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Abstract

A study of open charm production in deep inelastic diffractive scattering at HERA, using

43.3 pb−1 of data taken with the ZEUS detector, is presented. Diffractive interactions in

which the virtual photon dissociates into a hadronic system X and the proton remains

intact or dissociates into a low mass state, Y , are identified by the presence of a large

rapidity gap in the final state. Charm production is identified by the reconstruction of

D∗±(2010) mesons in the decay channel D∗+ → (D0 → K−π+)π+ +(c.c.).

The accessible kinematic region for this measurement is 6 < Q2 < 400 GeV2, 0.02 < y <

0.7, pT (D∗±) > 1.5 GeV, |η(D∗±)| < 1.5, 0.001 < xIP < 0.016 and β < 0.8, in which the

cross section for diffractive D∗± production is measured to be 245± 39(stat)+66
−60(syst) pb.

The ratio of diffractive to total D∗± production in this region is also measured and found

to be 6.3 ± 1.1(stat)+1.6
−1.4(syst) %, which is consistent with the fraction of diffractively-

produced events in inclusive deep inelastic scattering.

Differential D∗± cross sections are also measured as a function of Q2, W , xIP , pT (D∗±) and

η(D∗±) and are compared to expectations from different phenomenological models. The

data clearly show that diffractive heavy flavour production is not suppressed relative to

light flavours and favour a substantial hard gluon component in the diffractive exchange.

Limited statistics and significant theoretical uncertainties prevent further discrimination

between different theoretical models.
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Chapter 1

Introduction

HERA, the world’s first electron-proton collider, has opened up a new regime for the

study of proton structure, by allowing proton constituents with momentum fraction x as

low as ∼ 10−5 to be resolved. In opening up the low x region, it has become possible

to study hadronic interactions which were previously only understood in the context of

phenomenological models (so-called “soft” processes), within the same experiment as those

which can be explained using perturbative Quantum Chromodynamics (pQCD) — the

“hard” processes.

This capability is particularly important in the area of diffractive physics. Diffractive

events are distinguished by the presence of a large phase-space gap in which no particles

are produced. Prior to the advent of HERA, such interactions were investigated at both

fixed target experiments and pp colliders, where in the latter case they are governed

predominantly by non-perturbative physics. However at HERA, diffractive interactions

in which a highly virtual photon is exchanged can also be studied. The photon virtuality

provides a hard scale and hence perturbative QCD is applicable.

One particularly important process within diffraction is the production of open charm,

which provides an alternative hard scale to the boson virtuality, Q2, in the form of the

large charm quark mass. Also, as we shall see, charm production is highly sensitive to the

role of gluons in both diffractive and non-diffractive interactions. Owing to these facts, the

production of open charm in diffraction provides a key discriminator between the different

theoretical models available to describe this process, given the very different roles which

gluons play in the different theoretical predictions.
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This thesis presents an analysis of diffractive open charm production in deep inelastic

scattering, performed on the combined 1995-97 ZEUS dataset, which corresponds to an

integrated luminosity of 43.3 pb−1. The charm is tagged by reconstructing D∗±(2010)

mesons which have decayed in the D∗+ → D0π+
s → (K−π+)π+

s (+c.c.) decay channel.

This first chapter introduces deep inelastic scattering, the theoretical background and

the role of open charm production in understanding proton structure. Chapter two then

gives a review of diffraction, as well as a detailed summary of the different theoretical

models currently available. The role of open charm production in diffractive physics is

also discussed.

Chapter three describes HERA and the ZEUS detector, emphasising the components im-

portant for this analysis. Chapter four then describes how the data are selected online

and reconstructed offline. Chapter five describes one particular aspect of the offline re-

construction, namely the understanding of energy loss from the scattered positron and

how it may be corrected. Chapters six and seven then describe the selection of diffractive

D∗± candidates in DIS events and present measurements of the D∗± cross sections and

the fraction of DIS D∗± events which are diffractively produced. Finally, chapter eight

provides a brief summary and some thoughts for the future of this particular measurement

using the ZEUS detector at HERA.

1.1 Deep Inelastic Scattering

Deep inelastic lepton nucleon scattering is experimentally investigated through the scatter-

ing of a high energy lepton off a hadronic target or beam. Deep implies that the exchanged

boson is highly virtual, while inelastic indicates that the initial state hadron disintegrates

into a hadronic system Y . At HERA such DIS processes are observed and can be divided

into two basic classes according to the charge of the exchanged boson, as shown in figure

1.1.

DIS processes in which a γ(∗) or Z0 is exchanged are known as neutral current (NC) in-

teractions, while those mediated by W± exchange are referred to as charged current (CC)

interactions. In the latter case, the incoming charged lepton changes into the correspond-

ing neutrino in the final state. This thesis is concerned primarily with NC interactions

mediated by a virtual photon. Interactions in which an almost real photon is exchanged
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Figure 1.1: Diagrams for DIS via a neutral current interaction (left) and a charged current

interaction (right).

are also observed. These are known as photoproduction processes.

It is customary to describe DIS processes in terms of the three Lorentz-invariant kinematic

variables Q2, x and y. These are defined as

Q2 = −q2 = −(k − k′)2 > 0

x =
Q2

2P · q 0 < x < 1

y =
P · q
P · k 0 < y < 1 (1.1)

Neglecting the particle masses, Q2, x and y are related by Q2 = xys, where s = (P + k)2

is the centre of mass energy squared.

Q2 is the four-momentum transfer squared between lepton and proton and ranges from

0 to s. It represents the virtuality of the exchanged boson, and in photoproduction is

close to zero, while in DIS, Q2 is significantly larger than zero. When the photon is real

it can only be transversely polarised, while virtual photons can be both transversely and

longitudinally polarised. For Q2 ≪ M2
Z0, neutral current interactions are dominated by

virtual photon exchange. The virtuality of the exchanged boson is inversely proportional

to the transverse distance which can be probed within the proton, indicating that as Q2

increases, finer and finer structure can be discerned.
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y is the fractional energy loss of the lepton in the proton rest frame, while x is the Bjorken

scaling variable [1, 2]. In the Quark Parton Model (see section 1.2.1) x can be interpreted

as the fraction of the proton’s momentum carried by the struck quark. Both x and y lie

in the range 0 to 1.

The invariant mass of the hadronic final state (indicated by Y in figure 1.1) is known as

W , which is simply the photon-proton centre of mass energy. It is related to the other

kinematic variables via

W 2 = (P + q)2 ≈ Q2(1 − x)

x

x≪1≈ Q2

x
(1.2)

which arises from conservation of momentum at the hadronic vertex. Once again the

particle masses have been neglected.

1.2 Proton Structure Functions

The neutral current ep interaction shown in figure 1.1 can be viewed in terms of a lepton-

photon interaction followed by a photon-proton interaction. The former can be calculated

precisely in Quantum Electrodynamics (QED). However, the latter is not so well under-

stood, due to our lack of exact knowledge of proton structure. It can be described through

the proton structure functions, F1, F2 and F3. The differential e±p cross sections in x and

Q2 can be written in terms of these structure functions as

d2σNC(e±p)

dxdQ2
=

4πα2

xQ4

[

y2

2
2xF1(x,Q

2) + (1 − y)F2(x,Q
2) ∓ (y − y2

2
)xF3(x,Q

2)

]

(1.3)

xF3 only becomes significant at highQ2 (Q2 ∼M2
Z) when Z0 exchange becomes important.

Thus, in the context of this thesis it may safely be neglected as only the low Q2 region

(Q2 < 400 GeV2) is considered here. Taking this into account, and using the relation

FL = F2 − 2xF1, where FL is the longitudinal structure function, we can therefore write

d2σNC(e±p)

dxdQ2
=

2πα2

xQ4
[(1 + (1 − y)2)F2(x,Q

2) − y2FL] (1.4)

Fixed target experiments performed at SLAC in the late 1960s indicated that the proton

had a partonic structure [3] and also found that the structure functions were more or less

independent of Q2 but were dependent on x [1], as had already been predicted by Bjorken

[2] (the so-called “Bjorken scaling”).
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Later the quarks and gluons of QCD were associated with the partons which had been

previously used to explain DIS processes [4], indicating lepton-quark scattering as the way

to understand ep scattering.

1.2.1 The Quark Parton Model

The quark parton model (QPM) was developed by Feynman [4] in order to explain the

scaling predicted by Bjorken and experimentally measured at SLAC. The QPM treats the

proton as a group of point-like, non-interacting, spin-1/2 constituents (partons). The ep

cross section can therefore be written as the incoherent sum of the elastic lepton-parton

interactions (see figure 1.2). Scaling is clearly a property of such a model as a point-like

particle will look the same regardless of the scale at which the proton is probed.

Figure 1.2: Lepton-parton scattering in the Quark Parton Model, where the struck parton

carries away a fraction ǫ of the proton’s momentum.

In the infinite proton momentum frame (the frame in which the photon four-momentum

is entirely timelike), all parton transverse momenta are negligible and the partons appear

to move and interact very slowly compared to the time taken for the lepton-proton in-

teraction. Thus, they can be considered as non-interacting free particles. The Bjorken

scaling variable, x, takes on a very simple physical interpretation within the context of

this model, as can be seen by considering momentum conservation in the photon-parton
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interaction, with the parton carrying a fraction ǫ of the proton’s momentum:

(ǫP + q)2 = ǫ2P2 + q2 + 2ǫP · q = m2
i (1.5)

where mi is the mass of parton i in the proton. Neglecting the parton and proton masses

(ǫ2P2 ≈ ǫ2M2 = 0) equation 1.5 reduces to

q2 + 2ǫP · q = 0 ⇒ ǫ =
Q2

2P · q ≡ x (1.6)

Thus in the QPM x can be interpreted as the fraction of the proton’s momentum carried

by the struck parton.

Within the QPM, the structure functions can be shown to be [4]

F2(x) =
∑

i

e2i xfi(x) (1.7)

F1(x) =
1

2

∑

i

e2i fi(x)

where ei are the parton charges and fi(x) are the parton density functions which can

be interpreted simply as the probability of finding parton i with a momentum fraction

between x and x+ dx in the proton, subject to the constraint

∑

i

∫

xfi(x)dx = 1 (1.8)

which is known as the momentum sum rule. F2 and F1 are then connected by the Callan-

Gross relation which states that

2xF1(x) = F2(x) (1.9)

and is a direct consequence of the assumption that partons are massless, spin-1/2, non-

interacting particles and implies that FL = 0 (see equation 1.4).

Through measurements made at SLAC and in νN [3] scattering, these partons were as-

sociated with the three valence quarks of the proton, which at that time were believed to

be the only constituents of the proton, giving this model its name.

1.2.2 Quantum Chromodynamics

When the momentum sum rule (equation 1.8) was first measured experimentally [3], it

was found that the momentum of the quarks could only account for about 50 % of the



1.3. THE STRUCTURE FUNCTIONS IN QCD 29

proton’s momentum. The remaining 50 % was attributed to neutral partons which have

since been associated with the gluons of Quantum Chromodynamics (QCD). Gluons are

the gauge bosons of the strong interaction which acts on particles that carry colour charge,

ie. quarks. There are eight gluons due to the fact that they themselves are coloured. This

means that the gluons can couple to each other — one of the major differences between

QCD and QED.

The coupling constant of QCD, αs, depends on Q2 and is found to be large at small Q2

(large distances) and small at large Q2 (small distances). At leading order, αs is inversely

proportional to lnQ2, indicating that as Q2 becomes large αs vanishes logarithmically.

This phenomenon is known as asymptotic freedom.

The consequences of the “running” of αs are that when Q2 is large, αs is small enough

to allow the use of perturbation theory. However, as αs becomes large, perturbation

theory breaks down and a more phenomenological approach to QCD must be taken. It is

important to note thatQ2 is not the only hard scale available. Examples of the alternatives

include large quark masses in heavy flavour production and high transverse momentum in

jet production.

1.3 The Structure Functions in QCD

The quark parton model has to be significantly modified in order to accommodate the

presence of gluons in the proton. It has already been shown that gluons cause the mo-

mentum sum rule to be broken, and the fact that the proton can no longer be considered

to be dominated by massless, spin-1/2 partons results in the violation of the Callan-Gross

relation, implying FL 6= 0.

The presence of gluons is also the source of scaling violations (the structure functions’

weak dependence on Q2). This is because the struck quark could have radiated a gluon,

which would cause it to lose momentum, and hence to be probed at a lower value of x.

Alternatively, the quark could have originated from a gluon and hence have a lower value

of x than the parent gluon. It is important to note that the presence of gluons in the

proton can only be detected through processes such as these, as the exchanged photon

only couples to quarks.
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In short, the parton being probed could be the result of strong interactions within the

proton rather than one of the “original” constituents (the so-called “valence” quarks).

The higher the virtuality of the probe, the finer the substructure it can resolve; thus as

Q2 increases, so the number of quark-antiquark pairs and gluons in the proton “sea” will

also increase. This leads to a softening of the valence quark x distribution with increasing

Q2. In terms of F2, this indicates that at low x, F2 will rise with Q2, while at high x,

F2 will fall with increasing Q2. All the expected effects of gluons in the proton have been

observed at HERA (see figure 1.3 [5]).

In order to describe the evolution of the quark (qi(x,Q2), where i indicates the quark

flavour under consideration) and gluon (g(x,Q2)) distributions with Q2, the Dokshitzer-

Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations [6, 7] can be used. These equations

contain terms which depend on the quark and gluon distributions and the Altarelli-Parisi

splitting functions, Pjk(
x
y ), which are illustrated in figure 1.4. These functions represent

the probability that parton k with momentum fraction y emitted parton j with momentum

fraction x in the interval Q2 → Q2 + d lnQ2. The splitting functions shown in figure 1.4

are the O(αs) contributions. The DGLAP equations are used to evolve the parton distri-

butions with Q2 from a starting scale Q2
0, where the initial form of the parton distributions

must be specified.

The calculation of the amplitude for inelastic ep scattering is then performed by summing

the contributions from ladder diagrams (see figure 1.5 for an example), where parton

evolution is described as a series of gluon and/or quark emissions. These diagrams lead

to terms in lnQ2 and ln(1/x) in the perturbation series.

In the DGLAP formalism the dominant terms which must be summed are those of the form

αs(Q
2) lnQ2 (the so-called “leading logs”). This is known as the Leading Log Approxima-

tion (LLA). The ln(1/x) terms are neglected. In figure 1.5, the longitudinal momentum

fractions will be ordered x1 > x2 > . . .> xn and the transverse momenta are strongly

ordered ie. k2
t1 ≪ k2

t2 . . .≪ k2
tn . The numbering scheme is indicated in the figure.

The case where lnQ2 terms dominate and ln(1/x) terms are neglected is valid in the

large x, Q2 region, that is, αs(Q
2) lnQ2 ∼ 1 and αs(Q

2) ln(1/x) ≪ 1. However, when x

becomes smaller and we enter the moderate Q2 regime, it would seem reasonable to assume

that terms in ln(1/x) should also become important. This means that the cross sections

would be dominated by terms of the form αs(Q
2) lnQ2 ln(1/x), ie. αs(Q

2) lnQ2 ≪ 1 and
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Figure 1.3: The structure function F2(x,Q
2) versus Q2 at various fixed values of Bjorken

x. Results from both HERA and fixed target experiments are shown. The evidence for

scaling violations at low x are clear from the HERA data, while there is no significant Q2

dependence in the data from the fixed target experiments at higher x, ie. Bjorken scaling

is observed.
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Figure 1.4: The Altarelli-Parisi splitting functions Pjk(x/y) (for further explanation see

text).2.8 The BFKL Equation. 17

�P
e(k)

x1; kt1x2; kt2x3; kt3xn; ktnxn�1; ktn�1x e(k0)�(q)

Figure 2.8: A ladder diagram, illustrating the parton evolution.2.8 The BFKL Equation.The steep behaviour of the gluon density and hence F2 at low x has led to further de-velopment in QCD. In the moderate-x region the DLLA approach already sums leadingln 1x terms if accompanied by leading lnQ2. However, at low x it is also appropriateto sum diagrams which are leading in ln 1x independent of lnQ2. This calculation hasbeen done by Balitsky, Fadin, Kuraev and Lipatov [21], resulting in the BFKL equationwhich is named after them. Summing (�s � ln 1x)n terms involves the evolution of a gluondistribution which is not integrated over kt and the gluon ladder does not have to beordered in kt anymore (rather it involves a `random walk in kt'). The unintegratedgluon distribution f(x; k2t ) is related to the previously used g(x;Q2) viaxg(x;Q2) = Z Q20 dk2tk2t f(x; k2t ) : (2.24)The BFKL equationdf(x; k2t )d ln( 1x) = Z dk02t K(k2t ; k02t ) � f(x; k2t ) = � � f (2.25)describes the evolution of the unintegrated gluon density f(x; k2t ) in ln 1x . Its solutionis dominated by the largest eigenvalue � of the kernel K. To leading order in ln 1x and�xed �s this solution is the steep power law behaviourxg(x;Q2) � f(Q2) � x�� with � = 3�s� 4 ln 2 � 0:5

Figure 1.5: An example of a ladder diagram in QCD, showing parton evolution in the

proton.
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αs(Q
2) ln(1/x) ≪ 1, but αs(Q

2) lnQ2 ln(1/x) ∼ 1. In such a case the rungs of the gluon

ladder in figure 1.5 would also become strongly ordered in x, as well as in k2
t .

At very low x, it has been suggested that the ln(1/x) terms should dominate and the lnQ2

terms should be neglected, that is, αs(Q
2) lnQ2 ≪ 1 and αs(Q

2) ln(1/x) ∼ 1. This means

that there is no longer a strong ordering in k2
t , but that the strong ordering in x remains.

This approach has been used in the development of the Balitsky-Fadin-Kuraev-Lipatov

(BFKL) evolution equation [9]. The gluon ladders of the BFKL formalism are sometimes

referred to as the BFKL Pomeron (see the next chapter for further discussion).

So far, the DGLAP equations have been found to give good agreement over the full

kinematic range in which F2 has been measured.

1.4 Factorisation

In order to use QCD to describe DIS processes, it must be possible to “embed” the

hard lepton-quark scattering (the hard scale being given by Q2) into the observed ep

interaction. Given that extended objects, such as hadrons, are composite particles which

must be treated non-perturbatively, it is assumed that the interaction can be separated

into the hard lepton-quark scatter and the non-perturbative hadronisation process. The

former takes place over a very short timescale and can be calculated in perturbative QCD,

while the latter occurs over a relatively long timescale. It is assumed that due to the

different timescales, the hadronisation process cannot influence the hard scatter. This

separation of the interaction according to timescale is known as factorisation [10].

The perturbative phase of the interaction is clearly independent of the incoming hadron

beam type, which is not the case for the hadronisation process. The latter, however, does

not depend on the actual interaction. This means that the proton parton distribution

functions extracted at HERA should be equally applicable to proton-proton collisions at,

for example, the Tevatron or the LHC.

1.5 Charm Production at HERA

There are several possible mechanisms which could account for charm production in DIS at

HERA. The two most significant possibilities are Boson Gluon Fusion (BGF) and flavour
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excitation, both of which are illustrated in figure 1.6. It is also possible for charm to

be produced in beauty decays or during fragmentation, but the cross sections for these

mechanisms are thought to be small [11].

Figure 1.6: The leading order diagrams for boson gluon fusion (left) and flavour excitation

(right).

It has also been proposed that there could be intrinsic charm in the proton, ie. a non-

perturbative charm component [12]. However, this is only expected to become significant

at much higher values of x than are currently reached by HERA charm data.

Measurements of charm production in DIS were first made by the European Muon Col-

laboration (EMC), from which a study of the production mechanism was made. The data

were found to be well described by boson gluon fusion, but not so well by flavour excitation

[13]. From this same data sample intrinsic charm was excluded down to the level of 0.6 %

at 90 % confidence level in the kinematic region defined by Q2 > 1 GeV2 and 60 < ν < 220

GeV. ν = P · q/Mp and is defined as the energy lost by the positron and transferred to the

hadronic system in the proton rest frame. It is related to x and Q2 via x = Q2/(2Mpν).

The production mechanism has also been investigated by both the ZEUS and H1 collabo-

rations using D∗±(2010) and D0 mesons [11, 14]. This is done by studying the fraction of

the γ∗p centre of mass energy carried by the D meson using xD =
2|p∗

D
|

W , where p∗D is the

momentum of the D meson in the γ∗p frame.

In the γ∗p frame, the cc̄ pair produced in boson gluon fusion recoils against the proton
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remnant, resulting in a falling xD distribution which peaks at very low values. In contrast,

only one charm quark recoils against the proton remnant in flavour excitation, leading to

an xD distribution peaked at larger values. Such a measurement can be extracted from D

meson data as the meson generally carries a high fraction on the charm quark momentum

[15].

The xD distribution measured from H1 data [14] is shown in figure 1.7. The data, which are

produced predominantly near the kinematic threshold (W 2 ≥ 4m2
c), clearly favour boson

gluon fusion as the dominant mechanism. However, more recent measurements made using

ZEUS data [16] are not as well described by BGF alone, but are found to have a softer xD

distribution, the opposite to the expected effect of a flavour excitation contribution. The

explanation for this effect is not clear, but could be a result of the hadronisation model

used. However, the agreement is sufficiently good for the BGF process to be considered

as a reasonable approximation.

Figure 1.7: The xD distribution extracted from 1994 H1 data. The black dots are fromD∗±

data, while the open dots are from D0 data. The shaded histogram indicates the expected

xD distribution from the BGF process, while the dotted line indicates that expected from

flavour excitation. The solid curve represents measurements of charm production in νN

scattering made by the CDHS and E531 experiments [14]. The H1 data clearly favour the

BGF mechanism while the neutrino scattering results favour flavour excitation.

Given the clear evidence that charm production in DIS is driven principally by boson

gluon fusion, the measurement of charm production via the tagging of D mesons should
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Figure 1.8: The gluon distribution extracted from H1 charm data as a function of x.

Results from both DIS and photoproduction data are shown and compared to the gluon

density extracted using QCD fits to measurements of F2(x,Q
2) (grey band). The predic-

tion of the CTEQ parton distribution function parametrisation [23] is also shown (solid

line).

provide a good experimental handle on the gluon density of the proton. Measurements

of the charm contribution to the proton structure function, F cc̄
2 , have already been made,

as shown in figure 1.9 [16]. Both collaborations have used the available charm data to

make an extraction of the gluon density using different techniques [17]. The gluon density

extracted from H1 data is shown in figure 1.8.

There are, however, several issues which must be resolved in order to improve the accuracy

of the theoretical treatment of heavy flavours. One such issue is the uncertainty on the

charm mass which is currently restricted to the range 1.1 — 1.4 GeV [18]. Previously, the

uncertainty on the charm mass was 1.2 — 1.6 GeV, as indicated in figure 1.9. Another

key issue which must be addressed is the treatment of mass in the evolution equations,

which is the subject of the next section.

1.5.1 Charm Evolution

There are two basic methods of treating charm in the evolution equations based on the

factorisation equation [23]

σp→X(s,Q2) =
∑

i

qi(x, µ2) ⊗ σ̂i→X(ŝ, Q2, µ2) (1.10)

where i is the sum over all the different flavours which can actively participate in the

interaction at the energy scale Q2. σ̂ is the cross section for the hard scatter which is
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Figure 1.9: The structure function F cc̄
2 as a function of x at various fixed values of Q2.

The latest ZEUS and H1 results are compared to a NLO QCD calculation which uses GRV

as the input gluon density (see section 1.7 for more information). The width of the band

reflects a variation in charm mass from 1.2 to 1.6 GeV.
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convoluted with the parton distribution functions qi(x, µ2), where µ is the factorisation

scale. Charm can either be included in the sum because it can be considered as an active

participant if the energy scale is high enough or it can be excluded from the initial state

and dealt with separately.

The former is known as a variable flavour number (VFN) scheme and has been used in

several different global analyses (see section 1.7) with the simplification that above the

threshold for charm production Q2 = µ2 (µc = O(mc)), q
c
p(x, µ

2) can be generated through

g → cc̄ in the standard massless NLO DGLAP equations. This version is known as a zero

mass VFN scheme and was developed because the massive coefficient functions required

to account for the non-zero charm mass were not calculated until recently [19]. qc
p(x, µ

2) is

set to zero below threshold. At leading order the charm contribution to F2 in this scheme

is

F cc̄
2 =

8

9
xqc

p(x,Q
2) (1.11)

The zero mass VFN scheme works well away from the threshold region ie. for Q2 ≫ m2
c .

However, it is clear that charm can be produced via boson gluon fusion for W 2 ≥ 4m2
c ,

which can be well below the Q2 threshold at low x.

Thus an alternative approach to charm evolution was developed by treating it as a heavy

quark and not as an active initial state parton, thus doing away with the idea of the

charmed parton distribution. This approach is known as a fixed flavour number (FFN)

scheme. In the case where the number of flavours is set to n = 3, charm is produced

exclusively via boson gluon fusion and the leading order charm contribution to F2 is given

by

F cc̄
2 =

∫

dzCg(z,Q
2, µ2)

x

z
g(
x

z
, µ2) (1.12)

where the effect of the non-zero charm mass is taken into account through the use of the

massive coefficient function Cg. This works well in the threshold region, but is expected

to break down in the asymptotic region due to the large log contributions of the form

αs(µ
2) ln(Q2

m2
c
)n [19]. In the zero mass VFN scheme these are the logs which are resummed

by the DGLAP equations, indicating the potential validity of treating charm as a massless

parton in this region.

Clearly a consistent treatment of charm production from threshold through to the asymp-

totic region is required in the evolution schemes. These schemes use the principals of the
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FFN scheme near threshold and switch to a VFN scheme in the asymptotic region. Several

different implementations of such generalised VFN schemes exist, which differ in the way

the contributions from the two different schemes are matched in the Q2 threshold region.

Aivazis, Collins, Olness and Tung (ACOT) [20] use the recently calculated massive coef-

ficient functions in the standard NLO DGLAP equations, while Martin, Roberts, Ryskin

and Stirling (MRRS) [21] have calculated massive splitting functions instead. Further

studies have also been made by Roberts and Thorne [22]. The different implementations

have been found to give results which lie within 5 % of each other.

As an alternative approach, Lai and Tung [23] have tried a FFN scheme where n = 4,

based on the premise that charm is a “borderline” case for heavy quark treatment. The

results of this approach are very similar to those achieved by the VFN schemes.

1.5.2 Charm Hadronisation

Charm production at HERA can be studied through the production of the J/ψ meson (or

other cc̄ bound states) or through open charmed meson production. It is the investigation

of the latter which is of primary interest in this thesis, in particular the production of

D∗±(2010) mesons which have decayed through the

D∗+ → (D0 → K−π+)π+
s + c.c. (1.13)

channel. This channel is useful as the D∗ → D0 decay is near threshold, producing a

low energy pion (the so-called “slow” pion, indicated by the subscript). The kinematic

constraints on this stage of the decay allow the mass difference ∆M = M(D∗) −M(D0)

to be measured more accurately than the masses of the individual D mesons. This means

that the measurement of ∆M yields a prominent signal in a region of phase space where

the combinatorial background is heavily suppressed [24].

However, in order to make such an investigation, it is necessary to know how charm quarks

fragment into D mesons. There are several models available to describe the fragmentation

process [25], the most popular of which was proposed by Peterson et al. [26]. In this model,

quantum-mechanical methods are used to determine the amplitude for the fragmentation

of a heavy quark Q into a hadron H = Qq̄ and a light quark q. This is found to be

inversely proportional to the energy transferred during the fragmentation process, leading
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to a fragmentation function of the form

DH
Q (z) =

N

z[1 − (1/z) − εQ/(1 − z)]2
(1.14)

where z = x
y (as defined in the DGLAP equations), εQ ∼ m2

q/m
2
Q and N is the normali-

sation which is fixed by

∑

∫

dzDH
Q (z) = 1 (1.15)

where the sum runs over all hadrons containing Q. Fits performed by the OPAL Col-

laboration on D∗± data yield εc = 0.035 ± 0.007 ± 0.006 [25]. More recently they

have determined the probability of a charm quark fragmenting to a D∗±, Pc, to be

0.222 ± 0.014(stat) ± 0.014(syst) ± 0.004 [27]. The final error is that due to externally

measured branching ratios. This is in good agreement with the measurement of Pc from

lower energy data [25].

