Nano-composite Nickel Yttria-Stabilised Zirconia Anode

<u>Jingyi Chen¹</u>, Xin Wang¹, Paul Boldrin¹, Chris Starkey², Alan Atkinson¹, Nigel P Brandon¹

1. Imperial College London, United Kingdom

2. University College London, United Kingdom

Outline

- Benefits and Challenges of integration of nanoparticles into SOFC electrode
- Properties of the Composite Nanopowder
- Electrode Fabrication
- Microstructure
- Electrochemical Performance
- Degradation Test

Reactions at the SOFC Anode

Nickel: Electron Conductor YSZ: Oxygen Ion Conductor Pore: Gaseous Transfer

Schematics modified from *Bertei, A. et al. Validation of a physically-based solid oxide fuel cell anode model* combining 3D tomography and impedance spectroscopy. Int. J. Hydrogen Energy **41,** 22381–22393 (2016).

Integrating nano-size features in the electrode

Benefits of nano-structured electrode

- High Catalytic Activity
- Enhance TPBs for anodic reactions

Enhance Electrochemical Performance

Integrating nano-size features in the electrode

Challenges:

Processability

(high surface energy)

• Lifetime

(nickel coarsening)

Nanopowder made in hydrothermal flow system

Weng, X. et al. Highly conductive low nickel content nano-composite dense cermets from nano-powders made via a continuous hydrothermal synthesis route. Solid State Ionics **181**, 827–834 (2010)

NiO-YSZ co-precipitates:

Nickel nitrate hexahydrate, yttria nitrate hexahydrate and zirconyl nitrate hexahydrate were dissolved in de-ionised water and mixed with KOH in the pumped flow, and then brought to a superheated water feed.

TEM image of the YSZ powder in the system (average particle size 5.0 ± 0.8 nm)

Fabrication Route of the Electrode

- Electrochemical impedance
- FIB-SEM

• FIB-SEM

Particle size of the loose agglomerates

BET Surface Area

- Electrochemical impedance
- FIB-SEM

Particle size of the loose agglomerates

Soft Agglomerate of NiO-YSZ nanoparticles

BET Surface Area

BET surface area: $51.3 \pm 0.2 \text{ m}^2/\text{g}$

Surface Area of Micropores ($\leq 2 \text{ nm}$) 22.7 m²/g

External Surface Area: 28.6 m²/g

XRD on the Ni-YSZ electrode

Microstructure – SEM image

Microstructure – EDX mapping

Microstructure – FIB-SEM 3D Reconstruction

Microstructure

Microstructure – Dual Porosity Structure

Small particles and pores to enhance TPB density

Large pores to facilitate diffusion of gas

■ Pore ■ YSZ ■ Ni

Electrochemical Performance

Electrochemical impedance spectra measured at 800 °C in 5% wet hydrogen

Electrochemical Performance

Distributions of Relaxation Time at 800 °C in 5% wet hydrogen

Electrochemical Performance

Distributions of Relaxation Time at 800 °C in 5% wet hydrogen

Degradation Test

Anodic Reaction Resistance

Conclusion

- Fabrication of SOFC fuel electrode using nanopowder made by continuous hydrothermal flow synthesis is achievable.
- Electrode shows fine nanocomposite microstructures for both the nickel and the YSZ phases.
- Electrode shows porosity on two length-scales,100 nm and 1 μm.
- Nano-composite electrode shows promising electrochemical performance
- Electrode stability is encouraging but needs further investigation

Acknowledgement

Engineering and Physical Sciences Research Council

Post-Mortem Analysis

Aging Time	60 min	6000 min
Percolated TPB density (µm ⁻²)	11.1	10.0
tortuosity of Pore	3.03	3.81
tortuosity of Ni	5.54	8.98
tortuosity of YSZ	4.34	2.44

Post-Mortem Analysis – Particle Size Distribution

Transmission Line Model

Post-mortem Analysis – FIB-SEM 3D Reconstruction

