

S - 13

SEISMIC PERFORMANCE OF WEAK-BASE STRONG-COLUMN FRAME SYSTEMS

Marcello S. Valerio Castelo,¹ Christian Málaga-Chuquitaype² and Amit Kanvinde.³

¹Department of Civil and Environmental Engineering, Imperial College London, ²Project Supervisor at Imperial College London and ³Project Supervisor at the University of California at Davis.

PROJECT OBJECTIVES

- 1. Investigate the performance of Weak-Base Strong-Column frames
- 2. Test the versatility of this approach in exposed base connections
- Define the importance of the proper characterisation of true base response with respect to the current modelling assumptions 3.

1. INTRODUCTION

- Current design practice for Steel Moment Resisting Frames (SMRFs): Strong-Base Weak-Column
 - Large scale tests [2] reveal excellent dissipative properties of exposed base

2. <u>CONNECTION STRENGTH LEVELS</u>

Properties	$\mathbf{Fix} \\ \mathbf{\rho} = \infty$	$\mathbf{S1}\\ \boldsymbol{\rho}=1$	$\begin{array}{c} \mathbf{S0.8}\\ \mathbf{\rho}=0.8\end{array}$	$\begin{array}{c} \text{S0.5} \\ \rho = 0.5 \end{array}$	$\begin{array}{c} S0.3\\ \rho=0.3\end{array}$	$\begin{array}{c} \mathbf{Pin}\\ \mathbf{\rho}\approx0 \end{array}$
K _{ext} [kip-in] x10 ⁶	∞	1.38	1.38	1.38	1.38	0.0009
K _{int} [kip-in] x10 ⁶	∞	2.76	2.76	2.76	2.76	0.0009

- connections
 - Appealing approach for seismic design: Weak-Base Strong-Column
- Explore the effect of change in connection strength on structural performance
- Need to characterise connection's response

CALIBRATION OF HYSTERETIC MODELS

- Calibration of Cyclic test data • [2] to ModIMK Pinching Model in OpenSEES
- Implemented in column bases of 4 storey building model
- Important to capture real behaviour of bases and assess the true structural response

M _{yext} [kip-in] x10 ⁴	∞	44.72	35.78	22.36	13.42	0.027
M _{yint} [kip-in] x10 ⁴	∞	57.83	46.27	28.92	17.35	0.027

- Strength levels defined by ratio ρ between M_{vx} and M_{vS1}
- Fixed and Pinned included for comparison between real response and modelling assumptions
- S1, S0.8, S0.5 and S0.3 modelled by hysteretic spring (calibrated to cyclic tests [2]) in OpenSEES

PERFORMANCE LEVELS & 4 STOREY FRAME

5. MULTIPLE STRIPE ANALYSIS

32 Ground Motions scaled to 25 intensity levels

4 storey frame with hysteretic bases

6. <u>CONCLUSIONS</u>

- Connections with 80% of strength show comparable performance to connections designed to current codes (S1 strength level)
- Fixed assumption overestimates response and could compromise serviceability and safety while Pinned is overconservative
- Ductility increase in building if connection designed to yield
- Soft story like collapse for weak bases approach
- Weak base design leads to economic savings (smaller and cheaper base connections)

Probabilistic estimates from MSA

REFERENCES

[1] Ghobarah, A., 2001. Performance-based design in earthquake engineering: state of development. *Engineering Structures*, 23(8), pp.878–884. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0141029601000360.

[2] Gomez, I.R., Deierlein, G.G. & Kanvinde, A., 2010. Exposed column base connections subjected to axial compression and flexure.

[3] Zareian, F. & Kanvinde, A., 2013. Effect of column-base flexibility on the seismic response and safety of steel moment-resisting frames. Earthquake Spectra, 29(4), pp.1537–1559.