1.6 Parametrisations of the Parton Distribution Functions

In section 1.2 the parton distribution functions (pdfs) and their role in the proton struc-

ture functions was described. Given that it is not possible at present to determine the pdfs

theoretically, it is important to use structure function measurements to obtain parametri-

sations of the pdfs. Several different groups have performed global analyses of structure

function data, the most widely used of which are described here. The procedure for ob-

taining the parametrisations requires the assumption of a particular form for the pdfs at

some starting scale Q2
0. These starting values are then evolved using the NLO DGLAP

equations. The parameters involved in the pdfs are extracted from fits to data from a wide

range of experiments, such as the fixed target electron data from SLAC and the muon data

from EMC, BCDMS and NMC. Neutrino data from experiments such as CCFR and the

latest HERA results are also used. The predictions for F2 and F cc̄
2 from the three different

global analyses discussed in the following sections are illustrated in figure 1.10.

Martin, Roberts and Stirling (MRS)

MRS parametrize the pdfs, fi(X,Q
2
0) as [8, 28]

xfi(x,Q
2
0) = Aix

−λi(1 − x)ηi(1 + εi
√
x+ γix) (1.16)
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where Ai, λi, ηi and γi are free parameters in the fit to the data (although limits are

set on some of the A parameters through momentum sum rules etc.). They originally

chose Q2
0 = 4 GeV2, but more recently moved to Q2

0 = 1 GeV2 [28]. They previously

treated charm as a massless parton with the threshold at µ2
c = 2.7 GeV2 (as obtained

from EMC F c
2 measurements). However, in their latest pdf parametrisations [29] they

have implemented the generalised variable flavour number scheme proposed by Roberts

and Thorne [22, 21].

CTEQ Collaboration

The pdf parametrisations determined by the CTEQ Collaboration are very similar to

those used by MRS [8, 19], although they originally used Q2
0 = 2.56 GeV2. The other

main difference is the form of the gluon density at Q2
0, which is given by

xg(x,Q2
0) = A0x

A1(1 − x)A2(1 +A3x
A4) (1.17)

They also treated charm as a massless parton. However, more recently [23] they have

lowered Q2
0 to 1 GeV2 and have implemented the ACOT variable flavour number scheme

[20] to describe the charm contribution.

Glück, Reya and Vogt (GRV)

GRV originally assumed that at a very low starting scale (Q2
0 = 0.34 GeV2) the proton

consisted of only valence quark distributions, the evolution of which would generate the

sea quark and gluon distributions [30]. However, this did not agree well with data, so they

introduced valence-like gluon and sea quark densities of the form

xg(x,Q2
0) = Axα(1 − x)β

xq̄(x,Q2
0) = A′xα′

(1 − x)β
′

(1.18)

where α, α′ > 0 and are (along with β, β′, A and A′) free parameters of the fit. However,

in contrast to MRS and CTEQ, they treat charm as a heavy quark in their parametrisation

[31].
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Figure 1.10: The predictions for F2 and F cc̄
2 from three different parametrisations (see

text) as a function of x for three different values of Q2.

1.7 Summary

In this chapter the concepts and variables of deep inelastic lepton nucleon scattering have

been introduced. The development of the theoretical treatment of proton substructure

has also been discussed, including the parametrisations of the parton distributions within

the proton and the evolution equations needed to describe the experimentally-observed

Q2 dependence. The theoretical description of charm production in DIS has also been

discussed given its important role in the measurement of the gluon distribution of the

proton and the understanding of the flavour decomposition of F2.

The contents of this chapter provides important background to the discussion of diffractive

interactions in the next chapter.



Chapter 2

Diffraction and Open Charm

Production

When the early deep inelastic scattering (DIS) data taken at HERA were first analysed, it

was found that approximately 10 % of the events in the sample contained a large rapidity

gap ie. a region at large rapidity1 within the detector in which no activity was observed.

In an ordinary DIS event, such rapidity gaps are suppressed by an exponential factor which

depends on the width of the rapidity gap, as the colour field between the struck quark

and the proton remnant after the hard scatter will cause particles to be produced in the

gap during hadronisation. However, it is proposed that a colourless exchange occurs in

rapidity gap events, preventing the formation of a colour field between the hadronic final

state from the hard scatter and the proton remnant. Hence no particles will be produced

to fill the gap during hadronisation.

The mediator of this colourless exchange is assumed to have the quantum numbers of

the vacuum and is generically referred to as the Pomeron (IP ). Similar large rapidity

gap events are observed in hadron-hadron scattering and are known as diffractive events.

The name derives from comparing the scattering of a beam of hadrons off a target with

diffraction in optics. In the case of a broad beam of plane polarised light hitting a small

1The rapidity of a particle with energy E and momentum p (pz being the momentum component along

the beam direction) is defined by Y= 1/2 ln( E+pz

E−pz

). It can be reduced to pseudorapidity, η = − ln(tan θ/2)

in the high energy limit where masses can be neglected. θ is the polar angle measured with respect to the

proton beam direction.
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piece of polaroid, parallels can be drawn between elastic, inelastic and diffractive scattering

and the different effects of the polaroid on the light beam. The optical diffraction process

which takes place effectively creates a new state with a different polarisation to that of

the original beam. In the particle physics interpretation, it is said that a new state has

been “diffracted into existence” [32].

The three different types of event in which a colourless exchange can occur are illustrated

in figure 2.1. The single diffractive events are of principal interest here; at HERA they are

known as photon dissociative events, as the photon dissociates into a hadronic system X

while the proton remains intact.

Figure 2.1: The three different types of interaction in which a colourless exchange can

occur: (a) elastic scattering, (b) single diffractive and (c) double diffractive.

The idea of Pomeron exchange was first suggested in order to describe t-channel2 hadron-

hadron interactions as part of Regge theory. This will be discussed in the next section

as it still plays a major role in the description of diffractive physics within the context of

QCD. The different QCD models and their consequences for open charm production will

also be discussed.

2t is the Mandelstam variable, given by t = (P − P ′)2. In hadron-hadron scattering P and P ′ are the

four-momenta of one of the hadrons before and after the interaction. In diffractive DIS they refer to the

four-momenta of the incoming and outgoing proton.
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2.1 Regge Theory and the Soft Pomeron

Regge theory was developed during the late 1960s as a precursor to QCD [33] in order

to explain the soft t-channel exchange process in hadron-hadron collisions. Regge theory

describes this process by colourless particle exchange (known as poles) which can be any

of an infinite series of integer-spin, colourless particles ranging from the relatively light ρ

vector meson through to the heavier a2 and beyond. The heavier the particle the shorter

the range of the force. This series of particles was found to lie in a straight line in the

spin (α) — mass squared (M2 = t) plane by Chew and Frautschi [34] as shown in figure

2.2. The line is referred to as a Regge trajectory.

Figure 2.2: The spin versus t plot made by Chew and Frautschi. The line indicates the fit

that they performed, which was found to be α = 0.55 + 0.86t.

In order to calculate the amplitude for a colourless exchange, the contributions from all

possible exchanges must be summed. Although the only physically possible states are

those with integer spin, the entire trajectory is required to calculate the amplitude. This

is done by treating spin as a continuous complex variable. Chew and Frautschi observed

that the Regge trajectories can be described in just such a way by α(t) = α0 + α′t. This

can then be used to determine the scattering amplitude, A, which is a function of both s

and t. For s→ ∞, A is given by

A(s, t) ∼ β(t)sα(t) (2.1)
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where β(t) accounts for the coupling of the trajectory to the external particles. The

differential elastic cross section for s→ ∞ is therefore given by

dσ

dt
∝ (

s

s0
)2α(t)−2 (2.2)

where s0 ≈ 1 GeV2 is the hadronic mass scale. Using the optical theorem [32], the total

cross section, σTOT , can be related to the forward (t = 0) elastic cross section from which

it can be shown that

σTOT ∝ (
s

s0
)α(0)−1 (2.3)

However, the value of α(0) measured by Chew and Frautschi did not account for the

experimental data, in which the total cross section was found to rise slowly with
√
s. It

was suggested that a trajectory with α(0) ≥ 1 would describe the slow increase of the

total cross section.

Theorems were then put forward by Pomeranchuk [35] which showed that if the exchange

was charged, the total cross section would vanish asymptotically, while Foldy and Peierls

[36] showed that if the total cross section did not fall with increasing s, the process must

be dominated by the exchange of an object carrying the vacuum quantum numbers3. The

trajectory which would fulfil these requirements was suggested by Gribov [37] and was

named the Pomeron.

Donnachie and Landshoff took these ideas and fitted a wide range of total cross section

data with a function of the form

σTOT = XsαIP (0)−1 + Y sαIR(0)−1 (2.4)

The first term is the contribution from pomeron exchange and the second is the contri-

bution from so-called “Reggeon” exchange — the trajectory originally observed by Chew

and Frautschi. Some of the fits performed by Donnachie and Landshoff are shown in figure

2.3 and are summarised in [38]. They found the pomeron intercept to be 1.0808 in all the

fits they made. The slope α′
IP

was extracted from dσ/dt data [38] and found to have a

value of 0.25.

Just as the Regge trajectory observed by Chew and Frautschi has physically observable

poles, it would seem reasonable to imagine that the pomeron trajectory should have them

3Zero isospin and even under the charge conjugation operation.
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Figure 1

Figure 2.3: Fits performed by Donnachie and Landshoff to pp, pp̄ and π±p data [38]. All

the fits clearly indicate the pomeron intercept to be αIP (0) = 1.0808.

too. A glueball candidate has been observed by the WA91 collaboration [39] with α = 2

and a mass of 1926 ± 12 MeV, making it possibly the first observed pole of the pomeron

trajectory.

After the advent of QCD, the pomeron of Regge theory became known as the “soft”

pomeron due to its success in describing predominantly non-perturbative processes. How-

ever, as will become apparent in the next section, this soft pomeron is insufficient to

describe interactions involving a hard scale, indicating that a QCD-inspired hard or per-

turbative pomeron is required.

2.2 Regge Theory at HERA

When viewed in the proton rest frame, deep inelastic scattering can be interpreted as a two

stage, ie. factorisable, process in which the virtual photon fluctuates into a hadronic system

which then scatters off the stationary proton [40]. This interpretation is an important

component of many of the different theoretical models available to describe diffraction

and will be discussed further in section 2.3. It also indicates that DIS can be considered

as a hadron-hadron interaction to which Regge theory can be applied. Donnachie and

Landshoff found that the σγp
TOT data from fixed target experiments and HERA exhibited

the expected Regge behaviour, as shown in figure 2.4 [38].
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Figure 38.23: Total and elastic cross sections for �p and total hadronic cross sections for d, p, and  collisions as a functionof laboratory beam momentum and the total center-of-mass energy. Corresponding computer-readable data �les may be found athttp://pdg.lbl.gov/xsect/contents.html (Courtesy of the COMPAS group, IHEP, Protvino, Russia, April 1998.)Figure 2.4: The Donnachie-Landshoff fit to γp data [38, 18]. The measurements of the total

cross section at HERA are shown at
√
s ≃ 200 GeV, where

√
s is in this case equivalent

to W . The fixed target measurements which were used in the original fits are also shown

at low
√
s.

Given that Regge theory describes the s-dependence of σγp
TOT , it was expected that it could

also describe the W -dependence of σγp
TOT at HERA, through

σγp
TOT ∝W 2αIP (0)−2 (2.5)

This was found to be the case [41]. However, given that Regge theory is valid provided

s ≫ |t| or equivalently s ≫ Q2 (which corresponds to the low x region), it was expected

that Regge theory should also be able to reproduce the low x, Q2 behaviour of F2(x,Q
2),

given that

4π2αem

Q2
F2(x,Q

2) ≈ σγ∗p
TOT (W 2, Q2) (2.6)

in the Regge limit. However, it was found that αIP (0) = 1.0808 simply could not reproduce

the steep rise of F2(x,Q
2) at low x. As was discussed in chapter 1, this rise can be

accounted for within QCD by the presence of gluons in the proton. It was found, however,

that increasing αIP (0) to about 1.5 would reproduce the rise, leading to the suggestion

that this “hard” pomeron intercept could be linked specifically to the steep rise predicted

by the BFKL equations. Consequently this “hard” pomeron is referred to by some as the

BFKL pomeron [42].
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Similar effects are observed in theW dependence of vector meson production cross sections.

The photoproduction cross sections for light vector mesons (ρ, ω and φ) all exhibit a soft

W dependence, that is, σ ∝W 0.16 from equation 2.5. However, as soon as a hard scale is

introduced, such as Q2 in the DIS production of ρ mesons [43] or the large charm mass

in photoproduction of J/ψ mesons [44], a hard W dependence is observed, ie. σ ∝ W 0.8,

indicating that αIP (0) must be significantly larger than 1.0808.

It is important to stress that the pomeron is not necessarily a real particle and that its

exact nature is not known. Clearly interactions which exhibit the characteristics of a

colourless exchange and also involve a hard scale are important tools for discerning the

nature of the pomeron within the framework of perturbative QCD.

The determination of the internal structure of the proton discussed in chapter 1 clearly

establishes inclusive DIS as a probe of the quark parton distribution functions, the hard

scale being provided by Q2. Equally, charm production provides a good experimental

handle on the gluon density — here the hard scale comes from the large charm mass, as

well as from Q2.

Given that diffractive interactions at HERA exhibit the characteristics of a colourless

exchange, it seems reasonable to assume that they are caused by pomeron exchange and

that measurements of diffractive DIS and diffractive charm production are therefore key

processes through which the precise nature of the pomeron can be probed.

The models available to describe hard diffractive scattering and their consequences for

open charm production are covered in the remaining sections of this chapter.

2.3 Models of hard diffractive scattering at HERA

Many different models are available to describe hard diffractive processes and they can be

broadly divided into three categories. The first two treat the pomeron as an object which

is either a non-perturbative system whose roots are in Regge theory or as a perturbative

two-gluon exchange mechanism. The third does not assume the existence of the pomeron,

but attempts to explain diffraction through soft interactions in the colour field of the

proton.

Before these models are discussed in detail, the variables used to describe the diffractive
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Figure 2.5: A generic diffractive interaction at HERA in which the proton remains intact

and the photon dissociates into a hadronic system X.

process (in addition to x, Q2 and W ) must be defined. Figure 2.5 shows a generic pho-

ton dissociative diffractive interaction where the hadronic system into which the photon

dissociates is referred to as X and has an invariant mass of MX and the proton remains

intact scattering through a small angle, implying that t = (P − P ′)2 is small. ∆η is the

size of the rapidity gap between the hadronic system X and the scattered proton.

Two variables are used to describe the pomeron itself: xIP , given by

xIP =
(P − P ′) · q

P · q =
M2

X +Q2 − t

W 2 +Q2 −M2
P

(2.7)

which is the fraction of the proton’s momentum carried by the pomeron, and β, given by

β =
Q2

2(P − P ′) · q =
Q2

M2
X +Q2 − t

(2.8)

which is the fraction of the pomeron’s momentum carried by the struck parton in the

pomeron. Given that t is assumed to be small and neglecting the proton mass, Mp, these

variables reduce to

xIP =
M2

X +Q2

W 2 +Q2
(2.9)
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and

β =
Q2

M2
X +Q2

. (2.10)

β and xIP are then simply related to x via β = x/xIP in this approximation.

Clearly the definitions for xIP and β given here are inspired by the Regge theory approach

to diffraction. These variables have different interpretations in the other available models,

but have been implemented in such a way as to make them directly comparable to each

other.

Using these variables, the diffractive DIS cross section can be written in the form

dσD

dxIPdtdxdQ2
=

4πα2

xQ4
[(1 − y +

y2

2
)FD

2 (x,Q2, xIP , t) −
y2

2
FD

L (x,Q2, xIP , t)] (2.11)

in analogy with the DIS cross section given in the previous chapter (equation 1.4).

2.3.1 The Non-perturbative Factorisable Pomeron Model

This is a model of diffractive exchange, first proposed by Ingelman and Schlein [45], in

which the pomeron is treated as an extended object with partonic structure. Studies of jet

production in diffractive pp̄ scattering made by the UA8 collaboration [46] indicated that

the pomeron was not only partonic, but that the data favoured a hard partonic structure,

that is, the parton distributions in the pomeron were of the form 6β(1 − β). Ingelman

and Schlein also suggested (along with Donnachie and Landshoff [47]) that the diffractive

structure function could be factorised into the emission of the pomeron and the hard

scatter involving one of the partons in the pomeron, implying that the structure function,

FD
2 , can be written as

FD
2 (x,Q2, xIP , t) = f(xIP , t)F

IP
2 (β,Q2, t) (2.12)

where f(xIP , t) can be interpreted as the probability for the proton to emit a pomeron at a

particular value of xIP and t. This is clearly a non-perturbative process and must therefore

be deduced from data. Given the assumption of factorisation, the form and parameters of

f(xIP , t) used successfully by Donnachie and Landshoff are assumed to be applicable here.

The Donnachie-Landshoff form of f(xIP , t) is given by [38]

f(xIP , t) =
9b2

4π2
[F1(t)]

2x
1−2α(t)
IP (2.13)
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where b ≈ 1.8 GeV−1 is the pomeron coupling strength and α(t) is the pomeron trajectory

discussed in section 2.1. F1(t) is the Dirac form factor of the proton which has been

measured to high accuracy in low energy ep scattering [48]. Other parametrisations of

f(xIP , t) also exist, such as that by Streng [49], which is given by

f(xIP , t) =
β2(0)

16π
x

1−2αIP (t)
IP e−b0|t| (2.14)

where β2(0) = 58.74 GeV2. Ingelman and Bruni also suggested a form for f(xIP , t) which

is discussed in [50].

F IP
2 (β,Q2, t) in equation 2.12 is the pomeron structure function which can be treated much

like F2(x,Q
2) of the proton, ie. one can assume initial forms for the parton distributions

and evolve them using the DGLAP equations.

Ingelman and Schlein assumed that the pomeron consisted entirely of gluons and proposed

two different possibilities: a hard gluon distribution

βg(β) = 6β(1 − β) (2.15)

or a soft gluon distribution

βg(β) = 6(1 − β)5 (2.16)

The latter is similar in form to the proton gluon density, but the shape of the former was

favoured by the UA8 data [46]. Neither distribution could reproduce the normalisation of

the UA8 results.

Gehrmann and Stirling [51] developed the Ingelman-Schlein model into two distinct pos-

sibilities. In the first one, they assume the pomeron consists of hard gluon and quark

distributions, but with the requirement that the momentum of the pomeron is carried

predominantly by gluons, ie. fg ≫ fq, where fg, fq are the momentum fractions of the

gluons and quarks respectively.

In the second model, originally proposed by Kniehl, Kohrs and Kramer [52] to describe

diffractive jet production, a direct pointlike coupling to quarks is allowed in addition to the

resolved component described in the first model. This leads to a significant enhancement in

the cross section at high β compared to the first model. Gehrmann and Stirling introduced

this second model in an attempt to account for the fact that the Ingelman-Schlein model

did not reproduce the normalisation of the UA8 jet data. The only alternative solution
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was to introduce a process-dependent normalisation factor, which in turn would imply

that factorisation did not hold.

Early ZEUS measurements of the diffractive structure function and diffractive photopro-

duction of jets [53] were interpreted within the context of the Ingelman-Schlein model

with a pomeron consisting only of hard quark and gluon distributions. It was found that

the fraction of the pomeron’s momentum carried by hard partons,
∑

IP
, lay in the range

0.4 <
∑

IP
< 1.6 and that the fraction of these hard partons which were gluons, fg, lay in

the range 0.3 < fg < 0.8. The relatively wide ranges measured reflect the statistical and

systematic errors from both sets of measurements, as well as the theoretical uncertainties

involved. These results indicate that the pomeron probed at ZEUS is made up predomi-

nantly of hard partons, a large fraction of which are gluons. More recent H1 results on the

QCD fitting of F
D(3)
2 [54] also found that a substantial hard gluon contribution is required

to reproduce their results.

Similar results were also found by Alvero, Collins, Terron and Whitmore (ACTW) [55]

who performed fits to a range of results from both ZEUS and H1. They then attempted to

predict cross sections for diffractive jet and weak boson production at the Tevatron. Their

predictions substantially over-estimated the results produced by CDF, possibly indicating

the breakdown of factorisation. Further evidence for this breakdown was presented by the

CDF Collaboration, who extracted values of
∑

IP
and fg using their results on diffractive jet

production and diffractiveW± boson production [56, 57]. They measured
∑

IP
= 0.18±0.04

and fg to be 0.7± 0.2. While there is clearly good agreement in the value of fg, the ZEUS

measurement of
∑

IP
lies substantially above the pp̄ results. If it is assumed that the

momentum sum rule holds, then the fact that the CDF value of
∑

IP
deviates significantly

from unity implies a different pomeron flux normalisation to that observed by ZEUS. If

factorisation holds, such a mismatch should not exist. It has been proven theoretically

that factorisation holds for diffractive deep inelastic scattering [58]. However, in hadron-

hadron interactions, diagrams have been found where factorisation is broken, giving a

possible explanation for the differences between HERA and Tevatron data.

Despite the apparent breaking of factorisation observed in pp̄ interactions, this type of

model has been found to describe a wide range of HERA results, including the early mea-

surements of diffractive open charm production made by the ZEUS and H1 Collaborations

[59, 60].



54 CHAPTER 2. DIFFRACTION AND OPEN CHARM PRODUCTION

2.3.2 Perturbative QCD Pomeron Models

The simplest description of the diffractive exchange in perturbative QCD is by the ex-

change of two t-channel gluons in a colour singlet state, originally proposed by Low and

Nussinov [61] (see figure 2.6). This leads to a diffractive structure function which is pro-

portional to the square of the proton gluon density.

Figure 2.6: The simplest leading order interpretation of the perturbative two-gluon ex-

change model. There are three other diagrams which contribute at this order.

As already briefly mentioned in section 2.2, one of the key elements of these models (as

well as those in the next section) is the fluctuation of the virtual photon into a hadronic

system, which at leading order is a qq̄ pair. In the proton rest frame the fluctuation occurs

within a distance lc = 1/2Mpx of the proton. At low x, lc can be as large as 1000 fm, which

implies that DIS can be interpreted as the scattering of a qq̄ pair off the proton target in

this frame. The transverse size of this pair when it reaches the proton is ρ2 ≈ 1/k2
T , where

kT is the relative transverse momentum of the qq̄ pair.

At low x, the virtual photon tends to fluctuate into a configuration where its momentum

is split asymmetrically between the two quarks, resulting in a large transverse separation.

Confinement places an upper bound on this separation, referred to as the confinement

radius, Rc. The original aligned jet model based on the Quark-Parton model [40] assumes

that this is the only possible configuration for the qq̄ pair, resulting in a transverse cross
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section which varies as 1/Q2. This then gives a form for the proton structure function,

F2 in non-diffractive DIS which is independent of Q2. There is also a contribution to the

interaction cross section at low x from the more symmetric configurations, which results

in a small transverse separation. This contribution is small compared to that from the

asymmetric configurations.

Nikolaev and Zakharov [62] view the diffractive interaction as the exchange of two non-

interacting and apparently uncorrelated gluons which couple to the qq̄ pair from the pho-

ton, as shown in figure 2.6. They predict that the interaction cross section is as described

above, that is, dominated by asymmetric configurations, but with a small contribution

from more symmetric configurations. This can be seen from the interaction cross section,

which is given by

σ(x, ρ) =
4παs

3

∫

d2k

k4
F(x,k)(1 − eik·ρ) (2.17)

where k is the transverse momentum of the exchanged gluons and F(x,k) is the uninte-

grated gluon density. Performing the integration for ρ2 < R2
c , the interaction cross section

becomes

σ(ρ) ∝ ρ2 (2.18)

This behaviour, along with the small absolute size of σ(ρ) is known as colour transparency

[63], resulting from the fact that the quarks screen each other when ρ is small. One of the

consequences of colour transparency is the suppression of initial and final state interactions.

Nikolaev and Zakharov also predict that for relatively large transverse separations

σ(ρ) ∝ R2
c (2.19)

indicating the saturation of the cross section at the confinement limit. They also predict

that ρ ∼ 1/mq, where mq is the mass of the quark produced in the photon fluctuation,

implying that light flavours are produced through large size configurations, while heavy

flavours are produced entirely through colour transparency. Nikolaev and Zakharov state

that the presence of colour transparency leads to factorisation breaking.

The higher order process γ∗ → qq̄g was also considered by Nikolaev and Zakharov, but

it was concluded that this process is essentially driven by the leading order γ∗ → qq̄

process, resulting in similar cross section behaviour to that expected from leading order

calculations.
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Levin, Ryskin, Martin and Teubner (LMRT) [64] have developed a similar model within the

context of charm production, based on the exchange of a gluon ladder. This was considered

originally by Ryskin alone [65]. Despite the differences between LMRT and Nikolaev and

Zakharov, LMRT derive very similar formulae for the transverse and longitudinal cross

sections for the leading order γ∗ → qq̄ process. Higher order corrections are then also

considered, but in much more detail than by Nikolaev and Zakharov. First, real gluon

emission corrections are evaluated, examples of which are shown in figure 2.7.

Figure 2.7: Two examples of higher order real gluon corrections. On the left, the case

where the gluon is softer than either of the quarks is shown. On the right, one of the

quarks is the softest parton.

Only real gluon emission configurations where the transverse momenta of the partons are

strongly ordered are considered, as the necessary formulae only exist for such configura-

tions. This is, however, expected to give a good estimate for the purpose of quantifying

these corrections.

The configuration where the gluon transverse momentum is smaller than either of the

quark transverse momenta gives a 1/M2
X behaviour for M2

X ≫ Q2,m2. When one of the

quarks has the smallest transverse momentum the behaviour is found to be 1/M4
X . When

combined with the leading order cross section, it is found that at low M2
X the γ∗ → qq̄

process dominates, but that at larger M2
X , the γ∗ → qq̄g process noticeably enhances the

cross section.

Virtual gluon corrections are also considered, examples of which are shown in figure 2.8.

The full O(αs) calculations for such corrections do not exist for diffractive processes, but

they have been investigated for the Drell-Yan process, qq̄ → γ∗ [66]. In this case it was

found that virtual loop corrections can enhance cross sections involving this process by a

factor of at least two.
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Figure 2.8: Two examples of higher order virtual gluon corrections, whose contribution

to the diffractive cross section is estimated in the LMRT model. The dotted lines are the

virtual gluon loops.

The corrections shown in figure 2.8 are those which provide an enhancement of the cross

section of the form σqq̄ = σqq̄
0 exp(αsCFπ), where σqq̄

0 is the leading order cross section and

CF is a colour factor. The other possible virtual loop corrections do not cause cross section

enhancements. Similar effects are found for the higher order γ∗ → qq̄g process from virtual

gluon emissions. The exponential enhancement factor is estimated to lie in the range 2.7

- 4.0 and is applicable over the full kinematic region. It is also found that performing the

integration explicitly over the exchanged gluon transverse momentum enhances the cross

section by a factor of two compared to using the leading log approximation. It should

also be noted that factorisation is predicted to hold for all the higher order processes as

well as at leading order and that the MRS(A′) gluon density is used to make numerical

predictions.

Ryskin and Solano [67, 65] have implemented a very similar model based on the same

equations as were used by LMRT, but using the leading log approximation. GRV is used

to describe the proton gluon density and a simpler version of the higher order corrections

is implemented.

Similar calculations have been made by Bartels et al. [68], Bialas and Peschanski [69]

and Gotsman, Levin and Maor [70], all based on the same equations as the Nikolaev and

Zakharov model.

An attempt to account for the soft pomeron phenomena using QCD is made by Diehl

[71], based on the Landshoff-Nachtmann model [72], in which the pomeron is treated as

the exchange of two non-perturbative gluons. The calculations yield significantly different
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forms for the cross sections compared to the perturbative gluon models, but result in

very similar shapes for the spectra of the different observables. The principal difference

observed is in the normalisation compared to the perturbative gluon models, which will

typically be lower. This is due to the difference in the energy dependencies implemented

in the perturbative and non-perturbative cases.

Comparisons of such models with experimental results from HERA indicate that both the

Nikolaev-Zakharov model and the Ryskin and Solano Monte Carlo provide a reasonable

description of the data. However, the first observations of diffractive charm production

by both ZEUS and H1 are at too high a level to be reasonably described by the original

Nikolaev and Zakharov model. A more recent implementation, however, provides a more

reasonable charm contribution, as will be discussed in section 2.4.

