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1 Introduction

With the advent of derivatives pricing in financial markets, modelling volatility has become an

essential problematic for trading purposes and risk management.

In the widely used Black-Scholes model [6], introduced in 1970, implied volatility fail to cap-

ture the accurate shape of the volatility surface observed in the market. Pricing models should

capture the volatility smile and skew and their empirical properties but the assumptions made

in this model are not coherent with characteristics of the real market. Indeed, volatility is not

deterministic and should not be modelled as such.

To respond to this inconsistency, volatility models have been improved throughout the last decades.

In the recent models, not only is volatility time-dependent, but it is also described as a stochastic

process, i.e. a non-deterministic process, driven by a standard Brownian motion. Among these

so-called stochastic volatility models, the very popular Heston model [14] proves particularly useful

as regards its tractability and its mean reversion property, recognized as a stylized fact of volatility

in the sense that it never reaches zero nor does it go to infinity. The Hull-White [16], SABR [13]

or Bergomi [4] models, along with the Heston model, also aim to reproduce the volatility surface.

The prices resulting from these models allow a better generation of smiles but some stylized facts

are still hard to reflect, particularly the persistence and clustering of volatility.

A stochastic model driven by a standard Brownian motion therefore proves not enough. In-

crements of a Brownian motion are independent, contrary to the behaviour of volatility and its

long-range dependence. As a result, correlating the increments of the Brownian motion would

seem less counter-intuitive and would justify the use of fractional Brownian motion.

Comte and Renault [8] introduced the Fractional Stochastic Volatility model, in which the volatil-

ity process is driven by a fractional Brownian motion. Gatheral, Jaisson and Rosenbaum [12] later

reworked on this model to propose the Rough Fractional Stochastic Volatility (RFSV) model.

In the first part, we discuss about the various methods to generate paths of fractional Brown-

ian motion. The two first methods having particularly high time and memory complexity, two

other alternative methods are seen, in order to increase computational efficiency.

Next, we introduce the Rough Fractional Stochastic Volatility model and analyze the behaviour

of volatility in this model. As the RFSV model generates volatility paths consistent with financial

data, the model is used to forecast volatility.
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In the following part, the pricing of derivatives is discussed under the rough Bergomi model and

we study how this model generates volatility surfaces consistent with market data. A calibration

method is proposed so as to find optimal parameters of the model. A discussion on the volatility

skew then takes place in an attempt to adapt the simulation of volatility via an alternative kernel

function. An additional test on Forward-start options is carried out in order to price them with

the rBergomi model.

Finally, the dynamics of derivatives on VIX are analyzed using different approaches and are eval-

uated in Futures and options pricing.
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2 Fractional Brownian motion

Throughout the course of this chapter, we consider a probability space (Ω,F , (Ft)t≥0,P), where F

is the natural filtration generated by a standard Brownian motion.

The concept of fractional Brownian motion (fBM) was formally introduced by Mandelbrot and

Van Ness [19], whose representation of fBM connects the notion of Brownian motion to the frac-

tional one using stochastic calculus. WH denotes a fBM with Hurst parameter H and is defined,

for every t ∈ R, as

WH
t =

1

Γ(H + 1
2 )

(∫ t

−∞
|t− s|H− 1

2 dWs −
∫ 0

−∞
|s|H− 1

2 dWs

)
(2.1)

where Γ is the gamma function1 and W a two-sided standard Brownian motion2 defined on R.

2.1 Definition and properties

In this first part, a fBM is defined given its covariance structure, and significant properties of this

process are presented. As a fBM is a Gaussian process, let us first remind this notion.

Definition 2.1. Gaussian process

A stochastic process (Xt)t∈T in the index set T is Gaussian if for every finite set of indices t1, . . . , tn

in T, the vector (Xt1 , . . . , Xtn) is a multivariate Gaussian random variable.

However, unlike the standard Brownian motion, the increments of a fractional Brownian motion

are not independent.

Definition 2.2. Fractional Brownian motion

A fractional Brownian motion (WH
t ) with Hurst parameter H ∈ (0, 1) is a continuous Gaussian

process with covariance structure

Cov(WH
t ,W

H
s ) =

1

2

(
t2H + s2H − |t− s|2H

)
, t, s ∈ R.

Definition 2.3. Characterization of fractional Brownian motion

A fractional Brownian motion (WH
t ) with Hurst parameter H ∈ (0, 1) is characterized by:

1The gamma function is defined, for complex numbers z ∈ C with a positive real part (Re(z) > 0), via a

convergent improper integral

Γ(z) =

∫ ∞
0

xz−1e−xdx.

2A two sided Brownian motion W , defined on R, is a generalization of a standard Brownian motion, defined on

R+, such that

W (t) =

 W 1(t), if t ≥ 0

W 2(−t), if t < 0

where W 1 and W 2 are two independent standard Brownian motions.
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1. WH
0 = 0

2. WH is Gaussian and, for every t ≥ 0, WH
t ∼ N(0, t2H)

3. WH has stationary increments: for any s ∈ R

(WH
t+s −WH

t )
∆
=WH

s

4. WH has P-a.s. continuous trajectories

5. E(WH
t W

H
s ) = 1

2

(
t2H + s2H − |t− s|2H

)
for every t, s ∈ R.

Remark 2.4. For H = 1
2 , the fBM is a standard Brownian motion. It is worth noticing that, in

that case, E(WH
t ,W

H
s ) = min(t, s).

Fractional Brownian motions satisfy other important properties.

Definition 2.5. Self-similarity

A stochastic process (Xt)t≥0 is said to be self-similar if, for any c ≥ 0, there exists a function

γ : R+ 7→ R such that, for any t ≥ 0,

Xct
d
= γ(c)Xt.

Proposition 2.6. A fractional Brownian motion (WH
t ) with Hurst parameter H ∈ (0, 1) is a

self-similar process such that, for any c ≥ 0,

WH
ct

d
= cHWt.

Definition 2.7. Hölder continuity

A function h : R 7→ R is Hölder continuous on I ⊂ R with Hölder exponent γ ∈ (0, 1) if

lim sup
r→0

sup
s,t∈I
|s−t|<r

|f(t)− f(s)|

rγ
<∞. (2.2)

The function f is said to be locally Hölder continuous if (2.2) holds on every bounded subset

I ⊂ R.

Proposition 2.8. The paths of a fractional Brownian motion (WH
t ) with Hurst parameter H ∈

(0, 1) are almost surely locally (H − ε)-Hölder continuous for ε ∈ (0, H).

Remark 2.9. It can also be said that for every T > 0 and every ε ∈ (0, H), there exists a constant

c such that, for 0 < s, t < T ,

|WH
t −WH

s | ≤ c|t− s|H−ε.

Remark 2.10. The Mandelbrot-Van Ness representation of fBM can also be noted

WH
t = CH

(∫ 0

−∞

(
|t− s|H− 1

2 − |s|H− 1
2

)
dWs +

∫ t

0

(t− s)H− 1
2 dWs

)
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with

CH =

√
2HΓ(3/2−H)

Γ(H + 1/2)Γ(2− 2H)
,

where Γ is the gamma function, W = (Wt)t∈R is a two sided Brownian motion. CH allows the

covariance structure to be as defined.

Proof. For any t ∈ R, using Ito’s isometry,

E
[
(WH

t )2
]

= (CH)2

(∫ 0

−∞

(
|t− s|H− 1

2 − |s|H− 1
2

)2

ds+

∫ t

0

(t− s)2H−1ds

)
= (CH)2t2H

(∫ 0

−∞

(
|1− u|H− 1

2 − |u|H− 1
2

)2

du+

∫ 1

0

(1− u)2H−1du

)
.

To ensure that E
[
(WH

t )2
]

= t2H , CH is taken to be

CH =

(∫ 0

−∞

(
|1− u|H− 1

2 − |u|H− 1
2

)2

du+
1

2H

)− 1
2

.

As for the covariance structure

E[|WH
t −WH

s |2] = (CH)2

(∫ t

−∞
(t− u)H−

1
2 dWu −

∫ s

−∞
(s− u)H−

1
2 dWu

)
= (CH)2

(∫ t−s

−∞
(t− s− u)H−

1
2 dWu −

∫ 0

−∞
(−u)H−

1
2 dWu

)
= (CH)2

(∫ 0

−∞

[
(t− s− u)H−

1
2 − (−u)H−

1
2

]
dWu +

∫ t−s

0

(t− s− u)H−
1
2 dWu

)

which leads to

E[|WH
t −WH

s |2] = E[|WH
t−s|2] = |t− s|2H .

Indeed, it was seen that (WH
t+s −WH

t )
∆
=WH

s . As a result:

E[WH
t W

H
s ] =

1

2

(
E[WH

t ] + E[WH
s ]− E[|WH

t −WH
s |2]

)
=

1

2

(
|t|2H + |s|2H − |t− s|2H

)
.

Directly resulting from Gaussianity, the monofractal scaling property applies for fBM.

Proposition 2.11. A fractional Brownian motion (WH
t ) has a monofractal scaling property:

E[|WH
t+∆ −WH

t |q] = E[|W∆|q] = Kq∆
Hq,

where Kq =
∫∞
−∞ |x|

q 1√
2π

e−
x2

2 dx.

Remark 2.12. A fBM is neither a Markov process, nor a semi-martingale.
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2.2 Volterra processes

Similarly to a standard Brownian motion, a fBM needs to be simulated in order to have a compu-

tational use. The simulation of fBM relies on Volterra processes of the form

V (t) =

∫ t

0

K(t, s)dWs,

where W is a standard Brownian motion and K is a kernel function, absolutely continuous on R+

with respect to t and with a square integrable density K ′. The representation of K in this context

is

K(t, s) = 2H(t− s)H−1/2,

where H stands for the Hurst parameter. This assures that, as in the fBM case, V[V (t)] = t2H ,

where V stands for the variance. However, the covariance structure is a bit different. Indeed, for

0 < s < t,

E[V (t)V (s)] = 2Hs2H

∫ 1

0

(1− u)H−1/2(
t

s
− u)H−1/2du = s2HG(

t

s
),

where, for x ≥ 1,

G(x) =
2H

H + 1/2
xH−1/2

2F1(1, 1/2−H,H + 3/2, x),

where 2F1 is the Gaussian hypergeometric function.

