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Fast spectral methods Carlemann-like representation

Carlemann-like representation
The computational cost of the method can be reduced to O(n log2 n) using a
different representation of the collision operator1.
The basic identity we shall need in dimension d = 2, 3 is∫

Sd−1

F (|u|ω − u) dω =
2

|u|d−2

∫
Rd

δ(2x · u+ |x|2)F (x) dx.

Using the above identity the collision operator can be written as

Carlemann-like representation

Q(f, f)(v) =

∫
x,y∈BR

B̃(x, y)δ(x · y) [f(v + y)f(v + x)− f(v + x+ y)f(v)] dxdy

with BR = B(0, 2λπ), v ∈ [−π, π]d and

B̃(x, y) = 2d−1B

(
−x · (x+ y)

|x||x+ y|
, |x+ y|

)
|x+ y|−(d−2).

Note that B̃(x, y) is constant for Maxwell molecules (B ≡ 1) in dimension d = 2
and for hard spheres (B ≡ |x+ y|) in dimension d = 3.

1C.Mouhot, L.Pareschi ’05 - F.Filbet, C.Mouhot, L.Pareschi ’06
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Fast spectral methods Carlemann-like representation

Spectral methods
We can perform the same derivation as in the standard spectral method to obtain

Q̂k =

N∑
l,m=−N
l+m=k

(B̂(l,m)− B̂(m,m)) f̂l f̂m, k = −N, ..., N

where now

New kernel modes

B̂(l,m) =

∫
x∈BR

∫
y∈BR

B̃(x, y) δ(x · y) eil·x eim·y dx dy.

The conventional representation, in the new variables x and y, reads

B̂(l,m) =

∫
x∈BR

∫
y∈BR

B̃(x, y) δ(x · y)χ{|x+y|≤R} e
il·x eim·y dx dy.

One can notice that here x and y are also restricted to the ball BR but the
condition |x+ y|2 = |x|2 + |y|2 ≤ R2 couples the two modulus.
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Fast spectral methods Fast algorithms

Fast algorithms

The search for fast deterministic algorithms consists mainly in identifying some
convolution structure in the collision operator.
We make the assumption that

Decoupling assumption

B̃(x, y) = a(|x|) b(|y|).

This assumption is obviously satisfied if B̃ is constant. This is the case of
Maxwellian molecules in dimension two, and hard spheres in dimension three.
If we now change to spherical coordinates

B̂(l,m) =
1

4

∫
S2

∫
S2
δ(e·e′)

[∫ R

−R
ρa(ρ)eiρ(l·e)dρ

][∫ R

−R
ρ′b(ρ′)eiρ

′(m·e′)dρ′

]
dede′.
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Fast spectral methods Fast algorithms

Fast algorithms

In the case of hard spheres, after integrating e′ on S2 ∩ e⊥ we get

B̂(l,m) =

∫
e∈S2+

φ(l · e)ψ
(
Πe⊥(m)

)
de

where S2+ denotes the half-sphere, Πe⊥ is the orthogonal projection on e⊥ and

φ(s) = R2
(
2 Sinc(Rs)− Sinc2(Rs/2)

)
, ψ(s) =

∫ π

0

φ(s cos θ)dθ.

Using spherical coordinates (θ, ϕ) and taking uniform grids of size M1 and M2 we
get

Decoupled kernel modes

B̂(l,m) ' π2

M1M2

M1,M2∑
p,q=0

αp,q(l)α
′
p,q(m)
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Fast spectral methods Fast algorithms

Computational considerations

Thanks to periodicity of the integrands the rectangular rule in
(θ, ϕ) is also spectrally accurate.

Taking M =M1 =M2 we obtain the computational cost

O(Md−1n log2 n), n = Nd.

The method is therefore faster then the classical if

Md−1 log2 n� n.

The angular discretization does not affects the main physical
properties of the Boltzmann equation.
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Fast spectral methods Consistency and spectral accuracy

Consistency and spectral accuracy
The spectral accuracy of the angular approximation is stated in the following

Lemma (Mouhot, Pareschi ’05)

The error on the angular approximation of the collision operator is spectrally
small, i.e. for all r > d− 1 such that f ∈ Hr

p

‖Q(f, f)−QM (f, f)‖2 ≤ C1

‖f‖2Hr
p

Mr
.

