
Imperial College London

Department of Mathematics

Artificial Neural Networks

for SABR model

calibration & hedging

Author: Hugues Thorin (CID: 01805999)

A thesis submitted for the degree of

MSc in Mathematics and Finance, 2019-2020

Abstract

SABR model is a reference in financial industry to price fixed income derivatives,
thanks to its ability to capture the volatility smile. The goal of this thesis is to de-
velop a technique based on SABR model which captures all non-linearities, be more
robust, gives tradable parameters instantaneously and gives also instantaneously
robust hedging parameters.

Keywords: SABR, Neural Network, Volatility Smile, Calibration, Universal Ap-
proximation Theorem, Hagan, Hernandez

To my mother, Doriane.
To my fiancée, Gaëtane.

Acknowledgements

I would like to thank Deutsche Bank for having offered me the opportunity to write
my MSc Thesis with them. I am particularly grateful to Fixed Income Emerg-
ing Market desk which welcomed me. I thank my colleagues: Tarik Hsaini, Anas
Elkaddouri and Damien Hughes.

My warmest thanks are for Romano Trabalzini, my supervisor who has been very
pedagogical and patient towards me. It has always been a pleasure to exchange
views about mathematics, machine learning, finance, · · · and Italy with Romano.
Whatever the market turmoils, Romano is Latin, always smiling and in a good
mood. Thank you Romano. It has been a pleasure to write my MSc Thesis with
you !

I thank Dr. Eyal Neuman, my thesis supervisor at Imperial College, and excellent
teacher in Stochastic Processes.

Finally, I would like to thanks my mother and my fiancée for their support and
encouragement.
I won’t be there now without you.

Contents

Introduction 1

1 Basic concepts 3
1.1 Bank account . 3
1.2 Zero-coupon bond . 3
1.3 Spot Interest Rates . 4
1.4 Forward rates . 4
1.5 Interest-Rate Swaps . 5
1.6 Swaption . 6
1.7 No-arbitrage Pricing . 6
1.8 Numeraire change . 7

1.8.1 T-forward measure . 7
1.8.2 Swap measure . 7

2 Interest Rates & SABR models 9
2.1 The Bachelier (Normal) Model . 9
2.2 The Black (Log-Normal) Model . 10
2.3 Discussions . 10
2.4 SABR dynamic . 11
2.5 SABR asymptotic solution . 11
2.6 SABR for negative interest rates . 12

2.6.1 Shifted SABR . 12
2.6.2 Absolute SABR . 12

2.7 SABR calibration . 12
2.8 SABR parameters . 13

2.8.1 α parameter . 13
2.8.2 β parameter . 14
2.8.3 ρ parameter . 14
2.8.4 ν parameter . 15

2.9 SABR complements . 15
2.9.1 The Backbone . 15
2.9.2 The Skew . 16
2.9.3 The convexity . 16

3 Artificial Neural Networks 17
3.1 Introduction and history of Deep Learning 17
3.2 Architecture of Neural Networks . 19

3.2.1 Brief Description . 19
3.2.2 Detail Construction . 19

i

Thorin MSc thesis CONTENTS

3.2.3 Activation Functions . 21
3.3 Training of Neural Networks . 21

3.3.1 Loss Function . 21
3.3.2 Minibatch and batch size . 23
3.3.3 Epochs . 23
3.3.4 Iterations . 24
3.3.5 Summary example . 24
3.3.6 Stochastic Gradient Descent: SGD 24
3.3.7 Backpropagation . 25

3.4 Universal Approximation Theorem 27
3.4.1 Arbitrary Width . 27
3.4.2 Arbitrary Depth . 27

4 Methodology 28
4.1 Step 1: Data Presentation . 29
4.2 Step 2: Sequential calibration on time-series 29
4.3 Step 3: Preparing Training Dataset 32

4.3.1 Step 3.1 . 33
4.3.2 Step 3.2 . 33
4.3.3 Step 3.3 . 34
4.3.4 Step 3.4 . 34
4.3.5 Step 3.5 . 35
4.3.6 Step 3.6 . 35
4.3.7 Step 3.7 . 35
4.3.8 Step 3.8 . 35

4.4 Step 4: Neural Networks Calibration 36
4.4.1 Architecture choice . 37
4.4.2 Activation Function . 38
4.4.3 Loss function . 40
4.4.4 Optimizer choice . 40
4.4.5 Epoch and Batch . 40
4.4.6 Kernel Initializer . 40
4.4.7 Early Stopping . 40
4.4.8 Dynamic Learning Rate . 41

4.5 Step 5: Out-of-Sample test . 41

5 Results 42
5.1 Step 1: Data Presentation . 42
5.2 Step 2: Sequential calibration on time-series 44
5.3 Step 3: Preparing Training Dataset 47
5.4 Step 4: Neural Networks calibration 48
5.5 Step 5: Out-Sample test . 50
5.6 Discussions . 52

5.6.1 Time to deliver Output . 52
5.6.2 Time to calibrate the model 52
5.6.3 Robustness . 52
5.6.4 Improvement possibilities . 52

ii

Thorin MSc thesis CONTENTS

6 Hedging 54
6.1 Hedging under SABR model . 54

6.1.1 Hagan’s formula . 55
6.1.2 Barlett’s formula . 55

6.2 Hedging with Neural Networks . 56

Conclusion 58

Appendix 59

Bibliography 65

iii

List of Figures

2.1 alpha parameter influence . 13
2.2 beta parameter influence . 14
2.3 positive rho parameter influence . 14
2.4 negative rho parameter influence . 14
2.5 nu parameter influence . 15
2.6 Backbone effect with β = 0 . 16
2.7 Backbone effect with β = 1 . 16

3.1 History of AI . 17
3.2 ImageNet LSVRC . 18
3.3 Neural Network illustration . 19
3.4 Architecture of Neural Network . 20
3.5 Activation Function Illustration . 21
3.6 Loss Function List . 22

4.1 Grid vs Random search . 37
4.2 Relu graph . 38
4.3 Elu Graphs . 39
4.4 Learning Rate Illustration . 41

5.1 ZAR yield curve on 2nd of September 2020 42
5.2 Time-series of SABR calibrated parameters 45
5.3 Time-series of error of SABR calibrated parameters 46
5.4 Step 4 Neural Network . 48
5.5 Time-series of SABR calibrated parameters with Neural Networks . . 50
5.6 Time-series of error of SABR calibrated parameters with Neural Net-

works . 51

1 The mostly complete chart of Neural Networks 59
2 One-dimensional Activation Function List 60
3 Multi-dimensional Activation Function List 60

iv

List of Tables

4.1 Step 2 parameters . 31
4.2 Step 2 summary . 31
4.3 Step 3 summary . 33
4.4 Step 4 summary . 36

5.1 South African Forward rate in percentage on 2nd of September 2020 . 42
5.2 Black’s implied volatility in percentage of South African at-the-money

swaptions on 2nd of September 2020 43
5.3 Black’s implied volatility in percentage of South African at-the-money

swaptions on 5th of March 2020 . 44
5.4 Hagan’s implied volatility in percentage of South African at-the-money

swaptions on 5th of March 2020 . 44
5.5 Step 4 parameters . 49
5.6 SABR Parameter values for both methods on an in-sample date: 5th

of March 2020 . 49
5.7 Comparison of Hagan/Hagan NN implied volatility in percentage of

South African at-the-money swaptions on a in-sample date: 5th of
March 2020 . 49

5.8 SABR Parameter values for both methods on an out-of-sample date:
2nd of September 2020 . 50

5.9 Comparison of Hagan/Hagan NN implied volatility in percentage of
South African at-the-money swaptions on a out-of-sample date: 2nd

of September 2020 . 50

v

Introduction

Investment Banks profit is mainly realised thanks to fees they charge to clients.
However, banks sit on a treasure: 20 years of financial data, of time series of human-
powered trading strategies, human operators that have traded and hedged securi-
ties for a long time, which is stored but not always exploited. JPM’s quant Hans
Buehler 1 recently explained that it is not any more the time of parametric models,
it is the era of data-driven semi/non-parametric models.

Against this background, the purpose of this thesis is to provide a calibration method
exploiting these large dataset. Thanks to machine learning technology, we are also
attempting to create a recipe that could give results instantaneously. To achieve
this goal, we will see how the bulk of the calibration needs to be done offline and
Artificial Neural Networks (ANN) offer just the right technique.

In the choice of a pricing model, it is important for it to calibrate precisely and
quickly. The main interest of using Neural Networks is the possibility to do the
calibration (which in any model is often the time-consuming process) completely
offline. This internship has been conducted in the Fixed Income team, and from the
beginning the idea of the project has been formalized as: to use ANN to project
swaption matrices into space of tradable parameters (SABR), directly in-line at
limited computational cost and quickly.

Among the possible currencies that Emerging Market desk would trade, we settled
for South African Rand (ZAR) and the project idea was “Artificial Neural Networks
for SABR model calibration & hedging” in South African Fixed Income market,
which is one of the most liquid markets operated by the team where I did the
internship.

This project is organised as follows. Chapter 1 will introduce some standard Fixed
Income concepts and some relevant financial products. We will review fundamen-
tal mathematical concepts that will allow us to model the financial products in a
rigorous manner. Chapter 2 will describe some very common Interest Rate Models,
see their limits to capture the volatility smile and will focus on the SABR model
to try to solve this issue. Chapter 3 will offer a broad review of Artificial Neural
Network, a specific machine learning technique that we will use in the main part of
this work. Chapter 4 is the core chapter of this thesis. Here, we will first obtain
a daily calibrated time-series of SABR parameters stretching two years. Starting
from this daily time-series, we will create additional randomised samples in order

1www.risk.net/derivatives/6705012/podcast-hans-buehler-on-deep-hedging-and-the-adva
ntages-of-data-driven-approaches

1

www.risk.net/derivatives/6705012/podcast-hans-buehler-on-deep-hedging-and-the-advantages-of-data-driven-approaches
www.risk.net/derivatives/6705012/podcast-hans-buehler-on-deep-hedging-and-the-advantages-of-data-driven-approaches

to have enough data to train our Neural Network.After that we will perform the
calibration with it. Chapter 5 will analyse the results of this exercise. Chapter 6
will show possibilities of hedging thanks to the model we have created.

Chapter 1

Basic concepts

In this chapter, we will introduce basic notions in interest rates theory that will
be useful in the following sections. This chapter relies on notation in Brigo and
Mercurio (2006) [7].

1.1 Bank account

Definition 1.1.1 (Bank account). We define B(t) to be the value of a bank account
at time t ≥ 0. We assume B(0) = 1 and that the bank account evolves according to
the following differential equation:

dB(t) = rtB(t)dt, B(0) = 1 (1.1)

where rt is the instantaneous rate at which the bank account accrues. This instanta-
neous rate is usually referred to as instantaneous spot rate,or briefly as short rate.
We get:

B(t) = exp

(∫ t

0

rsds

)
(1.2)

Definition 1.1.2 (Discount factor). The (stochastic) discount factor D(t, T) be-
tween two time instants t and T is the amount at time t that is “equivalent” to one
unit of currency payable at time T , and is given by

D(t, T) =
B(t)

B(T)
= exp

(
−
∫ T

t

rsds

)
(1.3)

1.2 Zero-coupon bond

Definition 1.2.1 (Zero-coupon bond). A T -maturity zero-coupon bond (pure dis-
count bond) is a contract that guarantees its holder the payment of one unit of
currency at time T , with no intermediate payments. The contract value at time t,
t < T is denoted by P (t, T).

P (T, T) =1

P (t, T) =EQ
t [D(t, T)× 1] = EQ

t

[
exp

(
−
∫ T

t

rsds

)]
(1.4)

where Q is the risk neutral measure.

3

Thorin MSc thesis CHAPTER 1. BASIC CONCEPTS

Definition 1.2.2 (Time to maturity). The time to maturity T − t is the amount of
time (in years) from the present time t to the maturity time T > t

1.3 Spot Interest Rates

Definition 1.3.1 (Simply-compounded spot interest rate). The simply-compounded
spot interest rate prevailing at time t for the maturity T is denoted by L(t, T) and
is the constant rate at which an investment has to be made to produce an amount of
one unit of currency at maturity, starting from P (t, T) units of currency at time t,
when accruing occurs proportionally to the investment time.

P (t, T) (1 + τ(t, T)L(t, T)) = 1

L(t, T) :=
1− P (t, T)

τ(t, T)P (t, T)
(1.5)

Definition 1.3.2 (Continuously-compounded interest rate). The continuously-
compounded spot interest rate prevailing at time t for the maturity T is denoted by
R(t, T) and is the constant rate at which an investment of P (t, T) units of currency
at time t accrues continuously to yield a unit amount of currency at maturity T .

P (t, T) exp (R(t, T)× (T − t)) = 1

R(t, T) := − ln (P (t, T))

τ(t, T)
(1.6)

Definition 1.3.3 (Annually-compounded spot interest rate). The annually- com-
pounded spot interest rate prevailing at time t for the maturity T is denoted by
Y (t, T) and is the constant rate at which an investment has to be made to pro-
duce an amount of one unit of currency at maturity, starting from P (t, T) units of
currency at time t, when reinvesting the obtained amounts once a year.

P (t, T) (1 + Y (t, T))τ(t,T) = 1

Y (t, T) :=
1

P (t, T)1/τ(t,T)
− 1 (1.7)

1.4 Forward rates

Forward rates are contract characterised by three instants:

• the contract valuation: time t

• the contract expiry: time T

• the contract maturity: time S

We get the relationship among different instants: t ≤ T ≤ S.
Forward rates enables an investor to lock now an interest rate for a future investment.
The investor can lock at time t an interest rate K for period [T, S]. The locked
interest rate K is determined in relation to the current interest rate structure.
The value of the contract is dependant of previous factors as well as the notional of
the contract N .

4

Thorin MSc thesis CHAPTER 1. BASIC CONCEPTS

FRA(t, T, S, τ(t, T), K,N) = N [P (t, T)τ(t, T)K − P (t, T) + P (t, S)] (1.8)

The contract is fair if it has an expected value of zero. Only one value of K makes
the value of the contract fair at time t.

Definition 1.4.1 (Simply-compounded forward interest rate). The simply- com-
pounded forward interest rate prevailing at time t for the expiry T > t and maturity
S > T is denoted by F (t;T, S)

F (t;T, S) =
1

τ(T, S)

(
P (t, T)

P (t, S)
− 1

)
(1.9)

We can define the instantaneous forward interest rate, even if not a tradable contract,
it will be useful for mathematics modelisation. We take S → T+.

Definition 1.4.2 (Instantaneous forward interest rate). The instantaneous forward
interest rate prevailing at time t for the maturity T > t is denoted by f(t, T)

f(t, T) = lim
S→T+

F (t, T, S) = −∂ logP (t, T)

∂T
(1.10)

To determine instantaneous forward interest rates from the market, it must be ex-
trapolate from interest-rates curve.
In the European markets, the fundamental interbank interest rates are:

• LIBOR (London InterBank Offered Rate) is an interest rate which is the av-
erage of London biggest banks interbank rate, which means the rate at which
these banks would lend to each others. These rates are on seven lending peri-
ods.

• EURIBOR (Euro InterBank Offered Rate) is a daily interest rate which is the
average of Eurozone interbank rates.

