Numerical methods for kinetic equations

Lecture 2: Semi-Lagrangian schemes

Lorenzo Pareschi

Department of Mathematics and Computer Science University of Ferrara, Italy

http://www.lorenzopareschi.com

Imperial College, October 2-9, 2015

Lecture 2 Outline

Introduction

- Semi-Lagrangian methods
- Multi-dimensional case

Semi-Lagrangian scheme for Vlasov type equations

- The method by Cheng and Knorr
- The method by Sonnendrücker et al.
- Positive flux-conservative schemes

Semi-Lagrangian schemes for BGK type equations

- Explicit semi-Lagrangian schemes
- Implicit semi-Lagrangian schemes
- Fully conservative methods

Introduction

- We give a short overview of *semi-Lagrangian* method for kinetic transport equation. The methods are based on a fixed computational grid but take into account the Lagrangian nature of the transport process.
- For their structure semi-Lagrangian methods apply naturally to the linear transport part of kinetic equations, the full equation being often solved by *splitting techniques*.
- These methods can be designed in order to possess many desired properties for a numerical scheme for kinetic equations, namely positivity, physical conservations and robustness when dealing with large velocities.
- These restrictions often prevent a straightforward application of the usual schemes for hyperbolic conservation laws.
- Several approaches can be used to solve efficiently the transport process in kinetic equations, ranging from *particle in cell methods*¹ and *flux-balance methods*² to WENO schemes ³ and Discontinuous-Galerkin methods⁴.

¹C. Birdsall, A. Langdon '91
²J. Boris, D. Book '73
³J.A. Carrillo, F. Vecil'07
⁴J.-M. Qiu, C.-W. Shu '11; B. Ayuso, J.A. Carrillo, C.-W. Shu '11; R. Heath,
I. Gamba, P. Morrison, C. Michler '12

Transport equations

Let us consider the one dimensional linear advection equation

Linear advection

$$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} = 0, \quad x \in \mathbb{R}$$

here f = f(x,t), $v \in \mathbb{R}$, with initial datum $f(x,0) = f_0(x)$. The exact solution is

 $f(x,t) = f_0(x - vt).$

The Semi-Lagrangian methods use the knowledge of the exact solution which is explicitly represented in terms of the initial datum to construct a numerical approximation of the transport equation. In particular, we have

$$f(x_j, t^{n+1}) = f_0(x_j - vt^{n+1}) = f_0(x_j - v\Delta t - vt^n) = f(x_j - v\Delta t, t^n)$$

where we introduced a uniform grid $x_j = j\Delta x$, $j \in \mathbb{Z}$ and discrete time steps $t^n = n\Delta t$. The points in space used to compute the solution are the points that within a single time step are transported by the flow onto the mesh. These points do not lie in the general case on the grid.

Semi-Lagrangian methods

The backward semi-Lagrangian scheme can then be obtained as

$$f_j^{n+1} = f_{j-v\frac{\Delta t}{\Delta x}}^n = f_{j-k-\alpha}^n, \qquad k+\alpha = v\frac{\Delta t}{\Delta x}, \quad k = \left[v\frac{\Delta t}{\Delta x}\right],$$

where $[\cdot]$ denotes the integer part and $\alpha \in (0, 1)$ is a non integer index unless the time and space grid satisfy $v\Delta t = k\Delta x$ in which case $\alpha = 0$.

5 / 26

Semi-Lagrangian methods

The type and the degree of interpolation defines then the type of semi-Lagrangian scheme. As an example we consider a simple *linear interpolation*

 $f_j^{n+1} = \alpha f_{j-k-1}^n + (1-\alpha) f_{j-k}^n.$

If $v\Delta t/\Delta x < 1$ one gets k = 0, $\alpha = v\Delta t/\Delta x$ and the resulting method is nothing else but the well-known *upwind method*.

In contrast with standard upwind, the scheme holds for any value of $v\Delta t/\Delta x$. Since the values of the solution at the time level n + 1 are obtained by linear interpolation of the values at time level n with nonnegative coefficients, a discrete maximum principle holds. No stability conditions are needed and the scheme is well-suited to deal with arbitrary large values of v.