Definition 2.13. Gaussian hypergeometric function

The Gaussian hypergeometric function 2F1 of parameters a, b, c and variable z ∈ R is defined by

the formal power series

2F1(a, b, c, z) :=
∞∑
k=0

(a)k(b)k
(c)k

zk

k!
,

where (.)k is the rising factorial, defined as (x)0 = 1 and, for k ∈ N, as (x)k = x(x+1) · · · (x+k−1).

Besides, another representation may be used with the Molchan-Golosov kernel K, defined for

0 < s < t as

K(t, s) = cH
1

(t− s)1/2−H 2F1

(
1/2−H,H − 1/2, H + 1/2,

s− t
t

)
,

where cH is a constant. It is quite different from the previous kernel KH(t, s) = (t− s)H−1/2 but

some properties may still be retrieved from this representation.

2.3 Simulation methods

2.3.1 Cholesky decomposition

Sample-paths of stationary Gaussian processes can be simulated when the covariance structure is

known, which is the case for a fractional Brownian motion. The Cholesky decomposition method
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of the covariance matrix allows to model such a Gaussian process.

In this part, the simulation of the fBM in the time-interval [0, T ] is done by discretizing the

interval such that 0 = t0 < t1 < · · · < tn = T , with step h = T
n . Note that ti = i · h. The

covariance structure becomes, for any i, j ∈ {1, . . . , n},

E[WH
ti W

H
tj ] =

1

2

(
t2Hi + t2Hj − |ti − tj |2H

)
also expressed in the discretization grid as

E[WH
ti W

H
tj ] =

h2H

2

(
i2H + j2H − |i− j|2H

)
.

The covariance matrix Γ = (Γi,j)i,j∈{1,...,n} with Γi,j = E[WH
ti W

H
tj ] for any i, j ∈ {1, . . . , n} is a

symmetric, positive semi-definite matrix in Rn×n:

Γ =


E[WH

t1 W
H
t1 ] . . . E[WH

t1 W
H
tn ]

. . .
...

∗ E[WH
tnW

H
tn ]

 , (2.3)

where ∗ indicates symmetry in the matrix. Hence the Cholesky decomposition

Γ = LLT ,

with L ∈ Rn×n a lower triangular matrix with real and positive diagonal entries such that

L =


l1,1 0 . . . 0

l2,1 l2,2 . . . 0
...

...
. . .

...

ln,1 ln,2 . . . ln,n

 .

Remark 2.14. L is unique if Γ is positive-definite. Else, the diagonal of L may contain zero

values.

Constructing a vector Z of size n drawn independently from a standard Gaussian distribution, i.e.

ZT = (Z1, . . . , Zn) with (Zi)i∈{1,...,n} i.i.d. with distribution N(0, 1), the vector (0, LZ) of size

n+ 1 yields a sample path of a fBM.

Remark 2.15. The computation of the Cholesky method has a complexity of O(n3).

Algorithm 2.16. Simulation of fBM using the Cholesky method

1. Fix an equidistant grid {t0, · · · , tn} with step h = T
n on [0, T ]

2. Compute the covariance matrix Γ as defined in (2.3)

3. Use the Cholesky decomposition to get L such that Γ = LLT
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4. Construct a vector Z of n independent standard normal variables

5. Return the fBM (0, LZ).

On a grid of n = 1, 000 points, the simulation of two fractional Brownian motion paths using the

Cholesky decomposition gives the plots below (1).

(a) H = 0.1 (b) H = 0.3

(c) H = 0.5 (d) H = 0.7

(e) H = 0.9

Figure 1: Simulation of fBM paths with the Cholesky method for different Hurst parameters H
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2.3.2 “Circulant” Davies and Harte method

The circulant method has the same idea of finding a ”square-root” of the covariance matrix.

However the focus here is on the simulation of a fractional Gaussian noise, whose cumulative sums

give the wanted process. Indeed, using the same time-partition as the Cholesky method, which is

0 = t0 < t1 < · · · < tn = T , each point of the fBm can be written as

WH
ti =

i∑
k=1

WH
tk
−WH

tk−1
, for any i ∈ {1, . . . , n}.

The covariance matrix of a stationary discrete-time Gaussian process can be extended so as to be

seen as a circulant matrix. The new matrix, if positive definite as it is for a fractional Gaussian

noise, can be diagonolized using the Fast Fourier Transform (FFT) algorithm.

For any k ∈ {1, . . . , n}, let the increments

ξk = WH
k
n
−WH

k−1
n

.

The covariance structure of these increments are represented, for any k ∈ {1, . . . , n}, by

ρ(k) = E[ξ1ξk+1]

=
1

2n2H

(
|k + 1|2H − 2|k|2H + |k − 1|2H

)
.

The covariance matrix is given by

Γ =


ρ(0) ρ(1) . . . ρ(n− 1)

ρ(1) ρ(0) . . . ρ(n− 2)
...

...
. . .

...

ρ(n− 1) ρ(n− 2) . . . ρ(0)

 .

Definition 2.17. Toeplitz matrix

A Toeplitz matrix, or diagonal-constant matrix, is a matrix in which each descending diagonal

from left to right is constant.

Definition 2.18. Circulant matrix

A circulant matrix is a Toepliz matrix where each row vector is rotated one element to the right

relative to the preceding row vector.

To construct a symmetric circulant matrix from the covariance matrix, we reverse the vector of

ρ(i) for i ∈ {1, . . . , n− 2} and concatenate it with the vector of ρ(i) for i ∈ {0, . . . , n− 1} to use as



2.3 Simulation methods 15

as the main row used in the rotation. The circulant matrix, of size m = 2n− 2, is represented as

C =


c0 c1 . . . cm−1

cm−1 c0 . . . cm−2

...
...

. . .
...

c1 c2 . . . c0

 (2.4)

with coefficients

cj =

 ρ(j) for j ∈ {0, 1, . . . , n− 2, n− 1}

ρ(m− j) for j ∈ {n, . . . ,m− 1}.

To compute the eigenvalues of C, we first define a matrix Q = (qjk)m−1
j,k=0 such that, for any

j, k ∈ {0, . . . ,m− 1},

qjk =
1√
m

exp

(
−2πi

jk

m

)
, i2 = −1.

The circulant matrix C can be represented as

C = QΛQ∗,

with Λ = (λ0, . . . , λm−1) a diagonal matrix consisting of the eigenvalues of C. C is symmetric by

construction, therefore the eigenvalues are real.

However, there exists an efficient method to compute the eigenvalues of C. Indeed, the expansion

of Γ into the circulant matrix C makes the computation of the eigenvalues of C much more efficient

using Discrete Fourier Transform (DFT). In addition, instead of choosing m as a function of n, we

set m as a power of two so that computational complexity is O(n log n) by applying FFT.

As a consequence,

C = SS∗, with S = QΛ1/2Q∗ and Λ = (λ
1/2
0 , . . . , λ

1/2
m−1).

For any k ∈ {0, . . . ,m− 1},

λk =

m−1∑
j=0

cj exp

(
−2πi

jk

m

)
Therefore, the interesting simulation relies on the generation of SZ, the fractional Gaussian noise.

As SZ = QΛ1/2Q∗Z, the algorithm describes the generation of the fractional Gaussian noise.

Algorithm 2.19. Simulation of fractional Gaussian noise using the Circulant method

1. Construct the circulant matrix C as defined in (2.4)

2. Apply a DFT to C to have the eigenvalues matrix Λ. As the eigenvalues are real, Λ1/2, the

matrix of square-root of eigenvalues, is defined.
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3. Construct a vector Z of size m drawn independently from a standard Gaussian distribution

4. Apply an inverse DFT to Z to get
√
mQ∗Z

5. Apply a DFT to Λ1/2
√
mQ∗Z to multiply it on the left by 1

mQ so we recover SZ.

This simulation allows to generate a fractional Gaussian noise

SZ ∼ N(0, C).

By taking the first n components of SZ and summing cumulatively the elements of the fractional

Gaussian noise, we simulate of a path of fBM.

2.3.3 Hybrid simulation scheme

The hybrid scheme was introduced by Bennedsen, Lunde and Pakkanen [3] and is presented as a

scheme simulating a Brownian semistationary process [1]. Contrary to the Cholesky method, the

hybrid scheme is an approximate method but when used in rough volatility models, the results are

satisfactory.

Definition 2.20. Brownian semistationary process

A Brownian semistationary process Y = (Yt)t∈R is (in this framework) defined by

Yt =

∫ t

−∞
g(t− s)σ(s)dWs,

where W is a Brownian motion, g is a non-negative deterministic weight function on R and σ is a

càdlàg process.

Some assumptions on the kernel function g are made so as to apply the hybrid scheme:

1. For some α ∈ (− 1
2 ,

1
2 ) \ {0},

g(x) = xαLg(x), x ∈ (0, 1],

where Lg : (0, 1] 7→ [0,∞) is continuously differentiable, slowly varying3 at 0 and bounded

away from 0. Moreover, there exists a constant C > 0 such that the derivative L
′

g or Lg

satisfies

|L
′

g(x)| ≤ C(1 + x−1), x ∈ (0, 1].

2. The function g is continuously differentiable on (0,∞).

3A measurable function L : (0, 1] 7→ [0,∞) is slowly varying at 0 if for any t > 0,

lim
x→0

L(tx)

L(x)
= 1.
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3. For some β ∈ (−∞,−1/2),

g(x) = O(xβ).