Next we use the consistency result for the classical spectral method to obtain

Theorem

For all r > d− 1 such that f ∈ Hr
p

‖Q(f, f)−QMN (fN , fN )‖2 ≤ C1

‖fN‖2Hr
p

Mr
+
C2

Nr

(
‖f‖Hr

p
+ ‖Q(fN , fN )‖Hr

p

)
.
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Fast spectral methods Consistency and spectral accuracy

Numerical examples

Test problems2:
Test#1 2D Maxwellian molecules: Exact solution
This test is used to check spectral accuracy, by comparing the error at a given
time, when using N = 8, 16, and 32 Fourier modes for each dimension.
Test#2 3D VHS molecules: sum of two Gaussians
This test is used compare the relaxation to equilibrium of the stress tensor for
Maxwellian molecules, with the relaxation of other VHS molecules.

Number of Classical Fast spectral Fast spectral Fast spectral
points spectral with M = 4 with M = 6 with M = 8

16 2 sec. 40 1 sec. 15 1 sec. 70 2 sec. 30
32 38 sec. 01 5 sec. 55 8 sec. 47 11 sec. 10
64 616 sec. 35 sec. 50 54 sec. 66 71 sec. 27

Comparison of the computational time in 2D between the classical spectral
method and the fast spectral method with different numbers of discrete angles
and with a second order Runge-Kutta time discretization.

2F.Filbet, C.Mouhot, L.Pareschi, ’05
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Fast spectral methods Consistency and spectral accuracy

Cost and accuracy

Number of Classical Fast spectral Fast spectral Fast spectral
points spectral with M = 4 with M = 6 with M = 8

16 1 m. 14s. 3 m. 31s. 7 m. 45 s. 13 m. 44 s.

32 118 m. 02 s. 50 m. 31s. 105 m. 19 s. 186 m. 18s.

64 125h 54 m. 8h 45 m. 22s. 21h 39 m. 35h 01 m. 28s.

Comparison of the computational time in 3D between the classical spectral
method and the fast spectral method with different numbers of discrete angles
and with a second-order Runge-Kutta time discretization.

Number of Classical Fast spectral Fast spectral Fast spectral
points spectral with M = 4 with M = 6 with M = 8

8 0.02013 0.02778 0.02129 0.02112
16 0.00204 0.00329 0.00238 0.00224
32 1.405E-5 2.228E-5 1.861E-5 1.772E-5

Comparison of the L1 error in 2D between the classical spectral method and the
fast spectral method with different numbers of discrete angles and with a
second-order Runge-Kutta time discretization at time Tend = 1.
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Fast spectral methods Consistency and spectral accuracy

Other computational reduction approaches

Other fast algorithms can be introduced introducing a selective multiscale
approximation of the kernel modes, the simplest case is given by the
hyperbolic cross approximation 3.

Plot of the kernel modes for Maxwell molecules with d = 2
3E. Fonn, P. Grohs, R. Hiptmair ’14
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Fast spectral methods Some remarks

Some remarks

Fast spectral solvers have been developed also for other collisional kinetic
equations, like the Landau equation of collisional plasma physics 4, the
inelastic Boltzmann equation 5 and the quantum Boltzmann equation 6.

The spectral method is well-defined for any physical collision kernel of the
Boltzmann equation and, at variance with Monte Carlo methods, does not
require any truncation over the angular cross section bα(θ).

In the case of Coulomb collisions it can be shown that the kernel modes
converge (in the grazing limit) to the corresponding kernel modes of the
Landau equation and that the resulting spectral method is uniformly
spectrally accurate with respect to the grazing collision parameter7.

Related methods based on the use of the discrete Fourier transform have
been proposed by other authors8.

4L.Pareschi, G.Russo, G.Toscani ’00
5L.Pareschi, G.Toscani ’04
6J.Hu, L. Ying ’12
7L.Pareschi, G.Toscani, C.Villani ’03
8A.V.Bobylev, S.Rjasanow ’99 - I.Gamba, S. Tharkabhushanam ’09
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Steady state preserving spectral methods Long time behavior

Long time behavior

Spectral methods are therefore capable to produce spectrally accurate
solution of the Boltzmann equation at a reduced computational cost which
makes them competitive with Monte Carlo methods.