• OIS (Overnight Indexed Swap) is an interest rate swap over some fixed term
where the periodic floating payment is generally based on a return calculated
from a daily compound interest investment

1.5 Interest-Rate Swaps

A generalisation of FRA is Interest Rates Swap (IRS). Interest-Rate Swap is a
contract that exchanges payments between two differently indexed legs, starting from
a future time instant. At every instant Ti in a pre-specified set of dates Tα+1, ..., Tβ
the fixed leg pays out the amount. The cash flows come from a fixed rate K or a
floating rate, depending on the side: the payer swap receives the floating and pays
the fixed rate, and the receiver swap pays the floating rate and receives the fixed
one.
The discounted payoff at time t < Tα for a payer IRS is

IRSpayer =

β∑
i=α+1

ND(Ti−1, Ti)τi (F (t, Ti)−K) (1.11)

5

Thorin MSc thesis CHAPTER 1. BASIC CONCEPTS

1.6 Swaption

Swaptions are options on an IRS. A European payer swaption is a contract that gives
its holder the right to enter a payer IRS at a given time, the swaption maturity Tα.
The discounted payoff of a payer swaption at time t < Tα is:

SWAPTIONpayer = ND(t, Tα)

(
β∑

i=α+1

P (Tα, Ti)τi [F (Tα, Ti−1, Ti)−K]

)+

(1.12)

An importance consideration is to determine the strike of the the swaption, where
it is at the money, it can be determine:

KATM = STα,Tβ(t) =

∑β
i=α P (t, Ti)τiF (t, Ti−1, Ti)∑β

i=α P (t, Ti)τi
(1.13)

=
P (t, Tα)− P (t, Tβ)

CTα,Tβ(t)

Hence we can re-write the payoff of SWAPTIONpayer as

SWAPTIONpayer = NCTα,Tβ(t)
(
STα,Tβ(Tα)−K

)+
(1.14)

Using the swap measure, we can determine the valuation V (t) of the
SWAPTIONpayer at time t < Tα

V (t) = N × CTα,Tβ(t)× EQα,β
[(
STα,Tβ(Tα)−K

)+ |Ft] (1.15)

1.7 No-arbitrage Pricing

In this section, we will introduce basic notions in mathematical financial theory.
This section relies on Brigo and Mercurio (2006) [8] and Tan (2012) [58].

For 50 years, the key assumption in financial mathematics and financial literature
has been the absence of arbitrage opportunities in the financial market. Black and
Scholes (1973) [6] are the key initiators. For the purpose of this work, we will not
delve into the issues of funding and multi-curves frameworks, which have become
very topical after the 2008 GFC.

Two fundamental theorems results of this hypothesis and are names the fundamental
theorems of asset pricing (FTAP). We assume (Ω,F ,P) is a a probability space with
the natural right-continuous filtration F = {Ft : 0 ≤ t ≤ T}.

Theorem 1.7.1 (FTAP 1). If a market model has a risk-neutral probability measure,
then it does not admit arbitrage.

Theorem 1.7.2 (FTAP 2). Consider a market model that has a risk-neutral prob-
ability measure. The market is complete if and only if the risk-neutral probability
measure is unique.

6

Thorin MSc thesis CHAPTER 1. BASIC CONCEPTS

Definition 1.7.3. A financial market is complete if and only if every contingent
claim is attainable.

Harrison and Pliska (1983) demonstrates the following results:

Theorem 1.7.4. A financial market is (arbitrage free and) complete if and only if
there exists a unique equivalent martingale measure Q. The existence of a unique
equivalent martingale measure, therefore, not only makes the markets arbitrage free,
but also allows the derivation of a unique price associated with any contingent claim.

Definition 1.7.5. A equivalent martingale measure Q is a probability measure such
that each share price is exactly equal to the discounted expectation of the share price
under this measure.

Hence, we obtain the unique price of a contingent claim V at time t

V (t) = B(t)× EQ
(
V (T)

B(T)
|Ft
)

(1.16)

= EQ
(

exp

[
−
∫ T

t

r(s)ds

]
V (T)|Ft

)
where the numeraire used is the bank account.

Definition 1.7.6. A numeraire is a positive, non-dividend paying asset by which
value is computed. It is a reference for all other assets

1.8 Numeraire change

It is very helpful to use other numeraires under different respective measures which
will make valuation computation easier.
We introduce two very helpful numeraire changes. See Changes of numéraire,
changes of probability measure and option pricing [26] and A Change of Numeraire
Toolkit (Brigo & Mercurio) [9].

1.8.1 T-forward measure

This measure uses as numeraire a zero coupon bond with maturity T .The measure
will be denoted: F T . Under this numeraire, a contingent claim V will have the
unique value:

V (t) = P (t, T)× EFT
[
V (T)

P (T, T)
|Ft
]

= P (t, T)× EFT [V (T)|Ft] (1.17)

1.8.2 Swap measure

This measure uses as numeraire portfolio of many zero-coupon bonds with maturity
Tα+1, ..., Tβ. The value of this portfolio at time t < Tα+1 is:

CTα,Tβ(t) =

β∑
i=α+1

(Ti − Ti−1)P (t, Ti) (1.18)

7

Thorin MSc thesis CHAPTER 1. BASIC CONCEPTS

The measure will be denoted: Qα,β. Under this numeraire, a contingent claim V
will have the unique value:

V (t) = CTα,Tβ(t)EQα,β
[

V (Tα)

CTα,Tβ(Tα)
|Ft
]

(1.19)

8

Chapter 2

Interest Rates & SABR models

As our aim is to be able to price swaptions, we will review here some of the main
models used in the financial market to price swaptions and to determine implied
volatility. This chapter was written thanks to The Volatility Surface (2006) [24]
and Option Pricing Model comparing Louis Bachelier with Black-Scholes Merton
(2016) [59].

2.1 The Bachelier (Normal) Model

Louis Bachelier was a french mathematician (1870-1946) who introduced the Brow-
nian motion in his PhD thesis (Théorie de la spéculation, 1900) [3]. Bachelier is
considered as the forefather of mathematical finance and a pioneer in the study of
stochastic processes.

The Bachelier Model describes the instantaneous forward rate Ft with the dynamic:

dFt = σBachelierdWt (2.1)

where σBachelier is a constant volatility and Wt is a standard brownian motion (under
the forward measure). The solution is:

F (t) = F (0) + σBachelierWt, Wt ∼ N (0,
√
t) (2.2)

This model is popular because it allows negative interest rates (particularly interest-
ing in these period of low rates). But it has a big drawback, i.e. due to the normal
distribution of interest rates it assumes there is no lower bound and interest rates
can go infinitely low, which is economically not realistic.

Under this model, the value of a swaption payer is:

SWAPTIONPayer = NCTα,Tβ(t)
(

[f −K] Φ(d) + σBachelier
√
Tαφ(d)

)
(2.3)

with d = f−K
σBachelier

√
Tα

and f = STα,Tβ(t)

Tα is the instant the swap starts, Φ is the normal cumulative probability function,
φ is the normal probability density function.

9

Thorin MSc thesis CHAPTER 2. INTEREST RATES & SABR MODELS

2.2 The Black (Log-Normal) Model

Fischer Black (1938-1995) was an American economist, Nobel Prize in economy,
known for the Black–Scholes equation.

The Black Model describes the instantaneous forward rate Ft with the dynamic:

dFt = σBlackdWt (2.4)

where σBlack is a constant volatility and Wt is a standard Brownian motion (under
the forward measure). The solution is:

F (t) = F (0) exp

(
σBlackWt −

1

2
σ2
Blackt

)
, Wt ∼ N (0,

√
t) (2.5)

This models follows a log normal distribution, which forbids negative forward in-
terest rate. Due to the current economic context, this propriety is not so relevant
anymore and it can become an issue for the model itself.

Under this model, the value of a payer swaption is:

SWAPTIONPayer = NCTα,Tβ(t) [fΦ(d+)−KΦ(d−)] (2.6)

where d± =
log(f

K
)± 1

2
σ2
BlackT

σBlack
√
T

2.3 Discussions

In the financial industry, these two formulas are used to price and hedge European
options. The price and volatility are directly linked. The volatility which matches
the market price is referred as the implied volatility σimplied.

However, in these two models, we assume the volatility to be constant. When looking
at the market, different volatilities are needed for different strikes. This is usually
known as the volatility smile.

In order to price and hedge correctly it is very important to understand the dynamic
of the volatility. Models where volatility is not constant are of two types: local
volatility models and stochastic volatility models.

Local volatility models have been developed by Dupire (1994) [22], Derman & Kani
(1994, 1998) [19] [13]. Stochastic volatility models are in many flavours, and a few
relevant examples can be: Hull & White (1987) [40], Heston (1993) [37], Lipton
(2002) [45], Hagan et al (2002) [30].

A great summary is provided in Lecture Notes: Stochastic Volatility and Local
Volatility by Jim Gatheral(2012) [25]

We will review specifically SABR model, which was developed by Patrick S. Ha-
gan, Deep Kumar, Andrew Lesniewski, and Diana Woodward to solve this main

10

Thorin MSc thesis CHAPTER 2. INTEREST RATES & SABR MODELS

issue [30]. This section was written thanks to: Explicit SABR Calibration Through
Simple Expansions (2014) [43], Implied Volatilities for Mean Reverting SABR Mod-
els (2020) [32], Managing Smile Risk (2002) [29], Managing Vol Surfaces (2018) [33]
and The SABR Chronicles [28].

2.4 SABR dynamic

The SABR model is a popular model in finance and compared to models presented
in chapter 2, the volatility is not assumed to be constant. It is a stochastic volatility
model which tries to capture the volatility smile. It is widely used in interest rates
derivative market. SABR means Stochastic Alpha Beta Rho, where alpha beta and
rho are the parameters of the model.

We work as usual on a a probability space: (Ω,F ,P). We assume the forward follows
the below 2 factors dynamics:

dFt = σt(Ft)
βdWt F0 = f

dσt = νσtdZt σ0 = α
dWtdZt = ρdt

(2.7)

The initial values are the net present value of the forward rate F0 (discount by the
tenor) and σ0. Wt and Zt are two Wiener processes under the forward measure, their
correlation is −1 ≤ ρ ≤ 1. ρ is the slope of the implied skew, ν is called the volvol
(volatility of volatility) and satisfies ν ≥ 0. α is the level of the implied volatility of
ATM options and satisfies α ≥ 0. Obviously with α = 0, we get a CEV (constant
elasticity of variance) model.
β satisfies 0 ≤ β ≤ 1. If β = 1, the SABR dynamics correspond to a stochastic
lognormal model ; if β = 0, the SABR dynamics correspond to a stochastic normal
model; if β = 1/2, the dynamics correspond to a square-root process, and example
of which is CIR model (here with no drift) as explained in A theory of the term
structure of interest rates (1985) [16].

2.5 SABR asymptotic solution

We consider an option on the forward F with a strike K and a maturity T and a
payoff P . The value of the option is the discounted expected payoff.
An asymptotic expansion in ε := Tν2 gives a solution of the SABR equations for
the implied volatility:

σimpl =
α

(fK)(1−β)/2

{
1 +

[
(1− β2)

24

α2

(fK)1−β
+

1

4

αβνρ

(fK)(1−β)/2
+

2− 3ρ2

24
ν2
]
T

}
(2.8)

× 1

1 + 1
24

(1− β)2(ln f/K)2 + 1
1920

(1− β)4(ln f/K)4
× ζ

D(ζ)

where:

• ζ = ν
α

(fK)(1−β)/2 ln
(
f
K

)
11

Thorin MSc thesis CHAPTER 2. INTEREST RATES & SABR MODELS

• D(ζ) = log

(√
1−2ρζ+ζ2+ζ−ρ

1−ρ

)
When the option is at the money, i.e. when f = K, this approximation can be
written:

σimpl = α
1

f 1−β

{
1 +

[
(1− β)2

24

α2

f 2−2β +
1

4

ρβαν

f 1−β +
2− 3ρ2

24
ν2
]
T

}
(2.9)

The term α 1
f1−β

= α f
β

f
is very important, as for T = 0 the implied volatility is

expressed in function of the initial volatility and the forward rate percentage.

2.6 SABR for negative interest rates

Due to the popularity of the SABR model which has become a workhorse of the
financial industry, after the GFC and the low interest rates regime that ensued, the
SABR model has been adapted to negative interest rates, as in The Free Boundary
SABR: Natural Extension to Negative Rates (2015) [1], From arbitrage to arbitrage-
free implied volatilities (2016) [27] and Finite Difference Techniques for Arbitrage
Free SABR (2014) [44].

2.6.1 Shifted SABR

The Shifted SABR method translates the forward rate of a constant s. The purpose
is to shift the lower bound of the forward rate to force it to be always positive. The
value of this shift is dependant of how low is the economic environment.

dFt = σt(Ft + s)βdWt F0 = f
dσt = ασtdZt σ0 = α

dWtdZt = ρdt
(2.10)

where s is a positive shift.

2.6.2 Absolute SABR

The Absolute SABR method forces the forward rate to stay positive thanks to
taking the absolue value of the forward rate. Whatever the economic environment,
the forward will be positive.

dFt = σt|Ft|βdWt F0 = f
dσt = ασtdZt σ0 = α

dWtdZt = ρdt
(2.11)

2.7 SABR calibration

To calibrate the SABR model we would need to determine four parameters: α, β, ρ, ν.
F0 = f is observable directly in the market.

12

Thorin MSc thesis CHAPTER 2. INTEREST RATES & SABR MODELS

To proceed into this calibration, it is common to fix β. This procedure is allowed,
because ρ and β have similar influence, as proved by Tan (2012) [58]. Normally it is
the desk that assign the parameter by their understanding of the market dynamics.

To calibrate (α, ρ, ν), we solve the following equation:

(α̂, ρ̂, ν̂) = arg min
(α,ρ,ν)

∑
i

d
[
σmarket,ATM , σimpl (fi, Ti, α, ρ, ν)

]
(2.12)

where we loop on the different volatilities observed in the market and d(x, y) is an
error metric. It is common to use d(x, y) = (y − x)2.

An other common method is to fix α and to minimise only on (ρ, ν). Then α is
found by solving the cubic polynomial for ATM market volatilities:

(
β(β − 2)

24
Tf 3β−2

)
α3 +

(
1

4
ρβνTf 2β−1

)
α2 (2.13)

+

(
1 +

2− 3ρ2

24
ν2T

)
fβα− σmarket,ATM = 0

However, three roots will be determined. It has been proved by West (2005) [61],
that the lowest positive one must be chosen. Due to the real coefficients and the
oddness of the polynomial degree, there will be at least one real solution.

2.8 SABR parameters

It is interesting to understand the influence of each parameters on the volatility.

2.8.1 α parameter

Figure 2.1: alpha parameter influence

It is important to recall that σ0 = α, it is the first instant of the stochastic volatility.
Hence the higher is α, the more the curve is shifted upward.

13

Thorin MSc thesis CHAPTER 2. INTEREST RATES & SABR MODELS

2.8.2 β parameter

Figure 2.2: beta parameter influence

We observe β is responsible of the volatility smile of the curve. This influence on
the volatility smile is higher for lower strikes.

