Series can be very tricky...

In lecture 2

The difficulties of infinite series are discussed by analysing the strange behaviour of bond summations in ionic crystals....

Ionic Bonding

Consider the energy of an ionic crystal, eg: Na^+Cl^- , $Mg^{2+}O^{2-}$

To a good approximation each pair of ions interacts through a;

- short range repulsion $\sim (1/r)^{12}$
- long range electrostatic $\sim (1/r)$

The convergence of a series is not always immediately apparent from inspection ?

The *harmonic series* "should" converge by the nth term test !

$$S = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{4$$

Analysing the Harmonic Series

$$S = 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \left(\frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \frac{1}{13} + \frac{1}{14} + \frac{1}{15} + \frac{1}{16}\right)$$

$$S = 1 + \frac{1}{2} + s_1 + s_2 + s_3 + \dots + s_n$$

And so.... Each of the partial sums, s_n , contains 2^n terms each of which has a smallest term $1/2^{n+1}$. So, each $s_n > 2^n \cdot (1/2^{n+1}) = 1/2$. So,

$$S > 1 + \frac{1}{2} + \dots$$

which, diverges to infinity...

The Alternating Harmonic Series

Conditional Convergence

The limit of the alternating harmonic series depends on how we arrange the sum of the terms, so...

We can make it converge to any number - for example 2.0000

Note: There are an infinite number of terms and we can add them in *any order* – however we decide to do that we will never run out of positive or negative terms.

Alternating Harmonic Series = 2.000

Strategy:

Sum just positive terms to get a sum > 2
Subtract a single negative term
Add more positive terms until > 2
Subtract a single negative term
Repeat for ever

And... it must converge to 2.

The Coulomb interaction is tricky..

For each different choice of cell you get a different dipole and a different long range field – the energy of the chain has a different energy for each...

What is the true energy of the chain?

In nature crystals are very careful to grow without long range fields !