A major drawback of spectral methods is the lack of exact conservations and
entropy dissipation, and, as a consequence, the incapacity of the scheme to
preserve the Maxwellian steady states of the system.

We will show how to overcome this drawback thanks to a new reformulation
of the method which permits to preserve the spectral accuracy and to
capture the long time behavior of the system 9.

9F.Filbet, L.Pareschi, T.Rey ’14
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Steady state preserving spectral methods Long time behavior

Theorem (Filbet, Mouhot ’14)

Consider any nonnegative initial datum f0 ∈ Hr
p([−π, π]3). Then there exists N0

(depending on the mass and ‖f‖Hr
p
) such that for all N ≥ N0:

(i) there is a unique global solution fN = fN (·, t) to the following problem

∂fN
∂t

= QLN (fN ),

fN (v, t = 0) = f0,N (v);

(ii) for any k < r, there exists C > 0 such that

∀ t ≥ 0, ‖fN (·, t)‖Hk
p
≤ C;

(iii) this solution is everywhere positive for time large enough, and the mass of its
negative values can be made uniformly (in times) L∞ small as N →∞;

(iv) this solution fN converges to f(t), the periodized solution in [−π, π]3, with
spectral accuracy, uniformly in time;

(v) this solution converges exponentially in time to a constant solution prescribed
by the mass conservation law.
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Steady state preserving spectral methods Steady state preserving method

Steady state preserving method

The idea is to start from the decomposition

g = f −M,

with M the local Maxwellian equilibrium and g such that
∫
R3 g φ dv = 0,

φ = 1, v, |v|2. When inserted into the collision operator gives

Q(f, f) = L(M, g) +Q(g, g),

where L(M, g) = Q(g,M) +Q(M, g) and we used the fact that Q(M,M) = 0.
We get the equilibrium preserving formulation

∂g

∂t
= L(M, g) +Q(g, g).

Note that:

The steady state of the system is again given by g ≡ 0.

Discretizing Q(f, f) and discretizing L(M, g) +Q(g, g) is not equivalent.
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Steady state preserving spectral methods Steady state preserving method

Steady state preserving spectral methods
We can write the Fourier-Galerkin approximation as

Equilibrium preserving spectral method

LN (MN , gN ) +QN (gN , gN ),

fN = MN + gN ,

where MN is the local equilibrium in our approximation space

MN := PNM, gN := PNg, LN (MN , gN ) := PNL(MN , gN ).

It is immediate to see that gN ≡ 0 is an admissible local equilibrium of the
spectral scheme and therefore fN = MN is a local equilibrium state.
It is interesting to relate the steady state preserving method with the usual
spectral method. We have

QN (fN , fN ) = LN (MN , gN ) +QN (gN , gN )︸ ︷︷ ︸
equilibrium preserving scheme

+QN (MN ,MN )︸ ︷︷ ︸
perturbation

,

so that the only difference is due to the non zero term

QN (MN ,MN ) 6= 0.
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Steady state preserving spectral methods Steady state preserving method

Spectral accuracy

It is easy to prove that QN (MN ,MN ) is spectrally close to 0 since we have

Lemma (Filbet, Pareschi, Rey ’14)

||QN (MN ,MN )||2 ≤
C

Nr−2

(
||M ||Hr

p
+ ||Q(MN ,MN )||Hr

p

)
, ∀ r ≥ 2.

Therefore consistency and spectral accuracy follow in a straightforward way
sing the analogous results for the standard spectral methods.

The implementation can be done using the underlying fast method. Simply
by removing QN (MN ,MN ) at each time step in the usual spectral method
we avoid the accumulation of errors and can take advantage of the fact that
fN = MN is the steady state of the numerical scheme.
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Steady state preserving spectral methods Steady state preserving method

A numerical example

Figure: Long time behavior of the L1-error for the space homogeneous equation in the
case of Maxwell molecules in dimension d = 2.
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Steady state preserving spectral methods Steady state preserving method

Final considerations

Compared to DSMC techniques, deterministic methods offer clear
advantages for problems where high accuracy and low noise are
required.

The possibility to compute accurate solutions makes them an
important source of validation for large-scale simulations and
analytical conjectures.

The equilibrium preserving method is fully general and in principle
can be extended to any numerical discretization of PDE
possessing explicit stationary states10.

10L.Pareschi, T.Rey ’15
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