Imperial College London

Module Specification (Curriculum Review)

Basic details					
				Earliest cohort	Latest cohort
UID			Cohorts covered	2022-23	
Long title	Suns, Stars and Pla	anets			
N		50000	L NL - L - A PUL		
New code	PHIS	50006	New short title	Suns, Stars & Plar	iets
Brief description	By studying this mo	dule, students will b	ecome familiar with	the structure and e	volution of the Sun
of module	and other stars. Stu	idents will also learr	about the key phys	sical principles that o	determine the
(approx. 600 chars.)	current state of the	planets in our own s s in other star system	Solar System, and ti ms	hat allow us to deter	ct and begin to
	a a standalana mad	ula/abort course?	N	1	333 characters
Available a			IN		
Statutory details					
,	ECTS	CATS	Non-credit		
Credit value	5	10	Ν	HECOS codes	
FHEQ level	5				
	L				
Allocation of study	Hours				
Lectures	22				
Group teaching	0	Incl. seminars, tuto	rials, problem classes).	
Lab/ practical	0				
Other scheduled	11	Incl. project superv	ision, fieldwork, exteri	nal visits.	
Independent study	92	Incl. wider reading/	practice, follow-up we	ork, completion of ass	essments, revisions.
Placement	0	Incl. work-based lea	arning and study that	occurs overseas.	
Total hours	125	1			
ECTS ratio	25.00				
Project/placement	activity				
Is placement ac	ctivity allowed?	No			
Module delivery					
Delivery mode	Taught/ Campus	Other			
Delivery term		Other	Term 3		
Ownership					
Ownersnih					
Primary department	Physics			1	
				-	

Additional teaching	None			
departments				
Delivery campus	South Kensington			
Collaborative deliv	very			
	Collaborative delivery? N			
External institution	N/A			
External department	N/A			

Associated staff

External campus

N/A

Role	CID	Given name	Surname
Module Leader		Juliet	Pickering

Learning and teaching Module description

Learning outcomes	 On completion of this module you will be able to: Demonstrate familiarity with the stellar structure equations and explain the physical concepts underpinning them Derive scaling relations from the stellar structure equations Discuss how the derived scalings compare to observed relations for main-sequence stars Describe the characteristics of the internal structure as well as the outer layers of the Sun Describe the current state of planets and smaller bodies in our own Solar System, including internal structure, atmospheric structure and surface temperature. Demonstrate an appreciation of the wide range of physics and chemistry that determines the current state of planetary and small body surfaces. Describe the methods used to detect planets around other stars, including the limitations and selection effects inherent in these methods
Module content	 Stellar Structure: stellar structure equations, energy generation and transport; hydrostatic equilibrium; the Schwarzschild convective stability criterion. Scaling laws resulting from the stellar-structure equations as applied to main-sequence stars; comparisons to observed scaling relations; the role of mass in determining stellar characteristics Sun: Internal structure and outer layers (atmosphere); the Sun in context Stars: Life-cycle basics; the Hertzsprung-Russell diagram; Concepts of magnitude, parallax and proper motion in stellar astronomy Planets and smaller bodies in our own Solar System: internal structure, atmospheric structure and surface temperature; prediction of surface temperatures for objects without atmospheres; Kepler's laws of planetary motion; Methods used to detect planets around other stars, including the limitations and selection effects inherent in these methods; Exoplanets; Current state of the search for life elsewhere in the universe

Learning and Teaching Approach	Students will be taught using a combination of lectures, office hours, and directed exercises on theoretical work
Assessment Strategy	A written exam (2h) in term 3 covering all learning outcomes will comprise the summative assessment and will contribute 100% of the module mark. The exam will test competences in any of the listed learning outcomes.
Feedback	General feedback on written examinations for each module is provided in the form of written reports from the examiners for the students.
Reading list	 Self-contained lecture notes are provided to the students, so there is no text book required for this module. For students wishing to explore the topic further, a range of (fully optional) textbooks are listed as suitable sources. These include Principles of Astrophysics, by Charles R. Keeton, Springer The Stars: their structure and evolution, by Roger J. Taylor, CUP, 2nd edition An Introduction to the Sun and Stars, Simon F. Green & Mark H. Jones (eds), CUP Planets & Planetary Systems, by Stephen Eales, Wiley-Blackwell Transiting Exoplanets, by Carole Haswell, CUP Exploring the Solar System, by Peter Bond, Wiley-Blackwell An Introduction to the Solar System, David A. Rothery, Neil McBride & Iain Gilmour (eds), CUP An Introduction to Astrobiology, David A. Rothery, Iain Gilmour & Mark Sephton (eds), CUP

Quality assurance

Office use only

Date of first approval Date of last revision Date of this approval		QA Lead Department staff Date of collection	
Module leader	Juliet Pickering	Date exported	
Module leddel	ouliet rickening	Date imported	
Notes/ comments			

Template version 16/06/2017