Note also that the exact solution admits the formulation

$$f(x_j + v\Delta t, t^{n+1}) = f(x_j, t^n),$$

which gives the equivalent forward semi-Lagrangian scheme

$$f_{j+k+\alpha}^{n+1} = f_j^n, \qquad k+\alpha = v \frac{\Delta t}{\Delta x}, \quad k = \left[v \frac{\Delta t}{\Delta x}\right].$$

Multi-dimensional case

The semi-Lagrangian method can be generalized to the multidimensional case by replacing one dimensional interpolation with multidimensional interpolation techniques. For a space and time dependent velocity field $V(x,t) \in \mathbb{R}^d$ we have

Multidimensional transport equation

$$\frac{\partial f}{\partial t} + V(x,t) \cdot \nabla_x f = 0, \quad x \in \mathbb{R}^d.$$

Under Lipschitz continuity assumptions on the velocity field, the characteristic curves exist. These are defined as the solutions $X(\cdot;t,x)$ of the ordinary differential equations

$$\frac{d}{ds}X(s;t,x) = V(X(s;t,x),s)$$

with initial data X(t; t, x) = x. It is then possible to show that

$$f(x,t) = f(X(s;t,x),s) = f_0(X(0;t,x)).$$

The solution at point x and time t is the initial datum at the foot of the characteristic indicated by X(0; x, t) which passes in x at time t.

Lorenzo Pareschi (University of Ferrara)

Multidimensional semi-Lagrangian methods

Using the formula for the exact solution then a semi-Lagrangian method for the approximation of the multidimensional advection equation can be derive in two steps:

- At a given time level n compute for each mesh point x an approximate solution of the system of ODEs to determine an estimate of the characteristic X*(tⁿ; tⁿ⁺¹, x) which passes at time tⁿ⁺¹ at position x.
- **②** Compute an approximation of the exact solution by interpolating the mesh point values at time level n at the points $X^*(t^n; t^{n+1}, x)$.

This implies that the solution of the PDE is reduced to the solution of a large set ODEs combined with multidimensional interpolation. The most common reconstruction techniques found in literature are *cubic splines*, *Hermite* or *Lagrange polynomials*. More recently *WENO techniques* and *DG methods* have also been used succesfully⁵.

⁵X-T.Liu, S.Osher, T.Chan '94; C.-W. Shu '09; B. Cockburn, G. E. Karniadakis, C.-W. Shu (eds.) '00

Semi-Lagrangian scheme for the Vlasov-Poisson system

As an example let us consider the one-dimensional Vlasov-Poisson system

Vlasov-Poisson system

$$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} + E \frac{\partial f}{\partial v} = 0, \quad x \in \mathbb{R}, \, v \in \mathbb{R}$$

$$\frac{\partial^2 \Phi_m}{\partial x^2}(x,t) = 1 - \varrho(x,t) = 1 - \int_{\mathbb{R}} f(x,v,t) dv, \quad E = -\frac{\partial \Phi_m}{\partial x}$$

Observe that the Vlasov equation can be rewritten in equivalent form as

$$\frac{\partial f}{\partial t} + V \cdot \nabla_{(x,v)} f = 0, \ V(x,v,t) = (v,E)^T$$

which is a linear transport equation in the phase space. Moreover since

$$\nabla_{(x,v)} \cdot V = \frac{\partial v}{\partial x} + \frac{\partial E}{\partial v} = 0,$$

the Vlasov equation can also be written in conservative form as

$$\frac{\partial f}{\partial t} + \nabla_{(x,v)} \cdot (Vf) = 0.$$

The method by Cheng and Knorr

The Cheng-Knorr method is one of the first semi-Lagrangian schemes designed for the Vlasov-Poisson system ⁶. The method is based on the classical *Strang splitting method*.

- **9** Starting from f^n compute the electric field E^n solving the Poisson equation.
- **2** Compute f^* solving

$$\frac{\partial f}{\partial t} + E^n \frac{\partial f}{\partial v} = 0,$$

with initial data f^n , for a half time step $\Delta t/2$.

(3) Compute f^{**} solving

$$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} = 0,$$

with f^* as initial data, for a time step Δt .

- Compute ϱ^{n+1} from f^{**} and the electric field E^{n+1} solving the Poisson equation.
- **6** Compute f^{n+1} solving for a half time step $\Delta t/2$

$$\frac{\partial f}{\partial t} + E^{n+1} \frac{\partial f}{\partial v} = 0,$$

with initial data f^{**} .