Example 2.21. These functions satisfy the assumptions above for α ∈ (− 1
2 ,

1
2 ) \ {0}.

Gamma kernel:

g(x) = xα exp(−λx), λ > 0

Power-law kernel:

g(x) = xα(1 + x)−γ−α, γ > 1/2.

It is important to note that, in our case, as the time index t begins at 0, we shall work with a

truncated Brownian semistationary process (T BSS) X defined by

Xt =

∫ t

0

g(t− s)σ(s)dWs.

On the discretization grid {0, 1
n ,

2
n , . . . ,

bnTc
n }, assuming that σ can be taken constant on each

interval of the grid, the T BSS is written as

Xt =

bnTc∑
k=1

∫ t− k−1
n

t− kn
g(t− s)σ(s)dWs '

bnTc∑
k=1

σ

(
t− k

n

)∫ t− k−1
n

t− kn
g(t− s)dWs =: Xn(t)

Here, two cases are considered for g.

1. For small values of k, let us say k < κ with a given κ, g can be approximated as in the

assumptions, i.e.

g(t− s) ≈ (t− s)αLg
(
k

n

)
, t− s ∈

[
k − 1

n
,
k

n

]
.

2. For larger values of k, g is approximated by

g(t− s) ≈ g
(
bk
n

)
,

with optimal bk shown to be [1] expressed as

b∗k =

(
kα+1 − (k − 1)α+1

α+ 1

)1/α

, k ≥ κ+ 1.

The T BSS is therefore composed of these 2 parts so it expressed as

Xn(t) = X(1)
n (t) +X(2)

n (t)

X(1)
n (t) =

κ∑
k=1

Lg

(
k

n

)
σ

(
t− k

n

)∫ t− k−1
n

t− kn
(t− s)αdWs

X(2)
n (t) =

bnTc∑
k=κ+1

g

(
b∗k
n

)
σ

(
t− k

n

)(
Wt− k−1

n
−Wt− kn

)
.
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The simulation of X on the grid {0, 1
n ,

2
n , . . . ,

bnTc
n } then requires simulating

Wn
i,j =

∫ i+1
n

i
n

(
i+ j

n
− s
)α

dWs, j = 1, . . . , κ

Wn
i =

∫ i+1
n

i
n

dWs.

(2.5)

Some properties of the processes are important to note. Using Ito’s isometry:

V [Wn
i ] =

1

n

V
[
Wn
i,j

]
=
j2α+1 − (j − 1)2α+1

(2α+ 1)n2α+1

E
[
Wn
i,jW

n
i,k

]
=

∫ 1/n

0

(
k

n
− u
)H−1/2(

j

n
− u
)H−1/2

(1− δj,k)du,

E
[
Wn
i,jW

n
j

]
=
jα+1 − (j − 1)α+1

(α+ 1)nα+1
δi,j ,

where δ stands for the Kronecker delta. Simulating a fractional Brownian motion can be seen as

simulating a Volterra process such that

V (t) =
√

2α+ 1

∫ t

0

(t− s)αdWs.

The Gaussian Volterra process is a truncated Brownian semistationary process which satisfies the

conditions 2.20. Indeed, letting Ṽ (t) =
V (t)√

2H
, and taking g(s) = sH−1/2, σ(s) = 1 and Lg(s) = 1

for s ∈ (0, T ), as α = H − 1

2
∈ (−1

2
,

1

2
) \ {0}, Ṽ belongs to the class of truncated Brownian

semistationary processes satisfying the assumptions for the hybrid scheme.

In particular, for κ = 1, the process is simulated as

Vn

(
i

n

)
=
√

2α+ 1

(∫ i
n

i−1
n

(
i

n
− s
)α

dWs +

i∑
k=2

(
b∗k
n

)α (
W i−(k−1)

n
−W i−k

n

))
,

using the covariance structure

Σ =


1

n

1

(α+ 1)nα+1

∗ 1

(2α+ 1)n2α+1

 . (2.6)

Generating a multivariate normal variable from the covariance matrix Σ yields a path of the

Volterra process.

Algorithm 2.22. Simulation of fBM using the Hybrid scheme

1. Compute covariance matrix Σ from (2.6)

2. Generate a multivariate normal variable Z = (Z1, Z2)T with mean (0, 0)T and covariance

structure Σ
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3. For the integral part of Vn
(
i
n

)
, as

∫ i
n

i−1
n

(
i

n
− s
)α

dWs ∼ N
(

0,
1

(2α+ 1)n2α+1

)
, estimate

it using Z2

4. For the discrete sum part, compute

(
b∗k
n

)α
for k ∈ {2, . . . , i} then compute the convolution

with Z1

5. Sum the two parts and add the factor
√

2α+ 1

2.3.4 Generalised fractional operators

An extension of Donsker’s approximation of Brownian motion to fractional Brownian motion and

Volterra-like process is proposed by Horvath, Jacquier and Muguruza [15].

Definition 2.23. Generalised fractional operators

For any (α, λ) ∈ (−1, 1) × (0, 1), α + λ ∈ (0, 1), the generalised fractional operator defined on

Cλ([0, 1]) and associated to g in the space4 Lα is

(Gαf)(t) :=


∫ t

0

f(s)
d

dt
g(t− s)ds, if α ∈ [0, 1− λ),

d

dt

∫ t

0

f(s)g(t− s)ds, if α ∈ (−λ, 0).

Based on this definition, if the process Y is a strong solution to a stochastic differential equation,

then, almost surely for all t ∈ [0, 1],

(GαY )(t) =

∫ t

0

g(t− s)dYs

Note that the first two moments of GαY read, for all t ∈ [0, 1],

E(GαY )(t) = 0,

V(GαY )(t) =

∫ t

0

g(t− s)ds.

An approximation of GαY is proposed by taking Y = W a Brownian motion and letting an i.i.d.

sequence of centered random variables with finite moments and E[ξ2
1 ] = σ2, for every i ∈ {1, . . . , n},

(GαY )(ti) ≈
1

σ
√
n

i∑
k=1

g(t∗k)2,

with ti = i
n and t∗k ∈ (tk−1, tk) an optimal point. Now, the second moment of this approximation

is, for every i ∈ {0, . . . , n},

V

[
1

σ
√
n

i∑
k=1

g(t∗k)2

]
=

1

n

i∑
k=1

g (t∗k)
2
.

4Lα := {u 7→ uαL(u), L ∈ C1b ([0, 1])}
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Next, matching the moments of the approximating sequence with the target process on each interval

(tk−1, tk), we get

1

n
g (t∗k)

2
=

∫ tk

tk−1

g(t− s)2ds,

g (t∗k) =

√
n

∫ tk

tk−1

g(t− s)2ds.

In the Riemann-Liouville fractional Brownian motion case, the kernel g is expressed as g(u) =

uH−1/2, therefore replacing and integrating gives

(t∗)
H−1/2
(tk−1,tk) =

( n

2H

[
(t− tk−1)2H − (t− tk)2H

]) 1
2

,

where (t∗)(tk−1,tk) := t∗k. Using the optimal point expression, the Volterra process on [0, t], for

t = 1, can be approximated as∫ t

0

(t− s)H−1/2dWs =

n∑
i=1

∫ ti

ti−1

(t− s)H−1/2dWs

'
n∑
i=1

(t∗)
H−1/2
(t−ti,t−ti−1)(∆W )i−1

with ∆W a vector of Brownian increments such that, for any i ∈ {0, . . . , n− 1},

(∆W )i = Wti+1
−Wti

d
=

(
1

n

) 1
2

Zi

with Z standard normal vector. Therefore the approximation becomes∫ t

0

(t− s)H−1/2dWs '
(

1

n

)H n∑
i=1

Zi−1

[
i2H − (i− 1)2H

2H

] 1
2

.

Remark 2.24. Left-point approximation

The Volterra process can easily be estimated using a left-point approximation of the kernel:∫ t

0

(t− s)H−1/2dWs '
n∑
i=1

t
H−1/2
i−1 ∆Wn−i =

(
1

n

)H n∑
i=1

(i− 1)H−1/2Zn−i.
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3 Rough fractional stochastic volatility models

3.1 Motivation

The notion of fractional stochastic volatility (FSV) was introduced by Comte and Renault [8] whose

main idea was to replace a standard Brownian motion in volatility models by a fractional Brownian

motion. Indeed, the monofractal scaling property of the increments of log-volatility (2.11) suggests

that log-volatility can be driven by a fBM.

In the FSV model, the Hurst parameter satisfies H > 1/2, ensuring the long-memory property of

volatility. Indeed, a classical stylized fact is that volatility is a long memory process. Long memory

has been explained in the sense of the slow decay of the autocorrelation functions of returns, then

in the sense of non-integrability of these functions and even caracterizing this slow decay as a

power-law function with exponent inferior to 1.

Later on, Gatheral, Jaisson and Rosenbaum [12] demonstrate that log-volatility indeed presents

persistence but not in the classical power-law sense. Studying the smoothness of volatility pro-

cesses, they presented their FSV model, called Rough Fractional Stochastic Volatility model, with

the Hurst exponent satisfying H < 1/2. The behaviour of log-volatility paths indeed lead to a

representation of those as a fractional Brownian motion with Hurst index of order 0.1, making the

process rougher than Brownian motion.

In the RSFV model, volatility does not exhibit long memory, but at the same time, the long

memory property is questioned and the methods used to depict this property finally prove inaccu-

rate anyway.

We focus our study, in this part and the following one, on how the RFSV model reproduces

the smoothness of the volatility process and how consistent it is with the term structure of at-the-

money volatility skew and volatility surfaces.