2.3.3 Soft Colour Interaction Models

In the soft colour interaction (SCI) models diffractive interactions are not considered as

being mediated by a colourless object, but instead as the consequences of the propagation

of the qq̄ pair in the colour field of the proton are investigated.

Edin, Ingelman and Rathsman [73] base their model on the boson gluon fusion (BGF) pro-

cess which generates a substantial part of the total cross section at low x. Conventionally,

the colour structure formed during the hard scatter passes directly to the hadronisation

stage without any alteration. However, Edin et al. suggest that soft interactions may

occur as the qq̄ system produced in the hard scatter propagates through the colour field of

the proton. Such interactions would not alter the four-momenta of the qq̄ pair, but could

change the colour topology prior to hadronisation. Thus the qq̄ pair could emerge as a

colour singlet state, causing rapidity gaps to occur.

Buchmüller and Hebecker developed a similar model [74] also based on the BGF process.

It is assumed that the qq̄ pair is produced in a colour octet state, which then evolves into

a parton cluster as it propagates through the colour field of the proton, where it’s colour is

changed randomly through soft interactions. The probability of producing a colour singlet

state in this manner is approximately 1/9.

More recently, Buchmüller, Hebecker and McDermott [75] have developed a semi-classical

approach to diffraction in which the proton (at low x) is treated as a classical colour field
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localised within a radius 1/ΛQCD. In the proton rest frame, the qq̄ pair produced by

photon dissociation then scatters off this colour field. If the qq̄ pair is in a colour singlet

state after the scatter, then a large rapidity gap is produced. As with the two-gluon

exchange models, it is found that the asymmetric configurations of the qq̄ pair dominate

and that heavy flavour production is suppressed at leading order.

However, Buchmüller et al. also consider the higher order process γ∗ → qq̄g. It is found

that only the configurations where both the quark and the antiquark have high transverse

momenta and the gluon is soft can enhance the cross section. This is because the two high

transverse momentum partons are considered to be sufficiently close together to be treated

as one. Hence when the gluon is soft, an asymmetric configuration results regardless of

the flavour of the qq̄ pair. The case where either the quark or antiquark is soft will give

similar results to the leading order γ∗ → qq̄ process. It is important to note that a qq̄g

state can only be produced at relatively large MX implying (as was found in the LMRT

model) that this higher order process only enhances the cross section in that region.

As with the two-gluon exchange models, the diffractive structure function is dependent

on the proton gluon density. Factorisation is also predicted to hold for the same reasons

cited in the LMRT model.

2.4 Charm Production in Diffractive Scattering

It is well known that non-diffractive charm production is regarded as a good experimental

handle on the gluon density of the proton, as was discussed in section 2.2. Given this fact

it is clear that not only should charm production in diffraction provide a good method of

determining the gluon density of the pomeron, it should also provide a valuable probe of

the nature of the diffractive exchange.

Clearly, if hard QCD dominates in diffractive processes, it would be expected that the

fraction of diffractive interactions which contain charm, R(charm) should be given by

R(charm) ≈ e2c
∑

q e
2
q

= 0.4 (2.20)

where q indicates the sum over the quark flavours up to and including charm. Clearly, this

value can only be achieved above the threshold for cc̄ production, that is, Q2 > 4m2
c . In the

factorisable pomeron models, charm is produced by boson gluon fusion involving a gluon
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from the pomeron. Given the high gluon fraction already measured within the context

of these models [53, 54, 56, 57, 46], a large fraction of diffractively produced charm is

predicted. In contrast, the leading order perturbative two-gluon exchange models predict

the suppression of charm production, although it is clear that higher order corrections

could have a substantial impact on charm production in these models.

A comparison of the different models and their predictions for R(charm) was performed

in [76]. Figure 2.9 is taken from this study and shows the β and Q2 dependencies of

R(charm) at low xIP . The first crucial feature of these plots to note is the effect of the

charm mass. The hadronic system X will contain two charm quarks, setting a lower limit

on MX of 2mc. This feeds through to β, setting an upper limit, βmax, given by

βmax =
Q2

Q2 + 4m2
c

(2.21)

This feature is clearly demonstrated in figure 2.9.

The first model shown in figure 2.9 is that proposed by Nikolaev and Zakharov (labelled

“NZ” in the figure). In their original publication [62], a 1 % charm contribution was

predicted. However, more recently, they have proposed a larger charm contribution [77],

but only at very low xIP . This is because very low xIP implies very low Bjorken x, where the

gluon density becomes large, cancelling out the effects of colour transparency and hence

the suppression of charm production. A charm contribution of roughly 10 % at xIP = 0.005

is predicted, as indicated in the figure. The β and Q2 dependencies are predicted to be

flat in this model, the only departure being caused by the β cut-off.

The next models listed on the plots are those proposed by Gehrmann and Stirling based on

the Ingelman-Schlein model. The first, labelled GS(I), is the model in which the pomeron

is treated like the proton with the equivalent of the momentum sum rule given in equation

1.8 imposed. The Q2 and β dependencies are those expected from the DGLAP evolution

equations. The second model, labelled GS(II), includes a contribution from direct coupling

to quarks, leading to an enhancement in the cross section at high β. This is clear when

the predictions from the two models are compared.

The next prediction shown in the figure is that made by Diehl, based on the Landshoff-

Nachtmann model [78]. As was discussed in the previous section, the shapes of the spectra

from this model are very similar to those from the Nikolaev-Zakharov model, although due

to the difference in normalisation R(charm) is predicted to be smaller for non-perturbative
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Figure 2.9: The ratio of diffractively produced charm at xIP = 0.005 as a function of Q2

at fixed β and β at fixed Q2. Various different models are compared, the details of which

are given in the text.



62 CHAPTER 2. DIFFRACTION AND OPEN CHARM PRODUCTION

gluon exchange. Figure 2.9 clearly shows that this model (labelled “LND”) predicts a small

charm contribution compared to the perturbative gluon models.

The last two models in figure 2.9 are the Monte Carlo simulation by Ryskin and Solano

(labelled “RS”) and the LMRT model, both of which are based on the Ryskin model [65].

The leading order cross sections predicted by LMRT applicable in all but the β cut-off

region, are given by

σL ∼ 2 < m2
T > Q2

(Q2 +M2
X)3

(2.22)

σT ∼ M4
X

(Q2 +M2
X)3

where < m2
T >= m2

c+ < k2
T >. < k2

T > is the average quark transverse momentum and is

of the order of m2
c . These cross sections, when combined, give the steep rise of R(charm)

with increasing β. The sharp drop at high β is due to the β cut-off. The rise at low β is

caused by the contribution from the higher order real gluon corrections. A comparison of

the Nikolaev and Zakharov and LMRT predictions clearly shows the enhancement which

is the result of including the virtual gluon corrections.

The differences between LMRT and RS are caused by the different implementation of the

higher order corrections and the choice of gluon density parametrisation.

Although they are not shown in figure 2.9, other predictions have been made for charm

production. For example, Buchmüller, Hebecker and McDermott [79] find that the leading

order process γ∗ → cc̄ is suppressed, resulting in the higher order γ∗ → cc̄g process

becoming the dominant charm production mechanism. It is also found that this higher

order process dominates in the diffractive production of light quarks, implying that the

ratio of charm in diffraction should be similar to the ratio of charm production in non-

diffractive DIS. At x = 10−3 and Q2 = 36 GeV2, they predict R(charm) ≈ 0.2. This is

similar to the non-diffractive measurement of F cc̄
2 /F2 made by both ZEUS [16] and H1

[80].

Predictions for charm production have also been made by Alvero, Collins and Whitmore

[81] based on the fits made in [55]. They do not make predictions for R(charm), but do

find that the factorisable pomeron model describes well the early diffractive open charm

measurements from ZEUS [82] and H1 [83], providing a substantial hard gluon contribution

is included. Models without a gluon contribution significantly undershoot the data.
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More recent results on diffractive open charm production from ZEUS [59], have been

compared to the Alvero, Collins and Whitmore results as well as a simpler hard gluonic

factorisable pomeron. The predictions from Buchmüller, Hebecker and McDermott are

also included in the comparison. All three predictions are compatible with the data.

However, it is not possible to distinguish between the three due to the limited statistics of

the data. No comparison was made to any two-gluon exchange models. However, the level

of diffractive open charm production observed so far is clearly too large to be accounted

for by the original prediction by Nikolaev and Zakharov. Further comparisons to data, as

well as higher statistics, are definitely required.

2.5 Summary

In this chapter the background to modern diffractive theory has been described and the

three main approaches to the theoretical modelling of diffraction within the context of

QCD have been discussed in detail. The main expectations of these different approaches

have been illustrated with examples from a range of the more popular models.

The models currently available to describe diffractive interactions can be divided broadly

into three categories: The first is the factorisable non-perturbative pomeron model, in

which the pomeron is treated as an extended object with a partonic structure whose

evolution with β and Q2 can be described by the DGLAP equations. The process can be

factorised into the non-perturbative emission of the pomeron by the proton and the hard

scatter of the virtual boson with one of the partons in the pomeron. Charm production

proceeds via boson gluon fusion with one of the gluons in the pomeron, resulting in an

unsuppressed charm production rate. The second category are the perturbative QCD

pomeron models, in which the diffractive exchange is described by the t-channel exchange

of two gluons or a gluon ladder in a colour singlet state, resulting in a cross section which

is proportional to the square of the proton gluon density. All calculations are performed in

the proton rest frame in which the critical parameter in the calculation of the interaction

cross section is the transverse separation, ρ, of the qq̄ pair into which the photon fluctuates

in the leading order case. It is found that ρ ∼ 1/mq, where mq is the mass of the quark

produced, indicating that heavy flavours are produced with a small transverse separation.

Such configurations are suppressed as a result of colour transparency. However, it has

been found that higher order real and virtual gluon corrections play an important role in
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cancelling out the suppression.

The third and final category is the soft colour interaction model, in which the hadronic

system produced by photon fluctuation undergoes soft interactions in the proton colour

field. In approximately 1/9 of all events, the colour structure of the hadronic system

is altered to produce a colour singlet state, causing a rapidity gap. Once again heavy

flavours are suppressed at leading order, but that the suppression is cancelled by higher

order corrections.

The importance of charm production in diffraction has also been discussed. Its importance

from an experimental point of view arises from its sensitivity to the role of gluons in the

diffractive exchange. Charm production is clearly also an effective discriminator between

the different theoretical models. From the theoretical point of view, it is a valuable process

given the hard scale provided by the large charm mass, which indicates the validity of using

perturbative QCD.

In order to study diffractive charm production effectively, it is necessary to measure the

dependence of the charm cross section on a variety of different kinematic variables. The

remaining chapters of this thesis describe the method through which the necessary data

is recorded, reconstructed and analysed in order to achieve this aim.



Chapter 3

HERA and the ZEUS Detector

This chapter gives an overview of the HERA accelerator and its performance during the

1995 — 1997 data-taking periods, as well as a description of the components of the ZEUS

detector which are used in this analysis.

3.1 The HERA Collider

HERA (Hadronen Elektronen Ring Anlage), situated at the DESY laboratory, Hamburg,

was the first electron1-proton collider ever to be built. The electron and proton rings are

located 10 — 25 m underground in a circular tunnel a little over 6 km in circumference.

Figure 3.1 shows the layout of the HERA ring, along with the four experimental halls

in which the 820 GeV proton beam and the 27.5 GeV electron beam are brought into

collision. ZEUS is housed in the South Hall with HERMES to the east and HERA-B to

the west. The other general purpose detector, H1, is located in the North Hall.

Figure 3.1 also shows the pre-accelerator chain required to accelerate the electron and

proton beams prior to injection into the main HERA ring. The electrons are radiated

from a heated Tungsten wire and accelerated to 500 MeV in a linear accelerator (Linac)

prior to being collected into bunches. They are then passed on to a small synchrotron ring

(DESY II) and accelerated to 7 GeV. The bunches are then transferred to PETRA, in

1Although HERA was originally designed as an e−p collider, it changed to e+p collisions during 1994

due to beam lifetime problems. In this chapter electron is used as a generic name for the lepton beam. In

subsequent chapters, it will be referred to as the positron beam.



66 CHAPTER 3. HERA AND THE ZEUS DETECTOR

Figure 3.1: A Schematic of the HERA ring, including the pre-accelerator chain.

which up 70 bunches may be stored, and accelerated to 14 GeV before they are injected

into the main HERA ring.

The protons are produced by the ionisation of hydrogen, and are again accelerated in a

Linac to 50 MeV before being collected into bunches in another synchrotron ring (DESY

III). They are then also transferred to PETRA, where up to 70 proton bunches can be

accelerated to 40 GeV. They are then also injected into the main HERA ring.

The main proton ring at HERA uses superconducting magnets to generate the 4.68 T field

which is required to keep the protons circulating at 820 GeV. The protons are accelerated

to their colliding energy in the HERA ring through the use of radio frequency cavities

and a 208 MHz feedback system. Conventional magnets are used to keep the electrons

circulating at 27.5 GeV. Their acceleration to colliding energy is achieved through the

use of standard and superconducting RF cavities. The two beams are separated into 174

equidistant buckets which contain the particle bunches and are separated in time by 96

ns. Colliding bunches are those in which a “full” proton bucket coincides with a “full”

electron bucket. The bunch structure can also be arranged so that a electron bunch can

coincide with an empty bunch in the proton beam (or vice versa). These are known as

pilot bunches. It is equally possible to have two empty bunches coinciding. These pilot

bunches and empty bunches are used to study background contributions from interactions

of the beam with gas in the beam pipes and also from cosmic rays.
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Figure 3.2: The HERA luminosity delivered to the ZEUS experiment since the start of

data-taking in 1992.

3.2 HERA Performance 1995 - 1997

Since the start of data-taking in 1992, the HERA machine has gradually increased the

integrated luminosity it is able to provide each year. This can be clearly seen in figure

3.2. The sharp increase in luminosity from 1994 onwards was caused by HERA switching

from electrons to positrons, which resulted in a substantially improved lepton lifetime.

The data on which this analysis is based comes from the 1995, 1996 and 1997 datasets.

The performance of the HERA machine during these three periods is summarised in table

3.1 and compared to the original design values.

3.3 The ZEUS Detector

Figures 3.3 and 3.4 show the overall layout of the central section of the ZEUS detector.

A detailed description of the ZEUS detector can be found in [84, 85], but a description

of the main components used in this analysis will be given here. ZEUS is multipurpose
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Figure 3.3: 2-d cross section of ZEUS in the r − φ plane.

Figure 3.4: 2-d cross-section parallel to the beam pipe of the ZEUS detector.
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Parameter 1995 1996 1997

e+ p e+ p e+ p

Beam Energies (GeV) 27.5 820 27.5 820 27.5 820

Beam Currents (mA) 30-41 55-73 33 65 36-43 77-105

Instantaneous Luminosity L (1030cm−2s−1) 3.9-7.2 6.1-10.3 8.44-14.0

Integrated Luminosity (pb−1) 12.15 17 36.5

Centre of Mass Energy (GeV) 300 300 300

Number of Colliding Bunches 174 174 174

Number of Pilot Bunches 6 15 6 15 6 15

Parameter Design

e± p

Beam Energies (GeV) 30 820

Beam Currents (mA) 58 163

Instantaneous Luminosity L (cm−2s−1) 1.7 × 1031

Annual Integrated Luminosity (pb−1) 100

Centre of Mass Energy (GeV) 314

Number of Colliding Bunches 210

Number of Pilot Bunches 15 17

Table 3.1: Performance of the HERA Machine for the period 1995 — 1997

detector with almost complete solid angle coverage (the exceptions being the beam pipe

holes), which has been designed to give the optimum detection of the heavily boosted event

topologies seen at HERA. In the layout shown in figure 3.4, the electron beam comes in

from the left and the proton beam from the right. The coordinate system is defined such

that the incident beams travel along the Z axis with Z = 0 as the nominal interaction

point. The direction of the proton beam defines the positive Z-direction and θ = 0, where

θ is the polar angle. The X-Y plane is perpendicular to the beam axis with X horizontal.

The azimuthal angle φ is measured with respect to the X axis. Thus the region of positive

Z (to the left of the interaction point) is referred to as the forward region, while the

negative Z region is known as the rear region. Due to the large boost that the interaction

products receive due to the asymmetry in the beam energies, the detectors in the forward

region are of much greater depth compared to those in the rear region.
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The tracking system consists of several chambers, starting with the vertex detector (VXD)

directly surrounding the central beam pipe. This was present until the end of the 1995

data-taking period, but was only active in a small fraction of the data taken that year.

The VXD is surrounded by the Central Tracking Detector (CTD), which is a large drift

chamber used in the identification and measurement of charged particles. The tracking

system is completed by the forward and rear tracking detectors (FTD and RTD), which

provide added coverage in the forward and rear beam pipe regions. The CTD is surrounded

by a superconducting magnet which provides a field of 1.43 T.

The tracking system is surrounded by the high-resolution Uranium Scintillator Calorimeter

(UCAL). The UCAL is subdivided into three sections: The FCAL which covers the forward

end of the tracking system, the RCAL which covers the rear end and the BCAL, which

provides coverage in the barrel section between the FCAL and RCAL. At a depth of 3X0

(one radiation length (X0) is roughly 2.6 mm of scintillator and 3.3 mm of Uranium) in the

RCAL, the Hadron-Electron Separator (HES) can be found. This is used to discriminate

between electrons and hadrons through the measurement of longitudinal shower profiles.

There is also a small calorimeter at the back of the RCAL directly adjacent to the beam

pipe (BPC). This is designed to detect scattered electrons which would otherwise pass

undetected through the rear beam pipe hole.

The Rear Presampler (RPRES) is located on the inner face of the RCAL and provides

information about the showering caused by dead material between the interaction point

and the calorimeter. The Small Angle Rear Tracking Detector (SRTD) is also mounted on

the inner face of the RCAL in the beam pipe region and provides further information about

particle showering as well as excellent reconstruction of the calorimeter impact position of

electrons scattered through small angles. The SRTD will be discussed in detail in chapter

5.

The remainder of the central detector consists of the backing calorimeter (BAC) and the

muon detection system. The BAC is sandwiched between the two sets of muon detectors

and is designed to pick up particles which do not shower until after passing through the

main calorimeter. It also serves as the return yoke for the magnetic field.

The vetowall and C5 counter are situated outside the main detector, behind the rear muon

chambers. The vetowall protects the main detector from the effects of the proton beam

halo and is used to reject beam-related backgrounds. The C5 counter surrounds the beam
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pipe at Z = −3.15 m and is used to monitor the beam profiles using timing measurements.

There are also several other detector components, which lie along the beam pipes outside

the main detector. In the rear direction, there are several electron taggers, known as

the 8 m tagger, the 35 m tagger and the 44 m tagger. The 35 m tagger is one half of

the Luminosity Monitor (LUMI), which is designed to detect the final state electron and

photon from the Bethe-Heitler process, ep → epγ, through which the luminosity can be

determined.

There are also several components in the forward direction, such as the Leading Proton

Spectrometer (LPS) which consists of a series of Roman pots distributed along the proton

beam line. This is used to measure the momentum of the scattered proton in the small

fraction of events in which the proton does not fragment. The Proton Remnant Tagger

(PRT) and Forward Neutron Calorimeter (FNC) are also located in the forward direction.

3.3.1 The Central Tracking Detector

The Central Tracking Detector (CTD) is a cylindrical drift chamber which is 205 cm long

and which has an inner(outer) radius of 18.2 cm(79.4 cm), covering an angular range of

15◦ < θ < 64◦. It consists of 24192 wires, 4608 of which are sense wires. The chamber

is separated into nine superlayers which are further divided into octants. Each superlayer

contains eight sense wire layers which can provide up to 72 rφmeasurements or “hits” from

which tracks can be reconstructed. The wires in the odd-numbered superlayers are parallel

to the beam direction (axial layers), while those in the even-numbered layers are tilted

by ±5◦ with respect to the beam (stereo layers). This system allows the reconstruction

of tracks in all three dimensions. The angle for the stereo layers is chosen so that the

polar and azimuthal angular resolutions are roughly equal. The layout of a CTD octant

is shown in figure 3.5, where the sense wires are indicated by the larger dots. Table 3.2

gives more information about the properties of the different superlayers. Each superlayer

is divided up into cells, each of which contains eight sense wires. The cells are arranged

such that the sense wire plane is at 45◦ to the radius vector. This ensures that there is

no left-right ambiguity. The magnetic and electric fields and the gas mix are all chosen to

give a Lorentz angle of approximately 45◦, ensuring that the ionisation drift direction is

perpendicular to the track direction. This makes the radial position of each hit roughly

equal to that of the sense wire which detected it.
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Figure 3.5: An octant of the CTD. The larger dots indicate the sense wires

The presence of the large magnetic field allows precise momentum measurements. The

sense wires are read out using 100 MHz flash analogue to digital converters (FADCs) in

rφ (and z for the stereo layers). In addition, the first three axial superlayers are equipped

with Z-by-Timing electronics, which determine Z through the measurement of the arrival

time of the pulses at the two ends of the wire. The Z-by-Timing method has a resolution

of ≈ 4 cm, while the resolution using the stereo layers is ≈ 1 mm. The two track resolution

is about 2.5 mm. Providing a track has hits in all nine superlayers, it will be reconstructed

with a resolution of σ(pT )
pT

= 0.005pT ⊕ 0.0016 GeV.

A more detailed description of the CTD can be found in [86].

3.3.2 The Calorimeter

At HERA it is important to be able to distinguish between electromagnetic and hadronic

objects and to be able to reconstruct their energy and position as accurately as possible, to

ensure that the kinematic variables x, y and Q2 are well-reconstructed. This is best done

using a sampling calorimeter, which consists of alternating layers of active and inactive

material. Lead or uranium are common choices for the inactive material, while scintillator



3.3. THE ZEUS DETECTOR 73

Superlayer No. of Cells Mean Stereo Angle Centre Radius (cm) θ range

1 32 0◦ 20.97 11.3 — 168.2◦

2 40 4.98◦ 27.23 14.5 — 164.8◦

3 48 0◦ 35.00 18.4 — 160.7◦

4 56 −5.31◦ 41.30 21.5 — 157.3◦

5 64 0◦ 48.73 24.9 — 154.0◦

6 72 −5.51◦ 55.52 27.9 — 151.0◦

7 80 0◦ 62.74 30.9 — 147.9◦

8 88 5.62◦ 69.46 33.5 — 145.2◦

9 96 0◦ 76.54 36.1 — 142.6◦

Table 3.2: The dimensions of the CTD Superlayers.

or gas provide the active material layers.

When the UCAL was originally designed, the requirements made were as follows

• Energy resolutions of 35 ± 0.3%/
√
E for hadrons and jets and 18 ± 0.1%/

√
E for

electrons, where E is energy measured in GeV,

• Jet angular resolution better than 10 mrad,

• Timing resolutions of less than 1 ns, to allow the rejection of cosmic rays and beam-

gas interactions.

In order to achieve these requirements, 3.3 mm thick plates of depleted uranium (DU)

were chosen along with 2.6 mm thick tiles of plastic scintillator. The plate thicknesses

were optimised to achieve equal response to electromagnetic and hadronic showers.

The calorimeter is divided up into three sections. The forward calorimeter (FCAL) covers

the angular range 2.2◦ — 36.7◦, while the rear calorimeter (RCAL) covers the range 129.1◦

— 176.5◦. The barrel calorimeter (BCAL) covers the intermediate angular range.

Each calorimeter is divided longitudinally into electromagnetic (EMC) and hadronic (HAC)

sections, which are divided transversely into cells. Each cell is made up of a scintillator

tile and a depleted uranium plate. In the FCAL and BCAL, the EMC cells are 5× 20 cm,
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while in the RCAL they are 10 × 20 cm. The HAC cells are 20 × 20 cm in all sections.

The layout of the FCAL, as seen from the interaction point, is shown in figure 3.6. It is

divided into 24 modules along the Y axis, each of which is made up of towers 20× 20 cm,

going away from the interaction point. The smaller divisions indicate the dimensions of

the EMC cells.

Figure 3.6: The FCAL as seen from the interaction point

Figure 3.7 depicts an FCAL module, and shows how it is separated into EMC and HAC

sections. It also indicates the wavelength shifters (WLS) down each side of each cell,

through which the energy deposited in the scintillator is passed to the photomultiplier

tubes (PMTs) at the rear of the module. Each cell is readout by two PMTs providing

redundancy and position reconstruction. The natural radioactivity of the uranium pro-

vides a energy calibration method on a channel-by-channel basis. The calibration using

this method is good to 1 %.

3.3.3 Preshower Detectors

Although ZEUS was designed to minimise the amount of material through which particles

have to pass before detection, it is inevitable that there will be some dead material (cables,

supports etc.), which will cause particles to lose energy prior to detection. It is therefore

necessary to determine the exact effect of the dead material, particularly in the case of the
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Figure 3.7: One of the FCAL modules in the ZEUS detector.

scattered electron, as this can effect the measurement of the kinematic variables. There

are several methods of correcting for energy loss from the scattered electron, involving the

tracking detectors and more importantly the series of preshower detectors installed within

ZEUS for this purpose. For electrons which hit the calorimeter in the rear beam pipe

region, there is the Small Angle Rear Tracking Detector (SRTD) which will be discussed

in detail in chapter 5. The alternatives are offered by the Forward and Rear Presamplers.

A Barrel Presampler is also being installed in time for 1998 running. However, the majority

of the scattered electrons in the sample on which this analysis is based are detected in

the RCAL and hence energy loss corrections based on presampler information are only

required for this region. Thus the forward presampler will not be discussed here.

The Rear Presampler (RPRES) consists of a layer of scintillator tiles of the same dimen-

sions as the HAC cells of the calorimeter. These are read out by wavelength shifters which

guide the scintillator signal to a series of PMTs. The RPRES is calibrated using Mini-

mum Ionising Particles (MIPs), which produce at least 5 photoelectrons per MIP at the

photocathode of the PMT. These tiles are mounted on the inner face of the RCAL and

cover all but the outer two rings of cells.



76 CHAPTER 3. HERA AND THE ZEUS DETECTOR

The RPRES does not provide accurate position reconstruction, but the energy deposited

in the RPRES tile associated with the scattered electron can be used to correct for any

energy loss that the electron may suffer.

3.3.4 Luminosity Measurement

Luminosity is determined at ZEUS by measuring the rate at which bremsstrahlung events

from the Bethe-Heitler process ep → e′pγ [87] are produced. The final state electron and

photon are detected by a pair of lead scintillator calorimeters behind the main detector,

as shown in figure 3.8. The Bethe-Heitler process is used for luminosity determination

because its cross section is large and very accurately predicted by QED. Such interactions

also have a very characteristic topology. As shown in figure 3.8, the bremsstrahlung

detector

106 metres
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positron beam
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positron beam

Scattered
positron
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positron

Figure 3.8: The Layout of the ZEUS Luminosity Monitor and paths of the different par-

ticles from the Interaction Point (IP).

photons leave the electron beam pipe via an exit window and hit the photon detector

(referred to as the LUMI-γ). The LUMI-γ has an energy resolution of σ(Eγ) = 0.18
√

Eγ ,

where Eγ is the photon energy measured in GeV.

After emitting the bremsstrahlung photon, the final state electron is bent away from the

beam direction by the bending magnets of the electron ring. It is then detected in the

LUMI-e, providing it is scattered through an angle of less than 6 mrad and its energy lies
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in the range 0.2Ee < E′
e < 0.9Ee, where Ee is the nominal electron beam energy and E′

e is

the scattered electron energy. Both the LUMI-e and the LUMI-γ are known to have high

detection efficiencies.

The LUMI-e is also used to tag electrons in the range 10−7 < Q2 < 2 × 10−2 GeV2,

while the LUMI-γ can be used to tag initial state radiative photons from deep inelastic

scattering events.
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Chapter 4

Data Preselection

The short time interval between bunch crossings at HERA (96 ns) results in a high beam

crossing rate (∼ 10 MHz) which poses a challenge for the readout and storage of data.

In addition the interaction rate varies between 10 and 100 kHz, with useful ep physics

accounting for only a small fraction of this rate (∼ few Hz). The dominant contribution to

the interaction rate comes from non-ep background which must be identified and rejected.

In fact, it is necessary to reduce the rate to the level of a few Hz so that the data can be

written to tape. This is the purpose of the ZEUS online three-level trigger.