⁶C. Cheng, G. Knorr '76

Lorenzo Pareschi (University of Ferrara)

Direct multidimensional approach

- The semi-Lagrangian approach with splitting for the resolution of the Vlasov-Poisson system has the big advantage that the characteristic equation can be solved explicitly at each step of the splitting procedure. However, the splitting introduce errors privileging the directions.
- It is then interesting to consider the construction of semi-Lagrangian methods directly without splitting. These methods, however, need a suitable numerical approximation of the characteristic equation.
- The characteristic curve is solution of

$$\frac{dV}{dt} = E(X(t), t), \quad \frac{dX}{dt} = V.$$

The above equations cannot be solved exactly since the electric field E is computed through the Poisson equation which depends on the evolution of the distribution of particles f.

The method by Sonnendrücker et al.

The method by Sonnendrücker et al.⁷ permits to pass from time t^n to t^{n+1} in an iterative way. Assume f^n and the electric potential E^n are known, then a second order in time iterative approach is summarized below.

- Compute an approximation of the electric potential \tilde{E}^{n+1} at time t^{n+1} .
- **②** Solve for all points in the phase space (x_j, v_k) the characteristics equations with a second order Runge-Kutta method

$$V^{n+1/2} = V^{n+1} - \frac{\Delta t}{2} \tilde{E}^{n+1}(X^{n+1}),$$

$$X^{n} = X^{n+1} - \Delta t V^{n+1/2},$$

$$V^{n} = V^{n+1/2} - \frac{\Delta t}{2} E^{n}(X^{n}).$$

- Compute the interpolation of f^n at points (X^n, V^n) to obtain an approximation of the distribution function $f^{n+1}(x_j, v_k)$ at time t^{n+1} , which we can use to compute a new value of the electric field \tilde{E}^{n+1} .
- Iterate the scheme up to a prescribed convergence error.

⁷E. Sonnendrücker, J. Roche, P. Bertrand, A. Ghizzo '99

Positive flux-conservative schemes

These schemes are based on a conservative reconstruction strategy along the characteristics curves. For simplicity we restrict to the following one dimensional transport equation

 $\partial_t f + \partial_x \left(v f \right) = 0,$

where v > 0 is a constant velocity (by symmetry one constructs the method for v < 0).

Let us introduce the mesh points $x_{j+1/2} = j\Delta x + \Delta x/2$, $j \in \mathbb{Z}$. Assume the solution is known at time $t^n = n \Delta t$, we compute the new values at time t^{n+1} by integration of the exact solution in each cell

$$\int_{x_{j-1/2}}^{x_{j+1/2}} f(t^{n+1}, x) dx = \int_{x_{j-1/2} - v \,\Delta t}^{x_{j+1/2} - v \,\Delta t} f(t^n, x) dx,$$

then, setting

$$G_{j+1/2}(t^n) = \int_{x_{j+1/2}-v\,\Delta t}^{x_{j+1/2}} f(t^n, x) dx,$$

we obtain the conservative form

$$\int_{x_{j-1/2}}^{x_{j+1/2}} f(t^{n+1}, x) dx = \int_{x_{j-1/2}}^{x_{j+1/2}} f(t^n, x) dx + G_{j-1/2}(t^n) - G_{j+1/2}(t^n).$$

Lorenzo Pareschi (University of Ferrara)

Reconstruction via primitive function

The main step is now to choose an efficient method to reconstruct the distribution function from the values on each cell $[x_{j-1/2}, x_{j+1/2}]$. If we denote by

$$f_j^n = \frac{1}{\Delta x} \int_{x_{j-1/2}}^{x_{j+1/2}} f(t^n, x) dx,$$

the simplest choice is based on a linear interpolation procedure

$$f_{\Delta x}(x) = f_j + (x - x_j) \frac{f_{j+1} - f_{j-1}}{2\Delta x},$$

which permits an explicit computation of the fluxes. Unfortunately the resulting method does not preserve positivity.