3.2 Smoothness of the volatility process

The smoothness, or more exactly the roughness of the volatility, can be characterized by the Hurst

exponent of the fractional Brownian motion driven the volatility process, in the sense of Hõlder

regularity (2.2).
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3.2.1 Increments of log-volatility

To assess the smoothness of the volatility process, the qth sample moment of differences of log-

volatility at a given lag ∆ is defined, for q ≥ 0 and N = b T∆c, and on a time grid 0 = t0 < t1 =

∆ < · · · < tN = N∆ = bT c of step ∆, as

m(q,∆) =
1

N

N∑
i=1

| log σti − log σti−1
|q. (3.1)

If the increments of the log-volatility process are assumed to be stationary, then m(q,∆) can be

seen as an estimate of

E[| log σ∆ − log σ0|q],

using the (strong) law of large numbers. Daily spot volatility values give a value for m(q,∆) as

defined in (3.1) with a time step ∆ = 1. As a proxy of daily spot variance, daily realized variance

estimates are used. We use historical realized variance estimates from the Oxford-Man Institute

of Quantitative Finance, where the estimation of realized variance is done with trades and quotes

over the trading day from open to close.

As a reminder, the annualized realized variance of a stock price process (St)t≥0 for the period

[0, T̃ ] on a time grid 0 = t0 < t1 < · · · < tM = T̃ , representing for example 5-minute prices or daily

close prices, is usually defined as

RV 0,T̃ :=
d

M

M∑
i=1

log

(
Sti
Sti−1

)2

,

where d = 252 (days). The computation of logm(q,∆), for any q ≥ 0, allows to express this

quantity as a linear function of log ∆. In addition, it has been recognized as a stylized fact that

the distribution of the increments of log-volatility is close to Gaussian. Therefore, under the same

stationary assumption as before, the information on m(q,∆) gives

E[| log σ∆ − log σ0|q] = Kq∆
ζq ,

where Kq =
∫∞
−∞ |x|

q 1√
2π
e−

x2

2 dx is the qth moment of a standard normal distribution and ζq is

the linearity coefficient of logm(q,∆) against log ∆.

3.2.2 Numerical results

Next, an approximation of ζq is given as a linear function of q so that the monofractal scaling

relationship

ζq = Hq,

https://realized.oxford-man.ox.ac.uk/
https://realized.oxford-man.ox.ac.uk/
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is observed, where H will later be seen as the Hurst exponent. However empirically, for many

indices, this approximation only works for a certain range of q, namely for q ≤ 2. As our distribution

is Gaussian, the first 2 moments fully describe the process, so it may explain why q ≤ 2 seems

enough and convenient. To emphasize the range of q, let us focus on 3 indices: S&P 500, FTSE

100 and Euro Stoxx 50. The straight line corresponds to the linear fit to values of ζq for q ≤ 2.

(a) SPX, H = 0.122 (b) UKX, H = 0.107 (c) SX5E, H = 0.084

Figure 2: Scaling of ζq with q

3.3 Fractional Ornstein-Uhlenbeck

On the probability space (Ω,F , (Ft)t≥0,P), (St)t≥0 and (vt)t≥0 are two processes that respectively

model the stock price and the instantaneous variance.

The logarithm of realized variance behaves similarly as a fractional Brownian motion with Hurst

exponent H ∈
(

0,
1

2

)
. The stationary RFSV model is expressed, for any t ∈ [0, T ], as

dSt = µtStdt+ σtStdZt

σt = exp(Xt),

where µ is a suitable drift process, Z is a standard Brownian motion, X is a fractional Ornstein-

Uhlenbeck process such that, for any t ∈ R,

dXt = α(m−Xt)dt+ νdWH
t , (3.2)

where m ∈ R, α, ν > 0. Using the closed-form solution of an Ornstein-Uhlenbeck process, X is

expressed, for any t ∈ [0, T ], as

Xt = m+ ν

∫ t

−∞
e−α(t−s)dWH

s . (3.3)

Assuming that, on the interval [0, T ], the rate of convergence α is “small”, i.e. α << 1
T , the

log-volatility behaves locally as a fBM.
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Proposition 3.1. As α > 0 tends to zero,

E

[
sup
t∈[0,T ]

|Xα
t −Xα

0 − νWH
t |

]
→ 0,

where Xα is defined as in (3.3) and WH is a fBM.

Note that in the FSV model, as the Hurst parameter satisfies H > 1/2, α should be taken large,

in the sense of α >> 1
T , in order to be consistent with the term structure of volatility skew. As a

result, small maturities, i.e. T << 1
α , don’t generate a proper skew.

The model generates volatility via the discretization of the fractional Ornstein-Uhlenbeck process

(3.2) on an equidistant grid {t0, · · · , tN} on [0, T ] with step T
N so that, for i ∈ {1, · · · , N},

Xti = α(m−Xti−1)(ti − ti−1) + ν(WH
ti −W

H
ti−1

).

Graphically, the volatility of S&P 500 observed in the market and obtained from the model look

very similar in terms of behaviour. Moreover, the volatility generated by the RFSV model is

consistent with the mean reversion property of volatility, that is high (low) periods of volatility

are followed by low (high) periods of volatility.

(a) Market data

(b) RFSV model

Figure 3: Volatility of S&P 500
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3.4 Variance forecast

The RFSV model allows, as a first application, to forecast log-volatility, as explained by Gatheral,

Jaisson and Rosenbaum [12]. It is based on the forecast of a fBM WH such that, for t ∈ R,

E
[
WH
t+∆|Ft

]
=

cos(Hπ)

π
∆H+1/2

∫ t

−∞

WH
s

(t− s+ ∆)(t− s)H+1/2
ds,

where ∆ > 0. A corollary of the proposition 3.1 is that, as α tends to zero, the increments of Xα

defined in (3.2) behave as

E[|Xα
t+∆ −Xα

t |]→ νqKq∆
qH ,

recovering the monofractal scaling property of fBM. In the RFSV model, as the fOU volatility

process is denoted by σt = exp(Xt) and as the instantaneous log-variance v behaves as a fBM with

Hurst exponent H, we have

log σ2
t ' 2νWH

t + C,

for some constant C. The assumption that log-variance behaves as a fBM then leads to the

prediction formula

E
[
log σ2

t+∆|Ft
]

=
cos(Hπ)

π
∆H+1/2

∫ t

−∞

log σ2
s

(t− s+ ∆)(t− s)H+1/2
ds.

Nuzman and Poor [21] study the conditional variance of WH . As the process is conditionally

Gaussian, given a filtration F , one has

V
[
WH
t+∆|Ft

]
= c∆2H ,

where c is shown to be

c =
Γ(3/2−H)

Γ(H + 1/2)Γ(2− 2H)
.

As a result, the variance forecast formula in the RFSV model is given by

E
[
σ2
t+∆|Ft

]
= exp

(
E
[
log σ2

t+∆|Ft
]

+ 2cν2∆2H
)
.

The simulation is carried out on the truncated interval [0, t] using daily realized variance computed

daily on 5-minute intervals using the previous realized variance estimates. An equidistant grid

{0 = t0, · · · , tN = t} of step δ = t
N on [0, t] is used to discretize the interval so that the integral is

estimated via a left-point approximation. As a result,∫ t

0

log σ2
s

(t− s+ ∆)(t− s)H+1/2
ds =

N∑
i=1

∫ ti

ti−1

log σ2
s

(t− s+ ∆)(t− s)H+1/2
ds

'
N∑
i=1

log σ2
ti−1

(t− ti−1 + ∆)(t− ti−1)H+1/2
(ti − ti−1)

= δ

N∑
i=1

log σ2
tN−i

(ti + ∆)t
H+1/2
i

.

(3.4)
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Using a rolling window scheme, each forecast is based on the data over the past 500 trading days,

which approximately corresponds to 2 years, to compute historical simulation forecasts of the

volatility for approximately 4000 trading days. In addition, the time is considered in days so that

the interval is δ = 1. Simulating results for E
[
σ2
t+∆|Ft

]
over this horizon, the variance is annual-

ized by multiplying the results by 252 and the volatility figures are obtained taking the square root.

As for the computation, it is quite straightforward but the computational time in this case takes

a few seconds due to the large horizon of the forecasting. Moreover, our first results question

the approximation in (3.4). The forecast reproduces the general shape of the observed volatility,

especially the volatility spikes observed in different dates. However, there is a gap in the values

observed and to tackle this problem, a modification of our approximation is necessary. Firstly,

the approximation of the integral in (3.4) is based on a left-point approximation. A right-point

approximation would generate a singular point t0 = 0 as it would give, with δ = 1,∫ t

0

log σ2
s

(t− s+ ∆)(t− s)H+1/2
ds '

N−1∑
i=0

log σ2
tN−i

(ti + ∆)t
H+1/2
i

.

To tackle this issue, we drift a bit further from this point adding a term in ε so that∫ t

0

log σ2
s

(t− s+ ∆)(t− s)H+1/2
ds '

N−1∑
i=0

log σ2
tN−i

(ti + ε+ ∆)(ti + ε)H+1/2
.

We retrieve our first approximation taking ε = 1.

Figure 4: Volatility forecast as first approximation with ε = 1
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To get closer to the singular point, we try to forecast volatility for smaller values of ε and the tests

are done for ε ∈
{

1

4
,

1

2
,

3

4

}
. The forecast with ε = 0.25 seems, graphically, much more accurate

(a) ε = 0.25 (b) ε = 0.50 (c) ε = 0.75

Figure 5: Volatility forecasts with different values of ε

hence zooming over an interval containing this point should give even better results. Now, in

addition to generating forecasts for ε in the interval {0.20, 0.21, · · · , 0.25}, we assess the goodness

of the forecasts by computing the 2-norm of the vector containing the differences between the

observed volatility σ2 and the forecasts σ̃2. We regroup the results in the table 1.

ε 0.20 0.21 0.22 0.23 0.24 0.25∥∥σ2 − σ̃2
∥∥2

2
15.15 12.01 10.76 11.66 14.95 20.88

Table 1: Differences between volatility and forecast

With a precision of a hundredth of unit, the difference is minimized for ε = 0.22.

