Series can be very tricky...

In lecture 2

The difficulties of infinite series are discussed by analysing the strange behaviour of bond summations in ionic crystals....

Ionic Bonding

Consider the energy of an ionic crystal, eg: $\mathrm{Na}^{+} \mathrm{Cl}^{-}, \mathrm{Mg}^{2+} \mathrm{O}^{2-}$

To a good approximation each pair of ions interacts through a;

- short range repulsion
- long range electrostatic
$\sim(1 / \mathrm{r})$

Pair Interaction

Simplify: A 1-dimensional crystal

A line of charges $+q,-q$ with spacing a

What is the energy per ion of this object?

The short range sum is straightforward but the long range electrostatic sum is not...

Easy to write down the series

$\xrightarrow[a]{\longrightarrow}$

The electrostatic energy is...

$$
E=-\frac{2 q^{2}}{4 \pi \varepsilon_{0} a}\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\ldots\right) \text { Joules/ion }
$$

i.e. The Alternating Harmonic Series

$$
S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\cdots
$$

We'll come back to this but first of all consider the Harmonic Series - when all the signs are + .

The Harmonic Series

The convergence of a series is not always immediately apparent from inspection?

The harmonic series "should" converge by the $\mathrm{n}^{\text {th }}$ term test !

$$
S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+
$$

Analysing the Harmonic Series

$$
\begin{aligned}
& S=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+ \\
& +\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}\right) \\
& S=1+\frac{1}{2}+s_{1}+s_{2}+s_{3}+\ldots+s_{n}
\end{aligned}
$$

Is this obvious from the Chemistry ?

$$
E=\frac{2 q^{2}}{4 \pi \varepsilon_{0} a}\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\ldots\right) \text { Joules/ion }
$$

The Harmonic Series corresponds to a chain of atoms of the same charge - obviously unstable...?

Ionic Bonding !

The energy of a chain of ions of alternating charge (q) separation a is;

$$
E=-\frac{2 q^{2}}{4 \pi \varepsilon_{0} a}\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\ldots\right) \quad \text { Joules } / \text { ion }
$$

This is the alternating harmonic series....
So - what is the energy of rocksalt $\mathrm{Na}^{+} \mathrm{Cl}^{-}$?

The Alternating Harmonic Series

$$
E=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\ldots=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}
$$

This series is conditionally convergent in short we can make it converge to any answer we want...
!?

Conditional Convergence

The limit of the alternating harmonic series depends on how we arrange the sum of the terms, so...
We can make it converge to any number - for example 2.0000
Note: There are an infinite number of terms and we can add them in any order - however we decide to do that we will never run out of positive or negative terms.

Alternating Harmonic Series $=2.000$

Strategy:

- Sum just positive terms to get a sum >2
- Subtract a single negative term
-Add more positive terms until > 2
-Subtract a single negative term
-Repeat for ever

And... it must converge to 2 .

Alternating Harmonic Series $=2.000$

$$
\begin{aligned}
1+\frac{1}{3}+\frac{1}{5}+\ldots .+\frac{1}{15} & =2.021800422 \\
-\frac{1}{2} & =1.521800422 \\
+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}+\ldots .+\frac{1}{41} & =2.004063454 \\
-\frac{1}{4} & =1.754063454 \\
+\frac{1}{43}+\frac{1}{45}+\ldots .+\frac{1}{69} & =2.009446048
\end{aligned}
$$

How odd is that?

This may seem very strange.
But..
The analysis is correct.
We have an infinite number of +ve and -ve terms - it doesn't matter that we are using more +ve ones than -ve ones...

The sum, and thus the energy of a rocksalt crystal, converges to any number you want !!

The Coulomb interaction is very long range.

Note: the apparently arbitrary choice of repeat unit (unit cell) generates different electrostatic dipoles

Why?

Dipoles generate fields

Each cell contributes a dipole and the fields grows and grows as you walk along the chain..

The Coulomb interaction is tricky..

For each different choice of cell you get a different dipole and a different long range field - the energy of the chain has a different energy for each...

What is the true energy of the chain?

In nature crystals are very careful to grow without long range fields !