Another approach is based on a reconstruction via primitive function ⁸. Let $F(t^n, x)$ be a primitive of the distribution function $f(t^n, x)$, then $F(t^n, x_{j+1/2}) - F(t^n, x_{j-1/2}) = \Delta x f_j^n$ and

$$F(t^n, x_{j+1/2}) = \Delta x \sum_{k=0}^j f_k^n = w_j^n.$$

⁸F. Filbet, E. Sonnendrücker, P. Bertrand '01

Nonnegative reconstructions

A reconstruction method allowing to preserve positivity and maximum principle can be obtained using a third-order reconstruction with slope correctors

$$\begin{split} f_{\Delta x}(x) &= f_j + \\ &+ \frac{\theta_j^+}{6\Delta x^2} \Big[2 \, (x - x_j)(x - x_{j-3/2}) + (x - x_{j-1/2})(x - x_{j+1/2}) \Big] (f_{j+1} - f_j) \\ &+ \frac{\theta_j}{6\Delta x^2} \Big[2 \, (x - x_j)(x - x_{j+3/2}) + (x - x_{j-1/2})(x - x_{j+1/2}) \Big] (f_j - f_{j-1}), \end{split}$$

with

$$\theta_j^{\pm} = \begin{cases} \min\left\{1; \frac{2f_j}{f_{j\pm 1} - f_j}\right\}, & \text{if } f_{j\pm 1} - f_j > 0, \\ \min\left\{1; -\frac{2(f_{\max} - f_j)}{f_{j\pm 1} - f_j}\right\}, & \text{if } f_{j\pm 1} - f_j < 0, \end{cases}$$

where $f_{\max} = \max_{j} \{f_j\}$. It can be shown that this reconstruction satisfies (i) Conservation of the average

$$\int_{x_{j-1/2}}^{x_{j+1/2}} f_{\Delta x}(x) dx = \Delta x f_j, \quad \forall j.$$

(ii) Maximum principle

$$0 \le f_{\Delta x}(x) \le f_{\max}, \quad \forall x.$$

Lorenzo Pareschi (University of Ferrara)

A numerical example

Figure: Evolution of $F(x, v_x, t) = \int_{\mathbb{R}} f(x, v_x, v_y, t) dv_y$ with $N_x = 32$, $N_v = 64$. Initial data

 $f(0, x, v) = \frac{1}{2\pi\sigma^2} e^{-|v|^2/2\sigma^2} (1 + \alpha \cos(2\pi x/L)), \quad \forall x \in (0, L), \quad v \in \mathbb{R}^2,$

where $\sigma = 0.24$, $\alpha = 0.5$, L = 4 and periodic boundary conditions.

Semi-Lagrangian schemes for BGK type equations

Coupling the previous semi-Lagrangian schemes with a collision term can be done in a straightforward way through splitting methods. Here we consider direct semi-Lagrangian approximations.

For simplicity, we restrict to the BGK equation in one space dimension

BGK model

$$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} = \nu(M[f] - f),$$

where $\nu > 0$ is a constant. The characteristic formulation of the problem yields

$$\frac{df}{dt} = \nu(M[f] - f), \qquad \frac{dx}{dt} = v.$$

Let $f_{j,k}^n$ be the approximate solution at time t^n at the nodes $x_j = j\Delta x$, $v_k = k\Delta v$, $j,k\in\mathbb{Z}$. A simple explicit first order forward semi-Lagrangian scheme reads

$$f(x_j + v_k \Delta t, v_k, t^{n+1}) = f_{j,k}^n (1 - \Delta t\nu) + \Delta t\nu M_{j,k}^n,$$

which do not lie on the grid. Then compute the values of $f_{j,k}^{n+1}$ on the grid by reconstruction from the computed values $f(x_j + v_k \Delta t, v_k, t^{n+1})$.

Computing Maxwellian states

In order to advance in time we must define the approximated Maxwellian distribution $M_{i,k}^n$. The simplest method to do that is given by

$$M_{j,k}^{n} = \frac{\rho_{j}^{n}}{(2\pi RT_{j}^{n})^{1/2}} \exp\left(-\frac{|v_{k} - u_{j}^{n}|^{2}}{2RT_{j}^{n}}\right),$$

where ρ_j^n , T_j^n and u_j^n are approximations of the moments at the grid points. This formula requires the computation of the discrete moments of $f_{j,k}^n$ by some kind of quadrature. For example by simple summations

$$\rho_j^n = \Delta v \sum_h f_{j,h}^n, \quad u_j^n = \frac{\Delta v}{\rho_j^n} \sum_h v_h f_{j,h}^n, \quad T_j^n = \frac{\Delta v}{R\rho_j^n} \sum_h (v_h - u_j^n) f_{j,h}^n.$$

Problems

- $M_{j,k}^n$ is not compactly supported in the velocity space. Problem of the truncation of the velocity domain and the *loss of conservations*.
- There is no CFL-type stability restriction on the time step due to convection. The schemes may suffer from stability restrictions in *stiff regimes* when the collision rate ν is large.