Figure 6: Volatility forecast for ε = 0.22
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4 Rough Bergomi model

Increments of log-volatility behave like a fractional Brownian motion with Hurst parameter of order

0.1 and the RFSV model with the same parameter generates volatility time series closely similar

to those observed in the market.

Another instance of RFSV models is the rough Bergomi (rBergomi) model. Bayer, Friz and

Gatheral [2] introduced the rBergomi model for pricing purposes on realized variance and its un-

derlying. Simulation methods are used to generate option prices as no closed-form solution is

given and the non-Markovian property resulting from the rBergomi model doesn’t allow a PDE

approach. Changing the pricing measure from the physical measure P to the pricing measure Q,

it will be seen how the rBergomi model replicates implied volatility surface dynamics accurately,

with no time-dependence of the three parameters sufficient to describe the model.

4.1 Bergomi model

Instead of modelling instantaneous volatility, Bergomi has proposed in [4] to model the dynamics

of forward variance. This model is known as a market model, namely a financial model consistent

with market data. Indeed, the construction of the model relies on its consistency with the forward

variance swap curve ξt(T ) observed at time t with maturity T . Note that the forward variance is

related to a variance swap’s fair strike observed at t with maturity T , denoted by σ2
t (T ) via

σ2
t (T ) =

1

T − t

∫ T

t

ξt(u)du,

or, equivalently,

ξt(T ) =
d

dT
[(T − t)σ2

t (T )].

In a general N -Brownian motions (W i)i∈{1,··· ,N} setting, the dynamics of ξt(T ) are described by

the following SDE:

dξt(u) =
ω√∑N

i,j=1 ωiωjρi,j

ξt(u)

N∑
i=1

ωie
−κi(u−t)dW i

t , w, wi, κi > 0

where d[W i
tW

j
t ]t = ρi,jdt for any i, j ∈ {1, · · · , N}. The N-factor Bergomi variance curve model is

thus expressed as

ξt(T ) = ξ0(T )E

(
N∑
i=1

ηi

∫ t

0

e−κi(T−s)dW i
s

)
,

where, ηi is expressed with the ω and ρ, and E represents the stochastic exponential5.

5The stochastic exponential of a process (Xt)t≥0 is defined as

E(Xt) = exp

(
Xt −X0 −

1

2
[X]t

)
.
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Here, we focus on a one-factor model so that the forward variance dynamics are given by

dξt(u) = ω(u− t)ξt(u)dWt,

where ω(s) = ωe−κs, ω, κ > 0. Applying Ito’s lemma, the solution of the SDE reads, for t > 0,

ξt(T ) = ξ0(T ) exp

[
ω(T − t)Xt −

ω(T − t)2

2
E[X2

t ]

]
,

where X is a standard Ornstein-Uhlenbeck process which satisfies

dXt = −κXtdt+ dWt.

As a result, the Bergomi model reads

dSt = rtStdt+
√
ξt(T )StdW

Q
t

dξt(u) = ωe−κ(u−t)ξt(u)dZQ
t , ω, κ > 0

4.2 Realized variance under P

Using the Mandelbrot-Vann Ness representation of fractional Brownian motion in terms of Wiener

integrals (2.1), increments of the logarithm of realized variance v = σ2, under the physical measure

P, are expressed as

log vu − log vt = 2νCH
(
WH
u −WH

t

)
= 2νCH

(∫ u

−∞
|u− s|H− 1

2 dW P
s −

∫ t

−∞
|t− s|H− 1

2 dW P
s

)
= 2νCH

(∫ u

t

|u− s|H− 1
2 dW P

s +

∫ t

−∞

[
|u− s|H− 1

2 − |t− s|H− 1
2

]
dW P

s

)
=: 2νCH [Mt(u) + Zt(u)]

In this expression, the left integral Mt(u) is independent of Ft and the right integral Zt(u) is

Ft-measurable. Note that W̃ P, defined as

W̃ P
t (u) :=

√
2H

∫ u

t

|u− s|H− 1
2 dW P

s =
√

2HMt(u)

has the same properties as Mt(u) and let η =
2νCH√

2H
so that the model is written as

log vu − log vt = ηW̃ P
t (u) + 2νCHZt(u),

which gives

vu = vt exp
(
ηW̃ P

t (u) + 2νCHZt(u)
)
.
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By Gaussianity, the first and second moments of W̃ P
t give W̃ P

t (u) ∼ N
(

0, (u− t)2H
)

, which entails

that vu|Ft is log-normal and

EP[vu|Ft] = vt exp

(
2νCHZt(u) +

1

2
η2(u− t)2H

)
.

In addition, in terms of stochastic exponential, the realized variance is expressed as

vu = EP[vu|Ft]E
(
ηW̃ P

t (u)
)
. (4.1)

4.3 Change of measure

Under the physical probability measure P, the pricing model is

dSu = µuSudu+
√
vuSudZ

P
u

vu = vt exp
(
ηW̃ P

t (u) + 2νCHZt(u)
) (4.2)

with d[ZP,W P]t = ρdt. As in the Black-Scholes framework, the pricing of options is made under

an equivalent martingale measure6 Q ∼ P on [t, T ]:

dZQ
u =

µu√
vu
du+ dZP

u, (4.3)

obtained by a Girsanov change of measure on [t, T ] from P to Q. In addition, the Brownian motion

W P, which is used to construct the Volterra-type process W̃ P
t , is correlated with ZP with correlation

factor ρ, empirically negative, such that

dW P = ρdZP +
√

1− ρ2d(Z⊥)P,

where Z⊥ is independent of Z. Similarly to ZP, a change of measure for (Z⊥)P would be of the

form

d(Z⊥)Qu = d(Z⊥)Pu + γudu, (4.4)

where γ is a suitable process on [t, T ] seen as the market price of volatility risk. Combining (4.3)

and (4.4), W can be expressed as

dWQ = ρdZQ +
√

1− ρ2d(Z⊥)Q

= dW P + (ρ
µu√
vu

+
√

1− ρ2γu)du.
(4.5)

The change of measure from P to Q can therefore be noted as

dW P
s = dWQ

s + λsds (4.6)

6Two measures P and Q are equivalent if for any A ∈ F , P(A) = 0 iff Q(A) = 0. If, in addition, the discounted

price process is a martingale under Q then Q is an equivalent martingale measure.
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Under the physical measure P, the variance process v simulates the realized variance from market

data. Using (4.1) and as established in (4.6), the variance process can be expressed via the pricing

measure Q so that, assuming

vu = EP[vu|Ft]E
(
ηW̃Q

t (u)
)

exp

(
η
√

2H

∫ u

t

(u− s)H− 1
2λsds

)
= ξt(u)E

(
ηW̃Q

t (u)
)
,

with the forward variance curve

ξt(u) = EP[vu|Ft] exp

(
η
√

2H

∫ u

t

(u− s)H− 1
2λsds

)
= EQ[vu|Ft].

The rBergomi model is non-Markovian in the instantaneous variance v. As a consequence, the

pricing model (4.2) is given under the risk-neutral pricing measure Q by

dSu =
√
vuSudZ

Q
u

vu = ξt(u)E
(
ηW̃Q

t (u)
)
,

(4.7)

where

W̃Q
t (u) :=

√
2H

∫ u

t

|u− s|H− 1
2 dWQ

s .

It can be noted that the instantaneous variance process v, expressed with the forward variance ξt,

is a non-Markovian generalization of the Bergomi model, in the sense that EQ[vu|Ft] 6= EQ[vu|vt].

4.4 Pricing under rough Bergomi

Under the pricing measure Q at a given time equal to 0, the scheme used to simulate the model

reads

St = S0 exp

[∫ t

0

√
vsdZ

Q
s −

1

2

∫ t

0

vsds

]
vt = ξ0(t) exp

[
2νCH

∫ t

0

dWQ
u

(t− u)1/2−H −
ν2C2

H

H
t2H
]

d[ZQ,WQ]t = ρdt.

Firstly, the simulation of the Volterra process

(∫ t

0

dWQ
u

(t− u)1/2−H

)
t≥0

is done using the hybrid

scheme or the generalised fractional operators method. Then, after extracting the standard Brow-

nian motion
(
WQ
t

)
t≥0

driving the Volterra process, it is correlated with ZQ by a coefficient ρ.

Finally, the stock price process S is simulated using a forward Euler scheme.

Algorithm 4.1. Stock price simulation under rough Bergomi
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1. Fix an equidistant grid G = {t0 = 0, t1 = 1
n , . . . , tbnTc = bnTc

n } for T > 0

2. Simulate a Volterra process Vt =

∫ t

0

dWQ
u

(t− u)1/2−H , t ∈ G

3. Compute the variance process v using the Volterra process

vt = ξ0(t)E (2νCHVt) , t ∈ G

4. Extract the path of the standard Brownian motion WQ which drives the Volterra process,

with Wn as defined in (2.5)

WQ
ti = WQ

ti−1
+ nH−1/2(Vti − Vti−1

), for i = 1, · · · , κ

WQ
ti = WQ

ti−1
+Wn

i−1, for i > κ

5. Correlate the stock price driven by ZQ and the variance processes driven by the Volterra

process driven by WQ through

ZQ
ti − Z

Q
ti−1

= ρ
(
WQ
ti −W

Q
ti−1

)
+
√

1− ρ2
(
WQ⊥
ti −W

Q⊥
ti−1

)
,

where WQ⊥ is a standard Brownian motion independent of WQ

6. Simulate the stock price process S using the forward Euler scheme

Sti = Sti−1
+
√
vti−1

Sti−1

(
ZQ
ti − Z

Q
ti−1

)
Then, to price a security at time t with maturity T ≥ t and payoff f , a Monte-Carlo simulation of

the discounted payoff helps approximate the risk-neutral valuation formula

EQ
[
e−

∫ T
t
rsdsf(S)|Ft

]
,

where r is the risk-free interest rate.