The aim of this chapter is to describe the techniques used to convert the raw information

from the detector into a high quality, fully reconstructed dataset for use in the studies

described in subsequent chapters. First, the ZEUS online trigger and the backgrounds it

must reject will be discussed, with particular emphasis on the requirements for triggering

on DIS interactions. Then the offline reconstruction software will be discussed, along with

the post-reconstruction analysis tools used to prepare the data for full physics analysis.

The parallel processes used to simulate this chain for Monte Carlo will also be discussed.

4.1 The Data Acquisition System

As has already been explained, the interaction rate is dominated by backgrounds which

do not arise from ep collisions. In addition, background in a DIS data sample can come

from other physics processes, such as photoproduction. In this section, the principal

sources of background and their rejection will be discussed, along with how this rejection
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is implemented in the online trigger system.

4.1.1 Backgrounds

The main sources of background which are not the result of an ep collision are

Beam Gas. These events are caused by collisions between the proton beam and any

residual gas in the beampipe and are produced at a rate of approximately 50 kHz.

Collisions between the positron beam and residual gas can also occur, but are much

less frequent as the interaction cross section for positrons is much lower than that

for protons.

Synchrotron Radiation. This is the main source of background from the positron beam

and is caused by the bending of the beam in the HERA magnetic field. This bending

does not occur near the ZEUS detector, limiting this contribution to the background

rate. There are also collimators and shielding in place to further reduce such back-

grounds.

Proton Beam Halo. These events are caused by interactions between protons in the

beam halo and the beampipe wall or other beamline components. These interactions

tend to produce muons which leave a characteristic signature in the detector, allowing

them to be identified and rejected.

Cosmic Muons. This is one of the more significant backgrounds which occur within the

main detector volume, but once again, they have a characteristic signature. The

rate of cosmic muons can be as high as 5 kHz.

The majority of these backgrounds are rejected by the trigger system using two main

techniques. The first method is based on timing information from the calorimeter and

the SRTD. For a standard ep collision occurring at the nominal interaction point, t = 0

is defined as the time at which the interaction products hit a given detector section, as

depicted in figure 4.1(a). Proton beam-gas and beam halo interactions occurring prior to

the entry of the proton beam into the main detector volume (as indicated in figure 4.1b)

would have a large negative RCAL/SRTD time (∼ −10 ns), as well as a large positive

difference between the time measured in the FCAL and the RCAL. These backgrounds

would also produce a signal in the vetowall and the C5 collimator.
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Figure 4.1: The topology expected from (a) a standard ep event and (b) a proton beam-gas

interaction occurring prior to the entry of the proton beam into the main detector volume.

The other main background rejection method is based on momentum conservation, using

the quantity

δ = E − pz (+ 2Eγ) =
∑

i

Ei(1 − cos θi) ( + 2Eγ) (4.1)

where i indicates the sum over the calorimeter cells and Eγ is the energy measured in the

photon calorimeter of the luminosity monitor, indicating the presence of an initial state

photon. A proton beam-gas interaction of the type shown in figure 4.1(b) would give a

very high value of δ, while a well-contained NC DIS event such as that shown in figure

4.1(a), would have δ ≃ 2Ee, where Ee is the positron beam energy. A proton beam-gas

interaction occurring within the main detector volume would send a shower of particles in

the proton beam direction, resulting in a very small value of δ. Appropriately placed cuts

on the value of δ provide a powerful background rejection tool.

The dominant physics background in a DIS data sample arises from photoproduction

processes. In such interactions, the scattered positron disappears undetected down the

rear beampipe, resulting in a low value of δ. Thus, δ also plays an important part in

offline data selection, as well as in the online triggering process.

4.1.2 The ZEUS Trigger System

The purpose of the online three-level trigger system is to reduce the interaction rate to

the level of a few Hz by rejecting background and specifically selecting interesting physics

processes. Each level has a system of accepting or rejecting events using increasingly strict

requirements and sophisticated selection algorithms, known as trigger “slots”. In order to
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decrease the rate further, slots can also be prescaled, which causes them to accept only a

fraction of the events which actually pass the selection algorithm. This will be discussed

in more detail in the context of the physics studies described in later chapters.

The First Level Trigger (FLT)

The FLT is designed to reduce the input interaction rate of 10-100 kHz (depending on

beam conditions) to about 1 kHz. The global first level trigger (GFLT) is a pipeline system

which receives information from the first level triggers of the major detector components

(referred to as component FLTs). The use of a pipeline increases the time available for

data processing and decision-making to 4.4 µs. If the event is accepted by the GFLT, the

data are transferred to the second level trigger, otherwise it is overwritten.

The different FLT slots are based predominantly on information from the calorimeter

FLT (CFLT) and the CTD (CTD-FLT). In order to calculate the required quantities in

the CFLT, the calorimeter is divided up into 448 “trigger towers” in the REMC, BEMC,

FEMC, RHAC, BHAC and FHAC sections. The trigger towers in a particular component,

eg. REMC, are chosen such that they do not overlap with each other and usually consist

of two adjacent cells.

The key characteristic of a DIS event is the presence of a (usually isolated) scattered

positron. Thus the FLT selection requirements for DIS events are based predominantly

on the identification of this positron using CFLT information. The quantities used in the

identification are

RcalIsoe. This is an algorithm which finds isolated positrons in the rear calorimeter. It

simply finds groups of up to four trigger towers with electromagnetic energy deposits,

surrounded by trigger towers with no energy deposits.

REMCth. This is the total electromagnetic energy deposited in the RCAL.

REMC. This is the electromagnetic energy deposited in the RCAL excluding the trigger

towers immediately surrounding the rear beampipe.

BEMC. This is simply the total electromagnetic energy deposited in the BCAL.

CAL E. This is the energy summed over all calorimeter towers, except those in the inner

three rings in the FCAL and the innermost ring of the RCAL.
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Background rejection is performed using the C5, vetowall and SRTD. A signal in the C5

or vetowall causes an event to be rejected, while if any of the SRTD quadrants have bad

timing measurements, the event will also be rejected. If the SRTD cannot provide any

timing information, the event will not be rejected. These SRTD requirements are included

in some of the triggers using the collective name SRTDgood. The two FLT slots used

for DIS selection in 1995 combine the above CFLT quantities in the following way

FLT30 RcalIsoe*REMCth> 3.75*SRTDgood, where ∗ indicates a logical .and.

FLT44 REMC> 3.4 .or. BEMC> 4.8.

In 1996/7 (which accounts for approximately 84 % of the total data sample considered in

this thesis), the requirements made on CFLT information changed and information from

the CTD-FLT was included in order to decrease further the rate. The quantities from the

CTD-FLT which are used are

anyTRK. This is the requirement that at least one FLT track should be found.

TRKveto. This is the requirement that a high proportion of the FLT tracks found in an

event must point to the nominal vertex region. If the CTD-FLT finds more than five

tracks in an event which do not point to the nominal vertex, the event is rejected.

The principal FLT DIS slots in 1996/7 then became

FLT30 RcalIsoe*(REMC≥ 2.03 .or. REMCth≥ 3.75 .or. (CAL E≥ 0.5*SRTDgood))

FLT44 (BEMC> 4.8*anyTRK) .or. REMC> 3.4

FLT46 FLT30*TRKveto

The Second Level Trigger (SLT)

The SLT is designed to reduce the FLT output rate to about 100 Hz through the use of more

sophisticated algorithms. Unlike the FLT, the SLT is software-based, but also consists of

a global second level trigger (GSLT) which makes its decisions based on information from

several component SLTs. If an event is accepted by the GSLT, it is passed on to the

“Event Builder” which prepares it for the third level trigger.
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The SLT background rejection includes both timing cuts (based on the calorimeter) and the

use of δ. More sophisticated algorithms are employed to select specific physics processes.

No SLT triggers are explicitly used in the physics studies described in this thesis — the

events will therefore have been accepted by any of the wide range of SLT slots available.

The Third Level Trigger (TLT)

The TLT is also software-based and is designed to make the final reduction of the trigger

rate to a few Hz. The data from all detector components are fed from the Event Builder

into the TLT, which runs a reduced version of the offline reconstruction software. These

reconstructed data are used to define physics-motivated filters.

DIS event selection at the TLT requires the use of several positron finders. During the

1995 data-taking period, the ELEC5 [88] and LOCAL [89] finders were in use, while in

1996 and 1997, SINISTRA [90] and EMILLE [91, 111, 112] were added.

SINISTRA is the positron finder which is used in the final data selection and is described

in section 4.3.2. The other positron finders in the TLT are based on either cones or islands.

Cone-based positron finders simply use calorimeter cells contained within a fixed radius

cone around the highest energy cell to define the positron. Only these cells contribute to

the measurement of the energy and impact position of the positron. Islands are described

in more detail in section 4.2. These two different clustering methods are illustrated in

figure 4.2.
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Figure 4.2: The different methods of clustering used in the positron finders implemented

in the Third Level Trigger. (a) shows the cone method of clustering, while (b) shows the

island method.

The x - y impact position of the scattered positron when it is detected in the RCAL can be

reconstructed using either the calorimeter or a reduced version of the SRTD reconstruction
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software (SRTLTPO [92]), which is described in section 4.3.3. If SRTD information is

available it is used in preference to the calorimeter information due to its superior spatial

resolution.

There are three main TLT slots for selecting NC DIS events. Each of these requires that

one of the DIS-related FLT slots should have fired, that δ > 30 GeV and that E−pz < 100

GeV. A scattered positron with energy greater than 4 GeV should also have been found by

one or more of the positron finders. If the positron is found in the RCAL, an x - y impact

position requirement (known as the “box cut”) is applied in each of the three TLT slots

with increasing severity, equivalent to applying a cut on Q2. For this reason the slots are

known as the “low”, “medium” and “high” Q2 slots. In the low Q2 slot, the cut is made

at |x| > 12 .or. |y| > 6 cm, while in the medium Q2 slot the cut is made at |x| > 14

.or. |y| > 14 cm. In 1996/7 an alternative medium Q2 slot was also used in which a cut

was placed on the radius of the impact position from the centre of the RCAL beampipe

at 25 cm. The high Q2 slot was not used in any of the physics studies presented here.

Events which are accepted by the TLT are then written to tape and made available for

offline reconstruction — the subject of the next section.

4.1.3 Simulation of the Detector and DAQ System

In order to extract physics results from the reconstructed data, it is necessary to correct

for effects caused by the detector and trigger system. The corrections are obtained by

simulating the underlying ep collisions using Monte Carlo techniques and then processing

these data using packages which simulate the effects of various parts of the detection

system.

The different Monte Carlo generators used in the physics studies described in this thesis

are discussed in later chapters. They are all subjected to a common simulation chain which

starts with ZDIS — a package which outputs the four-vectors of the generated particles

in the format required for the standard ZEUS analysis package, EAZE. The Monte Carlo

is then processed using MOZART [84], the ZEUS detector simulation package. MOZART

uses GEANT [93] to describe the detector geometry and includes a full simulation of the

magnetic field. It also simulates energy loss, multiple scattering and shower development.

The output from MOZART is very similar to the raw data from the detector, except that
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the ZDIS four-vectors are retained. The ZGANA [94] package is then used to simulate

the ZEUS trigger system. Once the Monte Carlo data has passed through this simulation

chain, it undergoes the same reconstruction processes as the real data. Thus, from this

point onwards no distinction is made between data and Monte Carlo.

4.2 Offline Reconstruction

Once the raw data has been written to tape it is processed by the reconstruction program

ZEPHYR. First, the data from each detector component is reconstructed individually, then

information from the different components are matched up (where applicable). These

reconstructed data can then be used to select specific event types. These events are

recorded in the form of a Data Summary Tape (DST). The data from the CTD and

calorimeter are the most important to this analysis and so their reconstruction methods

are described in some detail here.

4.2.1 Calorimeter Clustering

Each particle which enters the calorimeter deposits energy in a manner characteristic of its

identity. For example, electrons and photons shower electromagnetically over a relatively

small volume, while hadron-induced showers cover a much larger area, typically several

cells. Thus it is important to have a reliable method of grouping calorimeter cells in order

to form objects whose characteristics can be used to make deductions about the particle(s)

which made them.

Before any local clustering algorithms are used, basic noise suppression is performed.

Calorimeter noise comes from the natural radioactivity of the uranium in the calorimeter

or noise in the readout electronics and can be suppressed by requiring that the energy in

any EMC cell must be greater than 60 MeV, while that in any HAC cell must be greater

than 100 MeV.

Once this basic noise suppression has been applied, several clustering algorithms are used.

However, only those which are used in the analyses presented in later chapters are described

here.
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Condensates

Condensates are formed by making a list of all cells ordered by energy, taking the highest

energy cell and checking the energy deposited in neighbouring1 cells within a specific

calorimeter section (FCAL, BCAL, RCAL). No attempt is made to cross the boundaries

between calorimeter sections during the formation of a condensate. If the energy deposited

in the neighbouring cell is greater than some predefined limit (20 MeV for an EMC cell

and 50 MeV for a HAC cell), it is combined with the first cell. This process continues

until no more adjacent cells with sufficient energy can be found. Each time a cell is used

in the formation of a condensate, it is deleted from the original list. Once the list has

been completely emptied, the formation process is complete. The condensates are kept for

analysis if they pass a further energy cut (100 MeV for purely electromagnetic condensates

and 200 MeV for all other condensates), otherwise they are ignored. The energy of the

condensate is simply the sum of the constituent cell energies, while the position is the

energy weighted average of the cell positions.

Islands

Islands are formed using calorimeter towers and may extend across section boundaries.

The energy of each tower is compared with those of its immediate and diagonally adjacent

neighbours. The tower will then be associated to its highest energy neighbour, or itself if

none of its neighbours has a higher energy. Clusters of towers will be formed as a result,

which link back to the nearest high energy tower, as shown in figure 4.2. These clusters

are known as Islands. This type of clustering algorithm can also be performed on cells

rather than towers — these are referred to as Cell-Islands.

4.2.2 Track and Vertex Reconstruction

The full ZEUS offline track reconstruction is described in detail in [95]; a brief overview

is given here. Two different methods of reconstruction are available: regular or CTD-

only. The former uses information from the forward and rear tracking detectors (FTD

and RTD — see chapter 3) in addition to the CTD in order to increase the angular

1A neighbour is defined as a cell which shares at least part of one side with the cell it is neighbour to.

This process excludes diagonally adjacent cells.
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acceptance for track reconstruction. However, in the analysis presented here, the CTD-

only offline reconstruction method is used, as it reduces uncertainties in the determination

of efficiencies and acceptances due to detector alignment and the presence of dead material.

Track Finding

A track candidate starts out as a track segment, which is defined by three adjacent CTD

hits from an axial superlayer in an outer part of the CTD. This track segment is then

extrapolated inwards, guided by an additional “virtual hit” at the beamline. As the track

is extrapolated inward, it picks up additional axial hits, improving the accuracy with which

the trajectory parameters are determined. This series of axial hits will form an arc in the

xy plane. If any of the axial hits provides Z-by-Timing information this can be used to

make a first estimate of the z parameter of the trajectory. The stereo superlayers crossed

by this trajectory are then searched for hits, which are added to the trajectory providing

more accurate z-component information. All tracks must ultimately have 3D information.

Short tracks which only have axial hits in superlayer (SL) 1 are extrapolated to SL2 in

order to pick up stereo information.

This method of pattern recognition is performed twice. The first time only track candidates

which continue all the way in to SL1 are accepted, while in the second pass, those which

have hits in at least two axial superlayers and the intermediate stereo layer, but fail to

reach SL1 are also kept. The candidates which fall into the latter category are kept as

they may be due to long-lived particle decays. This procedure provides a series of track

candidates with 3D information which are then fitted using a five-parameter helix fit [95].

It is also useful, as will be seen in section 4.3.6, to match tracks to calorimeter energy

deposits. The matching is performed by “swimming” the track out towards the calorimeter

using a GEANT Runge Kutta [93] extrapolation which uses a comprehensive map of the

magnetic field. If a low momentum track heading for the FCAL or RCAL reverses direction

in z or, when heading towards the BCAL, begins to spiral back towards the centre, the

extrapolation to the calorimeter face is abandoned.

Studies have been performed using Monte Carlo in order to establish the efficiency achieved

using this package [96]. The studies were carried out using hard photoproduction events

which tend to have a higher track multiplicity and used only generated charged particles
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which satisfy pT > 0.1 GeV and |η| < 1.75, ie. those which would be expected to enter the

CTD and create a track. It was found that approximately 95 % of all these “true” tracks

were reconstructed in the CTD. The remaining 5 % are lost in the beampipe or CTD inner

wall. 97 % of tracks which make it into the CTD are reconstructed, 96 % of which will

be associated to the primary vertex. These efficiencies increase further if requirements are

placed on the true track such that it would be expected to reach the third superlayer. It is

also known that for “typical” D∗±(2010) decay tracks (pT ∼ 2 — 3 GeV), the probability

of assigning the wrong charge to a track is less that 0.1 % [96].

As was already mentioned in the previous chapter, the transverse momentum resolution

achieved using the CTD is σ(pT )/pT = 0.005pT ⊕0.0016 (with pT is GeV) and the two-hit

resolution, that is, how far apart two hits must be in order to be distinguished, is of the

order to 2 - 3 mm [84].

Primary Vertex Fitting

The reconstruction package also contains a vertex finder which uses standard vertex fitting

techniques [95]. Before the vertex fit is performed, track candidates which do not appear

to originate from the beamline are removed. Then a simple vertex algorithm is applied

which determines the vertex centre of gravity of the remaining tracks. Any tracks which

make a large contribution to the χ2 of the vertex are gradually discarded until the fit

achieves an acceptable quality. Once this preliminary vertex and list of tracks has been

determined, a full vertex fit is carried out which constrains the remaining track trajectories

to come from the vertex and refits their direction and curvature.

4.3 Post-Reconstruction Data Analysis

Once the data has passed through ZEPHYR, it is ready for the final stage of the chain.

The remaining sections of this chapter describe those techniques and tools required for the

selection and analysis of a DIS event sample. The datasets used in the remaining chapters

of this thesis come from the 1995, 1996 and 1997 data-taking periods. The integrated

luminosity versus days of running, after the data quality monitoring package EVTAKE

[98] has been applied, is shown in figure 4.3.
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Figure 4.3: Integrated luminosity for high quality data versus day of running for all the

positron-proton datasets. EVTAKE is part of the data quality monitoring procedure.

EVTAKE is a procedure which rejects data in which one or more of the major detector

components were not operating normally. It makes the following specific requirements

• The luminosity monitor must be fully operational.

• The magnetic field must be on.

• The CTD must be at full high voltage, with no large dead regions.

• The calorimeter must be fully operational.

Table 4.1 gives the total luminosities available for each year after the application of EV-

TAKE. The systematic errors on these luminosity measurements range from 1.1 % for

1995 data to 1.7 % for 1997 data [99]. During 1995 a small amount of data was taken

with a shifted interaction point. 236.6 nb−1 were taken with the interaction point shifted

towards the FCAL and 63.3 nb−1 were taken with the interaction point shifted towards

the RCAL. These two datasets were excluded from the final data sample.
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Year 1995 1996 1997

Luminosity 6.6 10.4 26.6

after EVTAKE (pb−1)

TOTAL

after EVTAKE 43.6 pb−1

Table 4.1: A Summary of the good data available for analysis for 1995 —1997.

4.3.1 Noise Suppression

The majority of the kinematic variable reconstruction methods are heavily reliant on

calorimeter information, indicating that the suppression of calorimeter noise is an impor-

tant issue. In particular, events which contain a low level of hadronic activity can produce

very distorted measurements of the hadronic quantities if the noise is left untreated.

As was discussed previously, noise can come from the natural radioactivity of the calorime-

ter or noise in the readout electronics. It can also arise from mini-sparks, where one of the

pair of PMTs associated to a particular cell fires, but the other does not. Detailed studies

have been made of these sources of noise [100, 101, 102] using a data sample made up of

random trigger events which would not have passed any physics trigger and a Monte Carlo

sample produced by generating events in which all particles pass down the beampipe.

Using these samples, it was found that the data contained a significant number of cells

whose energy imbalance, EL,R = EL − ER (where EL and ER are the energies measured

by the two PMTs associated with a given cell) is large. Such cells were not present in the

Monte Carlo sample, as can be seen in figure 4.4 and were attributed to mini-sparks and

can be removed by requiring EL,R < 0.49 ·Ecell + 0.03 GeV, where Ecell = EL + ER.

Once the mini-sparks had been removed, it was found that the basic noise suppression

energy cuts applied during reconstruction could be tightened to EEMC
cell > 80 MeV and

EHAC
cell > 140 MeV if the cell was isolated. The remaining discrepancies then observed

between data and Monte Carlo were attributed to the presence of “hot cells” in the data.

A “hot” cell is one which fires more frequently and measures a higher energy than the

average for the calorimeter section in which it is situated. If the hot cell is known to have a

malfunctioning PMT, then Ecell is set to twice the energy deposited in the working PMT,
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Figure 4.4: The Cell energy imbalance as a function of cell energy in (a) data, and (b)

Monte Carlo.

providing EL,R is not zero. If, however, EL,R = 0, then the cell is ignored if the energy it

measures in a normal ep event is less than the maximum noise energy for that cell.

After all these measures have been applied, good agreement is observed between data and

Monte Carlo.

4.3.2 Positron Identification

After the noise suppression algorithm described in the previous section has been applied,

the data are searched for scattered positron candidates. This is clearly one of the most

important aspects of any DIS analysis and hence will be described in some detail here. It

is also important that both the positron’s energy and scattering angle are reconstructed as

accurately as possible, given the important role these quantities play in kinematic variable

reconstruction.

Over a large area of the kinematic plane accessible at HERA the positron in the event will

be well separated from the hadronic activity making it relatively easy to identify. However,
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there are several problems which can make identification more difficult, such as showering

caused by the positron passing through regions of high dead material prior to reaching the

calorimeter, making the positron appear more like a hadron in terms of its energy deposit.

In the high y region it is also found that the low energy positron can become mixed up in

the hadronic activity. A further complicating factor comes from low energy hadrons and

π0 → γγ decays in photoproduction events as they can leave a very similar energy deposit

to that created by the true scattered positron. A sophisticated positron-finding algorithm

is clearly required in order to overcome these problems.

The Positron Finding Algorithm

In both the physics studies described in subsequent chapters the neural net positron finder

SINISTRA [90] is used to identify the scattered positron. First, electromagnetic islands

are selected according to their shower characteristics. The 54 PMT energies of the 3 × 3

array of calorimeter towers centred on the highest energy tower of each selected island

then form the input for the neural net. The neural net program returns a probability

which will be close to 1 for the scattered positron and close to 0 for an island created by

hadrons. The neural net was trained using Monte Carlo to provide a clean distinction

between the scattered positron and hadronic energy deposits.

SINISTRA Efficiency and Purity

Studies have been performed in order to establish the efficiency of SINISTRA as a positron

finder using elastic QED Compton event samples from both data and Monte Carlo [8].

Inefficiencies in SINISTRA can arise from the presence of dead material, which can cause

the positron to preshower, lowering its energy and broadening its shower in the calorimeter.

Other studies [92] have indicated that there is some discrepancy in the description of the

dead material distribution in Monte Carlo. It is therefore important to study any effects

this may have on the efficiency. Figure 4.5 shows the results of such a study performed

using 1994 data, taken from [8]. The efficiency is acceptable above about 6 GeV and

reasonable agreement is achieved between data and Monte Carlo.

More recent studies [103] performed using the higher statistics from 1996-97 data, in which
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Figure 4.5: SINISTRA efficiency estimated from QED Compton data and Monte Carlo

taken from [8].

the dead material was reduced compared to previous years2, have shown similarly high

efficiencies. The data and Monte Carlo are in good agreement above 10 GeV, while at

lower energies a maximum of 5 % difference between data and Monte Carlo is observed.

Studies have also been performed using Monte Carlo to establish the purity of SINISTRA

[5]. It has been shown that the purity is above 80 % for energies greater than 5 GeV.

4.3.3 Positron Position Reconstruction

The impact position of the positron on the calorimeter can be reconstructed either with

the calorimeter itself or, if it lies within its geometrical acceptance, the position can

be reconstructed using the Small Angle Rear Tracking Detector (SRTD). The SRTD is

used in preference to the calorimeter as, on average, its spatial resolution is significantly

better than that of the calorimeter (approximately 3 mm, as compared to ≈ 1 cm for

the calorimeter). The positron impact position is initially calculated using the energies

and positions of the cells assigned to the positron by the positron finder. Using this, the

position is then tuned using either the SRTD or a more sophisticated calorimeter position

2Between the 1995 and 1996 data-taking periods, the cables from the old vertex detector were removed,

substantially reducing the level of dead material in the RCAL beampipe region. This will be discussed

further in the next chapter.
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reconstruction algorithm when the SRTD is not available.

SRTD Position

The SRTD is described in chapter 5 and in [104], but a brief overview of the hit recon-

struction methods and SRTD-CAL matching is given here.

First, clusters are formed in each SRTD plane separately, where strips are assigned to a

cluster if there is a gap of no more than two “empty”3 strips between them. The clusters

in the two planes are then matched by using the fact that the energy deposit in each plane

should be roughly the same if caused by the same particle. Having formed the clusters,

the energy is simply the sum of the energies of the all the associated strips. The position is

determined by finding the strip for which 0.5E(X − 1) +E(X) + 0.5E(X + 1) is maximal,

where X is the co-ordinate to be determined and E is the cluster energy in MIPS4. The

3 strips central to this shower maximum are then used to calculate the energy-weighted

position of the cluster. A small correction is then applied to account for the natural bias

towards the central strip caused by this type of procedure.

The cluster is then matched to the calorimeter energy deposit identified as the positron in

the following manner: a linear extrapolation is made between the vertex position and the

calorimeter position and if this lies within 1 cm of the SRTD a match is attempted. In the

first attempt, only hits with more than 5 MIPS/plane are used. The closest hit (provided

it lies within 15 cm of the calorimeter position) will be returned as the associated SRTD

cluster. If nothing is found, then a second attempt is made with all hits, regardless of

energy. If still nothing is found, then the calorimeter position must be used instead.

Calorimeter Position

In the RCAL, the x and y coordinates of the positron impact position are calculated sepa-

rately by different methods, using the reconstruction algorithm ELECPO [105]. ELECPO

uses the same 3 × 3 array of calorimeter towers as used by SINISTRA to determine x

and y, as illustrated in figure 4.6. The y position is determined from strips s1, s2 and

3an empty strip is defined as one whose energy lies below the noise suppression threshold, which is

currently set to 0.2 MIPS.
4Minimum ionising particle
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s3, using a logarithmic energy-weighted average. The x position is calculated using the

three cells in the central strip s2. Information from s1 and s3 is only used if the strips

contain more than 25 % of the positron energy. The position within each individual cell is

determined from the cell imbalance, and are then weighted by the cell energy and averaged

to determine x. Once this x-y position has been determined, the RHES is checked for a

similarly-positioned energy cluster. If one is found, then the HES position will be used in

preference, due to its superior resolution. The z position is then calculated, taking into

account the depth in the RCAL of the shower centre.

modules

stripsEmax

m1 m2 m3

s1

s2

s3

Figure 4.6: The layout of the 3 × 3 array of towers used by ELECPO to determine the

position of the scattered positron. “Emax” indicates the highest energy cell and the strips

and module labels are indicated.

If the positron is found in the BCAL, where no HES information is available, the impact

position is determined using parametrisations from test beam results [105].

4.3.4 Positron Energy Loss Corrections

The effects of energy loss from the scattered positron when it is detected in the RCAL

can be corrected for using either the SRTD or the rear presampler. The corrections based

on SRTD information and their extraction are the subject of the next chapter. When it

is not possible to use the SRTD correction, an alternative is offered by the presampler.

This correction has been extracted from test beam data and is described in [106]. The
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correction is simple and is the same for both data and Monte Carlo. It is given by

Ecor = ECAL + 0.072 ·Epre (4.2)

where Ecor is the corrected energy, Ecal is the energy measured by the calorimeter and

returned by the positron finder and Epre is the energy of the associated cluster measured

in the presampler. All the energies are in GeV, except Epre which is measured in MIPs.

This correction only applies in the RCAL — no correction is available for the FCAL (there

is no presampler for the BCAL). However, in the D∗± analysis described in chapters 6 and

7, none of the events have a sufficiently high Q2 for the positron to be identified anywhere

but in the RCAL.