We also notice that the higher is β, the lower is the curve. This is normal because
we recall β is the power of the forward rate:

dFt = σt(Ft)
βdWt

2.8.3 ρ parameter

Figure 2.3: positive rho parameter influence

Figure 2.4: negative rho parameter influence

14

Thorin MSc thesis CHAPTER 2. INTEREST RATES & SABR MODELS

We observe that for positive ρ, increasing ρ creates a steeper volatility smile. On
the contrary, for negative ρ, decreasing ρ creates a steeper volatility smile.
The effect of ρ is similar to the effect of β, which justifies (as we will see in next
section) fixing one parameter for the calibration.

2.8.4 ν parameter

Figure 2.5: nu parameter influence

We notice the higher is ν, the more convex is the curve.

2.9 SABR complements

Precious help and illustrations for this section were found in The SABR Model by
F. Rouah [20] and BSIC: Bocconi Students Investment Club 1.

For strikes close to the forward rate, we can approximate the implied volatility
formula by:

σimpl(f,K) =
α

f 1−β

{
1− 1

2
(1− β − ρλ) ln

(
K

f

)
(2.14)

+
1

12

[
(1− β)2 + (2− 3ρ2)λ2

]
ln2

(
K

f

)}
where λ = ν

α
f 1−β is the strenght of ν, the volvol compared to the local volatility of

the forward rate.

We can now study the implied volatility deeper.

2.9.1 The Backbone

The factor α
f1−β

in the ATM σimpl is very important, it is the change in ATM vol for
a change in the forward rate.

The backbone is characterised completely by β.

1www.bsic.it/sabr-stochastic-volatility-model-volatility-smile

15

www.bsic.it/sabr-stochastic-volatility-model-volatility-smile

Thorin MSc thesis CHAPTER 2. INTEREST RATES & SABR MODELS

• β = 0 (stochastic volatility normal model) gives a steeply downward sloping
backbone

• β = 1 (stochastic volatility log-normal model) gives a nearly flat backbone

We plot the backbone for fixed α, β, ρ, ν, for different values of f, and ATM strikes
i.e. f = K.

Figure 2.6: Backbone effect with β =
0

Figure 2.7: Backbone effect with β =
1

2.9.2 The Skew

The skew is determined by −1
2
(1−β− ρλ) log

(
K
f

)
. We decompose the skew in two

terms:

• The Vanna Skew 1
2
ρλ log

(
K
f

)
. This term is the correlation between instan-

taneous volatility and f.

• The Beta Skew −1
2
(1 − β) log

(
K
f

)
. Because 0 ≤ (1 − β) ≤ 1, the implied

vol is decreasing in K.

2.9.3 The convexity

The convexity is determined by 1
12

[(1− β)2 + (2− 3ρ2)λ2] ln2
(
K
f

)
. We decompose

the convexity into two terms which induce the smile:

• The Skew effect 1
12

(1− β)2 ln2
(
K
f

)
• The Volga effect 1

12
(2− 3ρ2)λ2 ln2

(
K
f

)

16

Chapter 3

Artificial Neural Networks

In this chapter, we introduce Artificial Neural Networks or just Neural Networks.
This chapter is inspired of Deep Learning: An Introduction for Applied Mathemati-
cians (2019) [38] and Deep Learning Lecture notes by Mikko Pakkanen (2019) [52].
Illustrations in this chapter without mentioned sources are extract from Deep Learn-
ing Lectures Notes.

3.1 Introduction and history of Deep Learning

Figure 3.1: History of AI

Deep Learning is part of Machine Learning that employs Neural Networks to manage
problem with high complexity such as speech or image recognition, optimal decision
making. Yann Le Cun 1 - together with Geoffrey Hinton and Yoshua Bengio are
named the ”Godfathers of AI” and ”Godfathers of Deep Learning” 2. It also ex-

1yann.lecun.com
2www.forbes.com/sites/samshead/2019/03/27/the-3-godfathers-of-ai-have-won-the-prest

igious-1m-turing-prize

17

yann.lecun.com
www.forbes.com/sites/samshead/2019/03/27/the-3-godfathers-of-ai-have-won-the-prestigious-1m-turing-prize
www.forbes.com/sites/samshead/2019/03/27/the-3-godfathers-of-ai-have-won-the-prestigious-1m-turing-prize

Thorin MSc thesis CHAPTER 3. ARTIFICIAL NEURAL NETWORKS

plained because for two decades (1990-2010) only the three of them in IA community
believed in Neural Networks.

Figure 3.2: ImageNet LSVRC

In 2010’s, Deep Learning entered a new era. Every year, ImageNet Large Scale
Visual Recognition Challenge (LSVRC) is organized. In 2012, at general surprise,
a deep learning algorithm improved drastically the performances. This for two
reasons. First, data amount available became big enough to train Neural Network.
Secondly, GPU processors did big progresses.

In 2015, the general audience discovered Deep Learning, Google DeepMind created a
code which defeated best human players in the Chinese Game: AlphaGo which was
considered too complex for computers (like with IBM Deep Blue for chess against
Garry Kasparov in 1996).

The financial industry rapidly got interest in this new field, plenty of promises.As
explained by Hans Buehler 3, parametric models are always an approximation and
data-driven models can ”do much heavier, much more precise calculations”. As
mentioned in the introduction, banks rely on two decades of stored financial data.
They also can afford the best cutting-edge technologies. Naturally, they are front-
runners in this new field. Equivalent competitors are Oil extraction companies.
Main applications are Pricing, hedging, model calibration, algorithmic-trading.

3www.risk.net/derivatives/6705012/podcast-hans-buehler-on-deep-hedging-and-the-adva
ntages-of-data-driven-approaches

18

www.risk.net/derivatives/6705012/podcast-hans-buehler-on-deep-hedging-and-the-advantages-of-data-driven-approaches
www.risk.net/derivatives/6705012/podcast-hans-buehler-on-deep-hedging-and-the-advantages-of-data-driven-approaches

Thorin MSc thesis CHAPTER 3. ARTIFICIAL NEURAL NETWORKS

3.2 Architecture of Neural Networks

3.2.1 Brief Description

Figure 3.3: Neural Network illustration

Neural Networks imitates the behaviour of biological neural networks. However,
Medicine has now a better understanding and this modelisation of biological Neural
Network is contested. Hence the comparison with human brain is for historical
reasons 4.

It is formed by thousands of neurons (or units) connected together through consec-
utive layers. The first layer is called input layer, the last is the output layer and
intermediary layers are called hidden layers. Only the Feed Forward Neural Network
will be studied in this project, it is the most popular Neural Network architecture.
However plenty of other models exist. A complete graph ”The mostly complete
chart of Neural Networks” from www.towardsdatascience.com is provided in
appendix 1.

3.2.2 Detail Construction

The purpose of Neural Networks is to approximate a function:

f = (f1, ..., fO) : RI → RO (3.1)

with I ∈ N inputs and O ∈ N outputs.

4www.analyticsindiamag.com/neural-networks-not-work-like-human-brains-lets-debunk-m
yth

19

www.towardsdatascience.com
www.analyticsindiamag.com/neural-networks-not-work-like-human-brains-lets-debunk-myth
www.analyticsindiamag.com/neural-networks-not-work-like-human-brains-lets-debunk-myth

Thorin MSc thesis CHAPTER 3. ARTIFICIAL NEURAL NETWORKS

Figure 3.4: Architecture of Neural Network

Definition 3.2.1. Let I, O, r ∈ N.
Function f : RI → RO is a feedforward neural network with r−1 ∈ {0, 1, . . .} hidden
layers, where there are di ∈ N units in the i-th hidden layer for any i = 1, . . . , r− 1,
and activation functions σi : Rdi → Rdi , i = 1, . . . , r, where dr := O, if

f = σr ◦Lr ◦ · · · ◦ σ1 ◦L1 (3.2)

where Li : Rdi−1 → Rdl, for any i = 1, . . . , r, is an affine function

Li(x) := W ix+ bi, x ∈ Rdi−1 (3.3)

parametrised by weight matrix W i =
[
W i
j,k

]
j=1,...,di,k=1,...,di−1

∈ Rdi×di−1 and bias

vector
bi =

(
bi1, . . . , b

i
di

)
∈ Rdi , with d0 := I. We shall denote the class of such functions f

by

Nr (I, d1, . . . , dr−1, O;σ1, . . . ,σr) (3.4)

If σi(x) = (g (x1) , . . . , g (xdi)) , x = (x1, . . . , xdi) ∈ Rdi , for some g : R → R, we
write will g in place of σi.

The architecture of the Neural Network is fully characterised by:

• W 1, . . . ,W r and b1, . . . , br are the parameters

• σ1, . . . , σr are the activation functions

• r and d1, . . . , dr−1 are the hyper-parameters

The composition of linear function is very important in Neural Network to capture
non linearities. By composing affine functions, it produces high-order polynomials
exponentially quickly.

20

Thorin MSc thesis CHAPTER 3. ARTIFICIAL NEURAL NETWORKS

It is important to consider the number of parameters of the architecture. Each
parameter will have to be trained later.

Proposition 3.2.2. The number of parameters that characterise
f ∈ Nr (I, d1, . . . , dr−1, O;σ1, . . . ,σr) is

r∑
i=1

(di−1 + 1) di (3.5)

3.2.3 Activation Functions

Figure 3.5: Activation Function Illustration

After each affine transformation, an activation function is applied to the output
which becomes the input of the next layer. Activation Functions have a crucial role
in the architecture of the Neural Network.

We can study some of them.
There are two types of Activation Functions:

• one-dimensional Activation Functions

• multi-dimensional Activation Functions

Detailed illustrations can be found in appendix for one-dimensional Activation Func-
tions 2 and multi-dimensional Activation Functions 3.

3.3 Training of Neural Networks

In this section, we describe how to train the Neural Network.

3.3.1 Loss Function

The first thing needed to calibrate a Neural Network is to get a metric to quantify
the error of calibration. The goal obviously will be to minimise this error.

21

Thorin MSc thesis CHAPTER 3. ARTIFICIAL NEURAL NETWORKS

Definition 3.3.1. A loss function is

` : RO × RO → R (3.6)

If X is the random vector input and Y is the random vector output, the goal is to
make match Y and f(X), i.e. to minimise `(f(X), Y). If we knew the distribution
of (X, Y), we could search optimal f by minimising:

E [`(f(X), Y)]

However practically, the distribution is not know, so we will minimise on samples
i.e.

L(f) =
1

N

N∑
i=1

`
(
f(xi), yi

)

Figure 3.6: Loss Function List

The loss function is minimised for:

ŷ = arg min
ŷ∈R

E [`(ŷ, Y)] (3.7)

We can study some of the most famous loss functions:

22

Thorin MSc thesis CHAPTER 3. ARTIFICIAL NEURAL NETWORKS

• Absolute Loss

Equation 3.7 is minimised for ŷ equals the median. So Absolute Loss targets
the median.

• Squared Loss

Equation 3.7 is minimised for ŷ equals the mean.So Squared Loss targets the
mean.
A potential issue with Squared Loss is that because of the square, far value
from the target will be more penalised than close values. Outliers can be
over-emphasised.

• Huber Loss

Huber Loss tries to mitigate this issue. It behaves as a Squared Loss function
close to zero values and as an Absolute Loss further.

• Binary cross-entropy

Binary cross-entropy is a loss function for binary output.

For multidimensional outputs, the loss function can be a sum of one-dimension loss
functions seen previously.

3.3.2 Minibatch and batch size

Minibatch

Minibatch is an important concept in loss function minimising.
The error is average on different subset called minibatch: B ⊂ {1, · · · , N} of sam-
ples.
The function to minimise is rewritten:

LB(f) =
1

#B

N∑
i∈B

`
(
f(xi), yi

)
Batch size

The batch size is the number of samples in a minibatch.

3.3.3 Epochs

One epoch is the passage of the whole data set through the Neural Network.
One epoch is divided in smaller subset (minibatches).

What it means more than one epoch?
Neural Networks need lots of samples to train. Hence the same dataset will go

23

Thorin MSc thesis CHAPTER 3. ARTIFICIAL NEURAL NETWORKS

through the same Neural Network many times. The number of times is the number
of epochs. This number must be chosen carefully, a small number of epoch will
produce under-fitting, a large number of epochs will produce over-fitting.

What is the right numbers of epochs?
As we will see in later part, 4.4, parameters tuning is a subtle art. There is no rules
pre-established, it is specific to each datasets.

3.3.4 Iterations

Iteration is an easy concept after batch size and epochs.
Iterations is the number of batch at each epoch. Hence the number of batches is
equal to number of iterations for one epoch.

Example 3.3.1. Let’s say we have 10,000 samples.
If we divided this set into batches of 1000. It will takes 10 iterations to complete on
epoch.
So batch size: 1000, iterations: 10, epoch: 1.

3.3.5 Summary example

Example 3.3.2. Let’s say, we have a 20,000 samples dataset.
Let’s set epochs to 500 and batch size to 100.
The dataset will divided in 20,000

100
= 200 minibatch, each with 100 samples.

The model weights will be updated after each minibatch of 100 samples. One epoch
will involve 200 updates to the model.
With 500 epochs, the model will be trained 500 times with the all dataset, hence
200× 500 = 100, 000 minibatches.

3.3.6 Stochastic Gradient Descent: SGD

We have seen how to quantify the error of the Neural Network. But how to minimise
this error?
The common method is called Stochastic Gradient Descent: SGD.
SGD is an iterative method used to find minima of a curve. The gradient is the rate
of inclination of the curve. The gradient descent iteratively goes to the minima by
going into the decreasing way of the curve. The speed it converges to the minima is
determined by the learning rate η.

Ordinary Gradient Descent

We wish to find the minimum of a function F : Rd → R. We immediately solved
∇F = 0 where ∇F is the gradient of F . However, often the explicit expression of
the derivative is unknown.

dx(t)

dt
= −∇F (x(t)), t > 0 (3.8)

24

Thorin MSc thesis CHAPTER 3. ARTIFICIAL NEURAL NETWORKS

This expression, with initial condition x0 ∈ Rd defines the gradient flow (x(t))t≥0 of
F defined in Gradient Flows: an overview (2016) [56]. With t→∞, the minimima
is reached. However we need to discretise this equation in:

x(t+ η)− x(t)

η
≈ −∇F (x(t)), t > 0 (3.9)

where η is the learning rate. The equation can be rewritten:

x(t+ η) ≈ x(t)− η∇F (x(t)), t > 0 (3.10)

Hence we get an ordinary gradient descent process. We can converge iteratively to
the minima by:

xnew ≈ xold − η∇F (xold), t > 0 (3.11)

Stochastic Gradient Descent

The computation of gradient can be costly for Neural Networks, hence the Stochastic
Gradient Descent is applied.

We start by dividing the dataset into minibatches, where the disjoint union of all
minibatches is the dataset. The parameter of the Neural Network are updated after
each minibatch. The output is the input of the next minibatch.

This procedure is repeated on multiple epochs. For each epoch, the split of the data
into minibatches is changed.

The first initialisation of the parameters can be specified manually or be random.
Parameters mustn’t be all initialised to zero. The gradient descent would be sym-
metric and no updated would be realised after each minibatch.

SGD present some disadvantages. As we will see later, the choice of the learning
rate is tricky. Variants have been proposed.

3.3.7 Backpropagation

We know how to reach the minima of a complex function.
However how to update all parameters of a Neural Network?.
The technic is called backpropagation.