For example, to price a European Call option with maturity T and strike K at time 0, assuming

that r = 0, one may price

C0 = EQ [(ST −K)+] .

In practice, we use the Python implementation of the rough Bergomi model by McCrickerd [20].

4.5 Calibration

Calibrating the rBergomi model to at-the-money volatility smiles allows to find the parameters

required to simulate price paths in our model: H, ρ and also η which gives ν through η =
2νCH√

2H
. The calibration is done on the SPX index as of 10/03/2017 to market data collected from

Bloomberg/Janus Henderson Investors and the results are consolidated in 2. In addition to the

three parameters, the model also takes as a calibration parameter the initial forward variance curve

ξ0 as constant.



4.5 Calibration 33

4.5.1 Objective function

The objective function is going to be minimized for calibration purposes. The parameters men-

tioned above are indeed calibrated so as to minimize the 2-norm of the vector of points. This

vector represents the difference between the vector of market data implied volatilities σmkt and the

vector of implied volatilities σ̂rB drawn from the rBergomi model: both vectors contain implied

volatilities for the same range of log-moneyness. To recap, the least squares method yielding the

model parameters is written

argmin
P

g(k, τ) := argmin
P

‖σ̂rB(k, τ)− σmkt(k, τ)‖2 ,

where P = {H, ρ, η, ξ} stands for the set of parameters, τ denotes time to maturity and k = log
K

F
is the log-moneyness.

4.5.2 Numerical results

To minimize the objective function, a sequential least squares programming algorithm [18] is used.

It is worth noticing that time of execution increases with time to maturity. Moreover, the time-

independence assumption can be questioned. Indeed, the three parameters H, ρ and η, sufficient

to describe the rBergomi model, present some variations over time, especially for small maturities:

the Hurst exponent H is of order 0.05 for a one-week maturity whereas it is of order 0.1 for matu-

rities greater than one-month.

We will also note that the values of the forward-variance curve parameter, taken as inputs in

our calibration model, are really close to the volatility swap strike prices ξMKT of the SPX index

observed in the market.

T H ρ η ξ ξMKT

0.020 0.055 -0.886 1.799 0.009

0.083 0.120 -0.917 1.833 0.010 0.013

0.171 0.125 -0.919 1.820 0.015 0.018

0.262 0.155 -0.918 1.845 0.018 0.020

0.520 0.122 -0.916 1.812 0.024 0.026

0.778 0.126 -0.913 1.811 0.030 0.029

1.036 0.114 -0.912 1.805 0.031 0.031

1.552 0.104 -0.870 1.822 0.036 0.034

2.067 0.115 -0.831 1.827 0.042 0.039

Table 2: Results of the rBergomi calibration on volatility smiles
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(a) T = 0.020 (b) T = 0.083

(c) T = 0.171 (d) T = 0.262

(e) T = 0.520 (f) T = 0.778

(g) T = 1.036 (h) T = 1.552

(i) T = 2.067

Figure 7: Calibration of rBergomi to volatility smiles. Source: Bloomberg/Janus Henderson In-

vestors
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4.6 Volatility skew

4.6.1 Definition and mapping

The at-the-money volatility skew is given by

ψ(τ) :=

∣∣∣∣ ∂∂k σ̃(k, τ)

∣∣∣∣
k=0

,

where k denotes the log-moneyness, τ the time to maturity and σ̃ the implied volatility in terms

of k. The term structure of the market data at-the-money-forward volatility skew is defined as

Ψ(τ) =

∣∣∣∣ ∂∂K σmkt(K, τ)

∣∣∣∣
K=F

,

whereK is the strike, F the forward price and σmkt the market implied volatility. Taking k = log K
F ,

we set σ̃(k, τ) = σmkt(K, τ) so that

∂

∂K
σmkt(K, τ) =

∂

∂k
σ̃(k, τ) · ∂k

∂K
=

1

K

∂

∂k
σ̃(k, τ).

Therefore the data, expressed in terms of strike K, is mapped to data expressed in log-moneyness

k and the at-the-money-forward volatility skew is

ψ(τ) = F

∣∣∣∣ ∂∂K σmkt(K,T )

∣∣∣∣
K=F

.

4.6.2 Numerical results

To estimate the at-the-money volatility skew, a central finite difference method is applied to implied

volatilities drawn from the rBergomi model in the neighbourhood of k = 0. Letting h > 0, then

for each τ in T , the simulation interval, the approximation of ψ is given by

ψ(τ) '
∣∣∣∣ σ̂rB(h, τ)− σ̂rB(−h, τ)

2h

∣∣∣∣ .
In practice, taking h = 1e− 3 allows a good approximation of the derivative in the neighborhood

of zero.

In addition, market data skew is actually obtained by calibrating the SVI stochastic volatility

inspired model to market data implied volatility. The SVI model [10] [11] is calibrated to the

volatility surface using a set of parameters λ = {a, b, ρ,m, σ} such that the total implied variance

is expressed, for k ∈ R, by

σ2
imp(k;λ) = a+ b

{
ρ(k −m) +

√
(k −m)2 + σ2

}
,

where a ∈ R, b ≥ 0, |ρ| < 1, m ∈ R and σ > 0. In addition, σ2
imp(k;λ) stays positive and is ensured

by the condition a+ bσ
√

1− ρ2 ≥ 0.



4.6 Volatility skew 36

Therefore, by construction, as the smile generated from rBergomi fits the market data, the skew

generated/approximated by rBergomi should fit the skew obtained by the SVI model.

Figure 8: SPX at-the-money-forward volatility skew

4.6.3 Approximation of skew

The term structure of at-the-money volatility skew can be approximated by a power-law function

of time to expiry, as shown by Gatheral, Jaisson and Rosenbaum [12]. In this context, the function

τ 7→ Aτ−α is fitted to the few points of the skew term structure.

Figure 9: Power-law fit to the term structure of SPX at-the-money-forward volatility skew

As a result, the parameters obtained via this fit are A = 0.40 and α = 0.36. This function has mo-

tivated the use of a power-law kernel function to model volatility, leading to the rBergomi model.

Indeed, when volatility is driven by a fBM with Hurst parameter H, then the skew is proportional

to τH−1/2. As α is of order 0.4, H should be of order 0.1, which has been discussed previously.

Similarly, other functions could be fit to the term structure of at-the-money volatility skew. As an
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instance, we choose the function

τ 7→ Aτ−αe−βτ ,

where β > 0. In this setting, the parameters of the function are A = 0.45, α = 0.34 and β = 0.15.

Figure 10: Alternative fit to the term structure of SPX at-the-money-forward volatility skew

4.6.4 Change of kernel

As the power-law fit motivated the use of a power-law kernel in our volatility model (4.7), this new

fit can inspire us to choose a kernel such that

K(t, s) = (t− s)H−1/2e−β(t−s).

The new process to simulate would thus be, for t > 0

Dt :=

∫ t

0

(t− s)H−1/2e−β(t−s)dWs.

Dt is Gaussian with the following properties

E[Dt] = 0

E[D2
t ] =

∫ t

0

(t− s)2H−1e−2β(t−s)ds

=

∫ t

0

s2H−1e−2βsds

=
1

(2β)2H

∫ 2βt

0

s2H−1e−sds

We recognize the lower incomplete gamma function given by

γ(a, x) =

∫ x

0

sa−1e−sds

= a−1xae−x1F1(1, 1 + a, x)

= a−1xa1F1(a, 1 + a,−x),
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where 1F1 is the confluent hypergeometric function of the first kind, defined, for a, b ∈ R and z ≥ 0,

as

1F1(a, b, z) =

∞∑
k=0

(a)k
(b)k

zk

k!
,

where (.)k is the rising factorial.

In fact, Dt can be simulated by a left-point approximation as previously seen 2.24. Discretiz-

ing [0, t] such that 0 = t0 < · · · < tn = t with ti = i
n for every i ∈ {0, · · · , n}, as

Dt =

n−1∑
i=0

∫ ti+1

ti

(t− s)H−1/2e−β(t−s)dWs

the approximaiton reads

D̃t =

n−1∑
i=0

(t− ti)H−1/2e−β(t−ti)(Wti+1
−Wti)

=

n−1∑
i=0

(ti)
H−1/2e−βti(Wt−ti −Wt−ti+1

)

= (1/n)H
n−1∑
i=0

iH−1/2e−βi/nZn−i,

where (Zi)i∈{1,··· ,n} are n independently drawn standard Gaussian random variables.

4.7 Forward-start options

4.7.1 Definition

The sensitivity to forward-smile risk, described as the risk coming from the market future implied

volatility and its uncertainty, is found in many options. These options, such as the Forward-start

options, or cliquets, are priced given the distribution of forward returns in the model, as described

by Bergomi [5]. The payoff of a Forward-start option involves the prices of the security at two

different dates T1 and T2 such that T1 < T2. This payoff can be seen as a function of the forward

return
ST2

ST1

−k with k > 0 defining the moneyness of the contract, or, in a simpler way, is expressed

as

(ST2
− kST1

)+ .

Pricing a payoff involving such a ratio requires modeling assumptions and further allows to generate

implied volatility surfaces. Indeed, to obtain the forward smile σ̂T1,T2

k , Forward-start Call options

are priced for different values of moneyness k and the implied Black-Scholes volatility stands for

σ̂T1,T2

k . The forward smile represents the expected future implied volatility for moneyness k: all

possible realizations of future smiles are averaged to give σ̂T1,T2

k .
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The instantaneous volatility σ is time-dependent, due to the nature of the Forward-start option,

whose price depends on ST1
and ST2

. The Black-Scholes implied volatility for maturity T is given

by

σ̂2
T :=

∫ T

t

σ(u)2du.