4.3.5 Calorimeter Energy Scale

Studies have been made of the energy scale in different calorimeter sections by matching

tracks in the CTD to isolated energy clusters in the calorimeter. Both positrons and

isolated hadronic deposits have been studied. In the studies performed on 1994 data

[107, 108], it was found that there was a mismatch in the energy scale between data and

Monte Carlo. More specifically, in the RCAL, the data energy scale was low by 2.5 ± 0.5 %,

while in the BCAL it was found to be low by 6 ± 2 %. After these initial studies were

made, an error was discovered in the Monte Carlo simulation package which resulted in

the Monte Carlo energy scale being 1 % too high in the BCAL [109]. Thus a correction

formula was implemented which scales BCAL energies up by 5 % and RCAL energies up

by 2.5 % in the data [110]. The FCAL energy scale was found to agree well between data

and Monte Carlo.

Since then, more detailed studies have been performed on the BCAL using the larger

statistics available from 1996-7 data. These studies [111, 112] indicate that 2 % of the 1994

BCAL correction can be attributed to a variety of different sources. There is, however,

still an unexplained mismatch of 3 ± 1 %. Similar studies made on RCAL data have

attributed some of the mismatch to non-uniform energy response between cells, reducing

the unexplained mismatch to 1 %. A cell-by-cell correction procedure for the RCAL has

been determined from these studies.

For 1995 data, both in the SRTD corrections described in the next chapter and in the D∗±

analysis described in later chapters, the global factors, ie. 2.5 % for the RCAL and 5 %
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for the BCAL, are applied to all cells except those associated with the scattered positron.

The positron energy is then corrected using either SRTD or presampler information. If

this information is not available, then the energy is scaled up by the appropriate factor.

For 1996 and 1997 data, the cell-by-cell energy scale corrections for the RCAL or the 5 %

correction factor for the BCAL are applied to all cells, regardless of whether the cell is

associated to the positron or not. No further correction is applied.

4.3.6 Hadronic Energy Flow Reconstruction

Historically within ZEUS event variables associated with hadronic activity have been re-

constructed using only calorimeter information. More recently, however, a more compre-

hensive package has been developed [113] which combines calorimeter information with

tracks from the CTD. As can be seen from figure 4.7, this ensures that all different “types”

of particle are included in the reconstruction process with the highest possible accuracy.

To ensure that the best possible quality data is used in this reconstruction method both

noise suppression and calorimeter energy scale corrections must be used before the algo-

rithm is applied. Full details of this package can be found in [113], but an overview is

given here and is referred to as the EFO (energy flow object) method.

The first stage of the reconstruction process involves the formation of cell islands (see

section 4.2.1) separately in the EMC, HAC1 and HAC2 sections of the calorimeter. Every

calorimeter cell is assigned to a cell island. The position of the cell island is then determined

from the logarithmically energy-weighted average of the positions of all the constituent

cells. Having established a set of cell islands, these are then joined to form cone islands.

This is achieved by matching cell islands in the hadronic and electromagnetic sections of

the calorimeter together, based on their angular separation, starting in the outer hadronic

sections and working inwards. EMC cell islands are then matched with each other using

a similar process.

Once the cone islands have been formed, a set of high quality tracks must then also be

selected for matching purposes. A track is considered to be of high enough quality if it

has traversed at least three CTD superlayers and has 0.1 < pT < 15 GeV. These tracks

are then extrapolated to the face of the calorimeter and matched to a cone island, where

possible. The energy and momentum of these matched objects are then calculated using
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Figure 4.7: The different types of energy flow objects which can be formed using a com-

bination of calorimeter and CTD information.

the following rules

1. If a track has not been matched to a cone island, then its energy is calculated using

the momentum determined from the track under the assumption that the particle

which produced the track was a pion.

2. If a cone island has not been matched to a track, then its energy and momentum are

calculated by assigning a momentum vector p to it such that E2 = p2, where E is the

energy measured by the calorimeter and p has the direction from the reconstructed

vertex to the cone island position.

3. If a cone island has more than three tracks associated to it, then its energy and

momentum are calculated using the calorimeter information alone as in 2. above.

All other objects are then assessed to decide whether to use the calorimeter or CTD

information associated to the object. The tracking information will be used in preference

to the calorimeter information if
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• E/p < 0.9 + ∆(E/p), where E is the calorimeter energy in GeV and p is the mo-

mentum measured by the CTD. ∆(E/p) is the 1σ error on E/p.

• and the resolution on the momentum measurement from the CTD is better than the

resolution on the energy measurement from the calorimeter.

The first requirement ensures that the calorimeter energy is due only to the associated

track ie. there are no extra neutral particles involved. The second requirement ensures

that the highest possible accuracy is achieved. The objects which have been reconstructed

are referred to as ZEUS Unidentified Flow Objects, or ZUFOs.

4.4 Kinematic Variable Reconstruction

The reconstruction of the kinematic variables x, y and Q2 is one of the most important

aspects of any analysis of DIS data. There are three different methods in use within ZEUS,

all of which are described here.

Figure 4.8 depicts a standard ep collision and indicates which quantities can be measured,

any two of which can be used to reconstruct the kinematic variables. Naturally F and γh,

the energy and scattering angle of the struck quark, cannot be directly measured, but can

be well approximated by reconstructing the energy and angle of the resulting hadronic

system. This will be discussed further in section 4.4.2.

Figure 4.9 shows isolines of the four quantities, E′
e, θe, F and γh, over the x — Q2

plane. Where the isolines are close together, the quantity which the isolines represent will

be relatively insensitive to any mismeasurement. An example of this is shown in figure

4.9(a) for low scattered positron energies. Conversely, at high positron energies, where the

isolines are much further apart (low y), a small mismeasurement of E′
e can cause serious

distortion in the kinematic variables. This will be discussed further in the next section.

4.4.1 The Electron Method

The simplest reconstruction method available is based purely on E′
e and θ, the energy and

polar angle of the scattered positron, and is referred to as the electron method. It is also

the reconstruction method normally used by fixed target experiments. The formulae for
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Figure 4.8: Schematic representing a standard ep collision, indicating the main quantities

which can be used to reconstruct the event kinematic variables x, y and Q2.

the kinematic variables, xe, ye and Q2
e can be derived from equation 1.1 and are found to

be

Q2
e = 2EeE

′
e(1 + cos θ)

ye = 1 − E′
e

2Ee
(1 − cos θ)

xe =
Q2

e

sye
(4.3)

where Ee, E
′
e and θ are as defined in figure 4.8 and s is the square of the centre of mass

energy.

As can be seen from figure 4.9, the electron method will perform well at high y, indicated

by the closeness of the isolines in E′
e and θ is this region. However, at low y the isolines are

far apart, indicating that the electron method will not perform so well. This is reflected

in figure 4.10 which shows the difference between the reconstructed and true kinematic

variables obtained from a DIS Monte Carlo sample, using the electron method. Events in

which the positron radiates a photon in the initial or final state require special treatment.

This will be discussed in section 4.4.4. It is clear that xel is systematically shifted from

the true value and this is due to the poor performance of the electron method at low y and

Q2 — the kinematic region which dominates in the D∗± analysis presented in chapters 6
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Figure 4.9: Isolines in the x—Q2 plane of (a) positron energy, (b) positron angle, (c)

struck quark energy and (d) struck quark angle.
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and 7.

The electron method is also hampered by the difficulties in measuring the positron energy

accurately. These arise from energy loss in dead material and also from calorimeter energy

scale uncertainties. For these reasons, the electron method is not used in the D∗± analysis

presented in this thesis.
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Figure 4.10: The fractional difference between the reconstructed and true values of Q2, y

and x, using the electron method, from a sample of DIS Monte Carlo as a function of the

true variable. The error bars are the RMS widths of the fractional differences.

4.4.2 The Jacquet-Blondel Method

Due to the more comprehensive coverage of the ZEUS and H1 detectors (compared to

fixed target experiments), it is possible to fully reconstruct the struck quark energy and

angle, F and γh. Thus these quantities can be used to reconstruct the kinematic variables.

This method was suggested by Jacquet and Blondel [114] with charged current events in

mind. They derived the forumlae:

yJB =

∑

h(Eh − ph
z )

2Ee

Q2
JB =

(
∑

h p
h
x)2 + (

∑

h p
h
y)2

1 − yJB

xJB =
Q2

JB

syJB
(4.4)
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where ph
x, ph

y and ph
z are the momentum components in the x, y and z directions of the

hadrons and where
∑

h indicates the sum over all hadrons in the event, except those

associated with the proton remnant. The hadronic quantities required in this method can

be calculated using either calorimeter cells or ZUFOs. The latter are used for this purpose

in the D∗± analysis. This method is also sensitive to the effects of dead material and

calorimeter energy scale uncertainties. It is also particularly susceptible to calorimeter

noise when the level of hadronic activity is low (low y events). This results in poor

resolution as can be seen in figure 4.11. Thus, this reconstruction method is not used in

the D∗± analysis, although yJB can be used to exclude events with a low level of hadronic

activity, in which γh would be most susceptible to distortion caused by calorimeter noise.
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Figure 4.11: The fractional difference between the reconstructed and true values of Q2, y

and x using the Jacquet-Blondel method from a sample of DIS Monte Carlo as a function

of the true variables. The error bars are the RMS widths of the fractional difference

distributions.

4.4.3 The Double Angle Method

This final method [115] relies, as the name implies, on the two scattering angles, θ and

γh, where γh is determined using

cos γh =
Q2

JB(1 − yJB) − 4E2
ey

2
JB

Q2
JB(1 − yJB) + 4E2

ey
2
JB

(4.5)
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The scattering angles tend to be much more accurately reconstructed than the energies

and are much less sensitive to calorimeter energy scale considerations. It is clear from

figure 4.9, that the only region where the Double Angle method will not perform well is at

low y — a region which can be removed using a cut on yJB, as described in the previous

section.

The formulae for the Double Angle method kinematic variables can be derived [115] using

the naive quark parton model as

Q2
DA = 4E2

e

sin γh(1 + cos θ)

sin θ + sin γh − sin(θ + γh)

yDA =
sin θ(1 − cos γh)

sin θ + sin γh − sin(θ + γh)

xDA =
Ee

Ep

sin θ + sin γh + sin(θ + γh)

sin θ + sin γh − sin(θ + γh)
(4.6)

From figure 4.12 it is clear that the Double Angle method does not suffer from large system-

atic shifts and also has a better resolution (RMS width) than the Jacquet-Blondel method

and is consequently used as the reconstruction method for the D∗± analysis described in

chapters 6 and 7.
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Figure 4.12: The fractional difference between the reconstructed and true values of Q2, y

and x using the Double Angle method, from a sample of DIS Monte Carlo as a function

of the true variables. The error bars are the RMS widths of the fractional difference

distributions.
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4.4.4 Radiative Events

The kinematic variable reconstruction methods which have been described in the previous

sections do not account for the possibility that the incoming or outgoing positron may

radiate a photon. This will cause the kinematics of the event to be incorrectly recon-

structed. As the photons tend to be radiated close to the direction of the positron, the

effect of final state radiation (FSR) is not serious. This is because the calorimeter deposits

of the positron and the photon are sufficiently close together that they are identified as a

single cluster.

Initial state radiation (ISR), however, poses a more serious problem as the photon usually

escapes undetected down the beampipe. This means that the positron beam energy, Ee has

been reduced to Ee−Eγ . This effect must be accounted for during the unfolding procedure

used in the extraction of cross sections from measured data, as will be discussed in chapter

7.

4.5 Summary

In this chapter we have discussed the procedure through which data from the detector are

filtered online to reject background and the selection requirements for DIS interactions.

The main features of the reconstruction package have also been discussed, with emphasis

placed on the detector components most relevant to the physics studies presented in this

thesis. The post-reconstruction analysis tools required to produce the final high quality

data sample have been described and the available kinematic variable reconstruction meth-

ods have been assessed. The Monte Carlo simulation of the detector and trigger systems

have been described.



Chapter 5

SRTD Energy Corrections

5.1 Introduction

At the end of the previous chapter the different methods available for kinematic variable

reconstruction were discussed. It was explained that the simplest and potentially most

accurate method is the so-called “electron” method, in which x, y and Q2 can be recon-

structed from the angle and energy of the scattered positron. This method, however, can

only reach its full potential if both the angle and the energy are accurately measured.

Of these two quantities, the energy is the most difficult to measure well because it is the

most sensitive to the different degrading factors (showering caused by dead material and

calorimeter energy scale uncertainties) discussed in the previous chapter. Figure 5.1 shows

the energy spectra of positrons detected in the small angle rear tracking detector (SRTD)

region for 1995 data and Monte Carlo. The peak of the distribution is expected to be

at approximately the positron beam energy (27.5 GeV). However, it is clear that this is

not the case, both for data and Monte Carlo, and indicates that some energy loss has

occurred. The noticeable discrepancy between data and Monte Carlo indicates that the

scattered positron energy loss prior to detection in the calorimeter is not well simulated

in the Monte Carlo.

The mismatch between data and Monte Carlo observed in the scattered positron energy

distribution could be due to missing dead material between the interaction point and the

calorimeter in Monte Carlo. It could also be due to differences in the energy scale between

data and Monte Carlo (as discussed briefly in the previous chapter), or some combination
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of both effects. Previous analyses of low Q2 data [116] have shown that information from
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Figure 5.1: Scattered positron energy distributions for 1995 data (black dots) and Monte

Carlo (histogram) where the positron is detected in the SRTD region. Standard DIS cuts

have been applied to obtain the distributions. Energy loss by the scattered positron is

indicated by the shift of the peak to a value which is lower than the nominal positron

beam energy (see text). There is also a noticeable discrepancy between data and Monte

Carlo, indicating that the energy loss is inaccurately simulated in Monte Carlo.

the SRTD can be used to correct for energy loss from the scattered positron, improving

the resolution on the measurement of the positron energy and ensuring good agreement

between data and Monte Carlo.

After the end of data-taking in 1994, the RCAL module which contains the beampipe was

modified so that the beam hole was no longer 20×20 cm, but 20(x)×8(y) cm, allowing the

detection of lower Q2 positrons than was previously possible. This, however, also changed

the dead material configuration in the rear beampipe region, requiring the determination

of a new set of energy loss corrections for data and Monte Carlo using the SRTD. There

was also a sharp increase in the amount of data taken between 1994 and 1995, making it

possible for the first time to extract a detailed functional form for these corrections.

This chapter describes the extraction of these energy loss corrections using the SRTD. First

an overview of the SRTD itself will be given, followed by a description of the data and

Monte Carlo samples which are used for this study and how they are selected. The methods

available for extracting the corrections will be discussed and their results compared to find
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the best set of energy loss corrections for 1995 data. Finally, comparisons will be made

between data and Monte Carlo after correction to ensure that the objectives of this study

have been achieved.

5.2 The Small Angle Rear Tracking Detector

The SRTD is situated on the inner face of the RCAL (in front of the RPRES — see chapter

3) and covers the whole of the inner ring (plus some of the second ring) of calorimeter

towers around the RCAL beampipe, as shown in figure 5.2. It’s total angular coverage is

162◦ < θ < 176◦.

The SRTD consists of two layers made up of strips of scintillator; the first layer consists

of horizontal strips, while the second layer consists of vertical strips. The strips are 10

mm wide, 5 mm thick and either 240 mm or 440 mm long, depending on which layer they

are in. Each layer is divided up into four quadrants which, as with the RPRES, are read

out using wavelength shifters which pass the scintillation light to the PMTs. The SRTD

is also calibrated strip-by-strip using MIP-like particles.
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Figure 5.2: Layout for the SRTD as in the 1995 Data Taking Period. The grey hatched

areas indicate the four SRTD quadrants, which are numbered 1 to 4 starting in the top

right-hand corner and going round anti-clockwise. The RCAL cells are also indicated and

are numbered for use in the comparison of data and Monte Carlo kinematic peak events,

as performed in section 5.6.3.
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5.3 Selection of Data Samples

In order to study scattered positron energy loss, event types are required in which the

energy of the scattered positron can be determined independently of the calorimeter.

Three such event types have been used in this study: Kinematic peak events, DIS ρ0

events and elastic QED Compton events. Separate samples of each of these event types

are required for both data and Monte Carlo. The selection criteria for data and Monte

Carlo and the method of “predicting” the energy of the scattered positron are described

in this section.

All the analysis tools described in the previous chapter are used in the selection of all

the different event types. However, at this stage, ZUFOs had not been developed and

consequently, calorimeter cell positions and energies were used in their place. There are

two specific criteria which are not previously discussed, but which are common to all the

data and Monte Carlo samples in this study. These are

SRTD hit All the scattered positrons in these event samples were required to be associated

to a good hit in the SRTD (in the case of the QED Comptons, at least one of the

clusters was required to hit the SRTD). A good SRTD hit is normally defined as one

found by the reconstruction routine, SRTDELEC, for which the error flag is returned

as zero. When error = 0, it means that the SRTD cluster to which the scattered

positron is associated is well-contained within the SRTD and has sufficiently high

energy to ensure that the cluster was reconstructed properly. When error > 0, it

means that the highest energy strip within the cluster was on the edge of the SRTD

or on the calorimeter crack (the line along which the two halves of the calorimeter

meet). It can also mean that the energy deposit in each of the two SRTD planes

was too small to ensure a good match when the cluster was made. Details of the

construction of SRTD clusters and the matching procedure to the scattered positron

are given in the previous chapter. The “ambiguous” hits make up about 20 % of the

data sample. Both of these hit types are kept in this sample as it is not known how

well simulated the ambiguous hits are in Monte Carlo. To ensure that the hits are

well-contained, fiducial cuts are applied such that the hit position is at least 1 cm

from the SRTD edge.

Calorimeter Crack Any scattered positrons which are found in the cracks where the two
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halves of the RCAL/SRTD meet are excluded from all samples.

The remainder of the cuts are specific to the event type and are applied to both data and

Monte Carlo, unless otherwise stated. They are described in detail below.

5.3.1 Kinematic Peak Events

From the x — Q2 plane shown in figure 5.3, it can be seen that for low y and low Q2

(Q2 < 100 GeV2) the energy of the scattered positron becomes approximately independent

of the kinematics of the event and is roughly equal to the beam energy (in 1995 this was

27.52 GeV). This region of phase space is known as the kinematic peak region.

1

10

10 2

10 3

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1
x

Q
2  (

G
eV

2 )

Figure 5.3: Isolines of Scattered Positron Energy (GeV) as seen in the x - Q2 plane.

The data which form the kinematic peak sample correspond to roughly half the data taken

in 1995 in which the low Q2 TLT trigger was switched on and unprescaled. The triggers

are discussed in more detail in chapters 4 and 6. The corresponding Monte Carlo sample

was generated using DJANGO6V2.4, which interfaces LEPTO [117] and HERACLES [118]

in order to produce non-diffractive DIS events with radiative corrections. Parton shower

evolution was performed using MEPS [119], while the hadronisation was performed using

the Lund string model [120] as implemented in JETSET [121]. The input proton structure

function was GRV94(HO), with FL set to zero. This latter requirement only applies to

this particular Monte Carlo sample and will not significantly alter the results of this study.
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The samples of kinematic peak data and Monte Carlo are selected using a combination of

requirements which are as follows

• One of the FLT DIS trigger slots has fired.

• TLT low Q2 bit set. This ensures good coverage of the SRTD.

• A positron with energy E′
e > 8 GeV, found using the SINISTRA positron finder (see

chapter 4 for more details).

• A fiducial cut around the RCAL beam hole was applied by requiring the positron

to hit the calorimeter outside a 26(x) × 16(y) cm box, centred on the middle of the

RCAL beam hole. Due to the choice of x = 0, y = 0, the box actually runs from

−13 cm to +13 cm in x and from −8 cm to +8 cm in y. Thus it is normally written

13(x) × 8(y) cm and is referred to as the “box cut”.

• A good hit in the SRTD.

• 35 < E − Pz < 65 GeV.

• −40 < Zvertex < +40 cm.

• Q2
DA > 3.5 GeV2. This lower Q2 limit was chosen because the Monte Carlo sample

used was generated with Q2 > 3 GeV2.

The kinematic variables were reconstructed using the Jacquet-Blondel and Double Angle

methods in order to minimise the input from the scattered positron energy. The signifi-

cance of all these cuts is discussed fully in the context of the D∗± analysis presented in

subsequent chapters.

Having established a sample of “good” DIS events, the kinematic peak sample was selected

by requiring yJB < 0.02 and Q2
DA < 100 GeV2. This leaves 32368 data events and 18484

Monte Carlo events for the kinematic peak samples.

5.3.2 DIS ρ0 Events

In elastic ρ0 events, the proton remains intact and scatters through a small angle such that

it escapes through the forward beampipe. The ρ0 itself decays almost 100 % of the time

to a pair of charged pions. Thus in exclusive DIS ρ0 events, the energy of the scattered



5.3. SELECTION OF DATA SAMPLES 113

positron can be calculated from the conservation of energy and longitudinal momentum,

under the assumption that the transverse momentum of the scattered proton is small

compared to the longitudinal component. The energy is given by the following formula:

E′
e =

2Ee − (Eρ − |pρ| cos θρ)

1 − cos θe
(5.1)

where Ee is the positron beam energy, Eρ, pρ and θρ are the energy, momentum and angle

of the ρ0 (as determined from the tracks of the two pions) and θe is the angle of the

scattered positron. In the case of initial state radiation, Ee becomes Ee − EISR.

The data which form the DIS ρ0 sample were taken from the full 1995 data-taking pe-

riod. The Monte Carlo DIS ρ0 sample was generated using HERACLES [118], with the

requirement that Q2 > 1 GeV2. After noise suppression and hadronic energy scaling the

following further cuts were then applied to both data and Monte Carlo:

• A scattered positron with energy greater than 5 GeV.

• E − Pz > 35 GeV.

• −50 < Zvertex < +40 cm.

• box cut 13(x) × 8(y) cm

• Two oppositely-charged tracks were required which were associated to the primary

vertex and which were also required to have at least one hit in superlayer 3. The two

tracks were only accepted as pion candidates if they also each had pT > 0.16 GeV.

In the area of angular coverage of the SRTD, a track associated to the scattered

positron is not expected.

• Eρ
CAL/Pρ < 1.5, where Eρ

CAL is the calorimeter energy excluding that deposited by

the scattered positron and Pρ is the momentum of the ρ0 candidate as measured in

the CTD.

• 0.6 < Mπ+π− < 1.0 GeV2.

The last three cuts on this list are those needed to select ρ0 → π+π− decays in elastic

events. The nominal ρ0 mass is 770.0±0.8 MeV [18], hence the cut on the π+π− invariant

mass. The width of the mass window reflects the resolution with which the mass can
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be reconstructed. The Eρ
CAL/Pρ requirement ensures that the only hadronic energy de-

posited in the calorimeter comes from the ρ0. This excludes ρ0 events in which the proton

dissociates.

This is a minor adaption of the cuts used in previous analyses [122]. After applying all

these cuts, 2200 data events and 2806 Monte Carlo events were left.

5.3.3 Elastic QED Compton Events

The Feynman diagrams for the elastic QED Compton process are shown in figure 5.4. In

such events, the incoming positron scatters off a quasi-real photon (q22 → 0), producing a

positron and a photon in the final state, each with a finite scattering angle. Hence, both

the positron and the photon can be measured in the main detector. The energy transfer to

the proton is small, allowing the proton to remain intact and disappear undetected down

the beampipe.

Figure 5.4: The Feynman diagrams for the elastic QED Compton process.

Given the kinematics of these events, it is possible to determine the positron and final state

photon energies independently of the calorimeter using conservation of transverse energy

and momentum, under the assumption that the transverse momentum of the scattered

proton is negligible. Using these requirements the positron and photon energies are given

by

E′
e = 2Ee

sinθγ

sinθe + sinθγ − sin(θe + θγ)
(5.2)
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Eγ = 2Ee
sinθe

sinθe + sinθγ − sin(θe + θγ)
(5.3)

where Ee is the positron beam energy, θe is the polar angle of the scattered positron and

θγ is the polar angle of the final state photon. Again, in the case of ISR events, Ee should

be replaced with Ee − EISR.

The QED Compton data sample was selected from the whole 1995 data-taking period

using the following combination of DST requirements

• Any one of the FLT DIS triggers or the FLT QED Compton trigger should have fired.

The former are discussed in the previous chapter, while the latter looks specifically

for at least two isolated electromagnetic deposits in the calorimeter, with energy

threshold cuts set according to where the deposits are located [123].

• E − Pz + 2Eγ > 30 GeV.

• Exactly two electromagnetic islands (EEMC/Etotal > 0.9) must be found with ηisland <

2.5.

• Each island should have Eisland > 2 GeV and at least one island should have

Eisland > 4 GeV.

• EFCALBP < 50 GeV, where EFCALBP is the energy deposited in the inner rings of

the FCAL.

• No hadronic islands should be found. An island is considered hadronic if it satisfies

EEMC/Etotal < 0.9.

• The islands should be back-to-back in φ, ie. |π − |φ1 − φ2|| < π/4.

The sample of elastic QED Compton Monte Carlo was generated using Compton2.0 [124].

After noise suppression and energy scaling, the following further cuts were then applied

to both data and Monte Carlo:

• Two electromagnetic clusters were required, each with energy greater than 5 GeV.

• Both clusters were required to lie outside a box cut of 13(x) × 8(y) cm.
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• 35 < E − Pz < 60 GeV.

• −50 < Zvertex < +50 cm.

• |θe − θγ | < 85◦. This removes events in which hadrons were identified as electromag-

netic clusters.

• Ehad = Etot − E′
e − Eγ must be less than 2 GeV.

• |ψ| < 3.4◦, where ψ = π − |φe − φγ |. φe and φγ are the azimuthal angles of the

scattered positron and final state photon respectively (calculated from the SRTD

co-ordinates where possible).

The last two cuts are those required to select elastic (as opposed to inelastic) QED Comp-

ton events. The vertex requirement should be viewed in the knowledge that the vertex

is reconstructed successfully in only a small number of the events. Where the vertex is

not found, it is assumed to be zero. These cuts are a minor adaptation of those used

previously [125, 126].

After applying all these cuts, 5134 data events and 19472 Monte Carlo events remain for

use in this study.

5.4 Methods of Energy Prediction

As described in the previous section, each of the event types provides an alternative

method for predicting the energy of the scattered positron to direct measurement using

the calorimeter. In order to confirm that these methods were reliable, studies were carried

out on each of the Monte Carlo samples. The results of these are summarised below.

5.4.1 Kinematic Peak Sample

The y and Q2 cuts on this sample select out a small spread in scattered positron energies

around the beam energy (see figure 5.5). In order to determine the peak value, the Monte

Carlo sample must be used. After cutting on yJB and Q2
DA, the “true” scattered positron

energy distribution from the Monte Carlo generator level can be extracted. To find the

peak value of this “true” kinematic peak sample, the energy must be smeared by 24%
√
E
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in order to simulate the measured calorimeter resolution [127]. Then the peak of this

smeared distribution can be fitted with a Gaussian to find the “predicted” energy. By

fitting the peak shown in figure 5.5, the predicted energy for the kinematic peak samples

is found to be 27.18± 0.02 GeV. The resolution of this method can also be obtained from

this Gaussian fit, and is found to be 1.30±0.04 GeV. This resolution is then also assumed

to be correct for the data kinematic peak sample.
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Figure 5.5: The “True” Kinematic Peak energy distribution, taken from Monte Carlo.

The line indicates a fit to the peak to obtain the predicted energy for this sample.

5.4.2 DIS ρ0 Sample

As described in section 5.3.2, the energy of the scattered positron can be determined

from the kinematics of the ρ0. When this energy was calculated from the reconstructed

ρ0 in the Monte Carlo and the value compared to the generator-level scattered positron

energy (“true” positron energy), the agreement was not as good as expected. In order to

investigate whether the prediction method itself was at fault, the energy was calculated

using equation 5.1 and the four-vector of the generator level ρ0 and compared to the true

positron energy. The two main factors which were investigated were the assumption of

negligible proton pT and the consequences of neglecting to subtract any initial state photon

energy from the beam energy. The results of these investigations are shown in figure 5.6.