Implicit semi-Lagrangian schemes

By applying simple implicit Euler on the characteristic equation backwards in order to compute $f_{i,k}^{n+1}$ one obtains

$$f_{j,k}^{n+1} = f(t^n, x_j - v_k \Delta t, v_k) + \Delta t \nu (M_{j,k}^{n+1} - f_{j,k}^{n+1})$$

= $\frac{1}{1 + \Delta t \nu} f(t^n, x_j - v_k \Delta t, v_k) + \frac{\Delta t \nu}{1 + \Delta t \nu} M_{j,k}^{n+1},$

where $f(t^n, x_j - v_k \Delta t, v_k)$ is computed by suitable reconstruction from $f_{j,k}^n$. The scheme cannot be directly solved for $f_{j,k}^{n+1}$, because $M_{j,k}^{n+1}$ depends from $f_{j,k}^{n+1}$ itself. However, if the discrete Maxwellian at time t^{n+1} has exactly the same first three moments as $f_{j,k}^{n+1}$

$$\sum_{h} M_{j,h}^{n+1} \phi_h = \sum_{h} f_{j,h}^{n+1} \phi_h, \qquad \phi_h = 1, v_h, |v_h|^2,$$

then we have

$$\sum_{h} f_{j,h}^{n+1} \phi_h = \sum_{h} f(t^n, x_j - v_h \Delta t, v_h) \phi_h, \qquad \phi_h = 1, v_h, |v_h|^2.$$

Therefore the moments at time t^{n+1} can be computed from the solution at time t^n and this allows and explicit evaluation of $M_{j,k}^{n+1}$.

Remarks

- For consistency, we must construct the approximated Maxwellian values $M_{j,k}^{n+1}$ in such a way that the moments equations are exactly satisfied. This is a transversal problem to most schemes which use a finite grid over a bounded velocity domain.
- Higher order implicit semi-Lagrangian methods for relaxation operators can be constructed using L-stable *diagonally implicit Runge Kutta (DIRK)* schemes⁹.
- If the time step is such that $\Delta t = \Delta x / \Delta v$ then the foot of the characteristic is a grid point and no interpolation is required. In such case the semi-Lagrangian schemes becomes particular cases of *Lattice Boltzmann* Methods (LBM)¹⁰.
- The implicit semi-Lagrangian schemes are unconditionally stable. However, large time steps will cause large numerical diffusion in the solution. In particular semi-Lagrangian schemes may suffer of accuracy degradation close to fluid regimes, or equivalently for very large values of ν . The latter aspect can be understood by observing that the characteristic speeds of the system change in such a limit.

⁹P. Santagati, G. Russo, S.-B. Yun '12 ¹⁰S.Succi '01

Fully conservative methods

Let us consider f = f(v), $v \in \mathbb{R}^d$, $d \ge 1$, and denote by $f_k \approx f(v_k)$, $k = 1, \ldots, N$ the finite grid approximations. We want to define the grid values f_k in such a way that the macroscopic moments of f are preserved at a discrete level. We denote by $U \in \mathbb{R}^{2+d}$ the given set of moments

$$U = \int_{\mathbb{R}^d} f \left(egin{array}{c} 1 \\ v \\ |v|^2 \end{array}
ight) \, dv.$$

We use notations $\mathbf{f} = (f_1, \ldots, f_N)^T$ to denote the unknown set of values and $\tilde{\mathbf{f}} = (\tilde{f}_1, \ldots, \tilde{f}_N)^T$ the point values $\tilde{f}_k = f(v_k)$. We also denote by $C \in \mathbb{R}^{(d+2) \times N}$ the matrix containing the parameters of the quadrature formula used to evaluate the discrete moments. Therefore we have $C\tilde{\mathbf{f}} \neq U$, and search for a vector \mathbf{f} that it is "close" to $\tilde{\mathbf{f}}$ and such that $C\mathbf{f} = U$.

