula.

As one might predict, relative errors for both intensity variations are incredibly insignificant. The

same conclusion holds for Gaussian copula whose parameter tends to 1 (i.e. the comonotonicity

copula), although numerical constraint causes the errors are slightly bigger than the ones in the

independence case. Lastly, it is evident that relative errors of trivariate copulas in mixed survival

case are moderately higher than the errors in all survival case. This finding is in compliance with

the previous bivariate case result.
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4 Summary, Conclusions, and Further Work

4.1 Summary and Conclusions

The aim of this study is to examine errors of dependence iteration for particular bivariate and

trivariate copulas. Most of the problems are evaluated using numerical approach while for few

bivariate copulas we also compute the probabilities analytically. There are two main procedures

used in this thesis, the first one is to simulate the copula function through the whole period, from

the beginning to terminal time T , directly. As for the second procedure, the time path is divided

into N uniform sub-intervals, in that [0,∆T ], [∆T, 2∆T ], . . . , [(N − 1)∆T,N∆T ].

In chapter 1, all basic concepts such as copula, intensity model, and Kendall’s tau are explained

in detail. We utilise intensity model as our default probability model, then combine this with

copula function to describe dependence structures among entities. Furthermore, multivariate ho-

mogeneous lack of memory (MHLOM) property is also introduced as the most basic requirement

needed to obtain similar simulation results from the aforementioned procedures. This theory is a

generalisation of univariate lack of memory concept which is usually recognised as exponential dis-

tribution’s main characteristic. Eventually, Marshall-Olkin distribution is known as multivariate

distribution function embedded with MHLOM property. This property is then transformed into a

copula function which brings us to the definition of self-chaining copula as described in [16]. Since

Gumbel and Marshall-Olkin copula are examples of self-chaining copulas, we expect insignificant

errors from simulations of these two aforesaid copulas.

In the following chapter 2, the problems we encounter are described in the form of mathematical

expressions. Firstly, the problems are broken down into all survival and mixed survival case.

For each case, we study both bivariate and trivariate copula errors. In particular, Kendall’s tau

measure is also applied to compare all bivariate copulas. Generally, copula errors are defined as

εr :=
Psingle − Pmulti

Psingle
,

where Psingle denotes the first procedure and Pmulti stands for the second procedure. In addition,

we also investigate the effect of bivariate copula iteration on dependency structure.

Generally, all simulation results are shown in Chapter 3. As for the bivariate copula in all survival

case, it is evident that as Kτ reach 0 (independent) or 1 (perfectly dependent), all copulas tends

to resemble self-chaining copula (i.e. errors become completely negligible). Broadly speaking,

Gaussian copula has the highest error among others for Kτ less than or equal 0.55 while Frank

copula’s error dominates others for Kτ more than 0.55. It has also been shown that iterating

non-self-chaining copulas such as Gaussian, Frank, Clayton, and higher degrees of t copula might
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terminate dependence structure since they tend to the independence copula as N rises. Similarly

for the trivariate case, if dependence parameters are set such that the copulas become either inde-

pendence or positive dependence, iteration errors become more inconsiderable.

The impact of dependence parameters on iteration error is also true for the mixed survival problems,

both in bivariate and trivariate case. Apart from self-chaining copulas, it is obvious that the longer

terminal time we set, the higher incidents of errors occur. Additionally, intensities are known to

have quite significant effects on consistency levels of the second procedure. Final conclusion we can

point out from this study is that adding up the number of companies involved in the simulation

and engaging default events in default probability calculation would increase iteration errors of all

copulas but the self-chaining ones.

4.2 Further Work

There are still a lot of aspects in this study that can be explored. The next research shall extend

all cases to higher dimensional larger than 3. Furthermore, involving more extreme value copulas

like Galambos or t-extreme-value is more ideal, see [41]. In terms of estimating copula parameter

(s), it would be better if maximum likelihood method is implemented. It is also possible to utilise

other rank correlation statistics such as Goodman and Kruskal’s gamma or Somer’s D to compare

iteration error across copulas. Another research idea is trying to find the limit of iterated non-self-

chaining copulas as N tends to infinity.
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l’Université de lyon, Série 3, 14, 53-77.

[38] Freund, J.E. (1961). A bivariate extension of the exponential distribution, Journal of the

American Statistical Association 56:296, pp. 971-977.

[39] Genest, C., Rivest (1989). A characterization of Gumbles family of extreme value distributions,

Statistics and Probability Letters 8, pp. 207211.

[40] Giesecke, K. (2003). A simple exponential model for dependent defaults, Journal of Fixed

Income 13(3), pp. 74-83.



Bibliography 50

[41] Gundendorf, G., and Segers J. (2009). Extreme Value Copulas. Available on arXiv.org,

arXiv:0911.1015v2

[42] Gumbel, E. J. (1960). Bivariate exponential distributions, Journal of the American Statistical

Association, 55, 689-707.

[43] Jarrow, R., Lando, D. and Turnbull, S. (1997). A Markov Model for the Term Structure of

Credit Risk Spreads. Rev. Financ. Stud., 10(2), pp.481-523.

[44] Jarrow, R. and Turnbull, S. (1995). Pricing Derivatives on Financial Securities Subject to

Credit Risk. The Journal of Finance, 50(1), p.53.

[45] Jarrow, R., Yu, F. (2001). Counterparty risk and the pricing of defaultable securities, Journal

of Finance 56, pp. 1765-1800.

[46] Joe, H. (1997) Multivariate Models and Dependence Concepts. Chapman Hall, London.

[47] Killiches, M., Czado, C. (2016). Block-Maxima of Vines. In: Extreme value modeling and risk

analysis: Methods and Applications, edited by Dey, D., Yan, J., Boca Raton, FL: CRC, Taylor

Francis Group, pp.109-116.

[48] Li, D. (2000). On Default Correlation: A Copula Function Approach, Journal of Fixed Income,

Vol. 9, No.4, pp.43-54

[49] Lindskog, F., and A. McNeil (2003). Common Poisson schok models: applications to insurance

and credit risk modeling, ASTIN Bulletin, 33 (2), 209-238.

[50] Mahfoud, M. (2012). Bivariate Archimedean copulas: application to two stock market indices.

Amsterdam, pp.17-20. Available at:

http://www.few.vu.nl/n/Images/werkstuk-mahfoudtcm243-277460.pdf.

[51] Mai, J-F. (2010). Extendibility of Marshall-Olkin distributions via Lévy subordinators and
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