Imperial College London

Optimising Li-ion Cell Layers Rapid Cell Design For EV Fast Charging

Ian D. Campbell*, Krishnakumar Gopalakrishnan, Dr. Monica Marinescu, Dr. Marcello Torchio, Dr. Gregory J. Offer, Prof. Davide Raimondo

i.campbell15@imperial.ac.uk @lan_Campbell1 & @Imperial_ESE *PhD Candidate

• The optimal (i.e. range-maximising) layer configuration is the minimum number of layers that meets EV acceleration and fast charging targets Initially, we gain a lot of rate capability for little energy density loss since 0 power density per layer decreases faster than cell nominal capacity • At higher layer counts it becomes increasingly expensive, in terms of energy density sacrificed, to accommodate higher powers Efficient designs employ < half the maximum possible number of layers 0

ENERGY & POWER BALANCE

- Conflicting requirements pose a layer optimisation problem
- Desire trading of energy & power in equally-dimensioned cells 0
- Layer reconfiguration trades fraction of active material mass with 0 surface area available for redox reaction
- Empirical determination of optimal layer count is slow, costly & may not provide energy-density maximising result
- We propose a rapid & inexpensive model-based alternative

1 — Define	vehicle	2 <u>Define</u>	<u>criteria</u>
xEV platform	PHEV	Fast charging	Acceleration
Powertrain	🕼 — 🗐 (series)	$T(t) < T_{max}$	$T(t_f) < T_{max}$
Module & cell configuration	8S1P (mod.) 12S1P (cells)	$V(t) < V_{max}$	$V(t_f) > V_{min}$
xEV mass (w/o cells)	1,654 kg (inc. ICE)	$z(t) \ge z^*$ $C^*(t) \le C_*$	$z(t_f) > z_{min}$
Fast charge SOC range	30 - 80 %	$t < t_{max}$	LEARN

LI-PLATING PROTECTED FAST CHARGE

- Specify desired xEV configuration & define performance criteria • Cells undergo simulated vehicle acceleration & fast charging Charge time is minimised with a constant power strategy Design for highest powers & impose an Li concentration limit
- Cell designs exhibit Li-plating protection & max. energy density 0

P2D SIMULATION

- Custom binary search & open-source electrochemical P2D model capable of directly accepting *power* inputs
- Efficiently screen layer configurations, identifying optimal value 0
- Each new layer configuration requires updated electrode 0 thicknesses, active surface area, cell mass and heat capacity Vector of layer State-of-Functions is produced; lowest layer count 0 with a unity SoF is the optimal

Heat capacity

LEARN MORE

Function = 1?

	PHE	V Cha	rging	Powe	er: 50	kW		PHE\	/
oolant temp., T _{sink} (°(6	110 107 105 103 100 99 97 97 96 95 93 92	106 104 102 98 96 95 95 94 93 91 90	104 101 99 98 96 94 93 92 91 90 89	101 99 97 96 94 92 91 90 89 88 88 87	99 97 95 94 92 91 89 88 88 88 88 88 87 86	98 96 94 93 91 90 88 88 88 87 86 85	Coolant temp., T _{sink} (°C) 6 5 6 8 5 0 5 0 5 1 0 <u>5</u>	127 125 124 122 121 119 118 117 115 114	
0	15 Init	20 tial cell	25 tempe	30 erature	35 , T _{init} (38 °C)		15 Ini	it
	חוורי		:	D	11				,
Coolant temp., T _{sink} (°C) 6 5 6 8 8 8 2 0 5 1 1 0 5 6 5 0 8 4 0 5 0 5 1 0 5	PHE 140 139 138 136 135 134 133 133 132 131 131	V Cha 135 134 133 132 131 130 129 128 128 128 127 126	rging 131 130 129 128 127 126 125 125 124 123	Powe 127 126 125 124 124 123 122 121 121 121 120 120	r: 11(124 123 122 121 120 120 119 119 119 118 117 117	122 121 120 120 120 119 118 117 117 117 127 120	Coolant temp., T _{sink} (°C) 6	PHEV 150 149 148 148 147 146 146 146 145 146 144 144	