But before, How to compute the gradient?
The gradient is not always explicitly known.
The trick is to use the finite differences method:

F ′(x) ≈
F
(
x+ 1

2
∆
)
− F

(
x− 1

2
∆
)

∆
(3.12)

where ∆ is real value close to zero.

25

Thorin MSc thesis CHAPTER 3. ARTIFICIAL NEURAL NETWORKS

The finite differentiation doesn’t work for highly non linear functions. Other meth-
ods can solve this issue, such as symbolic differentiation or algorithmic differentia-
tion.

Backpropogation is a special case, it is the computation of the gradient for Forward
Neural Network. We look closer how it works.
We consider a function f approximated by a Neural Network with parameters
θ =

(
W 1, . . . ,W r; b1, . . . , br

)
. The function becomes fθ. The hyper-parameters are:

Nr (I, d1, . . . , dr−1, O,σ1, . . . ,σr).
The activation function σi = (gi, . . . , gi).
We need to minimise:

∇θLB(θ) =
1

#B

∑
i∈B

∇`
(
fθ

(
xi
)
,yi
)

(3.13)

Hence we will only study the minimisation of:

∇`
(
fθ

(
xi
)
,yi
)

(3.14)

We introduce common notations, extracted from Deep Learning Lecture Notes:

zi =
(
zi1, . . . , z

i
di

)
:= Li

(
ai−1

)
= W iai−1 + bi, i = 1, . . . , r

ai =
(
ai1, . . . , a

i
di

)
:= gi

(
zi
)
, i = 1, . . . , r

a0 := x ∈ RI ,

(3.15)

hence: fθ(x) = ar and ` (fθ(x),y) = ` (ar,y).

We introduce the adjoint: δi =
(
δi1, . . . , δ

i
di

)
∈ Rdi .

δij :=
∂`

∂zij
, j = 1, . . . , di, i = 1, . . . , r, (3.16)

It is important to recall first the chain rule for G : Rd → R and F = (F1, . . . , Fd) :
Rd → Rd

∂H

∂xi
(x) =

∑
j=1d

∂G

∂yj
(y)

∂Fj
∂xi

(x), x = (x1, . . . , xd′) (3.17)

Hence:

Proposition 3.3.2.

δr = g′r (zr)�∇ŷ` (ar,y) (3.18)

δi = g′i
(
zi
)
�
(
W i+1

)′
δi+1, i = 1, . . . , r − 1

∂`

∂bij
= δij, i = 1, . . . , r, j = 1, . . . , di

∂`

∂W i
j,k

= δija
i−1
k , i = 1, . . . , r, j = 1, . . . , di, k = 1, . . . , di−1

where � stands for the component-wise Hadamard product of vectors.

26

Thorin MSc thesis CHAPTER 3. ARTIFICIAL NEURAL NETWORKS

3.4 Universal Approximation Theorem

Neural networks became incredibly popular in the financial industry, but what justify
them mathematically? It is Universal Approximation Theorems.

Universal Approximation Theorems are of two forms:

• Theorems that prove the approximation ability of Neural Networks with an
arbitrary number of artificial neurons (”arbitrary width” case).

• Theorems that prove the approximation ability of Neural Networks with arbi-
trary number of hidden layers, each containing a limited number of artificial
neurons (”arbitrary depth” case).

.
Theses theorems, in summary tell us Neural Networks can represent plenty of func-
tions if they have the good weights, but give no clues on how to build the architecture
and hyper-parameters on the Neural Network.

3.4.1 Arbitrary Width

This theorem from Allan Pinkus [53] is an extension of the results of George Cybenko
and Kurt Hornik [39]. It was studied too in Universal Approximation with Deep
Narrow Network (2019) [42].

Theorem 3.4.1. We set a continuous function σ : R → R, positive integers: d
and D. The function σ is not a polynomial if and only if, for every continuous
function f : Rd → Rd, every subset compact K ∈ Rd, and every ε > 0, there exists
a continuous function fε : Rd → Rd with representation fε = W2 ◦ σ •W1, where
W1,W2 are composable affine maps and • denotes component-wise composition, such
that the approximation bound supx∈K ‖f(x)− fε(x)‖ < ε holds.

This theorem can be immediately applied to neural networks with any fixed number
of hidden layers. It assumes the first layer can approximate any desired function and
the latter approximate the identity function. In conclusion any fixed-depth network
can approximate any continuous function with bounded depth and arbitrary width.

3.4.2 Arbitrary Depth

The Universal Approximation Theorem was proved by Zhou Lu et all (2017) [50].
They proved Neural Networks of width n + 4 can approximate any Lebesgue inte-
grable function on n-dimensional input space with respect to L1-distance if depth
can be arbitrary.

Theorem 3.4.2. For any Lebesgue-integrable function f : Rn → R and any ε > 0,
there exists a fully-connected ReLU network A with width dm < N + 4 such that the
function FA represented by this network satisfies

∫
Rn |f(x)− FA(x)| dx < ε

In conclusion any fixed-width network can approximate any continuous function
with bounded width and arbitrary depth.

27

Chapter 4

Methodology

This chapter tries to generalise and apply to a different dataset ideas pioneered in
a couple of papers by the researcher A. Hernandez: Model Calibration with Neural
Networks [35] and Model Calibration: Global Optimizer vs. Neural Network [36].

The methodology that we will present in this chapter can be summarised in five
steps:

1. Step 1: Data Presentation
Market Data extraction, prepossessing and explanations

2. Step 2: Sequential calibration on time-series
For each day, we wish to get SABR parameters given implied volatility swap-
tion and forward matrix. This calibration will be accomplished thanks to
standard minimisation techniques, i.e. no Neural Networks. We will then
obtain some hundreds market samples.

3. Step 3: Preparing Training Dataset
Previous step results will be the seed for generation of additional new samples.
Samples created will come from shocking and introducing noise on observed
market samples.

4. Step 4: Neural Network Calibration
Once enough samples will be reached, Neural Network will be trained.

5. Step 5: Out-of-Sample test
We will test the Neural Network calibrated on real market out-of-sample data.

SABR is a good model to capture the volatility smile. SABR parameters are tradable
parameters which operates a reduction of cardinality, hence they are of great interest
for traders. Even if it presents some issues, which need to be solved such as the rapid
degradation of the volatility prediction (more than 1%) for larger than 10y maturities
ATM or larger products [2].

However the model is time-consuming to calibrate. With traditional methods, the
calibration needs to be done every day. The goal is to push offline the calibration
process where the calibration will only need to be done every month and SABR
parameters will be obtained ”instantaneously”.

28

Thorin MSc thesis CHAPTER 4. METHODOLOGY

Neural Networks are excellent candidate for this goal, thanks to their ability to cap-
ture non-linearities, their instantaneous prediction once calibrated and their ability
to give derivatives. But they need an important number of samples to be trained
and as the market does not provide enough data, new data will be created.

4.1 Step 1: Data Presentation

The idea behind this project is to apply ANN in calibrating the SABR parameters
for IR Swaptions in a particular EM market, South Africa Rand (ZAR). Deutsche
Bank has allowed me to use time series of historical data - stretching back almost 2
years. For this project, we will be particularly interested for requesting yield curves,
forward curves and implied volatilities of swaption.

This internship has been realized in Emerging Market department. It had been
chosen to apply the SABR calibration to South Africa’s market (ZAR currency).
Traders consider it as the more stable market (even if market stability became
relative with COVID-19) of emerging markets.

The challenges are:

• liquidity

• noisy data

It is important in all the project to recall South Africa is an emerging market
with poor liquidity. This crucial point will have many consequences. It can’t be
assumed that the market is perfectly efficient, presents no arbitrage. Every standard
assumptions in financial mathematics will have to be checked previously to see if it
is not violated.

If the techniques provided in the following are successful, then it is our aim to extend
the scope of this project to other Emerging Market such as Mexico (MXN currency),
Russia (RUB), Israel (ILS) and Turkey (TRY).

All the code has been done in Python. Two important libraries for Neural Networks
will be used: Tensorflow 1 and Keras 2.

4.2 Step 2: Sequential calibration on time-series

This step has been realised thanks to the help of Calibration of the SABR Model in
Illiquid Market (2005) [61]. It is important not to forget we are working on South
African market which is illiquid. West did the study of SABR calibration on South
African market too. More precisely, he studied the SAFEX (South African Futures
EXchanges).

1www.tensorflow.org
2https://keras.io

29

www.tensorflow.org
https://keras.io

Thorin MSc thesis CHAPTER 4. METHODOLOGY

In the following we are using the notation convention in Hernandez. Let us first
denote the SABR model with M and an instrument theoretical quote by Q:

Q(τ) = M(θ; τ, φ) (4.1)

where:

• θ are the model parameters, (α, ρ, ν) here

• τ are the identifying properties such as list of tenors and maturities

• φ are the exogenous parameters, the forward rate matrix here

The model M has n parameters, some of them have constraints:

θ ∈ S ⊆ Rn (4.2)

As mentioned in 2.7, it needs to determine four parameters: (α, β, ρ, ν). F0 = f is
observable directly in the market.
Thanks to trader’s intuition, we fix β = 1.
To calibrate (α, ρ, ν), we solve the following equation:

(α̂, ρ̂, ν̂) = arg min
(α,ρ,ν)

∑
i

d
[
σmarket,ATM , σimpl (fi, Ti, α, ρ, ν)

]
(4.3)

where we loop on the different volatilities observed from the market with d(x, y) =
(y − x)2 metric 3.

The minimisation in Python is done thanks to the Method L-BFGS-B 4 which uses
the L-BFGS-B algorithm very appropriated for bound constrained minimization
problems. This method was developped in L-BFGS-B: Fortran subroutines for large-
scale bound-constrained optimization (1997) [62] and A limited memory algorithm
for bound constrained optimization (1995) [12].

As we were saying in Section 4.1, ZAR is illiquid market and the swaption matrices
in the time series are not always very accurate. In order to denoise them, we were
suggested by the desk to do the following: to replace some implied volatilities either
by the historical volatility i.e. the realised volatility or either a constant.

The following two tables describe the structure of the calibration done in Step 4.2.
It is worth remarking that all the calibration has happened with traditional optimi-
sation methods and no ANN is present at this stage.

3This step was realised with advices of SABR calibration in Python (2016) [60].
4www.docs.scipy.org/doc/scipy/reference/optimize.minimize-lbfgsb.html#optimize-minimi

ze-lbfgsb

30

www.docs.scipy.org/doc/scipy/reference/optimize.minimize-lbfgsb.html#optimize-minimize-lbfgsb
www.docs.scipy.org/doc/scipy/reference/optimize.minimize-lbfgsb.html#optimize-minimize-lbfgsb

Thorin MSc thesis CHAPTER 4. METHODOLOGY

Parameter Value

(α0, ρ0, ν0) (15%, 85%, 20%)
(α, ρ, ν) ((0,∞), (0, 1], (0,∞))

β 1
Method ’L-BFGS-B’

Tolerance 1E-16

Table 4.1: Step 2 parameters

The following table summarises inputs and outputs.

Inputs Outputs

Swaption σT1,M1 · · · σT1,Mm

...
. . .

...
σTt,M1 · · · σTt,Mm

Forward matrix Calibrated parameters

For each day

 fT1,M1 · · · fT1,Mm

...
. . .

...
fTt,M1 · · · fTt,Mm

 (α̂, ρ̂, ν̂,Error)

Time List
Maturities = (M1, ...,Mm)

Tenors = (T1, ..., Tt)

Table 4.2: Step 2 summary

The stretch of time for this exercise, i.e. the time series extension of the data is
from February 2019 to August 2020. So far, all the calibration has happened with
traditional optimisation methods and no ANN was ever present.
The calibration problem is now a function of N parameters (the number of identifying
properties τ) to n output (numbers of model parameters, 3 here plus the error).

Θ : RN 7→ S ∈ Rn (4.4)

We will see in Section 4.4 that in reality Θ can be approximated (and it will be) via
an ad hoc constructed ANN.

31

Thorin MSc thesis CHAPTER 4. METHODOLOGY

4.3 Step 3: Preparing Training Dataset

As mentioned previously, we have a small stretch of data. Even if we had time-series
on longer time-windows, that would still not be sufficient for the purpose of training
the Artificial Neural Networks. We need to generate additional samples. In the
following, we will use Hernandez’s notations.

We know a very good approximation of the inverse of Θ, it is the asymptotic formula
of the implied volatility 2.8. We use the model itself which will give us the training
dataset.

Θ−1(θ; {τ}, φ) ≈M(θ; {τ}, φ) = {Q} (4.5)

where {Q} is the future inputs of the Neural Networks, it is the market quote of
relevant instruments.

This idea allows to generate plenty of new samples by generating random parameters
θ and exogenous parameters φ and keeping the structure between them.

This step is the core idea of Hernandez and of this project. Neural Networks need
millions of samples to be trained. With one sample a day for SABR model, we
would need 4000 years to reach this number.

The idea is to apply statistical transformation to reduce the noise and keep core
information, then apply noise again. The main goal is not to shock data randomly
but to keep structure of the data and the distribution of the features.

The steps are in summary the following:

1. Collect errors for each calibration instrument for each day

2. As parameters are positive, take the natural logarithm on the calibrated pa-
rameters

3. Rescale forward curves, parameters, and errors to have zero mean and variance
1

4. Apply dimensional reduction via PCA to forward curve, and keep parameters
for given explained variance (99.5%)

5. Calculate covariance of rescaled log-parameters, PCA forward curve values,
and errors

6. Generate random normally distributed vectors consistent with given covariance

7. Apply inverse transformations: rescale to original mean, variance, and dimen-
sionality, and take exponential of parameters

8. Obtain implied volatility for all calibration instruments and apply random
errors to results

32

Thorin MSc thesis CHAPTER 4. METHODOLOGY

The following table summarises inputs and outputs.

Inputs Outputs

On each day calibrated For number of samples desired

Forward matrix Forward matrix fT1,M1 · · · fT1,Mm

...
. . .

...
fTt,M1 · · · fTt,Mm

 fT1,M1 · · · fT1,Mm

...
. . .

...
fTt,M1 · · · fTt,Mm

Calibrated parameters Swaption

(α̂, ρ̂, ν̂,Error)

 σT1,M1 · · · σT1,Mm

...
. . .

...
σTt,M1 · · · σTt,Mm

Time List Calibrated parameters

Maturities = (M1, ...,Mm) (α̂, ρ̂, ν̂,Error)
Tenors = (T1, ..., Tt)

number of samples desired

Table 4.3: Step 3 summary

Forward matrix in inputs and outputs are not the same. Outputs are shocked version
of real market inputs.

Now, we look into more details each step.

4.3.1 Step 3.1

Collect errors for each calibration instrument for each day

We need to collect result from 4.2. For each day, we get the swaption implied volatil-
ities matrix and swaption rates matrix for the same list of tenors and maturities. For
each day, SABR parameters α, ρ, ν have been calibrated by minimising the error.
We collect these calibrated parameters and these errors

4.3.2 Step 3.2

As parameters are positive, take the natural logarithm on the calibrated
parameters

Lots of parameters collected in previous sections have values close to zero, with few
volatilities. The application of log function enables to spread these values.

Unfortunately, with COVID-19, ν, the volatility of volatility dived to zero at the
start of the epidemic. We applied this transformation only on α and ρ.