The price of a Forward-start option is independent of the stock price S but depends on the forward

volatility σ̂T1,T2 or the integrated variance over [T1, T2] such that

σ̂2
T1,T2

: =

∫ T2

T1

σ(u)2du

=
(T2 − t)σ̂2

T2
− (T1 − t)σ̂2

T1

T2 − T1
.

4.7.2 Implied volatilities

To price Forward-start options under the rough Bergomi model, a Monte-Carlo method is used to

approximate the price. The generation of a price path is executed as before and we extract the

values on a path at T1 amd T2.

Algorithm 4.2. Implied volatilities of Forward-start options under rBergomi

1. Set a range {0.75, · · · , 2.75} of step 0.25 for maturities T2

2. Set a range {0.25, · · · , T2 − 0.25} of step 0.25 for starting dates T1

3. Simulate price paths in [0, T2] under rBergomi using 4.1

4. For each α ∈ [−0.2, 0.2], indicating log-moneyness, compute (ST2
− ST1

(1 + α))+, the payoffs,

and use the Monte-Carlo method to compute the price of the Forward-start options

5. Retrieve implied volatilities from Black-Scholes option pricing formula using root-finding

functions.

As maturity increases, the spread between implied volatility of starting dates (T1) close to 0 and

starting dates close to maturity seem to decrease.
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(a) T2 = 0.75 (b) T2 = 1.00

(c) T2 = 1.25 (d) T2 = 1.50

(e) T2 = 1.75 (f) T2 = 2.00

(g) T2 = 2.25 (h) T2 = 2.50

(i) T2 = 2.75

Figure 11: Implied volatilities of Forward-start options under rBergomi
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5 VIX

VIX dynamics under the rBergomi model are mentioned by Bayer, Friz and Gatheral [2] and

they introduce a log-normal approximation, restudied by Jacquier, Martini and Muguruza [17] to

compare the first and second moments of the VIX distribution.

5.1 VIX index

The VIX index is a measure of 30-day expected volatility of the U.S. stock market published by the

Chicago Board Options Exchange (CBOE). Derived from real-time mid-quote prices of S&P 500

Index Call and Put options, the VIX index is widely used as a volatility indicator. The generalized

formula used in the VIX Index calculation is

V IX2 =
2

T

∑
i

∆Ki

K2
i

Qi(Ki)−
1

T

(
F

K0
− 1

)2

,

where Ki is the strike price of the ith OTM option, ∆Ki is the interval between strike prices Ki+1

and Ki−1, Qi(Ki) is the undiscounted mid price for the option with strike Ki and K0 the greatest

strike price below the forward index level F . The VIX index thus provides an instantaneous view

of how much the S&P 500 Index is expected to fluctuate within the next 30 days.

The volatility index VIX can also be seen as an approximation of the value of a one-month variance

swap on S&P 500. As a reminder, the payoff of a variance swap contract at time 0 with maturity

T is

RV 0,T −K,

where

RV 0,T :=
d

M

M∑
i=1

log

(
Sti
Sti−1

)2

,

K is the strike, d the factor that annualized realized variance (usually 252), and (Sti)i∈{0,...,M} a

time series of stock prices. For stock prices modelled by geometric Brownian motion or log-normal

dynamics

dSt = rtStdt+ σtStdWt, (5.1)

the squared-process of log-returns on an interval of the partitioned time is approximately

log

(
Sti
Sti−1

)2

≈ σ2
ti−1

(ti − ti−1) ,

hence, in a continuous-time setting,

RV 0,T ≈ 1

T

∫ T

0

σ2
t dt
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Applying Itô’s lemma to process (5.1) describing stock prices, one has

d logSt =
dSt
St
− 1

2

1

S2
t

d[S]t =
dSt
St
− 1

2
σ2
t dt.

As a result, the integrated variance process is expressed as

1

T

∫ T

0

σ2
t dt =

2

T

∫ T

0

dSt
St
− 2

T
log

(
ST
S0

)
.

The price of a variance swap, as the expected value of the integrated variance under the risk neutral

measure, is statically replicated by a portfolio of OTM vanilla options with a range of strikes and

a maturity T :

EQ

[
1

T

∫ T

0

σ2
t dt

]
=

2

T

(∫ 0

−∞
Put(k, T )dk +

∫ ∞
0

Call(k, T )dk

)
,

where Put(k, T ) and Call(k, T ) are respectively Put and Call option prices with maturity T as a

function of log-moneyness k = log K
F , where K is the strike of the option and F the forward price

of the underlying. Similarly, considering the strike K only, the expression of the price of a variance

swap [7] is

EQ

[
1

T

∫ T

0

σ2
t dt

]
=

2

T

(∫ F

0

Put(K,T )

K2
dK +

∫ ∞
F

Call(K,T )

K2
dK

)
.

To conclude on the relation between the VIX index and variance swap contracts on S&P 500 with

maturity one-month, using the fair strike of a variance swap gives

V IX2 = EQ

[
1

T

∫ T

0

σ2
t dt

]
,

where T = 30 days.

Figure 12: S&P 500 and VIX levels
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5.2 VIX dynamics

The dynamics of VIX are analyzed by Jacquier, Martini and Muguruza [17] and given under the

rough Bergomi model by

V IXT =

(
1

∆

∫ T+∆

T

ξ0(t)ηT (t) exp

[
ν2C2

H

H

(
(t− T )

2H − t2H
)]
dt

) 1
2

,

where, for any t ≥ T and ZQ a standard Brownian motion,

ηT (t) := exp

(
2νCH

∫ T

0

1

(t− u)1/2−H dZ
Q
u

)
.

The proof can be found in A.

As a consequence, the forward variance curve ξt(·) in the rBergomi model has log-normal dynamics

and is represented, for any t ≥ T , by

ξT (t) = ξ0(t)ηT (t) exp

[
ν2C2

H

H

(
(t− T )

2H − t2H
)]
.

VIX Futures are standard Futures contracts on the VIX volatility index, the measure of 30-day

expected volatility of the S&P 500 Index. As standard Futures contracts in general, the risk-neutral

price for a VIX Futures contract with maturity T > 0 is

FVIXT := EQ [V IXT |F0] , (5.2)

where

V IXT =

√√√√EQ

[
1

∆

∫ T+∆

T

σ2
t dt

∣∣∣∣FT
]

=

√
1

∆

∫ T+∆

T

EQ [σ2
t |FT ] dt =

√
1

∆

∫ T+∆

T

ξT (t)dt, (5.3)

where ∆ = 30 days.

Moreover, options on the CBOE Volatility Index VIX have been traded for several years now, and

VIX Call options are defined here by

CVIXT := EQ
[
e−

∫ T
0
rsds (V IXT −K)+ |F0

]
. (5.4)

5.3 Numerical simulations

Pricing VIX derivatives with different maturities under the rough Bergomi model requires simula-

tion methods. In particular, VIX processes are driven by the Gaussian process, for t ∈ [T, T + ∆],

V Tt =

∫ T

0

1

(t− u)1/2−H dZ
Q
u .

Properties 5.1. The process V T has the following properties, for any t, s ∈ [T, T + ∆] and t < s:

1. E[V Tt ] = 0,
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2. V[V Tt ] =
t2H − (t− T )2H

2H

3. E[V Tt V
T
s ] =

∫ T

0

(t− u)H−1/2(s− u)H−1/2du

=
(s− t)H−

H+

[
−(t− T )H+F

(
T − t
s− t

)
+ tH+F

(
−t
s− t

)]
,

where H± = H ± 1

2
and F (·) = 2F1(−H−, H+, H+ + 1, ·) with 2F1 the Gaussian hypergeometric

function.

5.3.1 Forward Euler approach

The forward Euler scheme is used to simulate the process V Tτ , for τ ∈ [T, T+∆]. On the equidistant

grid 0 = t0 < t1 = 1
n < · · · < tbnTc = bnTc

n , the integral is approximated by a discrete sum such

that, for τ ∈ [T, T + ∆],

V Tτ '
nT∑
i=1

1

(τ − ti−1)1/2−H

(
ZQ
ti − Z

Q
ti−1

)
,

where nT = bnT c and ZQ is a standard Brownian motion. Now, the integral part involved in the

V IXT computation is estimated via numerical integration.

Algorithm 5.2. VIX simulation with the forward Euler approach

1. Fix an equidistant grid {0 = t0, t1 = 1
n , . . . , tbnTc = bnTc

n } for T > 0

2. Simulate (Zi)i∈{0,...,nT−1} independent standard normal variables so that

ZQ
ti − Z

Q
ti−1

=

√
1

n
Zi−1

3. Fix an equidistant grid {τ0, . . . , τN} on [T, T + ∆] and approximate the continuous-time

process V T by discretizing it with Ṽ T using the forward Euler approach:

Ṽ Tτj '
nT∑
i=1

1

(τj − ti−1)1/2−H

(
ZQ
ti − Z

Q
ti−1

)
, for j ∈ {0, . . . , N}

4. Simulate the forward variance curve in the rBergomi model on the same grid as ṼT :

ξ̃T (τj) = ξ0(τj) exp
(

2νCH Ṽ
T
τj

)
exp

(
ν2C2

H

H

[
(τj − T )

2H − τ2H
j

])
, for j ∈ {0, . . . , N}

5. Compute V IX2
T using numerical integration methods, such as the trapezoidal rule

V IX2
T =

1

∆

N−1∑
j=0

ξ̃T (τj) + ξ̃T (τj−1)

2
(τj − τj−1)

=
1

2N

N−1∑
j=0

ξ̃T (τj) + ξ̃T (τj−1).

