A unit cell model of a Regenerative Hydrogen-Vanadium Fuel Cell

<u>Catalina Pino</u>, Harini Hewa Dewage, Vladimir Yufit, Nigel Brandon Department of Earth Science and Engineering, Imperial College London

Email: c.pino15@imperial.ac.uk

October 2nd, 2017

Content

- Introduction
- Regenerative Hydrogen-Vanadium Fuel Cell (RHVFC)
- Mathematical model
- Experimental tests
- Open circuit potential
- Model calibration and validation
- Conclusions and next steps

To develop a mixed model approach that considers a lumped stack/system and cell continuum models and could better explain how the

phenomena influence the flow battery performance.

Modeling of RFBs

wind/pv

power

station

icharge>0

-##

 VO_2^+/VO^{2+}

tank

pump

Vanadium redox flow battery

load

dc/ac converter

v

RF-cell

VOء

VO²⁺

ion exchange

membrane

electrodes

Vanadium based RFB

- Vanadium / halide
- Vanadium / air

grid

idischarge>0

Anolyte V(II) / V(III)

Hydrogen based RFB

- H_2/Br_2
- *H*₂ / *F*e
- *H*₂ / *Ce*

Advantages

- · Scalability and flexibility
- Independent sizing of power and energy
- High round-trip efficiency (>80%) and depth of discharge
- Long cycle life (>12000)
- Fast response
- Reduced environmental impact

Disadvantages

- Low specific energy density (~30 Wh kg⁻¹)
- Limited operating window (10-40 °C) for vanadium concentration below 2 M.
- Electrode and membrane degradation
- Shunt currents
- High capital cost (\$150-\$1000/kWh)
- Vanadium electrolyte ~40% total cost

pump

 v^{2+}/v^{3+}

tank

Regenerative Hydrogen-Vanadium Fuel Cell (RHVFC)

- Fast hydrogen kinetics
- Absence of cross-mixing
- Precious metal catalyst HOR/HER
- Expertise on PEMFCs

- Untreated carbon paper
- Nafion 117
- GDL, 0.5 mg Pt cm⁻²

NR 212

• SGL 35 BC GDL, 0.48 mg Pt cm⁻²

H. Hewa Dewage et al., Journal of The Electrochemical Society, 2016, 163(1), A5236 (2016); Regis P. Dowd Jr., et al, Journal of The Electrochemical Society, 2017, 164, F564.

Cathode:

Unit cell model for the RHVFC

 $2VO_2^+ + 4H_3O^+ + 2e^- \xrightarrow{\text{discharge}}{\text{charge}} 2VO^{2+} + 6H_2O, \quad E_{ca}^0 = 0.99V$

Hydrogen side

Dissolved water transport

Dusty Gas Model

Evaporation/condensation

Experimental tests

- 1*M* VOSO₄
- 60 mL, 5M H₂SO₄

N°	Test	Current density A m ⁻²	Catholyte flow rate mL min ⁻¹	Hydrogen flow rate mL min ⁻¹	Cu current collector Yes or No
1	OCP	0	100	100	No
2	Charge-discharge	50	100	100	No
3	Charge-discharge	100	100	100	No
4	Charge-discharge	80	100	100	Yes
5	Charge-discharge	400	100	100	Yes
6	Charge-discharge	400	100	50	Yes
7	Charge-discharge	400	150	100	Yes
8	Charge-discharge	600	100	100	Yes

Open Circuit Potential

Nernst Equation (NE)
$$E_{oCP} = E_{cell}^{0} + \frac{RT}{F} \ln \left(\frac{c_{V(V)} c_{H^+,ca}^2 p_{H_2}^{0.5}}{c_{V(IV)} c_{H^+,an}} \right)$$

$$E_{ocp} = E_{cell}^{0} + \frac{RT}{F} \ln \left(\frac{c_{V(V)} c_{H^+,ca}^2 p_{H_2}^{0.5}}{c_{V(IV)} c_{H^+,an}} \frac{c_{H^+,ca}}{c_{H^+,an}} \right)$$

Open Circuit Potential

Nernst Equation (NE)
$$E_{oCP} = E_{cell}^{0} + \frac{RT}{F} \ln \left(\frac{c_{V(V)} c_{H^+,ca}^2 p_{H_2}^{0.5}}{c_{V(IV)} c_{H^+,an}} \right)$$

Complete Nernst Equation (CNE)
$$E_{oCP} = E_{cell}^{0} + \frac{RT}{F} \ln \left(\frac{c_{V(V)}c_{H^+,ca}^2 p_{H_2}^{0.5}}{c_{V(IV)}c_{H^+,an}} \frac{c_{H^+,ca}}{c_{H^+,an}} \right)$$
Donnan potential
across the membrane $E_m = \frac{RT}{F} \ln \left(\frac{c_{H^+,ca}}{c_{H^+,an}} \right)$ Inconsistent with
thermodynamics

Complete Nernst Equation

Open Circuit Potential

Model calibration

Model validation: vary flow rate

Conclusions

- A unit cell model for a RHVFC was introduced and calibrated against experimental data.
- Model validation at different current densities and flow rates.
- A CNE based on thermodynamic principles was proposed and fit to the OCP data, enabling a global activity coefficient to be obtained.

Next steps

Water transport in GDL

- Cross-over of ionic species
- Experimental data for the RHVFC

Imperial College London Acknowledgements

Professor Nigel Brandon

Travel funding:

- Imperial College Trust, ICL
- Old Centralians' Trust, ICL

rgy Futures Laboratory

Electrochemical Science and Engineering Group

Dr Vladimir Yufit.

Dr. Harini Hewa Dewage

Dr. Antonio Bertei