33

Thorin MSc thesis CHAPTER 4. METHODOLOGY

4.3.3 Step 3.3

Rescale forward curves, parameters, and errors to have zero mean and
variance 1

It is important to recall South Africa is not a full efficient market.

Normally the forward rate of a contract with tenor Ta and maturity Tb − Ta is:

(1 + rb)
Tb

(1 + ra)Ta
− 1 (4.6)

However, by looking at the South African forward rates for special tenors and ma-
turities, this assumption is violated. Each forward curve, i.e for a fixed tenor and a
series of maturities carry its own lot of information.

In Hernandez example, the yield curve is used. From the yield curve, every forward
curves can be extrapolated.
However in this project, for each day, there will be the number of tenors of forward
curves. For each tenors, the forward curves will be rescaled to have zero mean and
error one.

The same data standardisation process will be applied to SABR parameters and to
the error.

This standardisation is common for machine learning estimators 5, 6. All the fea-
tures need to be transformed into standard normally distributed data, else data can
be difficult to model. This standardisation forces data, which can be heterogeneous
to behave in the same way.

Furthermore, numerous data science function take as default parameters, a feature
with mean zero and variance one. To process them at the beginning decreases the
risk of errors later.
Standardising data is crucial in Principal Component Analysis (PCA) because it
projects your data onto orthogonal directions, where each direction maximises the
variance ; and PCA is the next step.

4.3.4 Step 3.4

Apply dimensional reduction via PCA to forward curve, and keep pa-
rameters for given explained variance (99.5%)

The idea to generate new samples is to reduce noise and keep core data in the exoge-
nous parameters, here the forward curves. Applying PCA on yield curves is common
and has been studied in Common Factors Affecting Bond Returns (1991) [46] and
in Deconstructing the Yield Curve (2019) [17].

5communities.sas.com/t5/SAS-Communities-Library/To-standardize-data-or-not-to-stand
ardize-data-that-is-the/ta-p/361726#

6https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScal
er.html

34

communities.sas.com/t5/SAS-Communities-Library/To-standardize-data-or-not-to-standardize-data-that-is-the/ta-p/361726#
communities.sas.com/t5/SAS-Communities-Library/To-standardize-data-or-not-to-standardize-data-that-is-the/ta-p/361726#
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

Thorin MSc thesis CHAPTER 4. METHODOLOGY

In a general way, data is made of the signal and the noise. The use of Principal
Component Analysis allows to extract the signal, which reduces the dimensionnality
and cardinality of the dataset. It only keeps the features with the greatest explaina-
tory power. The idea of PCA is to use the covariance matrix and project it onto a
smaller subspace in term of dimensions, where all explanatory variables are orthog-
onal, hence deletes multicollinearity (repetition of information). Unfortunately, it is
often hard to interpret the economic meaning of news axes.

However, on the yield curve it is possible. Three principal components only can be
used to model the yield curve 7.
The first component is a constant and expresses the long term interest rates.
The second is the slope, approximately the term premium.
The third is the curvature.
As verified on our data, these three components explained more than 99.5% of the
information as desired in Hernandez procedure.

4.3.5 Step 3.5

Calculate covariance of rescaled log-parameters, PCA forward curve val-
ues,and errors

Magic operates at this step. We calculates covariance among model parameters θ,
and exogenous parameters, φ, which are in a reduced space summarised by PCA
eigenvalues. The covariance matrix preserves the structure and multicollinearity of
the parameters.

4.3.6 Step 3.6

Generate random normally distributed vectors consistent with given co-
variance

Now we know and relies the structure of the parameters among themselves. We can
generate new model parameters θ and exogenous parameters φ.

4.3.7 Step 3.7

Apply inverse transformations: rescale to original mean, variance, and
dimensionality, and take exponential of parameters

We apply inverse transformation to project again our obtained values in the original
space.

4.3.8 Step 3.8

Obtain implied volatility for all calibration instruments and apply random
errors to results

We can apply M to dates previously generated. Hence we have generated a new
sample Q

7www.towardsdatascience.com/applying-pca-to-the-yield-curve-4d2023e555b3

35

www.towardsdatascience.com/applying-pca-to-the-yield-curve-4d2023e555b3

Thorin MSc thesis CHAPTER 4. METHODOLOGY

4.4 Step 4: Neural Networks Calibration

The use of Neural Networks requires a very precise, almost surgical tuning of pa-
rameters and model hyper-parameters. This tuning is sometimes called ”black
art”. No rules are pre-established. It requires expertise and brute-force search.
Help was found in A neural network-based framework for financial model calibration
(2019) [47], in An Artificial Neural Network Representation of the SABR Stochastic
Volatility Model (2018) [51], in Machine learning SABR model of stochastic volatility
with lookup table (2020) [48]. Help was also found in Practical Bayesian Optimization
of Machine Learning Algorithms (2012) [57], which idea is to use Gaussian process
for sample and kernel to obtain ”a good optimizer that can achieve expert-level
performance”.

Helps to code in Python was found in Deep Learning with Python (2017) [14].

The following table summarises inputs and outputs.

Inputs Outputs

For number of samples

number of hidden layers
NN number of units

hyper- activation function
parameters epoch

batch size
loss function

Swaption NN parameters σT1,M1 · · · σT1,Mm

...
. . .

...
σTt,M1 · · · σTt,Mm

 Weights and biases of the NN

Data inputs
Forward matrix fT1,M1 · · · fT1,Mm

...
. . .

...
fTt,M1 · · · fTt,Mm

Targets Calibrated parameters
(α̂, ρ̂, ν̂)

Table 4.4: Step 4 summary

36

Thorin MSc thesis CHAPTER 4. METHODOLOGY

4.4.1 Architecture choice

The choice of hyper-parameters is crucial for the result of the calibration. However,
no standard and accepted method exist. It is a matter of mathematical art.

The input layer and output layer number of units is easy. It is determined by input
and output’s model. The first hidden layer is often half of the input layer.

A formula for the number of neurons was proposed in Neural Network Design
(2014) [18].

Nh =
Ns

α ∗ (NI +NO)
(4.7)

where:

• Nh: optimal number of neurons

• NI : Input number of neurons

• NO: Output number of neurons

• Ns: Output number of samples

• α: Scaling Factor between 2 and 10

Precious help found on StackExchange website forum 8 and TowardsDataScience
website 9.

We also proceeded to grid and random search. New studies proved that random
search is more efficient for hyper-parameters optimisation as explained and illus-
trated in Random search for hyper-parameter optimization (2012) [5].

Figure 4.1: Grid vs Random search

8www.stats.stackexchange.com/questions/181/how-to-choose-the-number-of-hidden-layer
s-and-nodes-in-a-feedforward-neural-netw

9www.towardsdatascience.com/17-rules-of-thumb-for-building-a-neural-network-93356f9
930af

37

www.stats.stackexchange.com/questions/181/how-to-choose-the-number-of-hidden-layers-and-nodes-in-a-feedforward-neural-netw
www.stats.stackexchange.com/questions/181/how-to-choose-the-number-of-hidden-layers-and-nodes-in-a-feedforward-neural-netw
www.towardsdatascience.com/17-rules-of-thumb-for-building-a-neural-network-93356f9930af
www.towardsdatascience.com/17-rules-of-thumb-for-building-a-neural-network-93356f9930af

Thorin MSc thesis CHAPTER 4. METHODOLOGY

4.4.2 Activation Function

We chose ’elu’ as activation function, which means ’Exponential Linear Unit’ 10.

’elu’ is a recent activation function which solves issues of ’ReLU’ and improves
activation functions which already tried to solve this issue such as ’Leaky ReLU’ or
’PReLU’.

Some recalls about ’Relu’, Rectified Linear Unit:
Relu is a very popular activation function. It is used in many machine learning
applications. The output follows a simple structure, such as th derivative:

Relu(x) =

{
x if x ≥ 0
0 else

(4.8)

Relu′(x) =

{
1 if x ≥ 0
0 else

(4.9)

Figure 4.2: Relu graph

The advantage of this function is that thanks to the zero term, many neurons will
be ”deactivate”.
An other advantage is that the gradient is easy, it is not sensitive to the vanishing
gradients problem 11 (when activation function reduces the input into a smaller sub-
space, which can makes the gradient very small and backpropagation impossible,
because it cancels the chain rule), which is either 0, either 1. This ease of computa-
tion of ’Relu’ function (max(x, 0) and 0 or 1 for the derivative) is the main reason
of its popularity today.

Unfortunately, even if ’Relu’ is very popular, it has some disadvantages.
Gradient is either 0 or 1, which can cause the dying ReLU problem studied in ReLU
and Initialization: Theory and Numerical Examples (2019) [49]. The Dying Relu
problem is when the entire layer is deactivated, because of one zero gradient in the
chain of gradients. The neuron can’t improve and is considered as ’dead’. If too
many neurons are dead, the learning process will be very slow. However the mean

10www.machinecurve.com/index.php/2019/12/09/how-to-use-elu-with-keras
11www.towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484

38

www.machinecurve.com/index.php/2019/12/09/how-to-use-elu-with-keras
www.towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484

Thorin MSc thesis CHAPTER 4. METHODOLOGY

activation of any ReLU neuron is nonzero. Hence the leaning process is slowed down
but not ”killed”, compared to activation functions that activates far from zero as
studied in Fast and Accurate Deep Network Learning by Exponential Linear Units
(2015) [15].

Hence new activation functions were created to solve this issue such as Leaky Relu
or PRelu.

• Leaky Relu prevents dying Relu by making negative part really small but non
zero by multiplying by a close to zero constant α

LeakyRelu(x) =

{
x if x ≥ 0
αx else

(4.10)

• PReLU generalizes Leaky Rely by not specifying α in advance, which means to
make assumpations. α is dependant of inputs and is trainable. It also avoids
the dying ReLU problem.

However these two ”upgraded” activation functions doesn’t solve all issues.Clevert et
al in Fast and accurate deep network learning by exponential linear units, (2015) [15]
even tells that new issues were introduced. They solved the vanishing gradients
problem and the dying ReLU problem, however they have no “noise-robust deacti-
vation state” .

Hence the authors proposed the ’Elu’: Exponential Linear Unit activation func-
tion 12.

Elu(x) =

{
x if x ≥ 0
α(ex − 1) else

(4.11)

This new activation function

• deletes the vanishing gradients issue and the dying ReLU problem.

• a quicker learning process

• it saturates to −α, which makes it robust to noise

Figure 4.3: Elu Graphs

12https://keras.io/api/layers/activation layers/elu

39

https://keras.io/api/layers/activation_layers/elu

Thorin MSc thesis CHAPTER 4. METHODOLOGY

4.4.3 Loss function

We needed a regression loss function 13 for our problem. The use of Mean Absolute
Loss Function or Mean Square Loss function didn’t change our parameters and
hyper-parameters calibration results. We finally used Mean Square Loss function 14.

4.4.4 Optimizer choice

For the Neural Network, Nadam optimizer 15 was used. It means Nesterov ADAptive
Moment estimation. It is a mix of RMSprop 16 and Momentum Nesterov optimizers.
The idea of RMSprop optimizer is to ”Maintain a moving (discounted) average of
the square of gradients” and ”Divide the gradient by the root of this average”. The
idea of Nesterov Momentum optimizer is to use previous gradients to make the
gradient descent smoother as explained in Incorporating Nesterov Momentum into
Adam (2016) [21].

We chose Adam because it requires low memory needs and is efficient for little
change in hyper-parameters. 17

4.4.5 Epoch and Batch

We chose epoch of 100 and batch of 200 thanks to a manual hyper-parameters
research.

4.4.6 Kernel Initializer

The Neural Network starts with some random weights and biases, it updates them
iteratively by SGD with better values. However these weights and biases follow a
statistical distribution.

The kernel initializer 18 will initialise these weights and biases with the chosen distri-
bution, which should be an idea or an estimation of the real unknown distribution.
The two main distributions are the uniform distribution and the normal distribu-
tion.
Due to the step 4.3, sample generation process, the Gaussian kernel will be chosen.

The distribution will be N
(

0, 4
ninput +noutput

)
.

4.4.7 Early Stopping

When there is no more enough improvement at each iteration of the loss metric. It
can be useful to stop the calibration process earlier 19. We decided to stop training
the Neural Network after 5 epochs where the metric was not improved by more than
0.2E − 5

13https://keras.io/api/losses
14https://keras.io/api/losses/regression losses/#mean squared error-function
15https://keras.io/api/optimizers/Nadam
16https://keras.io/api/optimizers/rmsprop
17www.dlology.com/blog/quick-notes-on-how-to-choose-optimizer-in-keras
18https://keras.io/api/layers/initializers
19https://keras.io/api/callbacks/early stopping

40

https://keras.io/api/losses
https://keras.io/api/losses/regression_losses/#mean_squared_error-function
https://keras.io/api/optimizers/Nadam
https://keras.io/api/optimizers/rmsprop
www.dlology.com/blog/quick-notes-on-how-to-choose-optimizer-in-keras
https://keras.io/api/layers/initializers
https://keras.io/api/callbacks/early_stopping

Thorin MSc thesis CHAPTER 4. METHODOLOGY

4.4.8 Dynamic Learning Rate

The choice of the learning rate is crucial for the precision and time calibration of the
model. A low learning rate will calibrate precisely but very slowly. A high learning
rate calibrates quickly but risk to bounce indefinitely close to the minima and never
reaches it.
The following Kaggle graph shows this issue.

Figure 4.4: Learning Rate Illustration

To solve this issue and find a compromise, the idea is to have a dynamic learning
rate 20, starting from a high and decreasing it progressively.

4.5 Step 5: Out-of-Sample test

When considering the training of a model, it is important to consider the repeata-
bility of the calibration. However, ANN are random, when a Neural Network with
the exact same architecture is trained on the same data, we get different results.

This randomness is critical, it produces a unstable and unreliable model. It can
cause issue when code is shared and results differ.

But why is there randomness in artificial neural networks?
Multiple reasons:

• Randomness in optimisation techniques like Stochastic Gradient Descent,
which is stochastic and not deterministic as mentioned in the name

• Random initialisation of weights and biases

• Randomness in regularisation techniques

How do we fix the randomness of an ANN?

We need to fix the randomness, hence randomness will be predictable. The results
will be the same hence at each training. To do that, we fixed the seed in keras 21 in
order to get the same result every time.

20https://keras.io/api/callbacks/reduce lr on plateau
21www.tensorflow.org/api docs/python/tf/random/set seed

41

https://keras.io/api/callbacks/reduce_lr_on_plateau
www.tensorflow.org/api_docs/python/tf/random/set_seed

Chapter 5

Results

5.1 Step 1: Data Presentation

The main issue in this step was to familiarise with Deutsche Bank database. Below
we reproduce the most recent input data for our exercise.