All the quantities used to make these plots come from the generator-level Monte Carlo,
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ensuring that there are no detector effects contributing to any discrepancies. It is clear

that the assumption of negligible proton pT is perfectly reasonable, but that failing to

deal with ISR events can have a significant effect. This is to be expected as the energy

predicted from the conservation of longitudinal energy and momentum, which implies a

small contribution from the proton, but a large one from any initial state radiation.

Going then to the reconstructed predicted energy, a method of dealing with ISR events

was sought. Using the LUMI photon calorimeter (LUMI-γ) to reject possible ISR events

was tested, but due to the limited geometrical acceptance of the LUMI-γ, too few photons

were tagged to remove the problem. The method which was finally used was based on the

assumption that the ρ0 and the scattered positron should balance in transverse momentum,

and that any imbalance was due to the effect of energy loss from the scattered positron.

Thus the ratio of the transverse momenta could be used as a rough correction factor for

the positron E − pz. This then implies that any tail in this corrected E − pz distribution

is due to ISR rather than energy loss from the scattered positron. Thus a relatively harsh

cut could then be placed on this corrected E−pz (referred to as (E−pz)corr) to reduce the

ISR tail. A cut of (E − pz)corr > 50 GeV was chosen after examining figures 5.7b and c.

Figure 5.7b shows the number of ISR (non-ISR) events which survive the (E− pz)corr cut

as a fraction of the total number of events which survive the cut (referred to as fraction

1), versus cut value, while figure 5.7c shows the number of ISR (non-ISR) events which

survive the (E − pz)corr cut as a fraction of the total number of events in the starting

sample (referred to as fraction 2), versus cut value. It is clear from this latter figure that

(E − pz)corr > 50 GeV is a reasonable cut, as it removes ∼ 50 % of the ISR events, but

only removes ∼ 20 % of the non-radiative events. After applying this cut 1630 data events

and 1849 Monte Carlo events remain for this study.

Having obtained these final samples, it was necessary to determine the resolution of the

prediction method. To do this, Epredicted − Etrue, where Etrue is the true positron energy

from the Monte Carlo generator level, was plotted in bins of predicted energy. As can

be seen from figure 5.8a, the distributions of the absolute difference are not Gaussian,

and so the RMS of each distribution was taken as the resolution. This RMS was then

plotted as a function of the mean predicted energy and fitted with a polynomial to obtain a

parametrisation of the resolution. However, when this parametrised form of the resolution

was used in the extraction of the corrections for both data and Monte Carlo (the extraction

is described in section 5.6), it was found that the contribution from the DIS ρ0 events to
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Figure 5.6: a) Comparison of the predicted energy and the “true” energy from the Monte

Carlo generator level, without taking into account any initial state radiation in the pre-

diction method, b) the same comparison, but taking into account initial state radiation

and c) comparison of the predicted and true energies as a function of proton pT .
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Figure 5.7: a) Comparison of Epred −Etrue as a function of the pT -corrected E −Pz . The

tail to low values of E−Pz is predominantly due to ISR events. b) Fraction 1 (as described

in the main text) as a function of (E − Pz)corr cut. c) Fraction 2 (also described in the

main text) as a function of (E − Pz)corr cut.
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the χ2 in the second method was very high. This was traced to the resolution being

extremely small at the high end of the DIS ρ0 predicted energy spectrum. These events in

which the scattered positron is almost at beam energy correspond to the lowest y events.

This also means that the tracks from the ρ0 will be at the forward limit of the CTD

acceptance. This in turn will cause systematic effects on the track measurements, which

will deteriorate the resolution for these events. For the purposes of this study, it was

assumed that the highest resolution which could be attained in this sample was ∼ 200

MeV. The lowest resolution obtained from this event type is ∼ 400 MeV, as can be seen

at low energies in figure 5.8. Thus a linear interpolation between 400 MeV at 19 GeV

and 200 MeV at 27.3 GeV was made, which gives the resolution of the DIS ρ0 events as

σ = 0.86− 0.024 ∗Epredicted. This value was then, once more, assumed to also be the case

of the data DIS ρ0 sample.

Figure 5.8: a) The effect of requiring (E − Pz)corr > 50 GeV on the absolute difference

between the predicted and true energies. b) The resolution of the ρ0 energy prediction

method as a function of the predicted energy.
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5.4.3 Elastic QED Compton Sample

As described in section 5.3.3, the energy of both the positron and the photon can be pre-

dicted from transverse momentum balance, assuming the proton pT to be small compared

to its longitudinal component. As a consequence, it is reasonable to expect that the effect

of initial state radiation on this prediction method should be less significant than for the

DIS ρ0 sample as ISR photons have negligible pT . However, it is equally reasonable to

expect that non-zero proton pT will have a more significant effect on this sample than on

the DIS ρ0 sample. In order to test these expectations, the generator-level four-vectors of

the positron and photon were used to predict the energies, which were then compared to

the actual generator-level values. The results of these investigations are shown in figure

5.9. There is clearly some contribution from both ISR and proton pT , but by apply-

ing the cuts described in the section 5.3.3 and increasing the E − Pz cut from 35 to 38

GeV, the agreement at reconstruction level (as shown in figure 5.10a) is good between

6 < Epredicted < 23 GeV. The candidates outside this range are the highly asymmetric

QED Comptons, which are clearly much more sensitive to the effects of proton pT and

ISR and so have been excluded from this study.

The resolution for this prediction method was determined in the same manner as that for

the DIS ρ0 sample. The resolution as a function of predicted energy can be seen in figure

5.10b and can be parametrised as σ = −0.3+0.145∗Epred−0.005∗E2
pred+(3.4·10−5)∗E3

pred.

5.5 Dead Material Distributions

Information from the SRTD can be used to look at the distribution of dead material

between the interaction point and the face of the RCAL. Positrons tend to shower when

they pass through a layer of dead material, and the larger the amount of dead material,

the greater the amount of energy the positron loses prior to hitting the calorimeter. The

distribution of SRTD hits for different ranges in SRTD energy deposit can be examined

in order to build up a picture of the dead material distribution in data and Monte Carlo.

The density of hits in any region for a particular energy range indicate the level of dead

material. For example, the x-y distribution of hits with low SRTD energies has the highest

density of hits in the regions of little dead material. Conversely, the same distribution,

but for hits with high SRTD energies will have the highest density of hits in regions of
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Figure 5.9: a) Comparison of the predicted energy and the “true” energy from the Monte

Carlo generator level, without taking into account any initial state radiation and under

the assumption that proton pT is small compared to pL. b) The same comparison, taking

into account ISR. c) Comparison of the predicted and “true” energies as a function of

proton pT .
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Figure 5.10: a) Comparison of the reconstructed predicted energy and the generator level

energy as a function of the predicted energy. The agreement is good within the range

6 < Epred < 23 GeV (as shown by the vertical lines). b) The resolution of the elastic QED

Compton energy prediction method as a function of predicted energy. This is fitted to

determine the parametrisation of the resolution used in the correction determination.

large dead material. Figures 5.11(a)-(d) shows such hit distributions for data and Monte

Carlo.

These distributions clearly show the ring structures which were seen in previous studies

of energy loss by the scattered positron using the SRTD [92]. These are attributed to

the VXD cables and the CTD inner wall. There are also areas of high hit density at

the corners of the box cut. These are caused by the presence of water cooling pipes. A

comparison between data and Monte Carlo of the mean SRTD energy deposit as a function

of radius is also shown in figure 5.11e). This is essentially an indication of the amount of

dead material as a function of radius. Through examination of the plots in figure 5.11, it

can be seen that there is clearly insufficient dead material in Monte Carlo, but that the

dead material that is already implemented in the Monte Carlo is distributed in a similar

manner to that in the data.

5.6 Positron Energy Correction Results

Two different methods have been used to determine the functional forms and parameter

values of these corrections, which are described below.
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Figure 5.11: a) The SRTD hit distribution in the Monte Carlo for hits with ESRTD/2 < 10

MIPS. b) The hit distribution for the same sample, but for hits with ESRTD/2 > 60

MIPS. c) The SRTD hit distribution in the data kinematic peak sample for hits with

ESRTD/2 < 10 MIPS. d) The hit distribution for the same sample, but for hits with

ESRTD/2 > 60 MIPS. e) A Comparison of ESRTD/2 versus radius for data and Monte

Carlo.
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Method I

In this method, for each data and Monte Carlo sample the calorimeter energy is binned in

SRTD energy and the peak of the calorimeter energy is then fitted with a Gaussian. This

peak value is plotted as a function of the mean SRTD energy in each bin. This distribution

is then fitted to extract both the functional form and the parameter values. These values

can then be examined as a function of corrected scattered positron calorimeter energy to

determine any energy dependence.

Method II

This method is an event-by-event χ2 minimisation technique, where the χ2 is defined as

χ2 =
(Epredicted − Ecorrected(ECAL, ESRTD))2

σ2
(5.4)

σ is defined as the resolution of the prediction method (as described in section 5.4) and

the functional form of the correction is assumed from Method I. The χ2 is then minimised

to find the best set of correction parameters. Although the functional form from Method

I is assumed, this is an independent way of determining the parameter values required.

Both these methods have their advantages: by fitting only the peak of each calorimeter

energy distribution in Method I, the problematic ISR events are excluded from the study.

However, the results of the method will be dominated by the sample with the largest

statistics, which in this case is the kinematic peak sample. Unfortunately, this also has

the poorest resolution. Conversely, the DIS ρ0 sample has the best resolution, but the

lowest statistics. This method is also very subjective, as it depends on the user choice of

what the “best fit” is.

Method II has the advantage that the sample with the best resolution will dominate the

result, but ISR events have to be treated correctly to make the method work. Results

from both these methods are given below and compared.

5.6.1 Results from Method I

The functional form of the correction is obtained from the kinematic peak samples, because

these samples have the largest statistics. The kinematic peak can only be used to give

one set of correction parameters at a single predicted energy. Although the DIS ρ0 sample

covers a range of predicted energies (20 GeV to 27.4 GeV), the statistics are only large
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enough to provide one set of correction parameters at < Epredicted >∼ 25.6 GeV. The

elastic QED Compton samples cover a range in predicted energy from 6 to 23 GeV (as

explained in section 5.4), but these samples contain sufficient statistics to provide four sets

of correction parameters. The bins in which each set of correction parameters have been

determined (in both data and Monte Carlo) are given in table 5.1.

The functional form of the correction in data is found to be linear, while the form of the

correction for the Monte Carlo was found to be well described, at least for the kinematic

peak and DIS ρ0 samples, by a second order polynomial. The results of these fits can be

seen in figures 5.12 and 5.13. The slope parameter for each of the data fits are given in

figure 5.12. For the Monte Carlo, the samples and their linear and quadratic parameter

values are given in table 5.1.

Sample Linear term Second order term

QED Compton 0.045 ± 0.008 0.00010 ± 0.00016

6 < Epred < 12 GeV

QED Compton 0.053 ± 0.007 0.00016 ± 0.00015

11 < Epred < 14 GeV

QED Compton 0.048 ± 0.006 0.00020 ± 0.00011

14 < Epred < 16 GeV

QED Compton 0.051 ± 0.007 0.00012 ± 0.00012

16 < Epred < 23 GeV

DIS ρ 0.031 ± 0.007 0.0004 ± 0.0001

Kinematic Peak 0.039 ± 0.002 0.00031 ± 0.00003

Table 5.1: The parameters of the fit to each of the Monte Carlo Samples.

In the Monte Carlo samples, it is clear that fitting a quadratic function gives a good

description of the ECAL versus ESRTD/2 distributions for the kinematic peak and DIS ρ0

samples. However, for the elastic QED Comptons, it is not so clear whether the fit should

be linear or quadratic. This ambiguity can be explained by the fact that the statistics

are limited in each fit, but also by the fact that the QED Compton predicted energies
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Figure 5.12: Uncorrected positron energy, ECAL, versus SRTD energy (in MIPS) for each

of the three data samples. The elastic QED Compton sample has been divided up into four

bins in predicted positron energy to gain wider positron energy coverage. The behaviour

is linear in all bins and the number given on each plot is the slope from a linear fit.
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Figure 5.13: Uncorrected positron energy, ECAL, versus SRTD energy for each of the three

Monte Carlo samples. The elastic QED Compton sample has been divided into four bins

in predicted positron energy. The curves on the plots are the results of fitting a second

order polynomial and the fit parameters are summarised in table 5.1.
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are substantially lower than for the DIS ρ0 or kinematic peak samples. This will mean

that the SRTD energy deposits for the QED Comptons will be naturally lower. Whether

the better fit is linear or quadratic is due to the behaviour at the highest SRTD energy

deposits, which will make up a smaller fraction of the QED Compton sample relative to

the kinematic peak and DIS ρ0 samples. Another possible solution to this ambiguity could

be due to the correction parameters themselves being dependent on the calorimeter energy

of the scattered positron. When the fits shown in figures 5.13 and 5.12 are performed,

the measured calorimeter energy at ESRTD/2 = 0 MIPS (ie. the y-intercept of the fit)

is allowed to vary as one of the free parameters of the fit function. This value can be

interpreted as the mean energy loss-corrected scattered positron energy for each sample.

Thus by plotting, for example, the slope parameter for each sample versus this mean

energy, this dependence can also be investigated for both data and Monte Carlo. The

results of these investigations are shown in figure 5.14. It is clear from examining figure

5.14 that statistics are too limited to give a clear indication of any energy dependence. In

order to use information from all the samples available, an error-weighted mean is taken

for each parameter, indicated by the flat lines in figure 5.14. Thus the functional forms of

the final corrections using Method I and the corresponding parameter values are given as

Ecorr = ECAL +m ·ESRTD/2 (5.5)

where m = 0.0550 ± 0.0005 GeV/MIP for data and

Ecorr = ECAL + a · ESRTD/2 + b · (ESRTD/2)
2 (5.6)

where a = 0.0404 ± 0.0016 GeV/MIP and b = (2.9 ± 0.2) × 10−4 GeV/MIP2.

However, if these corrections are applied to standard samples of low Q2 NC data and Monte

Carlo and the corrected scattered positron energy distributions compared, it is clear that

the Monte Carlo distribution is shifted to higher values than the data distribution (see

figure 5.15). This is principally due to the technical method by which the samples are

selected. The calorimeter energy scale corrections described in the previous chapter are

only applied to cells not associated to the scattered positron. Thus a scaling factor must

be determined to account for this after the energy loss correction has been applied. In the

results from both Method I and II, the scaling factors for data and Monte Carlo show a

relative difference which is approximately the 2.5 % expected for RCAL cells.

This scaling factor is obtained independently for data and Monte Carlo by comparing the

dead-material corrected scattered positron energy with its predicted energy. Thus the
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Figure 5.14: The energy dependence of the correction parameters for both Data and Monte

Carlo. The linear and quadratic fit parameters are plotted versus the mean corrected

energy of the sample. The filled circles indicate the elastic QED Compton sample, the

open circles the DIS ρ sample and the open triangles the kinematic peak sample. The

dotted lines indicate the weighted mean values of the correction parameter in each plot.
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Figure 5.15: Comparison between data and Monte Carlo scattered positron energy spectra,

Ecorr, after the dead material correction has been applied. There is a clear shift between

the two distributions even after the SRTD corrections have been applied.

kinematic peak and DIS ρ0 samples in both data and Monte Carlo each yield one scaling

factor. Using the bins in predicted energy which were used for the determination of the

dead material correction from the elastic QED Compton samples, four scaling factors of

both data and Monte Carlo can be determined. The value of the scaling factor is plotted

versus average dead-material corrected positron energy in figure 5.16 for both data and

Monte Carlo. Two things can be surmised from this distribution: Firstly, the difference

between data and Monte Carlo remains constant over the whole energy range and secondly,

as with the other correction parameters, there appears to be some systematic variation in

the value of the scaling factor with scattered positron energy. However, as before, statistics

are too limited to be able to parametrise this dependence. As a result, the scaling factor

obtained from the data and Monte Carlo kinematic peak samples are used. But as can be

seen in figure 5.16, the kinematic peak scaling factor is about 1 % lower than the scaling

factor for the low energy QED Comptons, so using this value could cause a undercorrection

at lower energies. The scaling factor data using Method I is 1.0315±0.0005 and for Monte

Carlo is 1.0181 ± 0.0008.
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Figure 5.16: The distribution of the shifts to the predicted energy in data and Monte

Carlo as a function of corrected energy (before the shift is applied).

5.6.2 Results from Method II

Using the functional form for the SRTD energy correction indicated by Method I and the

resolutions described in section 5.4, the χ2 given in equation 5.4 was minimised to obtain

the optimum values of the correction parameters for data and Monte Carlo. These fits

were based on a total of 41,820 data events and 38,573 Monte Carlo events (combining all

three samples) and gave the following results:

Ecorr = s · (ECAL +m · ESRTD/2) (5.7)

where s = 1.0372 ± 0.0003 and m = 0.05619 ± 0.0002 GeV/MIP for the data, resulting in

a χ2/ndof of 3.0. For the Monte Carlo the result was given by

Ecorr = s · (ECAL + a ·ESRTD/2 + b · (ESRTD/2)
2) (5.8)

where s = 1.0099 ± 0.0003, a = 0.0791 ± 0.0005 GeV/MIP and b = (−1.41 ± 0.06) × 10−4

GeV/MIP2. This fit was found to have a χ2/ndof of 3.3.

5.6.3 Comparison of Method Results

The fit parameters obtained from both methods are summarised in table 5.2. The parame-

ters obtained from each method for data appear to be reasonably consistent for the SRTD
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energy dependent slope parameter. There is a small difference between the scaling factor

obtained from methods I and II, but this is to be expected as the result from method I is

from the kinematic peak sample only, while the result from method II is dominated by the

contribution from the DIS ρ0 sample. Examination of figure 5.16 shows that the scaling

factor from the DIS ρ0 sample is a little higher than that from the kinematic peak sam-

ple. However, when a comparison between the two methods is made for the Monte Carlo

DATA

METHOD I METHOD II

Scaling factor Linear term Scaling Factor Linear term

1.0315 ± 0.0005 0.0549 ± 0.0005 1.0372 ± 0.0003 0.0562 ± 0.0002

MONTE CARLO

METHOD I METHOD II

Scaling factor Linear term Scaling Factor Linear term

1.0181 ± 0.0008 0.0404 ± 0.0016 1.0099 ± 0.0003 0.0791 ± 0.0005

Quadratic term Quadratic term

(2.9 ± 0.2) × 10−4 (−1.41 ± 0.06) × 10−4

Table 5.2: Comparison of the results obtained from correction methods I and II for data

and Monte Carlo

samples, there is a clear discrepancy in all the fitted parameters. In order to determine

the source of this discrepancy, a comparison is made between the predicted and corrected

positron energies as a function of SRTD energy deposit, for the two Monte Carlo results.

The distributions can be seen in figure 5.17. While the agreement is good up to SRTD

energies of about 100 MIPS, the method I correction clearly fails above this value (this

is only reached in the kinematic peak sample). This is due to the low statistics at these

energies, which will have a more significant effect on method I than on method II. This

indicates that method II is more reliable. In addition a comparison of the parameter error

sizes between the two methods indicates that method II has a higher precision. Thus the

final 1995 SRTD corrections are those obtained from method II.

Having obtained the final correction values, a comparison was made between data and
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Figure 5.17: Comparison of the predicted energy to the corrected energy in Monte Carlo

for the three samples as a function of SRTD energy, using the two different methods (see

text). The error bars indicate the RMS in each bin of SRTD energy. A clear discrepancy

can be seen in the kinematic peak sample corrected using method I.
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Monte Carlo before and after correction, see figure 5.18. These plots show that after

correction, the agreement between data and Monte Carlo is generally quite good, but

that there are still small discrepancies. For example, in the distribution of the corrected

scattered positron energy, the data are consistently slightly higher than the Monte Carlo in

the low energy region and there is a slight difference between the two distributions on the

high side of the peak. The Monte Carlo sample contains no photoproduction, diffraction

or any FL contribution. The low energy tail is the region which is most sensitive to

background or differences in structure function, thus any or all of these could contribute

to the discrepancy observed. However, none of these contributions could be the cause of
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Figure 5.18: Comparison of scattered positron variables, before and after correction, be-

tween Data and Monte Carlo. The Monte Carlo is weighted by luminosity and is re-

weighted to the structure function CTEQ4D.

the slight discrepancy in the peak of the distribution. One possibility is a slight energy

dependence in the correction parameter values, as has been previously discussed. However,
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these parameter values are dominated by the contribution from the DIS ρ0 sample, which

lies just below the kinematic peak in terms of predicted energy, so the energy dependence

argument should be ruled out for the peak region, but could be the explanation for the

discrepancy in the low energy tail region. There is also the possibility that this discrepancy

is due to position in the calorimeter. This can be investigated by comparing data and

Monte Carlo kinematic peak events, after correction, in different calorimeter cells. In

order to perform this investigation, a numbering scheme was devised for cells covered by

the SRTD and is illustrated in figure 5.2. The hatched area is the SRTD and the thick

black lines indicate the region excluded by the box cut, the removal of the crack regions

and the fiducial cuts placed on the SRTD in order to keep ambiguous hits. Ten cells

were then compared as shown in figure 5.19. The highest populated cells (34 and 36) are

those directly above and below the beampipe and will therefore have made up the bulk

of the events used to determine the SRTD corrections. Thus, it is not surprising that the

agreement is good. However, there are noticeable differences in other cells which could be

accounted for by differences in calorimeter cell calibration. In order to test this possibility,

there are two important factors to be dealt with. Firstly, the position-dependence of the

true kinematic peak value must be removed and secondly, the effects of dead material

must be accounted for. This can be done by comparing cells radially equidistant from

the beampipe and only using positrons which are associated with a small SRTD energy

deposit. Unfortunately, the statistics are too limited in 1995 data to be able to check this

possibility, but the 1996 dataset should be large enough to make this investigation.

5.7 Conclusions

Dead material effects on the scattered positron using the SRTD in 1995 data have been

studied. It has been found that although there has been a great improvement in the

simulation of dead material in Monte Carlo between the 1995 version of MOZART and

previous versions, there is still some discrepancy between Monte Carlo and data. Three

data types have been used to extract a correction based on SRTD information, these are

kinematic peak events, DIS ρ0 events and elastic QED Compton events. The methods

of predicting the energy of the scattered positron in each of these samples have been

thoroughly investigated to ensure that they are valid. In the case of the kinematic peak

sample, it was found that the “true” peak value in the Monte Carlo was actually 27.18±0.02
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Figure 5.19: Cell-by-cell comparison of the data and Monte Carlo kinematic peak samples.

There are clear cell-to-cell variations, which could be accounted for by differences in cell-

by-cell calibration between data and Monte Carlo.



5.7. CONCLUSIONS 139

GeV, ie. slightly lower than the nominal beam energy. It was also found that the method

used for the DIS ρ0 sample was insensitive to the effects of non-zero proton pT , but that

the presence of initial state radiation has a significant effect on the prediction method. pT

balance was used to reduce the effect of ISR to a manageable level.

In the elastic QED Compton sample, it was found that the effect of ISR was noticeably

smaller than in the DIS ρ0 sample, but that the effect of proton pT was much more

significant. However, by using appropriate cuts these effects were minimised in the range

6 < Epredicted < 23 GeV. The candidates outside this range are the highly-asymmetric

QED Comptons, which were found to be much more sensitive to proton pT and thus not

usable for the extraction of corrections.

Having established “safe” samples of events, the corrections were extracted for both data

and Monte Carlo. It was found that the form of the correction for the data was linear, but

that the kinematic peak and DIS ρ0 Monte Carlo samples were well described by a second

order polynomial. The situation with regard to Monte Carlo elastic QED Comptons is not

so clear due to limited statistics and low SRTD energy deposits. In the absence of concrete

evidence of the correction parameters varying systematically with calorimeter positron en-

ergy, the same function and parameter values were assumed for the full scattered positron

energy range. Two methods were used to extract the corrections: the bin fitting method

and the event-by-event χ2 minimisation method. The latter method gave the best results.

The full scattered positron energy spectra taken from neutral current data and Monte

Carlo samples were compared after correction above E′
e = 10 GeV and the overall agree-

ment was found to be reasonably good. However, there were small discrepancies; the data

were consistently slightly higher than the Monte Carlo in the low energy region and there

was a slight mismatch on the high side of the peak. The former could be due to several

things, including the absence of diffractive and FL contributions in the Monte Carlo. The

latter, however, cannot be explained by any of these factors. There are indications that

this small discrepancy could be due to the simulation of calorimeter calibration in Monte

Carlo.
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Chapter 6

Selection of Candidates

In chapter 4, the establishment of a high quality, fully-reconstructed data sample was

described in detail. This sample then forms the starting point for the selection of a

DIS sample from which diffractive events containing a D∗±(2010) candidate in the decay

channel

D∗+ → D0π+
s → (K−π+)π+

s + c.c.

can be selected.

In this chapter the criteria for the selection of such events is discussed, along with the

remaining backgrounds which must be removed. The different Monte Carlo generators

used will also be described. After a full discussion of the trigger strategy used in this

analysis, the offline DIS and D∗± selection methods are covered. After the DIS D∗± signal

has been studied, the diffractive requirements are discussed and the signal investigated.

Finally, the characteristics of the data sample are presented.

6.1 Monte Carlo Simulation

Several different Monte Carlo generators were used in the tuning of selection requirements

and subsequently for cross section unfolding, all of which are described in this section. In

the case of the D∗± Monte Carlos (RAPGAP [128] and RIDI [65, 67]), two samples of

each type were generated. One of these was processed with the 1995 versions of MOZART

and ZGANA and the other with the 1996 version of MOZART and the 1997 version of
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ZGANA. The former is used to describe 1995 data and the latter is used to describe both

1996 and 1997 data. This strategy is used because the detector changed significantly

between the 1995 and 1996 data-taking periods, but not between the 1996 and 1997 data-

taking periods. The same is true of the DIS trigger slots, and hence of ZGANA. All D∗±

Monte Carlo samples contain at least one D∗± decaying in the D∗ → (Kπ)πs channel in

each event.

RAPGAP

The principal diffractive D∗± sample was generated using RAPGAP [128]. The Ingelman-

Schlein model is used to simulate the diffractive exchange, assuming the Donnachie-

Landshoff pomeron flux with αIP (0) set to 1.157 (as measured by ZEUS [129]). The

pomeron is assumed to consist predominantly of hard gluons, that is the pomeron struc-

ture function is defined by βfIP/g(β,Q
2
0) = 6β(1−β) for the initial gluon distribution and

βfIP/q(β,Q
2
0) = 1

4fIP/g(β,Q
2
0) for the initial quark distributions, where it is assumed that

only u and d quarks contribute. Q2
0 is set to 4 GeV2 and the parton distributions are

evolved using the next-to-leading order DGLAP equations. No momentum sum rule is

applied to the pomeron.

RAPGAP simulates charm production at the parton level using the leading order massive

charm scheme. Hence, charm is produced only via boson gluon fusion, where the gluon

originates from the pomeron. Charm fragmentation is performed according to the Peterson

fragmentation model with ε = 0.035 (see chapter 1). The colour dipole model implemented

in ARIADNE [130] is used to simulate QCD parton shower evolution, while the LUND

string model [120] as implemented in JETSET [121] is used for hadronisation.

RAPGAP is also used to produce a non-diffractive D∗± sample via standard boson gluon

fusion, with GRV94(HO) as the input proton structure function. However, in this case

QED radiative corrections were also included using an interface to the HERACLES [118]

generator. In both the diffractive and non-diffractive samples the charm mass is set to

1.25 GeV. In order to reduce the sample sizes, only D∗± mesons with pT (D∗±) > 0.8 GeV

are retained. In both samples events were generated with Q2 > 0.6 GeV2.
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RIDI

As described in chapter 2, RIDI [67] simulates diffractive interactions via the t-channel

exchange of a perturbative gluon ladder using the Ryskin model [65] and includes qq̄

and qq̄g final states, as well as virtual gluon corrections. Fragmentation, parton shower

evolution and hadronisation are all performed using JETSET. This sample includes QED

radiative corrections and has the charm mass set to 1.25 GeV. Given that in this case

the diffractive cross section is proportional to the square of the proton gluon density,

it is important to note that the input proton structure function is GRV94(HO). The

other parameter to which the cross section is sensitive is the choice of “K-factor” or

the enhancement caused by the virtual gluon corrections. In this sample it is set to

exp(αs(M
2
X)πCF ) where CF is the colour factor described in chapter 2. In this sample,

events were generated with Q2 > 0.6 GeV2 but also with the requirement that Q2 < 300

GeV2.