The simulation of the forward Euler approach is there realized in two main step: the gener-

ation of standard normal variables, with complexity O(n) and the construction of the process

(V Tτ )τ∈[T,T+∆], with complexity O(n).
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5.3.2 Truncated Cholesky

Another method to simulate V Tτ , for τ ∈ [T, T + ∆], is the truncated Cholesky method. It is based

on the Cholesky decomposition of the covariance matrix whose structure is known and given in

5.1. It is important to note that the computational complexity of the Cholesky decomposition

makes this method really slow. In addition, there is no guarantee that the Cholesky method can

even be applied for the covariance matrix of V T as the positive-definite property is not verified

numerically.

Algorithm 5.3. VIX simulation with the truncated Cholesky approach

1. Fix an equidistant grid {τ1, . . . , τN} on [T, T + ∆]

2. For τ ∈ {τ1, . . . , τ8}, compute the variance matrix of V Tτ : for i < j ∈ {1, · · · , 8}

E[V Tτi V
T
τj ] =

(τj − τi)H−
H+

[
−(τi − T )H+F

(
T − τi
τj − τi

)
+ τ

H+

i F

(
−τi

τj − τi

)]

3. For τ ∈ {τ9, . . . , τN} by correlating V Tτj and V Tτj−1
and rescaling, for j ∈ {9, · · · , N},

V Tτj =
√
V(V Tτj )

ρj V Tτj−1√
V(V Tτj−1

)
+
√

1− ρ2
jZj

 ,

where ρj =
E[V Tτj

V Tτj−1
]√

V(V Tτj
)V(V Tτj−1

)
= corr

(
V Tτj , V

T
τj−1

)
and Z = (Zj)j∈{9,··· ,N} are independently

drawn standard normal variables.

4. Simulate the forward variance curve in the rBergomi model on the same grid as ṼT , as seen

in the previous algorithm 5.2

5. Compute V IX2
T using numerical integration methods

5.4 Log-normal approximations

5.4.1 Jacquier-Martini-Muguruza approach

Considering the expression (5.3) for the VIX volatility index, let us define the FT -measurable

random variable

XT =

∫ T+∆

T

ξT (t)dt.

As ξT is log-normal, and using the approximation of integrals by Riemann sums, the approximation

made in this part consists in the log-normality of XT . However, the sum of log-normal random

variables is not said to be log-normal. Relying on Dufresne’s proof [9] that the integral of log-normal
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variables converges asymptotically to a log-normal random variable, under certain conditions, it

can be noted that

logXT ∼ N(µ, σ2).

The first two moments of XT in this configuration read

EQ[XT ] = exp

(
µ+

σ2

2

)
, EQ[X2

T ] = exp
(
2µ+ 2σ2

)
,

therefore logXT is fully determined by

µ = 2 logEQ[XT ]− 1

2
logEQ[X2

T ],

σ2 = logEQ[X2
T ]− 2 logEQ[XT ].

Once again, Jacquier, Martini and Muguruza [17] demonstate the following results regarding the

first two moments of XT :

EQ[XT ] =

∫
[T,T+∆]

ξ0(t)dt

EQ[X2
T ] =

∫
[T,T+∆]2

ξ0(u)ξ0(t) exp

[
ν2C2

H

H

(
(u− T )2H + (t− T )2H − u2H − t2H

)]
exp [θu,t] dudt,

where

θu,t :=

 σ2
max(u,t),min(u,t) if u 6= t

0 if u = t,

and

σ2
u,t := 2ν2C2

H

[
u2H − (u− T )2H + t2H − (t− T )2H

2H

+ 2
(u− t)H−

H+

[
tH+F

(
−t
u− t

)
− (t− T )H+F

(
T − t
u− t

)]]
.

As a result, the price of a VIX Futures contract is approximated in the log-normal model by

FVIXT ' EQ

[√
1

∆
XT

]
=

√
1

∆
exp

(
µ

2
+
σ2

8

)
. (5.5)

A closed-form formula is also given for VIX Call options (5.4), assuming interest rates are zero:

CVIXT =

√
1

∆
exp

(
µ

2
+
σ2

8

)
N (d1)−KN (d2), (5.6)

where

d1 =
1

σ

(
µ+

σ2

2
− log(K2∆)

)
d2 = d1 −

σ

2

and N denotes the cumulative distribution function of the Gaussian random variable.
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5.4.2 Bayer, Friz and Gatheral approximation

Bayer, Friz and Gatheral consider XT as log-normal so that logXT has mean µ̃ and variance σ̃2.

In fact, they aim to approximate the variance of logXT using

X̃T = exp

(
1

∆

∫ T+∆

T

EQ [log vt|FT ]dt]

)
. (5.7)

The second moment is obtained via this very approximation of XT , therefore giving the variance

V
[
log X̃T |Fs

]
=

4ν2C2
H

∆2H2
+

∫ T

s

[
(T − u+ ∆)H+ − (T − u)H+

]2
du.

The first moment of XT is obtained using Fubini’s theorem and the tower property. Indeed, as

EQ [XT |Fs] =

∫ T+∆

T

ξs(t)dt, s ≤ T,

taking s = 0 gives

EQ [XT ] =

∫ T+∆

T

ξ0(t)dt.

The log-normality of XT gives

EQ[XT ] = exp

(
µ̃+

σ̃2

2

)
,

where

σ̃2 = V
[
log X̃T

]
µ̃ = logEQ[XT ]− σ̃2

2

Similarly to (5.5) and (5.6) and using these expressions for µ̃ and σ̃, the prices of VIX Futures and

VIX Call options are obtained in the Bayer-Friz-Gatheral approach.

5.5 Numerical results

One important feature in these methods is the initial forward variance curve ξ0. The choice of this

parameter plays a part in the determination of the instruments’ prices. Hence, three scenarios are

considered, as in [17]:

1. ξ0(t) = ξ0

2. ξ0(t) = ξ0(1 + t)2

3. ξ0(t) = ξ0
√

1 + t

As regards the other parameters, they are taken similarly as before, i.e.

H = 0.07, ν =
η
√

2H

2CH
with η = 1.9, ξ0 = 0.2342.

As the hybrid scheme is used to simulate the Volterra process, we also need to choose κ. For

algorithmic purposes, κ = 1 is taken.
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5.5.1 VIX Futures

The simulation of VIX Futures prices using the Euler method is compared with the log-normal

approximation of Jacquier, Martini and Muguruza in [17]. The latter is also compared the Bayer-

Friz-Gatheral’s approximation. Moreover, relative differences (in percentage) between the methods

are also shown so as to interpret the simulations.

Firstly, the Euler method uses 105 simulations, with a time-grid step of 1/n with n = 500 and

the Volterra process constructed with N = 500. The relative differences are, for each scenario, of

order 0.5%, differences likely varying due to Monte Carlo simulation error. For scenario 1, longer

maturities tend to give slightly bigger differences and oscillations and scenario 3 is much more

oscillating than than two other scenarios.

Figure 13: VIX Futures simulations in Euler and Jacquier-Martini-Muguruza approach and the

relative differences for scenarios 1, 2 and 3
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Figure 14: VIX Futures simulations with log-normal approximations and the relative differences

for scenarios 1, 2 and 3
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5.5.2 VIX options

VIX Call options prices are also computed using the Euler method and the log-normal approxima-

tion of Jacquier-Martini-Muguruza using the same settings and parameters as in 5.5.1. The only

scenario used here is the constant initial forward curve ξ0(t) = ξ0 and the simulation is done for

three different strikes: at-the-money, in-the-money (K = 0.01) and out-of-the-money (K = 0.1).

Figure 15: VIX Call options simulations in Euler and log-normal approximations and the relative

differences for scenarios 1, 2 and 3

For in-the-money and at-the-money options, the log-normal approximation seems more accurate

than for out-of-the-money options, even though the relative difference oscillates around 0.7%. The

approximation for out-the-money options seems to be divergent the longer the maturities.
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Conclusion

The analysis of time-series of volatility and financial instruments whose underlying is linked to

volatility helps us confirm that volatility is rough. The roughness of volatility is modelled via frac-

tional Brownian motion, which covariance structure helps model log-volatility increments. Mod-

elling log-variance with fractional Brownian motion has allowed to forecast volatility and to price

vanilla instruments along with exotic options using the rough Bergomi model.

In the rBergomi model, the calibration to volatility surfaces, although still with a relatively sig-

nificant time of execution, enables to choose parameters for different maturities, whether short

(one-week) or long (two-year). Besides, the low number of parameters (only three) makes the

model more usable in practice. Volatility skew is an important matter as well as it can allow to

choose a certain function to simulate volatility as we have begun to see.

Last but not least, rBergomi is used to model dynamics of VIX derivatives, such as Futures and

options and different techniques allow to generate prices for these contracts.
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A Appendix

A.1 Proof 1: VIX formula

Proof. It has been shown that, with v = σ2,

V IX2
T =

1

∆

∫ T+∆

T

EQ [vt|FT ] dt.

Using the representation of instantaneous variance in the rBergomi model, i.e.

vt = ξ0(t)E
(

2νCH

∫ t

0

1

(t− u)1/2−H dZ
Q
u

)
= ξ0(t)ηT (t) exp

[
2νCHItT −

ν2C2
Ht

2H

H

]
.

where

ItT =

∫ t

T

1

(t− u)1/2−H dZ
Q
u

Since ηT (t) is FT -measurable and ξ0(t) is F0-measurable, V IX is expressed as

V IX2
T =

1

∆

∫ T+∆

T

ξ0(t)ηT (t)EQ
[
exp

(
2νCHItT −

ν2C2
Ht

2H

H

) ∣∣∣∣FT]

As
∫ t
T

1

(t− u)1/2−H dZ
Q
u is centered Gaussian of variance 2

ν2C2
H

H (t− T )2H , independent of FT ,

EQ [exp
(
2νCHItT

)]
= exp

(
ν2C2

H

H
(t− T )2H

)
.

Hence

V IX2
T =

1

∆

∫ T+∆

T

ξ0(t)ηT (t) exp

[
ν2C2

H

H

(
(t− T )

2H − t2H
)]
dt.
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