Figure 5.1: ZAR yield curve on 2nd of September 2020

Tenors
1y 2y 3y 4y 5y 6y 7y 8y 9y 10y 15y 20y 25y 30y

M
a
tu

ri
ti

e
s

1m 3.53 3.80 4.19 4.68 5.19 5.66 6.10 6.49 6.83 7.12 7.95 8.19 8.29 8.32
2m 3.55 3.84 4.25 4.75 5.26 5.74 6.17 6.56 6.90 7.18 7.99 8.23 8.33 8.35
3m 3.58 3.89 4.32 4.82 5.34 5.81 6.25 6.63 6.97 7.24 8.04 8.27 8.37 8.39
6m 3.69 4.05 4.53 5.06 5.57 6.04 6.47 6.85 7.17 7.43 8.18 8.39 8.48 8.50
9m 3.84 4.25 4.76 5.30 5.82 6.28 6.70 7.07 7.37 7.63 8.33 8.52 8.60 8.61
1y 4.02 4.47 5.01 5.57 6.07 6.53 6.94 7.29 7.58 7.83 8.48 8.65 8.72 8.73
18m 4.42 4.97 5.55 6.10 6.59 7.03 7.41 7.73 8.00 8.23 8.77 8.91 8.96 8.96
2y 4.94 5.54 6.13 6.66 7.13 7.54 7.89 8.18 8.42 8.62 9.07 9.17 9.20 9.19
3y 6.19 6.80 7.31 7.78 8.18 8.53 8.80 9.04 9.22 9.36 9.62 9.67 9.65 9.63
4y 7.44 7.94 8.39 8.78 9.12 9.37 9.60 9.77 9.89 9.97 10.08 10.08 10.02 9.99
5y 8.47 8.93 9.31 9.64 9.88 10.09 10.24 10.34 10.41 10.45 10.44 10.39 10.30 10.26
7y 10.19 10.50 10.68 10.86 10.99 11.04 11.07 11.08 11.05 11.02 10.86 10.73 10.62 10.57
10y 11.53 11.59 11.55 11.50 11.44 11.35 11.26 11.17 11.10 11.04 10.83 10.64 10.55 10.50
15y 10.76 10.60 10.48 10.40 10.35 10.32 10.30 10.27 10.24 10.19 9.95 9.88 9.84 9.82
20y 10.14 10.11 10.07 10.01 9.94 9.86 9.78 9.71 9.63 9.56 9.50 9.48 9.47 9.46
30y 9.29 9.29 9.29 9.29 9.29 9.29 9.29 9.29 9.29 9.29 9.29 9.29 9.29 9.29

Table 5.1: South African Forward rate in percentage on 2nd of September 2020

42

Thorin MSc thesis CHAPTER 5. RESULTS

We observe that forward rates for maturities of 30 years are all the same, which
means these forwards are illiquid and no good quote is available in the market.
Furthermore, rates increase with the tenor and forward rate are in accordance with
the yield curve, rates increase up to 15 years maturity and then decrease.

Tenors
1y 2y 3y 4y 5y 6y 7y 8y 9y 10y 15y 20y 25y 30y

M
a
tu

ri
ti

e
s

1m 9.82 15.49 17.58 19.67 21.76 22.05 22.33 22.62 22.91 23.19 24.25 25.30 25.30 25.30
2m 10.02 15.83 17.91 19.99 22.07 22.40 22.73 23.06 23.39 23.72 24.77 25.82 25.82 25.82
3m 10.20 16.17 18.23 20.30 22.36 22.73 23.11 23.49 23.86 24.24 25.28 26.32 26.32 26.32
6m 11.18 18.05 19.50 20.95 22.40 22.81 23.22 23.63 24.04 24.45 25.24 26.02 26.02 26.02
9m 12.70 18.84 20.04 21.24 22.44 22.83 23.22 23.61 23.99 24.38 25.06 25.74 25.74 25.74
1y 14.21 19.63 20.58 21.53 22.48 22.85 23.21 23.58 23.94 24.31 24.89 25.47 25.47 25.47
18m 16.61 21.32 22.14 22.95 23.77 24.13 24.49 24.85 25.22 25.58 26.01 26.44 26.44 26.44
2y 19.06 22.78 23.57 24.35 25.14 25.39 25.65 25.90 26.16 26.41 26.78 27.15 27.15 27.15
3y 24.60 25.88 26.36 26.84 27.32 27.42 27.52 27.62 27.72 27.82 28.04 28.27 28.27 28.27
4y 25.25 26.44 26.81 27.18 27.56 27.61 27.66 27.71 27.76 27.81 27.94 28.08 28.08 28.08
5y 25.90 27.00 27.27 27.53 27.79 27.79 27.79 27.80 27.80 27.80 27.84 27.89 27.89 27.89
7y 25.20 26.12 26.09 26.06 26.03 26.04 26.06 26.08 26.09 26.11 26.05 25.99 25.99 25.99
10y 24.16 24.78 24.32 23.85 23.38 23.42 23.46 23.50 23.53 23.57 23.36 23.14 23.14 23.14
15y 24.16 24.78 24.32 23.85 23.38 23.42 23.46 23.50 23.53 23.57 23.36 23.14 23.14 23.14
20y 24.16 24.78 24.32 23.85 23.38 23.42 23.46 23.50 23.53 23.57 23.36 23.14 23.14 23.14
30y 24.16 24.78 24.32 23.85 23.38 23.42 23.46 23.50 23.53 23.57 23.36 23.14 23.14 23.14

Table 5.2: Black’s implied volatility in percentage of South African at-the-money
swaptions on 2nd of September 2020

We observe that implied volatility for maturities longer than 10 years maturity are
all the same, which means these swaption are illiquid and no good quote is available
in the market.
Furthermore, forward rate and implied volatilities are in accordance with the yield
curve, volatilities increase with the tenor and increase up to 10 years maturity and
then decrease.

43

Thorin MSc thesis CHAPTER 5. RESULTS

5.2 Step 2: Sequential calibration on time-series

We will now look at this step on a particular date: 5th of March 2020. Equation 4.3
is minimised for α = 17.82% , ρ = 85.62% and ν = 26.36%.

The Black’s implied volatilities this day for at-the-money swaptions are:

Tenors
1y 2y 3y 4y 5y 6y 7y 8y 9y 10y 15y 20y 25y 30y

M
a
tu

ri
ti

e
s

1m 12.93 14.86 15.67 16.48 17.28 17.28 17.27 17.26 17.26 17.25 16.16 15.06 15.06 15.06
2m 12.64 14.84 15.70 16.57 17.43 17.45 17.47 17.49 17.52 17.54 17.00 16.46 16.46 16.46
3m 12.35 14.82 15.74 16.66 17.58 17.63 17.68 17.73 17.78 17.84 17.87 17.90 17.90 17.90
6m 12.61 15.95 16.49 17.02 17.56 17.64 17.73 17.81 17.89 17.98 18.06 18.15 18.15 18.15
9m 13.98 16.19 16.65 17.11 17.57 17.66 17.75 17.84 17.93 18.02 18.15 18.28 18.28 18.28
1y 15.33 16.43 16.82 17.20 17.58 17.68 17.78 17.87 17.97 18.07 18.24 18.40 18.40 18.40
18m 16.36 16.70 16.95 17.19 17.44 17.64 17.83 18.03 18.23 18.42 18.46 18.49 18.49 18.49
2y 17.13 17.36 17.52 17.67 17.82 17.95 18.07 18.19 18.32 18.44 18.64 18.84 18.84 18.84
3y 18.19 18.59 18.78 18.98 19.18 19.29 19.41 19.53 19.65 19.77 19.67 19.56 19.56 19.56
4y 19.21 19.21 19.40 19.58 19.77 19.84 19.91 19.97 20.04 20.11 19.97 19.82 19.82 19.82
5y 20.21 19.82 20.00 20.19 20.37 20.38 20.40 20.41 20.43 20.44 20.26 20.08 20.08 20.08
7y 21.41 20.75 20.68 20.61 20.54 20.57 20.60 20.63 20.66 20.69 20.47 20.26 20.26 20.26
10y 23.20 22.15 21.70 21.25 20.80 20.85 20.90 20.95 21.00 21.05 20.79 20.52 20.52 20.52
15y 23.20 22.15 21.70 21.25 20.80 20.85 20.90 20.95 21.00 21.05 20.79 20.52 20.52 20.52
20y 23.20 22.15 21.70 21.25 20.80 20.85 20.90 20.95 21.00 21.05 20.79 20.52 20.52 20.52
30y 23.20 22.15 21.70 21.25 20.80 20.85 20.90 20.95 21.00 21.05 20.79 20.52 20.52 20.52

Table 5.3: Black’s implied volatility in percentage of South African at-the-money
swaptions on 5th of March 2020

For this day, implied volatility has the same characteristic than previously. Implied
volatility increase with tenors and with maturity. No quotes are available for more
than 10 years maturity due to lack of liquidity of these products.

Hagan’s volatility is the same for a fixed tenor, which is normal because we fixed
β = 1, hence Hagan’s implied volatility formula 2.9 has no more dependency in
F0 = f .
The Hagan’s implied volatilities this day for at-the-money swaptions and previously
mentioned SABR parameters is:

Maturities
1m 2m 3m 6m 9m 1y 18m 2y 3y 4y 5y 7y 10y 20y 25y 30y

Hagan 17.84 17.85 17.86 17.91 17.95 17.99 18.08 18.16 18.33 18.50 18.67 19.00 19.51 20.36 21.20 22.89

Table 5.4: Hagan’s implied volatility in percentage of South African at-the-money
swaptions on 5th of March 2020

The RMSE: Root Mean Square Error for this day is 1.45%. It is some days before
the lockdown.

44

Thorin MSc thesis CHAPTER 5. RESULTS

The following figure gives results on the parameters calibration in time:

Figure 5.2: Time-series of SABR calibrated parameters

We can observe from this calibration:

• a stable α,

• a slightly increasing ρ at the start of COVID-19, which is normal, because in
period of crisis, asset correlation tends to increase

• a stable ν up to the COVID-19, where it shift from a stochastic volatility
model to a constant volatility model

These parameters are the ones that minimise equation 4.3.

45

Thorin MSc thesis CHAPTER 5. RESULTS

The following figure gives RMSE of implied volatility with SABR calibrated param-
eters.

Figure 5.3: Time-series of error of SABR calibrated parameters

We can observe a net increase in the error at the beginning of the lockdown due to
COVID-19.

46

Thorin MSc thesis CHAPTER 5. RESULTS

5.3 Step 3: Preparing Training Dataset

In his paper, Hernandez generates 150,000 samples, however Hernandez Neural Net-
work has 200 inputs: 154 swaption implied volatilities (12 maturities × 13 tenors)
and 44 points on yield curves and 2 outputs.
In our project, we have 448 inputs: a matrix of 224 swaption’s implied volatility (16
maturities × 14 tenors) and the forward matrix corresponding to these tenors and
maturities and four outputs: 3 parameters (α, ρ, ν) and the error of calibration.
The number of parameters to train in a Neural Network increases exponentially,
hence we will generate one million sample compared to 150,000 Hernandez’s one.
We try first with only 150,000 samples, however the loss function when we calibrated
the Neural Network was not stable through epoch.

Thanks to this step, we generated one million new samples. It is the longest step in
time of this project. It takes 4 hours to generate 100,000 samples and one day and
a half for one million samples.

We chose a learning ratio of 30%, so 700,000 samples were used to train the Neural
Network and 300,000 to validate it.

This length of generation: 0.15 second per sample is mainly due to step 4.3.6. We
generate a random normal variable thanks the covariance matrix. But we generate
a 46 dimension vector, because we have 4 parameters (α, ρ, ν, error) and three
eigenvalues from the PCA times the number of time-series of forward curves, i.e.
the number of tenors: 14. Hence the vector dimension is 4 + 3× 14 = 46.

47

Thorin MSc thesis CHAPTER 5. RESULTS

5.4 Step 4: Neural Networks calibration

Thanks to equation 4.7, we get with a scaling factor of 10:

Nh =
1, 000, 000

5× (448 + 4)
≈ 200 (5.1)

It helped us to fix the first layer to 200 neurons, which was in accordance with rule
that first layer must be less than half of the input layer.
The second hidden layer was one out of fourth of the first hidden layer and 10 times
the output layer. 50 neurons was a good compromise.
These configuration, with two hidden layers gave the best results.

We reached the following architecture for our Neural Network.

Figure 5.4: Step 4 Neural Network

48

Thorin MSc thesis CHAPTER 5. RESULTS

Parameter Value

Activation Function elu
Loss Function Mean Square Loss

Optimiser Adam
Epoch 100

Batch size 200
Kernel Initialisation Gaussian distribution

Early Stop 5 epochs without error 0.2E-5 improvement
Dynamic Learning rate Keras default

Training Ratio 30%

Table 5.5: Step 4 parameters

The final error for this Neural Network realised on the validation dataset is 0.18%,
where the error is:

error =
1

3× n
×

n∑
i=1

[
|αi − α̂i|+ |ρi − ρ̂i|+ |νi − ν̂i|

]
(5.2)

with n = 300000.

The final Mean Square Loss on the training dataset is 0.00082%.
100 epochs were realised on the traning data of 70%×1, 000, 000 = 700, 000 samples.
Each batch has a size of 200, hence each epoch will realise 3,500 iterations.

We are going to look results first on time-windows from February 2019 to August
2020. The Neural Network has not been trained with data from step 4.2, but with
data from step 4.3 which have been generated thanks to data from step 4.2.

We now look at this step again on: 5th of March 2020.

Parameters
alpha rho nu

Traditional Method 17.82 85.62 26.36
NN method 17.72 91.58 3.76

Table 5.6: SABR Parameter values for both methods on an in-sample date: 5th of
March 2020

The Hagan’s implied volatilities this day for at-the-money swaptions and previously
mentioned SABR parameters is:

Maturities RMSE
1m 2m 3m 6m 9m 1y 18m 2y 3y 4y 5y 7y 10y 20y 25y 30y

Hagan 17.84 17.85 17.86 17.91 17.95 17.99 18.08 18.16 18.33 18.50 18.67 19.00 19.51 20.36 21.20 22.89 1.45
Hagan NN 17.72 17.72 17.73 17.73 17.74 17.75 17.76 17.77 17.80 17.83 17.85 17.91 17.98 18.12 18.25 18.51 2.12

Table 5.7: Comparison of Hagan/Hagan NN implied volatility in percentage of South
African at-the-money swaptions on a in-sample date: 5th of March 2020

49

Thorin MSc thesis CHAPTER 5. RESULTS

5.5 Step 5: Out-Sample test

We now look at this step again on: 2nd of September 2020.

Parameters
alpha rho nu

Traditional Method 23.92 88.05 1.56
NN method 22.51 89.12 10.15

Table 5.8: SABR Parameter values for both methods on an out-of-sample date: 2nd

of September 2020

Maturities RMSE
1m 2m 3m 6m 9m 1y 18m 2y 3y 4y 5y 7y 10y 20y 25y 30y

Hagan 23.92 23.92 23.92 23.92 23.93 23.93 23.94 23.95 23.97 23.99 24.01 24.05 24.11 24.21 24.31 24.50 3.25
Hagan NN 22.52 22.53 22.54 22.57 22.59 22.62 22.68 22.73 22.84 22.95 23.07 23.29 23.62 24.17 24.73 25.84 3.44

Table 5.9: Comparison of Hagan/Hagan NN implied volatility in percentage of South
African at-the-money swaptions on a out-of-sample date: 2nd of September 2020

The following figure gives results on the parameters calibration with Neural Net-
works in time:

Figure 5.5: Time-series of SABR calibrated parameters with Neural Networks

50

Thorin MSc thesis CHAPTER 5. RESULTS

The following figure gives RMSE of implied volatility with SABR parameters given
by Neural Networks.