DJANGO

An inclusive non-diffractive DIS sample is also used for background studies and has been

generated using DJANGO6V2.4 [117, 118] in the same way as the sample described in the

previous chapter. It is important to note that this sample does not contain any diffractive

interactions.

6.2 Trigger Strategy

The FLT and TLT trigger requirements used in this analysis are crucial, as not only are

they required to provide an appropriate starting sample, but they should also be chosen

to maximise the sample size. Clearly a DIS D∗± sample will be a relatively small subset of

an inclusive DIS sample, hence a trigger strategy based on inclusive DIS triggers provides

the appropriate starting point for this analysis. These trigger slots have already been

described in chapter 4. The size of the starting sample can be maximised by requiring

either FLT30 or FLT44 to have fired and by requiring the low Q2 TLT slot (referred to

as DIS01) to have fired. However, due to trigger rate considerations, FLT30 and DIS01

(the former being the FLT low Q2 slot) were not available for the total data-taking period
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and hence alternatives had to be sought. This section describes the FLT and TLT trigger

strategy in full detail.

6.2.1 FLT Strategy

During the 1995 and 1996 data-taking periods, DIS selection at the FLT was performed

using a logical .or. of FLT30 and FLT44 (see section 4.1.2 for details). However, in 1997,

FLT30 was intermittently prescaled by a factor of 8 and hence FLT46 was used instead of

FLT30.

The efficiency for both FLT30 and FLT44 has been studied in detail previously [5] and

has been found to be above 99 % for events which pass offline DIS selection cuts. FLT46

is simply FLT30 with the additional requirement that most FLT tracks found in an event

come from the nominal interaction region. This is suitable for D∗± event selection as D∗±

candidates are selected offline in such a way that every event contains a minimum of three

well-reconstructed tracks associated to the primary event vertex. For this reason, FLT46

is expected to have a high efficiency in the selection of DIS D∗± candidates. This can be

checked using the final DIS D∗± sample from data and Monte Carlo for 1997, defining the

efficiency as

ε =
Final DIS D∗± selection * FLT30 * FLT46

Final DIS D∗± selection * FLT30
(6.1)

where ∗ is used to indicate a logical .and.. The efficiency is plotted in bins of Q2, W ,

pT (D∗±) and η(D∗±) for both data and Monte Carlo in figure 6.1. Figure 6.1 shows

that the efficiency of FLT46, relative to FLT30, for D∗± selection is very high (greater

than 97 %) and that the agreement between data and Monte Carlo is good to within 2

%. This systematic difference between data and Monte Carlo is much smaller than the

statistical errors associated with the final results discussed in chapter 7 and therefore can

be neglected.

6.2.2 TLT Strategy

In all three years, 1995 — 1997, DIS01 was only switched on and unprescaled for limited

periods of time due to its large contribution to the TLT output rate. When DIS01 is

unavailable, the medium Q2 TLT trigger (DIS03) is used in its place. However, this
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Figure 6.1: The efficiencies for FLT46 (see text) after the final DIS D∗± cuts in both data

(closed circles) and Monte Carlo (open triangles) as a function of Q2, W , D∗± transverse

momentum and D∗± pseudorapidity.
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trigger was sometimes implemented with a 14 × 14 cm box cut and at other times with

a 25 cm radius cut. In addition, a special TLT trigger was available during 1996 and

1997 which combined DIS01 with a D∗± filter. The D∗± filter was designed to select

candidates via the reconstruction method used for offline D∗± selection (described later

in this chapter), using the following cuts:

• 1.4 < M(D0) < 2.3 GeV.

• (M(D∗±) −M(D0)) < 0.17 GeV.

• pT (πs) > 0.05 GeV.

• pT (K) > 0.15 GeV.

• pT (π) > 0.2 GeV.

• p(D0)/p(πs) > 8.

• Combinations with the correct charge only.

This trigger, known as DIS13, is used in addition to DIS01 and DIS03, and is particularly

important when only DIS03 is available. The inclusive DIS TLT trigger strategy is sum-

marised in table 6.1. DIS13 was available for runs greater than 21504 in 1996, ie. about

92 % of the 1996 dataset, and for the whole of 1997.

The efficiency of DIS13, relative to the inclusive DIS triggers, can be checked using the

final DIS D∗± sample from data and Monte Carlo from the 1996/7 data-taking periods.

The efficiency is defined as

ε =
Final DIS D∗± selection * DIS01 * DIS13

Final DIS D∗± selection * DIS01
(6.2)

The efficiency of DIS13 is measured using events triggered by DIS01 in order to make a

proper assessment of the efficiency of the D∗± filter. This means that only those parts of

the data in which DIS01 was available may be used for this study (see table 6.1). The

efficiency is plotted in bins of Q2, W , pT (D∗±) and η(D∗±) in figure 6.2. The efficiency

is found to be approximately 80 % and the agreement between data and Monte Carlo is

good to within approximately 5 %. This overall difference in efficiency between data and

Monte Carlo as well as the small differences observed in the shapes of the Q2 and pT (D∗±)

distributions will be taken into account when the systematic errors are evaluated in the

next chapter.



6.2. TRIGGER STRATEGY 147

Q2 (GeV2)

ε

W (GeV)

ε

pT (D*±) (GeV)

ε

Data

Monte Carlo

η (D*±)

ε

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10 10
2

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

50 100 150 200 250

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

2 3 4 5 6
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

-1 0 1

Figure 6.2: The efficiencies for DIS13 (see text) after the final DIS D∗± cuts in both data

(closed circles) and Monte Carlo (open triangles) as a function of Q2, W , D∗± transverse

momentum and D∗± pseudorapidity.
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Year Run Range TLT trigger RCAL fiducial cut Integrated Luminosity

(cm) (pb−1)

1995 11539 - 12780 DIS01 12 × 6 2.41

12781 - 14397 DIS03 14 × 14 3.91

1996 21186 - 21504 DIS01 12 × 6 0.80

21505 - 21631 DIS01 12 × 6 0.50

21634 - 22448 DIS03 14 × 14 5.73

22449 - 22462 DIS01 12 × 6 0.15

22466 - 22660 DIS03 radius > 25 0.80

22662 - 22954 DIS01 12 × 6 2.42

1997 25190 - 25337 DIS01 12 × 6 0.71

25344 - 27889 DIS03 radius > 25 25.89

Table 6.1: A Summary of availability of the different TLT triggers in the three different

years of data-taking.

6.3 DIS Event Selection

As was discussed in chapter 4, the key feature of a NC DIS event is the identification of

the scattered positron in the main detector. The various complicating factors, such as

dead material and low energy forward-going hadrons, have also been discussed and in this

section the steps which can be taken to minimise their effects offline will be discussed. The

principal source of physics background, photoproduction, in which the scattered positron

disappears undetected down the rear beampipe but electromagnetic energy deposits from,

for example, π0 → γγ decays, fake a positron, is also discussed.

The cuts required to extract a clean DIS sample with high efficiency are described here

and are based on the selection methods used in the extraction of the proton structure

functions F2 and F cc̄
2 [5, 16].

Positron Identification

As was discussed in chapter 4, the scattered positron is identified using the neural net

positron finder SINISTRA [90]. In each event, the candidate with the highest probability
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output by the neural net is chosen as the scattered positron candidate. If its probability

is greater than 0.9, then the event is kept in the final sample. Figure 6.3 shows the

probability distribution from the non-diffractive RAPGAP sample, indicating that the

majority of true positron candidates have a very high probability and would therefore

pass this selection cut. The candidate is also required to have a corrected energy greater

than 8 GeV. This ensures that SINISTRA operates with high efficiency and purity and is

equivalent to requiring y < 0.7. This, in turn, excludes the region of phase space in which

photoproduction events containing a low energy “fake” positron in the FCAL are found.

This effect is illustrated in figure 6.4 which shows the ye distribution observed in the data.

The shaded area indicates those events excluded by requiring yDA < 0.7. The tail in the

shaded distribution is caused by the migrations associated with yDA being different from

those associated with ye.
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Figure 6.3: The SINISTRA probability distribution from non-diffractive RAPGAP Monte

Carlo. The shaded area indicates those candidates which are kept in the final D∗± sample.

Note that the peak near 1 is several orders of magnitude larger than the tail.

Energy-Momentum Conservation

The variable δ was discussed in chapter 4 as a quantity which can be used to reject both

non-ep and photoproduction background. The variable which is used in offline selection
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Figure 6.4: The ye distribution from the data, after all DIS selection requirements have

been applied. The peak at very high y comes from “fake” positron events. The shaded

region indicates the events which are excluded by the yDA < 0.7 requirement. This clearly

excludes the “fake” positron background.

is actually

δ = E − pz =
∑

i

Ei(1 − cos θi) (6.3)

where the sum over i indicates the sum over all ZUFOs found in an event plus the scattered

positron. Once again the positron energy is corrected before it is used in the determination

of E − pz.

Due to the definition of the proton beam direction as the positive z or forward direction,

particles which travel forward will make a small contribution to the total E − pz of the

event, while particles which travel backwards will make a large contribution to the total

E− pz. Thus, based on energy-momentum conservation, one expects a well-contained NC

DIS event to have δ ≃ 2Ee. However, in photoproduction, where the scattered positron

disappears undetected down the rear beampipe, or in a DIS event in which an initial

state photon is radiated, again escaping down the rear beampipe, a low value of E −
pz is expected. Thus, requiring E − pz > 40 GeV, will help to remove any remaining

photoproduction background and will limit the contribution from ISR events. This latter

point is important as it is not currently possible to generate diffractive charm events with

radiative corrections using RAPGAP.
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At the other end of the E − pz scale, some proton beam gas interactions can result in

unphysically high values of E − pz and so requiring E − pz < 65 GeV will help to remove

any remaining non-ep background.

Event Vertex Requirements

It is expected that D∗± events will tend to have a well-defined primary interaction vertex

due to the nature of the decay channel being studied (the resolution of the CTD is not

sufficient to distinguish the displaced secondary vertex which could arise from the D0

decay). It is therefore important only to accept events which have a well-reconstructed

vertex which lies within the main detector volume, that is, −100 < zvtx < +100 cm. This

also helps to exclude any remaining non-ep interactions which cannot usually satisfy such

a requirement.

Box Cut

The majority of the events within the DIS sample have a relatively low value of Q2 so that

the scattered positron is detected in the RCAL. At the lowest Q2 values, the scattered

positron is detected near the beamhole. When the scattered positron is detected close

to the beamhole, the cluster may not be fully-contained within the calorimeter, causing

the energy and impact position to be incorrectly measured. To ensure that only well-

reconstructed positrons are kept in the final DIS sample, a box cut is applied (see chapter

5 for the definition of this fiducial cut). As was discussed in chapter 4, each of the DIS

TLT trigger slots contains some sort of box cut. However, the box cuts are based on

simplified positron position reconstruction algorithms compared to those used in offline

reconstruction. Thus, to ensure that the offline position is accurately reconstructed, the

box cut is made 1 cm tighter than that implemented in the trigger. This choice of offline

box cut is consistent with the position resolution of the calorimeter.

For example, when DIS01 or DIS13 are in use, both of which require |x| > 12 cm or

|y| > 6 cm (written 12(x)×6(y) cm), the offline cut is made at 13(x)×8(y) cm. The extra

centimetre on y is to remove positrons which have hit the very high dead material regions

at the corners of the rear beampipe (see the previous chapter for more details). When

DIS03 is in use, the box cut is made at 15(x) × 15(y) cm or radius > 26 cm, depending
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on which was implemented in the trigger, as described in section 6.2.

It is useful to note that the loosest box cut which is applied in this analysis is equivalent

to setting a minimum value of Q2 ≃ 1 GeV2, as can be seen in figure 6.5. The loosest box

cut corresponds to a scattering angle of approximately 177◦ for the positron. In figure 6.5

there are a small number of events which lie in the region of the kinematic plane which is

excluded by the box cut. These events all pass the box cut, but have an interaction vertex

which is significantly shifted compared to the nominal values. This results in a scattering

angle for the positron which is smaller than 177◦, reducing the Q2 of the event.
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Figure 6.5: The Q2 — x distribution for data which satisfy all DIS requirements and D∗±

preselection. The data clearly lie predominantly above Q2 = 1 GeV2.

Hadronic Energy Reconstruction

The final requirement used in the selection of DIS events, is yJB > 0.02. yJB is defined in

section 4.4 and is calculated using ZUFOs. This cut ensures that there is a significant level

of hadronic activity in the event. This is important as noise can distort the reconstruction

of event kinematics using the Double Angle method, and is most prominent in events

which only contain a low level of hadronic activity.
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6.4 D∗±(2010) Candidate Selection

D∗±(2010) mesons which decay in the D∗ → Kππs channel provide a powerful method of

tagging charm. The kinematic constraints on the D∗ → D0π stage of the decay cause a

very clean signal to be produced in the ∆M = M(D∗) −M(D0) distribution in a region

where the combinatorial background is suppressed [24]. In addition, this decay channel

results in three charged particles which can be detected in the tracking chamber.

The D∗± reconstruction procedure is relatively straightforward. First, pairs of oppositely-

charged tracks which come from the primary event vertex are taken, assuming one to be the

kaon and the other to be the pion from the decay of theD0. Their combined invariant mass

is calculated, and if it is found to lie in a restricted “window” around the nominal D0 mass,

then a further track of opposite sign to the kaon candidate is added to the pair under the

assumption that it is the slow pion. After the application of suitable cuts to suppress the

combinatorial background, a prominent signal is seen in the ∆M = M(Kππs) −M(Kπ)

distribution, from which the number of D∗± candidates can be determined.

In this selection method, signal “windows” for both ∆M and M(D0) must be chosen in

order to isolate clean peaks in the invariant mass distributions. For example, in order to

achieve a clean signal in the ∆M distribution, the Kπ invariant mass must be restricted

to a region around the nominal D0 mass, M(D0) = 1864.6 ± 0.5 MeV [18]. The region

chosen is 1.79 < M(Kπ) < 1.93 GeV. Conversely, when a clean signal is required in the

M(D0) distribution, ∆M must be constrained to the region around the nominal value,

∆M = 145.397 ± 0.030 MeV [18]. The window chosen is 0.142 < ∆M < 0.149 GeV.

The regions chosen are consistent with the resolution achieved in the measurement of the

invariant masses.

The DIS sample, selected as described in the previous section, is searched in this manner

for D∗± candidates, and in this section the cuts used to suppress the combinatorial back-

ground, as well as the methods of extracting the number of signal candidates from the

∆M distribution, are discussed.

6.4.1 Track Momentum Requirements

The transverse momentum of the produced charm (or anticharm) quark is typically of

the order of its mass and, given that the D∗± takes, on average, 70 % of that transverse
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momentum [15], it can be expected that theD∗± decay products will also carry a significant

pT . It is therefore reasonable to expect that cutting on the pT of these decay products

should reduce the combinatorial background.

As was mentioned in the previous section, only tracks associated to the primary vertex

are used in D∗± reconstruction. In addition, only tracks reconstructed in the CTD which

reach the third superlayer (SL3) are considered, ensuring that the z-coordinate of the

track is reconstructed with stereo information from SL2. The SL3 requirement is also an

effective pT cut of approximately 100 MeV — a fact which is of particular importance

when choosing a pT cut for the slow pion candidate (see below).

After this basic track selection has been made, cuts which depend on the candidate particle

type are applied. These are summarised below.

pT (πs) > 0.12 GeV. As can be seen in figure 6.6, the transverse momentum of the slow

pion peaks at very low values, as expected from the kinematics of the D∗± decay. For

the same reason, the pT of the slow pion and the parent D∗± are highly correlated

— thus it is clearly beneficial to keep this cut as low as possible. The pT cut implied

by the SL3 requirement is only an approximate requirement of 100 MeV. Thus, an

explicit cut must also be applied, for which the value of 120 MeV is chosen.

pT (K,π) > 0.5 GeV. The requirement placed on the transverse momenta of the D0 decay

products is motivated by the fact that they are expected to have a larger pT than the

light quark combinatorial background. However, these cuts must be tuned carefully.

Figure 6.7 shows the efficiency and purity versus pT cut, where the efficiency is

defined as

No. signal candidates after cut

No. of signal candidates (pT (K,π) > 0.3)
(6.4)

and the purity is

No. signal candidates after cut

No. of signal + background candidates after cut
(6.5)

The efficiency is normalised to the signal for pT (K,π) > 0.3 GeV as this is the value

used during the preselection of candidates.
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For pT (K,π) > 0.5 GeV, the loss in efficiency is approximately 15 %, while the gain

in purity is approximately 30 %. Figure 6.7 also shows the signal pT distributions

from Monte Carlo and estimates of the background pT distributions from data, which

clearly show that the background is shifted to lower pT than the signal.

|pT (K)| + |pT (π)| > 1.9 GeV. This additional scalar requirement is motivated by the

distributions in figure 6.8, which show the efficiency and purity versus cut value

(defined as above, but the efficiency is normalised with respect to |pT (K)|+|pT (π)| >
1.7 GeV), as well as pT (K) versus pT (π) for signal Monte Carlo and an estimate

of the background in data. The efficiency and purity plots show that there is no

drop in efficiency until the cut value reaches 2 GeV, while the purity has increased

by approximately 15 %. Figures 6.8(c) and (d) clearly show that the signal lies

predominantly above 1.9 GeV, while the background makes a significant contribution

below this value.

p(D0)/p(πs) > 8. This final cut is slightly different to the previous requirements. This is

a background “shaping” cut rather than a background rejection cut and is used in

the TLT DIS D∗± trigger to control the number of events selected in the high ∆M

shoulder, ie. to reduce the overall rate of this trigger. This is illustrated in figure

6.9 where it can be seen that the cut removes no candidates from the signal region.
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Figure 6.6: The generated transverse momentum distribution of the slow pion taken from

the non-diffractive RAPGAP sample.
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Figure 6.7: The relevant distributions for the selection of the pT (K,π) cut. Figure (a)

shows the efficiency of D∗± reconstruction versus cut value, while figure (b) shows the

purity versus cut value. The definitions of efficiency and purity are given in the text.

Figures (c) and (d) show the pT distributions for K and π candidates from Monte Carlo

(solid line) and from the wrong charge combinations in the data, as a background example

(dotted line).
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Figure 6.8: The relevant distributions for the selection of the |pT (K)|+|pT (π)| cut. Figures

(a) and (b) show the efficiency and purity respectively versus cut value. The definitions

of efficiency and purity are similar to those used in the pT (K,π) cuts. Figures (c) and

(d) show pT (K) versus pT (π) in the Monte Carlo and in the background from the data

respectively. The diagonal line indicates the cut which is used in this analysis. The size

of each box is proportional to the density of the points on the original scatter plot.
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Figure 6.9: The ∆M distribution in data after the application of all cuts except the

p(D0)/p(πs) cut (solid line). The dashed line shows the effect of applying the p(D0)/p(πs)

cut.

Selection Efficiencies

The efficiencies of the different selection requirements are summarised in table 6.2 and have

been calculated using the non-diffractive RAPGAP samples. The combined efficiencies are

calculated by weighting each of the two efficiencies by the fraction of the total data sample

they represent and then summing them.

The efficiencies are all calculated under the assumption that DIS01 is always available, so

that the effect of the cuts alone can be studied, without folding in the efficiency of the

trigger strategy. Line 3 of the table shows the drop in efficiency caused by using DIS03

instead. The large difference between the two samples is due to DIS03 in 1995 having

the 14 × 14 cm box cut and in 1996/7 having the radius > 26 cm cut. The method of

simulating the trigger strategy in Monte Carlo is discussed in the next chapter.

It is clear that the trigger efficiencies for this sample are fairly high. The small difference

between the two Monte Carlo samples at this stage is due to the reduced dead material

within the main detector volume from the start of 1996 data-taking and will be most

noticeable in calorimeter-based quantities.

The most significant selection requirement after these is the identification of D∗± candi-

dates (with preselection cuts) which lie in both the signal windows. After the application
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Selection cut 1995 Monte Carlo 1996/7 Monte Carlo Combined

% % %

FLT selection 94.77 ± 0.21 93.77 ± 0.15 93.92 ± 0.13

TLT selection

DIS01 92.27 ± 0.24 92.52 ± 0.17 92.48 ± 0.15

(DIS03) (83.33 ± 0.35) (45.74 ± 0.32) (51.23 ± 0.27)

All DIS selection

requirements 89.12 ± 0.30 87.48 ± 0.21 87.71 ± 0.18

Candidate in the

signal windows 51.37 ± 0.60 51.70 ± 0.40 51.65 ± 0.35

pT (πs) > 0.12 GeV 47.74 ± 0.60 48.24 ± 0.40 48.33 ± 0.35

pT (K,π) > 0.5 GeV 40.12 ± 0.59 40.88 ± 0.40 40.77 ± 0.35

|pT (K)| + |pT (π)| > 1.9 GeV 39.37 ± 0.59 40.15 ± 0.39 40.04 ± 0.35

p(D0)/p(πs) > 8 39.37 ± 0.59 40.15 ± 0.39 40.04 ± 0.35

Table 6.2: A Summary of the cumulative selection efficiency from each Monte Carlo sample

separately and combined. The errors given are statistical.

of all the remaining cuts, the combined efficiency is approximately 40 %.

6.4.2 Invariant Mass Distributions

Figure 6.10 shows the ∆M and M(Kπ) distributions after the application of all the trigger

requirements and selection cuts which have been described so far in this chapter. Addi-

tional requirements have also been made on the candidates in these distributions to ensure

that they lie within the kinematic region used for the cross section measurements described

in the next chapter.

The number of D∗± candidates can be extracted from the ∆M distribution using a variety

of different methods. The method used in this analysis is to make a maximum likelihood

fit to the ∆M distribution, using a Gaussian to fit the peak and a function of the form

f(∆M) = a · (∆M −mπ)b · exp(c · (∆M −mπ)) (6.6)

to describe the background. a, b and c are free parameters of the fit, as are the mean,

width and number of events from the Gaussian. The exponential factor was introduced to
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Figure 6.10: (a) The ∆M distribution after the application of all DIS and D∗± selection

cuts. The data exhibit a clear peak (black dots). The solid line is a fit performed to the

distribution (see text) and the dashed line is an estimate of the combinatorial background

using wrong charge combinations from the data. (b) The M(D0) distribution after the

application of all DIS and D∗± selection cuts. The distribution has been fitted (see text)

and the results are indicated by the solid line. The expected two-peak structure is observed

(see text for details).

describe the suppression of the high ∆M shoulder caused by the p(D0)/p(πs) requirement.

A fit to the ∆M distribution in figure 6.10(a) gives the number of D∗± candidates as

1650 ± 64. The mean of the ∆M peak is found to be 145.44 ± 0.03 MeV — in good

agreement with the Particle Data Group (PDG) value. The width is found to be 0.79±0.03

MeV, in agreement with that observed in the Monte Carlo.

An alternative method of extracting the number of D∗± candidates in the ∆M distribution

is through background subtraction. The background can be estimated using so-called

“wrong-charge” combinations, which are three-track combinations in which the D0 decay

product candidates are chosen to have the same charge. Such combinations will have

an overall charge which lies between −3 and +3. This background distribution is then

normalised to the signal ∆M distribution away from the peak region (0.155 < ∆M < 0.165

GeV). The result of this background estimation method is shown in the ∆M distribution

in figure 6.10.

The Kπ invariant mass distribution is also shown in figure 6.10 and contains a clear signal

peak. The second broader peak is a result of D0 → K±π∓π0 decays from which only
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the charged kaon and pion are selected, resulting in a low value of M(Kπ). The M(Kπ)

distribution can be fitted with a simple polynomial to describe the background, plus two

Gaussians. This fit gives a D0 mass of 1857.8± 0.9 MeV with a width of 23± 1 MeV. The

measured D0 mass is lower than the particle data group value quoted earlier in this section.

This effect has been observed in the F cc̄
2 analysis [16], as well as in the reconstruction of

the J/ψ in the µ+µ− decay channel [43], and has been attributed to a small calibration

shift (−0.3 %) in the magnetic field.

6.5 Diffractive Event Selection

The key characteristic of a diffractive event is the presence of a large rapidity gap between

the outgoing proton, which disappears undetected down the forward beampipe, and the

hadronic system X (see chapter 2) from the dissociated photon. This means that the gap

will be visible in the region surrounding the forward beamhole.

Traditionally within ZEUS, such events are selected using the ηMAX method [132]. ηMAX

is defined to be the pseudorapidity of the ZUFO closest to the direction of the outgoing

proton. The scattered positron is not considered in the determination of ηMAX and only

ZUFOs with energy greater than 400 MeV are considered. The 400 MeV requirement is

made to avoid distortion from calorimeter noise.

The ηMAX distribution from the final DIS D∗± sample is shown in figure 6.11. The peak

at ηMAX ∼ 3.5 is that from non-diffractive events, ie. those without a rapidity gap. The

shaded area in figure 6.11 indicates those candidates which pass an ηMAX < 2 requirement

and which lie in the kinematic region chosen for cross section measurements in the next

chapter. In the recent ZEUS diffractive D∗± results [59], a cut of ηMAX < 1.5 was used

which selects a very clean sample of events containing a large rapidity gap.

Although an ηMAX cut of 1.5 is a good method of selecting a high purity diffractive sample,

it is a very severe selection requirement which, given the limited statistics available for

this analysis, is clearly not desirable. An alternative method was used in the recent ZEUS

results on the measurement of the inclusive diffractive cross section [129]. Here, the lnM2
X

distribution is fitted to extract the number of diffractive events. While this method would

be suitable for the measurement of the total diffractive D∗± cross section, the statistics

are too limited for this method to be beneficial in the measurement of differential cross
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Figure 6.11: The ηMAX distribution for data D∗± candidates which lie in both the M(D0)

and ∆M signal windows. The shaded area indicates the candidates which are kept for the

measurement of the cross section (see text).

sections. Thus, this method is not considered here.

The final method available is to combine the ηMAX selection requirement with a require-

ment on θH , where θH is defined by

cos θH =

∑

h p
h
z

|∑h p
h| (6.7)

where h indicates the sum over all ZUFOs in the event. For non-diffractive events cos θH

will be peaked near 1, while for diffractive events, a large fraction of the events will have

cos θH < 1. The ηMAX - θH distribution for the final DIS D∗± sample is shown in figure

6.12, along with those from various different Monte Carlo samples. The conclusions which

can be drawn from these plots are that, when considering an inclusive DIS sample, it is

clearly beneficial to use a combination of an ηMAX requirement and a θH requirement as

used, for example, in the 1993 diffractive results published by ZEUS [132]. However, as

soon as a D∗± candidate is also required (whether it is a genuine one or not), the ηMAX

requirement can be loosened without any additional requirement on θH being necessary.

Therefore for the purposes of this analysis, a cut of ηMAX < 2 is used without an additional

θH requirement.

The ∆M and M(D0) distributions after the application of the ηMAX requirement are

shown in figure 6.13. A clear signal still remains in both distributions. Using the mass

fits described in the previous section, the number of events from the ∆M distribution is
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Figure 6.12: The θH versus ηMAX distribution for (a) data and (b) - (f) Monte Carlo.

Figure (b) shows the distribution for non-diffractive D∗± Monte Carlo, while (c) and (d)

are from the two different diffractive samples. Figures (e) and (f) both come from the

inclusive DIS Monte Carlo sample, but the latter has D∗± finding performed, while the

former does not.
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found to be 82 ± 13, the mean value of ∆M is 145.69 ± 0.17 MeV and the width of the

peak is 1.11 ± 0.15 MeV. Both the width and the mean value of ∆M are found to be

reasonably consistent with those observed in the DIS D∗± signal. The D0 mass from the

diffractive M(D0) distribution yields a mean of 1860.4 ± 2.9 MeV, with a peak width of

18 ± 3 MeV, both of which are in good agreement with the values obtained from the DIS

D∗± signal. The results of the fits to both the diffractive and non-diffractive ∆M and

M(D0) distributions, along with the PDG values are summarised in table 6.3.
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Figure 6.13: (a) The ∆M distribution for events which satisfy all diffractive selection

requirements, as well as the DIS and D∗± requirements. Once again, the solid line is a fit

to the distribution from which the number of events has been extracted and the dashed line

is an estimate of the combinatorial background made using wrong-charge combinations.