In order to find a solution to the problem one can consider the constrained optimization problem find $f\in\mathbb{R}^N$ such that

$$\min\left\{\|\tilde{\mathbf{f}} - \mathbf{f}\|_2^2 : C\mathbf{f} = U; C \in \mathbb{R}^{(d+2) \times N}, \tilde{\mathbf{f}} \in \mathbb{R}^N, U \in \mathbb{R}^{(d+2)}\right\}.$$

The optimal L_2 Maxwellian

The problem can be solved by a Lagrange multiplier method. Let $\lambda \in \mathbb{R}^{d+2}$ be the Lagrange multiplier vector, the objective function to be minimized is given by

$$L(\mathbf{f}, \lambda) = \sum_{k=1}^{N} |\tilde{f}_k - f_k|^2 + \lambda^T (C\mathbf{f} - U).$$

Next we impose

$$\frac{\partial L(\mathbf{f},\lambda)}{\partial f_k} = 0, \quad k = 1, \dots, N \qquad \frac{\partial L(\mathbf{f},\lambda)}{\partial \lambda_i} = 0, \quad i = 1, \dots, d+2.$$

The first condition implies $2f = 2\tilde{f} + C^T \lambda$ and the second Cf = U. Since CC^T is symmetric and positive definite one gets $\lambda = 2(CC^T)^{-1}(U - C\tilde{f})$ and therefore¹¹

$$\mathbf{f} = \tilde{\mathbf{f}} + C^T (CC^T)^{-1} (U - C\tilde{\mathbf{f}}).$$

Reverting now to the full space and time dependent notation, we get

$$\mathbf{M}_j^n = \tilde{\mathbf{M}}_j^n + C^T (CC^T)^{-1} (U_j^n - C\tilde{\mathbf{M}}_j^n),$$

with U_j^n the set of moments, $\mathrm{M}_j^n = (M_{j,1}^n, \dots, M_{j,N}^n)^T$ and $ilde{\mathrm{M}}_j^n$ defined similarly.

¹¹I. Gamba, S. Tharkabhushanam '09

Remarks

- The method only involves a matrix-vector multiplication. Moreover, since the matrix C depends only on the parameter of the discretization, the matrix $C^T(CC^T)^{-1}$ can be precomputed and stored in memory. This makes the technique extremely efficient for multi-dimensional computations.
- Positivity of the solution is lost in general, as well as the monotonicity property induced by the entropy inequality.
- For Maxwellian densities, these properties can be recovered considering a constrained minimization problem with respect to the entropy of the solution. However, solving such a minimization problem implies the solution of a system of d + 2 nonlinear equations at each time step.

The discrete entropic Maxwellian

Let $\mathcal{V} = \{v_k \in \mathbb{R}^3, k = 1, \dots, N_v\}$ be a discrete-velocity grid of N_v points. A classical way to recover the exact moments and the minimum entropy property of the Maxwellian in a finite computational domain is based on the theory of *discrete velocity models*¹².

The discrete Maxwellian state $M_k[f]$, where $f = (f_1, \ldots, f_{N_v})^T$, should be such that $\log(M_k[f]) \in \operatorname{span}\{1, v_k, |v_k|^2\}$ which implies

 $M_k[f] = \exp(a + b \cdot v_k + c|v_k|^2), \quad c < 0,$

where $a, c \in \mathbb{R}$, $b \in \mathbb{R}^3$ are obtained from the solution of the nonlinear system

$$\sum_{h=1}^{N_v} f_h(v_h)^s = \sum_{h=1}^{N_v} M_h[\mathbf{f}](v_h)^s, \qquad s = 0, 1, 2$$

Note that, due to the particular choice of the grid, not all set of moments may be realizable by the discrete velocity model.

¹²H.Cabannes '81, L. Mieussens '00

Discrete Maxwellian states

Further reading

 E. Sonnendrücker (2013), Numerical methods for Vlasov equations, Technical report, MPI TU Munich. (http://www-m16.ma.tum.de/foswiki/pub/M16/ Allgemeines/NumMethVlasov/Num-Meth-Vlasov-Notes.pdf).