Figure 5.6: Time-series of error of SABR calibrated parameters with Neural Net-
works

We can see on figures 5.5 and 5.6 a sharp blue line which is the distinction between
the in-sample and out-of-sample data.

In next section, we discuss these results.

51

Thorin MSc thesis CHAPTER 5. RESULTS

5.6 Discussions

To judge a model, we need to look time needed and difficulty of calibration, robust-
ness of the model and time to deliver outputs.

5.6.1 Time to deliver Output

This goal was fully reached. With traditional SABR method calibration, 30 seconds
were needed to obtain SABR parameters. With Neural Network, SABR parameters
are given instantaneously.

5.6.2 Time to calibrate the model

With traditional method, 30 seconds times the number of days (on which the cal-
ibration was done) were needed to get SABR parameters. With Neural Networks,
the length is determined by Step 4.3: Preparing Training Data-set, which took for
one million sample one day and a half. However, each sample generation is indepen-
dent, this time can be reduced thanks to parallelisation. Furthermore, it mustn’t
be forgotten that this step will need to be conducted every one or two months, de-
pending on the degradation of the inline calibration. As this will be offline, its cost
will not be significant in any way.

5.6.3 Robustness

We noticed similar results in SABR parameters and errors between traditional
method and NN method before COVID-19.

SABR parameter and error given by Neural Network are very stable on the out-of-
sample data.

α and ρ values are conclusive in time across both models.
ν is not conclusive among models, however ν = 0 is surprising in standard method,
furthermore it is the lower terminal of constraint, so this value must be wrong. ν
in NN method is more stable and seems more realistic. Neural Networks enable to
smooth regime changes.

5.6.4 Improvement possibilities

Some improvement possible:

• Due to time constraints to write this thesis, higher volatility on the market
because of COVID-19, the choice was made in all this project to fix β =
1, however this assumption is debatable. This exercise will be pursued by
calibrating also on β.

• More data would have been relevant to look further the out-of-sample dataset.
However South-African data at Deutsche Bank were not available easily for
longer period of time.

52

Thorin MSc thesis CHAPTER 5. RESULTS

• COVID-19 created lost of instability, particularly in Emerging Market, it
would be interesting to realise this study in the past, with no COVID-19.

• When minimising the error in Step 4.2, with traditional method and in Step 4.4,
with Neural Network, it could be interesting to take the Net Present Value of
the square of the difference between result and target. Discounting the error
by the tenor will penalise more closer tenor. Longer tenor are not liquid, so
even the observed market value can be unprecise.

• In Step 4.3: Preparing Training Dataset, new samples were generated by intro-
ducing sample found in Step 4.2: Sequential Calibration on time-series. Some
value of ν in Step 4.2 were equal to zero during the lockdown. When creating
new sample in step 4.3, gaussian random noise was introduced creating sample
with ν < 0. The NN in Step 4.4: Neural Network calibration tried to minimise
the error between zero ν and negative ν. ν created in Step 4.4 should have
floored to zero.

53

Chapter 6

Hedging

“The banks need to hedge their exposures, and they do a significant amount of
this in the exchange market. Furthermore, as is usual, the relevant models of the
skew, which will be applied equally to over-the-counter products as well as exchange
traded products, will be parameterized via exchange traded information. Thus it
is necessary to have a robust model of the derivative skew for mark to market and
hedging of positions” according to West [61].

”Another benefit, ..., is that neural networks are fully differentiable, and can there-
fore provide simple access to parameter sensitivities and hedging” tells Eugenio
Martin in his thesis [23].

How Neural Networks can be used for hedging?

This chapter will be written thanks to Hedging under SABR Model (2006) [4] (which
is an improvement of Hagan’s work by Barlett), Bartlett’s Delta in the SABR Model
(2019) [34] (which is Hagan answer paper to Barlett’s work about his own work,
sort of mathematical version of a tennis game).
This chapter will also use specific papers for Hedging through Neural Networks such
as Deep Hedging (2018) [11], Neural networks for option pricing and hedging: a
literature review (2019) [54], A Nonparametric Approach to Pricing and Hedging
Derivative Securities Via Learning Networks (2001) [41], Hedging with Neural Net-
works (2020) [55].

6.1 Hedging under SABR model

We consider an option with forward rate f , strike K and expiry T . The value of
this option under Hagan’s model is a modified version of Black formula:

V = B(f,K, σB(K; f, α, T), T) (6.1)

B(f,K, σ,T) is the Black formula and σB(K; f, α, T) is the SABR implied volatility.

It is important to notice implied volatility depend of strike, α and time before
expiration. Furthermore α and f are correlated. All Greeks need to be calculated
again to have a precise hedging.

54

Thorin MSc thesis CHAPTER 6. HEDGING

6.1.1 Hagan’s formula

Delta term

Initially Hagan calculated the new delta by shifting f and keeping α constant:

f → f + ∆f
α→ α

(6.2)

which gives the new option value:

∆V =

{
∂B

∂f
+
∂B

∂σ

∂σ

∂f

}
∆f (6.3)

and the new option delta:

∆ =
∂B

∂f
+
∂B

∂σ

∂σ

∂f
(6.4)

We recognise the first term which is the Black formula term, which is completed by
a change in implied volatility with respect to the underlying.

Vega term

Hagan considered f constant and α shifted:

f → f
α→ α + ∆α

(6.5)

which leads to the new vega:

Λ =
∂B

∂σ

∂σ

∂α
(6.6)

We recognise the classic Black term updated by the implied volatility dynamic.

6.1.2 Barlett’s formula

Barlett’s idea is to better consider change in α and f which are not uncorrelated as
assumed by Hagan. Barlett proposed the following dynamic:

f → f + ∆f
α→ α + δfα

(6.7)

where δfα is how much α change in average due to the change of the underlying f .

To make differentiation work easier, Barlett gets the idea to ”de-correlate” the dy-
namic by writing it with independent Brownian motions:

dft = αtf
β
t dWt

dαt = vαt

(
ρdWt +

√
1− ρ2dZt

) (6.8)

where Wt and Zt are two independent brownian motions. It allows to easily get dαt:

δfα =
ρv

fβ
∆f (6.9)

55

Thorin MSc thesis CHAPTER 6. HEDGING

We can now calculate new value’s term:

∆V =

[
∂B

∂f
+
∂B

∂σ

(
∂σ

∂f
+
∂σ

∂α

ρv

fβ

)]
∆f (6.10)

New Delta

Hence Barlett’s delta is given by:

∆ =
∂B

∂f
+
∂B

∂σ

(
∂σ

∂f
+
∂σ

∂α

ρv

fβ

)
(6.11)

The new term ∂B
∂σ

∂σ
∂α

ρv
fβ

in Barlett’s delta compared to Hagan’s delta is ρv
fβ

multiplied
by Hagan’s vega. If the portfolio is vega hedged, this additional term is zero, hence
Hagan’s delta and vega are hedged, hence Barlett’s delta is also hedged.

New vega

Again, Barlett proposed a new dynamic:

f → f + δαf
α→ α + ∆α

(6.12)

where δαf is how much f change in average due to the change of the underlying α.

Hence the new option’s value is:

∆V =
∂B

∂σ

(
∂σ

∂α
+
∂σ

∂f

ρfβ

v

)
∆α (6.13)

and the new vega is:

Λ =
∂B

∂σ

(
∂σ

∂α
+
∂σ

∂f

ρfβ

v

)
(6.14)

Example

Empirical Example with Barlett’s formula gives better results to hedge a portfolio
as proved in Hedging under SABR Model, part 4, [4].
Hagan replied 13 years later to Barlett’s paper, i.e last year by giving a mathematical
rigorous justification. He also studied time decay, gamma, vanna and volga. More
details in Barlett’s delta in the SABR model by Hagan and Lesniewski [34].

6.2 Hedging with Neural Networks

A Neural Network realised affine transformation at each layer composed by an ac-
tivation function. The derivative of an affine function is immediate, such as the
derivative of ’elu’ function.

56

Thorin MSc thesis CHAPTER 6. HEDGING

Hence immediately, the Neural Network can give the derivative of α, ρ, ν with respect
to the forward rate or implied volatility. The function is pre-implemented in keras:
gradients 1.

Unfortunately, due to lack of time, this technic was not tested at the time this thesis
was written. Furthermore, literature on the subject is quite poor. It is very difficult
to get a Neural Network doing parameters calibration and hedging in the same time.
There is no free lunch.

However, literature about Neural Networks and hedging is rich, but the goal of the
Neural Network since its inception is to hedge, which will give a different archi-
tecture. For example, inputs will include contain additional information such as
trading signals, news analytics, or past hedging decisions.

1www.tensorflow.org/api docs/python/tf/keras/backend/gradients

57

www.tensorflow.org/api_docs/python/tf/keras/backend/gradients

Conclusion

The goal of this thesis was to apply a Neural Network Approach to obtain in a
faster and more robust way SABR parameters. To answer this question, a million
of samples have been created by introducing noise in real market data, in keeping
structure and distribution of original market data. The trained Neural Network
tried to map Black’s implied swaption volatilities and corresponding forward rates
for different tenors and maturities.

Despite COVID-19 and lack of data for South African market, results are promis-
ing. Neural Networks allow an instantaneous delivery of SABR parameters. Neural
Networks deliver stable parameter in time and are less subject to market turmoil
than the traditional SABR calibration method. Furthermore Neural Network error
is similar to the SABR calibration traditional method.

The future goal of this thesis is to apply this method to other Emerging Markets
such as Brazil, Russia or Turkey, where smilar issues of liquidity and highly noisy
data will present similar challenges.

As a concluding note, two additional remarks are in place.
On the one hand, an alternative method to generate new samples can be the use of
Variational Auto Encoders (VAE) 2. We could generate in our model new samples
through alreday existing samples and VAE are a very powerful tool for data gener-
ation thanks to existing data.
On the other hand, SABR model assume the dynamic of a single forward rate, which
is one of its limitation compared to Libor Market Model. In Remark 11.4.1 of In-
terest Rate Models — Theory and Practice: With Smile, Inflation and Credit [10],
Brigo and Mercurio mention ”Hagan, Kumar, Lesniewski and Woodward postulate
the evolution of a single forward asset, and show that their model accommodates
quite well implied volatilities for a single maturity. [...] In a LIBOR market model,
in fact, not only has one to specify the joint evolution of forward rates under a com-
mon measure, but also to clarify the relations among the volatility dynamics of each
forward rate.”. Neural Networks are excellent candidate to capture the joint distri-
bution of different forward rate. SABR/LMM model is studied in LIBOR market
model with SABR style stochastic volatility by Hagan and Lesniewski [31].

2www.towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67
eb5daf

www.towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
www.towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

Appendix

Figure 1: The mostly complete chart of Neural Networks

59

Figure 2: One-dimensional Activation Function List

Figure 3: Multi-dimensional Activation Function List

Bibliography

[1] Alexandre Antonov, Michael Konikov, and Michael Spector. The free boundary
sabr: Natural extension to negative rates. SSRN Electronic Journal, January
2015. doi:10.2139/ssrn.2557046.

[2] Alexandre Antonov and Michael Spector. Advanced analytics for the sabr
model. SSRN Electronic Journal, page 2, March 2012. doi:10.2139/ss
rn.2026350.

[3] Louis Bachelier. Théorie de la spéculation, volume 3e série, 17, pages 21–86.
Elsevier, 1900. doi:10.24033/asens.476.

[4] Bruce Bartlett. Hedging under sabr model. Wilmott, pages 2–3, February 2006.
URL: http://lesniewski.us/papers/published/HedgingUnderS
ABRModel.pdf.

[5] James Bergstra and Yoshua Bengio. Random search for hyper-parameter op-
timization. J. Mach. Learn. Res., 13:281–305, February 2012. URL: https:
//jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf.

[6] Fischer Black and Myron Scholes. The pricing of options and corporate liabil-
ities. Journal of Political Economy, 81(3):637–654, 1973. URL: www.cs.pri
nceton.edu/courses/archive/fall09/cos323/papers/black s
choles73.pdf.

[7] Damiano Brigo and Fabio Mercurio. Interest Rate Models — Theory and Prac-
tice: With Smile, Inflation and Credit, pages 1–22. Springer, January 2006.
doi:10.1007/978-3-540-34604-3.

[8] Damiano Brigo and Fabio Mercurio. Interest Rate Models — Theory and Prac-
tice: With Smile, Inflation and Credit, pages 23–47. Springer, January 2006.
doi:10.1007/978-3-540-34604-3.

[9] Damiano Brigo and Fabio Mercurio. Interest Rate Models — Theory and Prac-
tice: With Smile, Inflation and Credit, volume 2, pages 28–36. Springer, Jan-
uary 2006. doi:10.1007/978-3-540-34604-3.

[10] Damiano Brigo and Fabio Mercurio. Interest Rate Models — Theory and Prac-
tice: With Smile, Inflation and Credit, volume 2, page 510. Springer, January
2006. doi:10.1007/978-3-540-34604-3.

[11] Hans Bühler, Lukas Gonon, Josef Teichmann, and Ben Wood. Deep hedging.
Econometric Modeling: Derivatives eJournal, pages 1–30, 2018. arXiv:1802
.03042.

61

https://doi.org/10.2139/ssrn.2557046
https://doi.org/10.2139/ssrn.2026350
https://doi.org/10.2139/ssrn.2026350
https://doi.org/10.24033/asens.476
http://lesniewski.us/papers/published/HedgingUnderSABRModel.pdf
http://lesniewski.us/papers/published/HedgingUnderSABRModel.pdf
https://jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
https://jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
www.cs.princeton.edu/courses/archive/fall09/cos323/papers/black_scholes73.pdf
www.cs.princeton.edu/courses/archive/fall09/cos323/papers/black_scholes73.pdf
www.cs.princeton.edu/courses/archive/fall09/cos323/papers/black_scholes73.pdf
https://doi.org/10.1007/978-3-540-34604-3
https://doi.org/10.1007/978-3-540-34604-3
https://doi.org/10.1007/978-3-540-34604-3
https://doi.org/10.1007/978-3-540-34604-3
http://arxiv.org/abs/1802.03042
http://arxiv.org/abs/1802.03042

Thorin MSc thesis BIBLIOGRAPHY

[12] Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited mem-
ory algorithm for bound constrained optimization. SIAM Journal of Scientific
Computing, 16:1190–1208, September 1995. doi:10.1137/0916069.

[13] Peter Carr, Dilip Madan, Stephen Chung, Emanuel Derman, Raphael Douady,
Bruno Dupire, Ognian Enchev, Chris Fern, Marvin Friedman, Iraj Kani, Keith
Lewis, Harry Mendell, Lisa Polsky, John Ryan, and Murad Taqqu. Towards a
theory of volatility trading. pages 1-21, December 1998. URL: pdfs.seman
ticscholar.org/9781/c764ab2f09eafa9beb1fbf8d3b75124da6
ed.pdf.

[14] Francois Chollet. Deep Learning with Python, pages 3–340. Manning Publica-
tions Co., USA, 1st edition, 2017.

[15] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and Ac-
curate Deep Network Learning by Exponential Linear Units (ELUs). Under
Review of ICLR2016, pages 1–14, November 2015. arXiv:1511.07289.

[16] John Cox, Jonathan Ingersoll, and Stephen Ross. A theory of the term structure
of interest rates. Econometrica, 53:385–407, February 1985. doi:10.2307/
1911242.