	PHE	V Cha	rging	Powe	er: 80	kW			
5	127	123	119	116	113	112		25	
10	125	121	118	115	112	110		25	
15	124	120	116	113	111	109			
5 20	122	118	115	112	110	108		2/	
25	121	117	114	111	109	107		24	
30	119	116	113	110	107	106			
35	118	114	111	109	106	105		23	
38	117	114	111	108	106	105			
40	117	113	110	108	105	104			Ĥ
45	115	112	109	10/	104	103	-	22	\triangleleft
49	114	111	108	106	104	103			þ
	15	20	25	30	35	38			cell
	lr	nitial cel	ltempe	rature.	T (°C	C)	-	21	to 0
				,	init '	- /			ed
	ΡΗΕ	V Cha	rging	Powe	r: 135	5 kW		20	ass
			00					20	õ
5	150	144	139	135	132	130		20	e b
5 , 10	150 149	144 143	139 139	135 135	132 131	130 129		20	arge p
5 , 10 , 15	150 149 148	144 143 143	139 139 138	135 135 134	132 131 131	130 129 129		19	Charge p
5 10 15 20	150 149 148 148	144 143 143 142	139 139 138 137	135 135 134 133	132 131 131 130	130 129 129 128		19	Charge p
5 10 15 20 25	150 149 148 148 147	144 143 143 142 141	139 139 138 137 137	135 135 134 133 133	132 131 131 130 129	130 129 129 128 127		19	Charge p
5 10 15 20 25 30	150 149 148 148 147 146	144 143 143 142 141 141	139 139 138 137 137 137 136	135 135 134 133 133 132	132 131 131 130 129 129	130 129 129 128 127 127		19 18	Charge p
5 10 15 20 25 30 35	150 149 148 148 147 146 146	144 143 143 142 141 141 141 140	139 139 138 137 137 137 136 135	135 135 134 133 133 132 132	132 131 131 130 129 129 128	130 129 129 128 127 127 127 126		19 18	Charge p
5 10 15 20 25 30 35 38	150 149 148 148 147 146 146 146 145	144 143 143 142 141 141 141 140 140	139 139 138 137 137 137 136 135 135	135 135 134 133 133 132 132 132 131	132 131 131 130 129 129 129 128 128	130 129 129 128 127 127 127 126 126		- 19 - 18	Charge p
5 10 20 25 30 35 38 40	150 149 148 148 147 146 146 146 145 146	144 143 143 142 141 141 140 140 140 140	139 139 138 137 137 137 136 135 135 135	135 135 134 133 133 132 132 132 131 131	132 131 131 130 129 129 128 128 128	130 129 129 128 127 127 127 126 126 126		19 18 17	Charge p
5 10 25 30 35 38 40 45	150 149 148 147 146 146 145 146 145 146 144	144 143 143 142 141 141 140 140 140 139	139 139 138 137 137 136 135 135 135 135 134	135 135 134 133 133 132 132 132 131 131 131	132 131 131 130 129 129 129 128 128 128 128 128	130 129 129 128 127 127 127 126 126 126 126 127		19 18 17	Charge p
5 10 25 30 35 38 40 45 49	$ \begin{array}{r} 150\\ 149\\ 148\\ 148\\ 147\\ 146\\ 146\\ 145\\ 146\\ 144\\ 144\\ 145\\ \end{array} $	144 143 142 142 141 141 140 140 140 139 139	139 139 138 137 137 137 136 135 135 135 135 134 134	135 134 133 133 132 132 132 131 131 131 131 130	132 131 131 130 129 129 129 128 128 128 128 128 127 127	130 129 129 128 127 127 126 126 126 126 127		19 18 17	Charge p
5 10 25 30 35 38 40 45 49	150 149 148 148 147 146 146 145 146 144 145 145 145	144 143 142 142 141 141 140 140 140 140 139 139 20	139 139 138 137 137 137 136 135 135 135 135 134 134 134	135 134 133 133 132 132 132 131 131 131 131 130 30	132 131 131 130 129 129 129 128 128 128 128 128 127 127 35	130 129 129 128 127 127 126 126 126 126 127		19 18 17 16	Charge p

TAILORED CELL DESIGN MAPS

- Repeat for new ambient & cell temperatures to generate cell 0 design maps precisely tailored to vehicle fast charge targets
- Values in coloured cells are optimal layer configurations
- Map colour is usable capacity; charge added, 30 80 % SOC window
- Black colours indicate unsuitable cell materials & thermal 0 management system for specified temperatures & design targets
- Faster & lower cost than iterative, empirical development 0
- Method can offer xEV range extension over empirical cell design
- Enables common module design for xEV platforms, lowering R&D 0 costs & time to market for automotive OEMs