[17] Richard K. Crump and Nikolay Gospodinov. Deconstructing the yield curve.
Staff Reports 884, Federal Reserve Bank of New York, April 2019. URL: http
s://ideas.repec.org/p/fip/fednsr/884.html.

[18] Howard B. Demuth, Mark H. Beale, Orlando De Jess, and Martin T. Hagan.
Neural Network Design. Martin Hagan, Stillwater, OK, USA, 2nd edition, 2014.
URL: https://hagan.okstate.edu/NNDesign.pdf.

[19] Emanuel Derman and Iraj Kani. Riding on a smile. Risk publications, 7:277–
284, January 1994.

[20] Fabrice Douglas Rouah. The sabr model. URL: laurent.jeanpaul.fre
e.fr/Enseignement/The%20SABR%20Model.pdf.

[21] Timothy Dozat. Incorporating nesterov momentum into adam, 2016. URL:
http://cs229.stanford.edu/proj2015/054 report.pdf.

[22] Bruno Dupire. Pricing with a smile. Risk Magazine, pages 18–20, 1994.

[23] Eugenio Mart́ın Gallego. Analysis of sabr calibration with neural networks.
an application to the swaption smile. In Universidad Complutense de Madrid,
2019. URL: www.uv.es/bfc/TFM2019/Eugenio Martin.

[24] Jim Gatheral. The Volatility Surface. John Wiley & Sons, Ltd, 2006.

[25] Jim Gatheral. Lecture 1: Stochastic volatility and local volatility. Case Studies
in Financial Modelling Course Notes, Courant Institute of Mathematical Sci-
ences, fall term 2012. URL: www.cmap.polytechnique.fr/˜rama/te
aching/ea2003/gatheral.pdf.

62

https://doi.org/10.1137/0916069
pdfs.semanticscholar.org/9781/c764ab2f09eafa9beb1fbf8d3b75124da6ed.pdf
pdfs.semanticscholar.org/9781/c764ab2f09eafa9beb1fbf8d3b75124da6ed.pdf
pdfs.semanticscholar.org/9781/c764ab2f09eafa9beb1fbf8d3b75124da6ed.pdf
http://arxiv.org/abs/1511.07289
https://doi.org/10.2307/1911242
https://doi.org/10.2307/1911242
https://ideas.repec.org/p/fip/fednsr/884.html
https://ideas.repec.org/p/fip/fednsr/884.html
https://hagan.okstate.edu/NNDesign.pdf
laurent.jeanpaul.free.fr/Enseignement/The%20SABR%20Model.pdf
laurent.jeanpaul.free.fr/Enseignement/The%20SABR%20Model.pdf
http://cs229.stanford.edu/proj2015/054_report.pdf
www.uv.es/bfc/TFM2019/Eugenio_Martin
www.cmap.polytechnique.fr/~rama/teaching/ea2003/gatheral.pdf
www.cmap.polytechnique.fr/~rama/teaching/ea2003/gatheral.pdf

Thorin MSc thesis BIBLIOGRAPHY

[26] Hélyette Geman, Nicole El Karoui, and Jean-Charles Rochet. Changes of
numéraire, changes of probability measure and option pricing. Journal of Ap-
plied Probability, 32(2):443–458, 1995. doi:10.2307/3215299.

[27] Lech Grzelak and Cornelis Oosterlee. From arbitrage to arbitrage-free implied
volatilities. The Journal of Computational Finance, 20:1–19, January 2016.
doi:10.21314/JCF.2016.316.

[28] Patrick Hagan. The sabr chronicles, November 2017. doi:10.13140/RG.2.
2.15143.44969.

[29] Patrick Hagan, Deep Kumar, Andrew Lesniewski, and Diana Woodward.
Managing smile risk. Wilmott Magazine, 1:84–108, January 2002. URL:
https://www.next-finance.net/IMG/pdf/pdf SABR.pdf.

[30] Patrick Hagan, Deep Kumar, Andrew Lesniewski, and Diana Woodward.
Arbitrage-free sabr. Wilmott, 2014, January 2014. doi:10.1002/wilm
.10290.

[31] Patrick Hagan and Andrew Lesniewski. Libor market model with sabr style
stochastic volatility, January 2006. URL: pdfs.semanticscholar.org/b
61a/a89e166eb65fdbf9dde3ffc742a623c6de22.pdf.

[32] Patrick Hagan, Andrew Lesniewski, and Diana Woodward. Implied volatilities
for mean reverting sabr models. Wilmott, 2020, October 2017. doi:10.100
2/wilm.10859.

[33] Patrick Hagan, Andrew Lesniewski, and Diana Woodward. Managing vol sur-
faces. Wilmott, 2018:24–43, January 2018. doi:10.1002/wilm.10643.

[34] Patrick S. Hagan and Andrew Lesniewski. Bartlett’s delta in the SABR model.
Wilmott, pages 54–61, April 2017. arXiv:1704.03110.

[35] Andres Hernandez. Model calibration with neural networks. SSRN, June 2016.
doi:10.2139/ssrn.2812140.

[36] Andres Hernandez. Model calibration: Global optimizer vs. neural network.
SSRN, July 2017. doi:10.2139/ssrn.2996930.

[37] Steven Heston. The Heston (1993) Stochastic Volatility Model, chapter 5, pages
136–162. John Wiley & Sons, Ltd, 2015. doi:10.1002/9781119202097.
ch5.

[38] Catherine F. Higham and Desmond J. Higham. Deep Learning: An Intro-
duction for Applied Mathematicians. arXiv e-prints, January 2018. arXiv:
1801.05894.

[39] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural Networks, 2(5):359 – 366, 1989.
doi:10.1016/0893-6080(89)90020-8.

[40] John Hull and Alan White. The pricing of options on assets with stochastic
volatilities. The Journal of Finance, 42(2):281–300, 1987. doi:10.1111/j.
1540-6261.1987.tb02568.x.

63

https://doi.org/10.2307/3215299
https://doi.org/10.21314/JCF.2016.316
https://doi.org/10.13140/RG.2.2.15143.44969
https://doi.org/10.13140/RG.2.2.15143.44969
https://www.next-finance.net/IMG/pdf/pdf_SABR.pdf
https://doi.org/10.1002/wilm.10290
https://doi.org/10.1002/wilm.10290
pdfs.semanticscholar.org/b61a/a89e166eb65fdbf9dde3ffc742a623c6de22.pdf
pdfs.semanticscholar.org/b61a/a89e166eb65fdbf9dde3ffc742a623c6de22.pdf
https://doi.org/10.1002/wilm.10859
https://doi.org/10.1002/wilm.10859
https://doi.org/10.1002/wilm.10643
http://arxiv.org/abs/1704.03110
https://doi.org/10.2139/ssrn.2812140
https://doi.org/10.2139/ssrn.2996930
https://doi.org/10.1002/9781119202097.ch5
https://doi.org/10.1002/9781119202097.ch5
http://arxiv.org/abs/1801.05894
http://arxiv.org/abs/1801.05894
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1111/j.1540-6261.1987.tb02568.x
https://doi.org/10.1111/j.1540-6261.1987.tb02568.x

Thorin MSc thesis BIBLIOGRAPHY

[41] James Hutchinson, Andrew Lo, and Tomaso Poggio. A nonparametric approach
to pricing and hedging derivative securities via learning networks. The Journal
of Finance, 49.3, January 2001. doi:10.2307/2329209.

[42] Patrick Kidger and Terry Lyons. Universal Approximation with Deep Narrow
Networks. arXiv e-prints, page arXiv:1905.08539, May 2019. arXiv:1905.0
8539.

[43] Fabien Le Floc’h and Gary Kennedy. Explicit sabr calibration through simple
expansions. SSRN Electronic Journal, January 2014. doi:10.2139/ssrn
.2467231.

[44] Fabien Le Floc’h and Gary Kennedy. Finite difference techniques for arbitrage
free sabr. SSRN Electronic Journal, January 2014. doi:10.2139/ssrn.2
402001.

[45] Alexander Lipton. The vol smile problem. Risk, 15:61–65, January 2002. URL:
web.math.ku.dk/˜rolf/Lipton VolSmileProblem.pdf.

[46] Robert B. Litterman and José A. Scheinkman. Common factors affecting bond
returns. In Goldman Sachs Journal, 1991. URL: math.nyu.edu/faculty
/avellane/Litterman1991.pdf.

[47] Shuaiqiang Liu, Anastasia Borovykh, Lech A. Grzelak, and Cornelis W. Ooster-
lee. A neural network-based framework for financial model calibration. Journal
of Mathematics in Industry, 9, April 2019. arXiv:1904.10523.

[48] Mahir Lokvancic. Machine learning sabr model of stochastic volatility with
lookup table, April 2020. doi:10.2139/ssrn.3589367.

[49] Lu Lu, Yeonjong Shin, Yanhui Su, and George Karniadakis. Dying relu and
initialization: Theory and numerical examples. In arxiv, March 2019. arXiv:
1903.06733.

[50] Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The
expressive power of neural networks: A view from the width. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems 30, pages 6231–
6239. Curran Associates, Inc., 2017. URL: papers.nips.cc/paper/720
3-the-expressive-power-of-neural-networks-a-view-from-
the-width.pdf.

[51] William A McGhee. An artificial neural network representation of the sabr
stochastic volatility model, November 2018. doi:10.2139/ssrn.3288882.

[52] Mikko Pakkanen. Deep learning lecture notes. Department of Mathematics,
Imperial College London, December 2019.

[53] Allan Pinkus. Approximation theory of the MLP model in neural networks.
Acta Numerica, 8:143–195, January 1999. doi:10.1017/S09624929000
02919.

64

https://doi.org/10.2307/2329209
http://arxiv.org/abs/1905.08539
http://arxiv.org/abs/1905.08539
https://doi.org/10.2139/ssrn.2467231
https://doi.org/10.2139/ssrn.2467231
https://doi.org/10.2139/ssrn.2402001
https://doi.org/10.2139/ssrn.2402001
web.math.ku.dk/~rolf/Lipton_VolSmileProblem.pdf
math.nyu.edu/faculty/avellane/Litterman1991.pdf
math.nyu.edu/faculty/avellane/Litterman1991.pdf
http://arxiv.org/abs/1904.10523
https://doi.org/10.2139/ssrn.3589367
http://arxiv.org/abs/1903.06733
http://arxiv.org/abs/1903.06733
papers.nips.cc/paper/7203-the-expressive-power-of-neural-networks-a-view-from-the-width.pdf
papers.nips.cc/paper/7203-the-expressive-power-of-neural-networks-a-view-from-the-width.pdf
papers.nips.cc/paper/7203-the-expressive-power-of-neural-networks-a-view-from-the-width.pdf
https://doi.org/10.2139/ssrn.3288882
https://doi.org/10.1017/S0962492900002919
https://doi.org/10.1017/S0962492900002919

Thorin MSc thesis BIBLIOGRAPHY

[54] Johannes Ruf and Weiguan Wang. Neural networks for option pricing and
hedging: a literature review. arXiv e-prints, November 2019. arXiv:1911.0
5620.

[55] Johannes Ruf and Weiguan Wang. Hedging with Neural Networks. arXiv e-
prints, page arXiv:2004.08891, April 2020. arXiv:2004.08891.

[56] Filippo Santambrogio. { Euclidean, Metric, and Wasserstein } Gradient Flows:
an overview. Bulletin of Mathematical Sciences, pages 87–154, September 2016.
arXiv:1609.03890.

[57] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical Bayesian Op-
timization of Machine Learning Algorithms. In Proceedings of the 25th Inter-
national Conference on Neural Information Processing Systems - Volume 2,
NIPS’12, page 2951–2959, Red Hook, NY, USA, June 2012. Curran Associates
Inc. arXiv:1206.2944.

[58] Chi Chiang Tan. Market practice in financial modelling. World Scientific Books,
January 2012. doi:10.1142/8257.

[59] Ian Thomson. Option pricing model comparing louis bachelier with black-
scholes merton, March 2016. doi:10.13140/RG.2.1.3896.7446.

[60] Giovanni Travaglini. Sabr calibration in python. Econometrics: Computer
Programs & Software eJournal, 2016. doi:10.2139/ssrn.2725485.

[61] Graeme West. Calibration of the SABR Model in Illiquid Markets, volume 12,
pages 371–385. Routledge, December 2005. doi:10.1080/135048605001
48672.

[62] Ciyou Zhu, Richard H. Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778:
L-bfgs-b: Fortran subroutines for large-scale bound-constrained optimization.
ACM Trans. Math. Softw., 23(4):550–560, December 1997. doi:10.1145/
279232.279236.

65

http://arxiv.org/abs/1911.05620
http://arxiv.org/abs/1911.05620
http://arxiv.org/abs/2004.08891
http://arxiv.org/abs/1609.03890
http://arxiv.org/abs/1206.2944
https://doi.org/10.1142/8257
https://doi.org/10.13140/RG.2.1.3896.7446
https://doi.org/10.2139/ssrn.2725485
https://doi.org/10.1080/13504860500148672
https://doi.org/10.1080/13504860500148672
https://doi.org/10.1145/279232.279236
https://doi.org/10.1145/279232.279236

	Introduction
	Basic concepts
	Bank account
	Zero-coupon bond
	Spot Interest Rates
	Forward rates
	Interest-Rate Swaps
	Swaption
	No-arbitrage Pricing
	Numeraire change
	T-forward measure
	Swap measure

	Interest Rates & SABR models
	The Bachelier (Normal) Model
	The Black (Log-Normal) Model
	Discussions
	SABR dynamic
	SABR asymptotic solution
	SABR for negative interest rates
	Shifted SABR
	Absolute SABR

	SABR calibration
	SABR parameters
	 parameter
	 parameter
	 parameter
	 parameter

	SABR complements
	The Backbone
	The Skew
	The convexity

	Artificial Neural Networks
	Introduction and history of Deep Learning
	Architecture of Neural Networks
	Brief Description
	Detail Construction
	Activation Functions

	Training of Neural Networks
	Loss Function
	Minibatch and batch size
	Epochs
	Iterations
	Summary example
	Stochastic Gradient Descent: SGD
	Backpropagation

	Universal Approximation Theorem
	Arbitrary Width
	Arbitrary Depth

	Methodology
	Step 1: Data Presentation
	Step 2: Sequential calibration on time-series
	Step 3: Preparing Training Dataset
	Step 3.1
	Step 3.2
	Step 3.3
	Step 3.4
	Step 3.5
	Step 3.6
	Step 3.7
	Step 3.8

	Step 4: Neural Networks Calibration
	Architecture choice
	Activation Function
	Loss function
	Optimizer choice
	Epoch and Batch
	Kernel Initializer
	Early Stopping
	Dynamic Learning Rate

	Step 5: Out-of-Sample test

	Results
	Step 1: Data Presentation
	Step 2: Sequential calibration on time-series
	Step 3: Preparing Training Dataset
	Step 4: Neural Networks calibration
	Step 5: Out-Sample test
	Discussions
	Time to deliver Output
	Time to calibrate the model
	Robustness
	Improvement possibilities

	Hedging
	Hedging under SABR model
	Hagan's formula
	Barlett's formula

	Hedging with Neural Networks

	Conclusion
	Appendix
	Bibliography