(b) The M(D0) distribution for events which satisfy all selection requirements fitted in

the same manner as the distribution in figure 6.10. The expected two-peak structure is

not as clear due to the limited statistics available.

The characteristics of this diffractive D∗± sample are discussed in the next section.

6.6 Characteristics of the Data Sample

Having established a clear signal for D∗± production in events containing a large rapidity

gap, it is important to ensure that the data exhibit the other characteristics expected of

diffractive interactions. For example, diffractive events usually have a significantly lower
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Quantity DIS data Diffractive DIS data PDG/Monte Carlo

ND 1650 ± 64 82 ± 13 N/A

∆M 145.44 ± 0.03 MeV 145.69 ± 0.17 MeV 145.397 ± 0.030 MeV

∆M

resolution 0.79 ± 0.03 MeV 1.11 ± 0.15 MeV ∼ 0.8 MeV

M(D0) 1857.8 ± 0.9 MeV 1860.4 ± 2.9 MeV 1864.6 ± 0.5 MeV

M(D0)

resolution 23 ± 1 MeV 18 ± 3 MeV ∼ 22 MeV

Table 6.3: A Summary of fit parameters determined from the DIS and diffractive DIS ∆M

and M(D0) distributions. The values of ∆M and M(D0) are those given by the Particle

Data Group [18], while the resolutions are those estimated from the different Monte Carlo

samples.

multiplicity than non-diffractive events, indicating that the combinatorial background in

the diffractive ∆M distribution should be lower than that in the DIS ∆M distribution.

Inspection of figures 6.10 and 6.13 shows this to be the case. This can be quantified

by looking at the ratio of signal-to-background in the ∆M window. For the DIS ∆M

signal this is 1650/2239 = 0.74, while for the diffractive case it is 82/34 = 2.41. It is also

demonstrated by the ZUFO multiplicities, as shown in figure 6.14.

The MX distribution for the total D∗± sample should also show a low mass tail indicating

the presence of diffractive events. MX is calculated using ZUFOs and is defined by

M2
X =

(

∑

h

Eh

)2

−
(

∑

h

ph
x

)2

−
(

∑

h

ph
y

)2

−
(

∑

h

ph
z

)2

(6.8)

where h indicates the sum over all ZUFOs in the event and excludes the scattered positron.

For a diffractive event, this is simply the mass of the hadronic system produced when the

photon dissociates (see chapter 2). For non-diffractive events, this is the hadronic final

state arising from the hard interaction, plus any of the proton remnant which does not

escape down the forward beampipe. Thus, the reconstructed MX must be corrected to

account for the partial loss of any of the diffractive system X which escapes down the rear

beampipe, as well as for dead material effects. This correction is determined from Monte
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Figure 6.14: The average multiplicity versus ηMAX in data, calculated using ZUFOs. The

expected increase in multiplicity with increasing ηMAX is observed.

Carlo by studying M rec
X /M true

X and yields a correction factor of 0.86, regardless of which

Monte Carlo and which year is used. It is also found to be approximately independent

of MX , W and Q2. If cells are used to calculate MX instead of ZUFOs, the correction

factor is 0.70. The corrected lnM2
X distribution in data using ZUFOs is shown in figure

6.15; the diffractive candidates all populate the low MX region as expected. Figure 6.15

also shows the MX versus W distribution which indicates that the diffractive candidates

occupy the low MX region over the full W range, unlike the non-diffractive candidates.

Finally figure 6.16 shows the x — Q2 distribution from both diffractive and non-diffractive

D∗± candidates. As expected, the two sets of candidates exhibit very similar character-

istics. It is, however, interesting to note that the xIP and β requirements made on the

diffractive sample place an additional limit on Bjorken x of x < 0.0128, as discussed in

the next chapter.

Figure 6.17 shows one of the diffractive D∗± candidates from 1995 data. It clearly contains

a substantial rapidity gap, with the forward half of the calorimeter completely devoid of

hadronic activity. The event also has a very low multiplicity and a well-defined scattered

positron.
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Figure 6.16: The Q2 — x distribution from the final DIS D∗± sample. Those marked by

triangles are the candidates which satisfy the diffractive requirements.



168 CHAPTER 6. SELECTION OF CANDIDATES

6.7 Summary

In this chapter we have discussed the methods by which a diffractive DIS D∗± sample can

be extracted from the full ZEUS data set with optimum efficiency and purity. First, the

Monte Carlo samples used in the choice of the selection requirements were discussed —

these will be used in the next chapter to perform the cross section unfolding. Then the

trigger strategy used in this analysis was discussed in some detail, as this plays a crucial

part in ensuring that the maximum possible statistics are available. This was followed by

a discussion of the DIS and D∗± selection requirements, along with some motivation for

the cuts used.

Having reached this stage, the DIS D∗± signal was studied and the number of candidates

extracted using a fit to the ∆M distribution. Other methods of extracting the number of

events were also reviewed. This signal will be used again in the calculation of the ratios

performed in the next chapter.

Finally, the diffractive event selection requirements were discussed and used to extract

the diffractive D∗± signal in a similar manner to the total DIS D∗± signal. The ∆M

distribution was found to contain 82 ± 13 candidates which will be used in the cross

section calculations performed in the next chapter.
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Figure 6.17: One of the diffractive D∗± candidates selected from 1995 data. The r–φ view

(left) shows the small number of tracks identified in the event, three of which make up the

D∗± candidate. The r–z view (right) shows that the event clearly contains a rapidity gap

in the forward region of the detector. The calorimeter cluster identified as the scattered

positron candidate is also indicated.
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Chapter 7

Extraction of Cross Sections

In the previous chapter a D∗± signal was established in the combined 1995 — 1997 data

sample, corresponding to an integrated luminosity of 43.3 pb−1. Through fits to the

∆M distribution the total DIS D∗ → (Kπ)πs signal was found to contain 1650 ± 64

candidates, which was reduced to 82±13 candidates after the application of the diffractive

requirements.

In this chapter, these signals will be used to extract the total diffractive D∗± cross section,

along with differential cross sections and the ratio of diffractive D∗± production to DIS

D∗± production. First, the kinematic region accessible in this analysis will be discussed,

then various quantities in the data will be compared to the two different diffractive Monte

Carlo samples (described in the previous chapter). These Monte Carlo samples, along

with the data distributions, will then be used to choose the best bins for differential cross

section extraction. The remaining backgrounds will then be discussed along with how

they are treated. Once all these different issues have been resolved, the cross sections and

the ratios can be extracted. After a discussion and calculation of the systematic errors,

the differential cross sections are compared to various different theoretical models.

7.1 The Kinematic Region

The kinematic range accessible within any analysis is constrained by several different

factors, such as detector acceptance or event selection method. It is also important to

ensure that Monte Carlo input is minimised in order to avoid any bias from the theoretical
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model on which the Monte Carlo is based. This last point is particularly important in an

analysis such as this one, where one of the principal goals is to distinguish between the

different theoretical models on offer.

The kinematic region in which the cross sections are extracted is

6 < Q2 < 400 GeV2

0.02 < y < 0.7

pT (D∗±) > 1.5 GeV

−1.5 < η(D∗±) < 1.5

0.001 < xIP < 0.016

0 < β < 0.8

The Q2 limits are dictated by the Q2 region in which diffractive D∗± candidates are

observed. In the case of the lower limit, although the geometrical acceptance of the

calorimeter would allow a lower Q2 limit of 1 GeV2, a decrease of only one signal candidate

is observed when the Q2 limit is moved from 1 to 6, indicating that very few diffractive

D∗± candidates can be measured in this region. Equally the majority of the data lie below

Q2 ≃ 400 GeV2, indicating this to be an appropriate choice for the upper limit.

The accessible y region for this analysis is defined by various aspects of the DIS event

selection. In the case of the lower limit, it is set by the yJB > 0.02 requirement, while the

upper limit is set by the E′
e > 8 GeV requirement, which is equivalent to setting y < 0.7.

The constraints on pT (D∗±) and η(D∗±) arise from the selection method — in particular,

the cuts applied to the slow pion candidate limit the accessible pT and η range due to the

high correlation between the D∗± and the slow pion. The overall effect is illustrated in

figure 7.1, which shows the acceptance versus pT (D∗±) and η(D∗±) and clearly indicates

the reason for the choice of kinematic range.

The upper limit on β is motivated partly by the data themselves and partly by the effect

of the MX cut-off. Due to the requirement that each event must contain a cc̄ pair, a

minimum is set on MX of approximately twice the D∗± mass, ie. Mmin
X ≃ 4 GeV. When

this is combined with the upper Q2 limit (Q2 = 400 GeV2) this places a maximum on β
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Figure 7.1: The acceptances versus pT (D∗±) and η(D∗±) from the diffractive RAPGAP

sample. The plots indicate that pT (D∗±) > 1.5 GeV and |η(D∗±)| < 1.5 is an acceptable

kinematic region for the cross section measurements.

of

βmax =
Q2

max

M2
X(min) +Q2

max

= 0.96

However, when the xIP — β distributions for both data and Monte Carlo (figures 7.3(a)

and 7.2 respectively) are inspected it becomes apparent that no candidates populate the

β > 0.8 region — hence the choice of upper limit.

The choice of upper xIP limit is heavily influenced by the choice of ηMAX cut, as can be

seen in figure 7.2. In order to study this effect more closely the efficiency as a function of

xIP cut can be used, where the efficiency is defined as

no. reconstructed D∗± candidates with ηMAX < 2 and xIP < xcut
IP

no. generated D∗± candidates with xIP < 0.1

Figure 7.3(b) shows this efficiency as a function of xcut
IP

and indicates that the efficiency

saturates at the point where every candidate which passes the ηMAX requirement also lies

within the chosen xIP region.

It would appear from figure 7.3(b) that a suitable choice for the upper limit on xIP would

be xIP < 0.025. However, it is found that a decrease of only four signal candidates is

observed in the data if the cut on xIP is moved from 0.025 to 0.016. This is a result of

the low acceptance in this region which, in turn, is a result of the ηMAX requirement. In



174 CHAPTER 7. EXTRACTION OF CROSS SECTIONS

Before ηmax cut

(RAPGAP)

β

x p
o

m

After ηmax cut

(RAPGAP)

β

x p
o

m

Before ηmax cut

(RIDI)

β

x p
o

m

After ηmax cut

(RIDI)

β

x p
o

m

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 0.2 0.4 0.6 0.8 1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 0.2 0.4 0.6 0.8 1

Figure 7.2: The xIP — β distributions from the diffractive RAPGAP and RIDI Monte

Carlo samples, before and after the application of the ηMAX cut. There is a substantial

effect on the accessible xIP range. It should also be noted that xpom is equivalent to xIP in

all subsequent figures.

order to avoid entering a region of phase space in which the acceptance is low, the upper

limit on xIP is chosen to be 0.016.

The lower limit on xIP is kinematically given by

xmin
IP

=
Q2

min +M2
x(min)

Q2
min +W 2

max

=
6 + 16

6 + 62500
≃ 0.00035

However, all the data are found to lie above xIP ≃ 0.001. This is caused by two factors:

the choice of βmax and the Q2 distribution in the data. From figure 6.16, it can be seen

that all but a small number of the diffractive candidates lie below Q2 ≃ 250 GeV2 which,

when combined with βmax = 0.8, implies an effective minimum M2
X of

M2
X(min) =

Q2
max(1 − βmax)

βmax
≃ 50 GeV2

If this value of M2
X(min) is then used to determine xmin

IP
, it is found to be

xmin
IP

≃ 6 + 50

6 + 62500
= 0.0009

It is also observed that the candidates which have Q2 > 250 GeV2 also have MX ≫
MX(min), resulting in values of xIP which are significantly larger than xmin

IP
. Thus a

minimum requirement of xIP = 0.001 is chosen. These effects are also observed in the

diffractive Monte Carlo samples.
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Figure 7.3: (a) The xIP — β distribution from the data, indicating that the majority

of candidates lie within the chosen kinematic region, (b) the efficiency versus xIP cut

determined using the diffractive RAPGAP sample (see text for details).

7.2 Data — Monte Carlo Comparisons

Before either the RAPGAP or RIDI samples can be used with confidence to unfold the

cross section, it must be ensured that they describe a wide variety of different quantities

in the data — in particular, those quantities on which selection cuts are placed. In or-

der to compare data and Monte Carlo distributions, only those candidates which satisfy

both mass windows are considered. In addition, the data must have the combinatorial

background subtracted. This is carried out using appropriately normalised wrong charge

combinations (see the previous chapter for details). The Monte Carlo must also be nor-

malised to the data to allow comparisons to be made. Usually each Monte Carlo sample

is normalised to the data based on the luminosities which the data and Monte Carlo

samples represent. This method is used because it provides information relating to both

distribution shapes and the production rate. The luminosity of each Monte Carlo sample

is calculated as follows: each sample contains ND events, each of which contain at least

one D∗± → Kππs with pT (D∗±) > pmin
T , and has a charm production cross section, σcc̄,

calculated by the Monte Carlo generator. pmin
T is the minimum pT the D∗± must have in

order to be kept during the generation of the Monte Carlo samples. For the RAPGAP

samples pmin
T = 0.8 GeV and for the RIDI samples pmin

T = 0. The luminosity, L, is then
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given by

L =
ND

2 · f(c→ D∗±) · BR(D∗± → Kππs) · σcc̄ · α(pT > pmin
T )

(7.1)

where f(c→ D∗±) is the probability for a charm quark to fragment to aD∗± which is set to

0.26 in the Monte Carlo generators, and BR(D∗± → Kππs) is the appropriate branching

ratio, set to 0.037 in the generators. This value for the branching ratio has since been

superseded by a more accurate measurement, which gives BR(D∗± → Kππs) = 0.026 ±
0.001 [18]. This value will therefore be used for the rest of the results presented in this

chapter. This will not make a significant difference in the Monte Carlo, as the way the D∗±

samples are selected effectively sets the branching ratio to 1 (to a good approximation).

α(pT > pmin
t ) is the fraction of events containing a D∗± with pT (D∗±) > pmin

T in a sample

generated with pmin
T = 0. For the RIDI samples α = 1, as pmin

T was set to zero during the

generation of the original sample. In order to determine α for the RAPGAP samples, a

sample of 10, 000 events was generated under the same conditions as the RAPGAP samples

used for cross section unfolding, except that pmin
T was set to zero. It was found that 7183 of

these events contained a D∗± with pT (D∗±) > 0.8 GeV, implying that α(pT > 0.8) ≃ 0.72

for the RAPGAP samples.

Given that the RAPGAP sample contains 140, 000 events and has a cross section of

σcc̄ = 46.13 nb, this corresponds to an integrated luminosity of 308.87 pb−1. The RIDI

sample contains 60, 000 events and has σcc̄ = 27.37 nb, giving an integrated luminosity

of 161.10 pb−1. When the data and the two Monte Carlo samples are compared, after

luminosity normalisation has been performed, it is found that both Monte Carlo samples

contain approximately double the number of D∗± candidates observed in the data. This

is due to the Monte Carlo cross sections being too large in comparison to the data rather

than from differences in the shapes of the distributions. This conclusion is based on figures

7.4 and 7.5 in which comparisons are made between the data and the two Monte Carlo

samples after each Monte Carlo sample has been normalised to the number of data D∗±

candidates in each distribution. All distributions are shown for Q2 < 300 GeV2 due to the

upper Q2 limit on the RIDI sample. There is reasonably good agreement in the shapes of

the distributions in figure 7.4, indicating that the discrepancies observed when the Monte

Carlo is normalised to the data luminosity must arise from an overestimation of the cross

sections in the Monte Carlo generators. It also indicates that the samples are acceptable

for use in cross section unfolding. The agreement appears to be slightly better between

the data and the RAPGAP Monte Carlo samples than between the data and the RIDI
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Monte Carlo samples, so the RAPGAP samples are used to determine the nominal cross

section, while RIDI is used as a systematic check.

When figure 7.5 is considered however, there is a clear discrepancy in the shape of the β

distribution with the data favouring a harder distribution than is present in either Monte

Carlo sample. For this reason differential cross sections with respect to β will not be

determined. Possible explanations for the data β distribution will be discussed in section

7.8.

7.3 Bin Selection

In order to extract differential cross sections, it is necessary to select appropriate bins. The

choice of bins is dictated by two factors: the resolution of the different variables and the

number of candidates in each bin. Due to the limited statistics involved in this analysis,

the latter factor is the dominant one. The aim is to select bins which contain equal

numbers of D∗± candidates. Thus three bins in each variable, containing approximately

25 signal candidates, are chosen which have widths which are larger than the resolution

on each variable. This latter requirement ensures that the cross sections are not distorted

by migrations.

Suitable bin choices for the single differential cross sections which give ∼ 25 signal candi-

dates in each bin are

• Q2: 6 — 17 — 28 — 400

• W : 50 — 120 — 160 — 250

• xIP : 0.001 — 0.0045 — 0.009 — 0.016

• pT (D∗±): 1.5 — 2.2 — 3.3 — 6.0

• η(D∗±): −1.5 — −0.7 — 0 — 1.5

The ∆M distributions in each of these bins, together with fits to signal plus background,

are shown in figure 7.6. The fits are of the same functional form as those described in

section 6.4.2.
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Figure 7.4: Comparisons between data (black dots), RAPGAP (solid lines) and RIDI

(dotted lines) Monte Carlo for a wide variety of DIS and D∗± quantities.
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Figure 7.5: A comparison of the β and xIP distributions in data and Monte Carlo. The

data is indicated by black dots, while RAPGAP is represented by the solid lines and RIDI

by the dotted lines. See text for discussion of the distribution shapes.

Having chosen these bins, the resolution must be checked for each one. Figure 7.7 shows an

estimation of the resolution for each bin and indicates that all bins are large enough to en-

sure that bin-to-bin migrations are small. This can be further investigated by determining

the purity in each bin where the purity, p, is defined as

p =
no. of D∗± candidates rec. and gen. in bin

no. of D∗± reconstructed in bin

This has been calculated for each cross section bin and is also illustrated in figure 7.7. The

purities are very high in all except the highest xIP bin, but even this has an acceptable

level of purity, indicating that reasonable bins have been chosen.

7.4 Backgrounds

It is important to check the level of different background contributions after all selection

requirements have been applied. The three key backgrounds which must be considered are

from photoproduction processes, non-diffractive D∗± production and proton dissociative

events.

Studies have been performed of photoproduction background in the context of the ex-

traction of F cc̄
2 from a DIS D∗± sample [16]. The studies indicate that photoproduction
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Figure 7.7: The resolutions and purities in each cross section bin. The left-hand column of

plots shows (Xrec −Xtrue)/Xtrue in each of the cross section bins. The error bars are the

width of the distribution in each bin, giving an estimate of the resolution for each bin. The

central point gives an estimate of the accuracy with which the quantity is reconstructed.

The right-hand column of plots shows the purity of each cross section bin.
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contamination is less than 1 %, much lower than the level of the statistical errors on the

cross section measurement. The photoproduction background in a diffractive sample is

expected to be no worse than in the full DIS D∗± sample and so this source of background

is neglected.

Figure 7.8 shows the ηMAX distribution from the non-diffractive RAPGAP Monte Carlo

sample. This corresponds to an integrated luminosity of 106.30 pb−1 and indicates that

no events from this sample would pass all the selection requirements. Thus this source of

background may also be safely ignored.
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Figure 7.8: The reconstructed ηMAX distribution from the non-diffractive RAPGAP

Monte Carlo sample.

The final source of background to be considered is from diffractive proton-dissociative

events. These are events which contain a colourless exchange (and hence a rapidity gap),

but in which the proton breaks up. When the proton dissociates into a sufficiently high

mass state it will deposit energy in the forward calorimeter and be removed by the ηMAX

cut. However, if the proton dissociates into a low mass state, it may still pass undetected

down the forward beampipe. The size of this background contribution has been estimated

by comparing diffractive results in a separate experiment in which the proton was detected

in the leading proton spectrometer (LPS) with results from the most recent diffractive cross

section measurements using the lnM2
X method, which contain both single and double

dissociative diffractive events. The proton dissociation contribution was determined to be

31±15 % [129]. This is clearly the most significant background for this analysis and must

therefore be subtracted from all cross sections.
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7.5 Cross Section Extraction

In order to turn the measured number of D∗± candidates into a cross section, the effects of

finite detector resolutions and the inefficiencies of the trigger system, offline reconstruction

and selection must be corrected for. This is done by using Monte Carlo to calculate the

acceptance, which is given by

ε =
no. of reconstructed D∗± candidates

no. of generated D∗± candidates
(7.2)

for each bin as well as for the full kinematic region. The true number of D∗± candidates is

then given byN true
D = Nmeas

D /ε. This quantity is calculated using the diffractive RAPGAP

Monte Carlo samples. In order to determine the acceptance, a method of simulating the

TLT trigger strategy must be sought. In order to simulate the inclusive DIS TLT trigger

slots, it is sufficient to use the appropriate box cuts, as the other offline cuts are more

strict than those implemented in the trigger algorithms. The DIS TLT slots have to be

treated in this way, as in the 1997 version of ZGANA the medium Q2 slot is included with

the radius cut and therefore cannot be used to represent the medium Q2 slot with the box

cut which was used during 1996.

Using the two diffractive Monte Carlo samples, the trigger strategy is simulated as de-

scribed below.

1995 Monte Carlo

FLT Require FLT30 or FLT44 to have fired.

TLT Positron detected in (see figure 7.9 for regions):

region A: weight event by LDIS01/L95 = 2.4/6.3

region B or C: event weight is set to 1.

The weights for the TLT are chosen in this manner because a positron can be detected

in region A only when the low Q2 TLT slot (DIS01) is available. A positron detected in

region B or C will pass either DIS01 or DIS03 and therefore the event weight is 1.

1996/7 Monte Carlo

FLT Require FLT44 or FLT46 to have fired. The relative efficiency of FLT46 is suffi-
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Figure 7.9: The three regions into which the face of the RCAL is divided for the simulation

of the TLT trigger strategy in Monte Carlo.

ciently high that it can be assumed that this is no different to requiring FLT30 to

have fired instead (see chapter 4 for more details).

TLT Positron detected in:

region C: accept event with weight = 1.

region B: generate a random number from a flat distribution between 0 and 1.

If this number is less than LDIS01+DIS03/L1996+7 = 10.3/37.0 then accept the event.

If the number is greater than LDIS03/L1996+7 then only accept if DIS13 has fired.

region A: generate a random number as before. If the number is less than

LDIS01/L1996+7 = 4.6/37.0 then accept the event. If the number is greater than

LDIS01/L1996+7, then only accept the event if DIS13 has fired.

The total acceptance, εtot, is then defined as

εtot =
L95

L95+96+97
· ε95 +

L96+97

L95+96+97
· ε96+97 (7.3)

Figure 7.10 shows the acceptance in the cross section bins, while the total acceptance for

the defined kinematic region is 20.36 ± 0.57 %. The cross sections can then be calculated

using

σ =
Nmeas

D

L ·BR · ε



7.5. CROSS SECTION EXTRACTION 185

where Nmeas
D is the number of signal candidates determined by fitting the appropriate

∆M distribution, L = 43.3 ± 1.0 pb−1, the total 1995-97 integrated luminosity and

BR = 2.6 ± 0.1 % [18] is the combined branching ratio for the D∗± → Kππs decay chan-

nel.
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Figure 7.10: The acceptances in the different cross section bins calculated using the diffrac-

tive RAPGAP Monte Carlo sample.

Using all these numbers, the cross section in the kinematic region defined in section 7.1 is

σ(ep → eD∗±XY ) = 355 ± 57 pb (7.4)

where X indicates the final state hadronic system produced at the photon-pomeron vertex

and Y indicates the final state hadronic system produced at the pomeron-proton vertex

(see chapter 2). The latter system can either be an elastically scattered proton or a

hadronic system with low mass (MY < 4 GeV2 [132]). The error on the cross section is

determined from the errors on Nmeas
D , ε and the branching ratio. The cross section is

dominated by the error on the number of signal D∗± candidates observed in the data,

Nmeas
D . The error on the luminosity is small (∼ 2.3 %) compared to all other sources of

systematic error and is therefore neglected.

After subtracting the proton dissociative background (see previous section), the final cross
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section is

σ(ep → eD∗±Xp) = 245 ± 57 pb (7.5)

The error on the proton dissociation background fraction has not been included in the

evaluation of the statistical error on the cross section. This is because the error arises

from the combined statistical and systematic errors on two separate sets of results, as

described in section 7.4. The error on the cross section arising from the uncertainty on

the fraction of proton dissociation background will be treated as a systematic error and

will be discussed in this context in the next section.

The differential cross sections and the numbers of measured D∗± candidates and accep-

tances which go in to the determination of the cross sections are summarised in table

7.1. The errors on the number of D∗± candidates shown in the table are determined from

the fit to the ∆M distribution in each bin, while the error on the acceptance is simply a

reflection of the statistics of the RAPGAP Monte Carlo samples. The errors on the cross

sections are determined from the errors on the number of D∗± candidates in the data and

the acceptance in each bin, along with the error on the branching ratio. As before the

error on the luminosity has been ignored. The proton dissociation background has been

subtracted from all of the cross sections quoted in table 7.1.

The column labelled “< X >” in table 7.1 contains the mean value of X for each bin,

where X is Q2, W , xIP , pT (D∗±) or η(D∗±). The values quoted in table 7.1 are taken from

the data before any acceptance correction has been applied and are used in all subsequent

cross section figures. This is a reasonable choice for the mean values of each quantity,

as can be seen by inspecting the numbers in table 7.2. This shows the mean values for

the Q2 and W bins determined from the data and the RAPGAP Monte Carlo before any

acceptance corrections have been applied as well as from the Monte Carlo generator level.

The final column gives the “corrected” data values which are calculated by assuming

data uncorrected

Monte Carlo uncorrected
=

data corrected

Monte Carlo corrected

which should give a good approximation of the data value after acceptance correction.

All the values quoted in table 7.2 are reasonably close, with the possible exception of the

highest Q2 bin. This is however, a very wide bin with low statistics and therefore a large

uncertainty on the mean value is to be expected. When comparisons are made between

the cross sections and the predictions from theoretical models, dσ/dQ2 is displayed on a

log scale, minimising any uncertainty on the mean value of Q2.
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Bin (X) No. of D∗± Acceptance Cross Section < X >

Candidates (%) (pb)

Q2: 6 — 17 GeV2 23.6 ± 6.1 16.18 ± 0.64 89 ± 23 10.6 GeV2

Q2: 17 — 28 GeV2 23.3 ± 5.9 23.89 ± 1.49 59 ± 16 22.2 GeV2

Q2: 28 — 400 GeV2 35.6 ± 10.8 32.95 ± 1.60 66 ± 20 66.9 GeV2

W : 50 — 120 GeV 25.3 ± 8.1 17.69 ± 0.90 87 ± 28 94.2 GeV

W : 120 — 160 GeV 25.6 ± 7.3 21.82 ± 1.07 71 ± 21 139.5 GeV

W : 160 — 250 GeV 25.5 ± 7.0 21.79 ± 0.99 71 ± 20 199.0 GeV

xIP : 0.001 — 0.0045 29.8 ± 7.5 21.38 ± 1.12 85 ± 22 0.0031

xIP : 0.0045 — 0.009 22.3 ± 6.5 23.13 ± 0.99 59 ± 17 0.0066

xIP : 0.009 — 0.016 25.5 ± 7.2 16.93 ± 0.87 92 ± 27 0.0118

pT (D∗±): 1.5 — 2.2 GeV 25.9 ± 6.5 11.04 ± 0.71 143 ± 37 1.90 GeV

pT (D∗±): 2.2 — 3.3 GeV 29.5 ± 9.3 21.71 ± 0.96 83 ± 27 2.67 GeV

pT (D∗±): 3.3 — 6.0 GeV 20.8 ± 6.0 31.73 ± 1.37 40 ± 12 4.05 GeV

η(D∗±): -1.5 — -0.7 20.6 ± 6.8 21.03 ± 0.99 60 ± 20 −1.03

η(D∗±): -0.7 — 0. 33.9 ± 8.6 24.83 ± 1.18 83 ± 22 −0.34

η(D∗±): 0. — 1.5 26.6 ± 7.5 16.80 ± 0.84 96 ± 28 0.60

Table 7.1: The cross sections in the different bins chosen for the differential distributions.

It is important to note that the RAPGAP sample does not contain radiative corrections.

This is expected to be, at most, a ∼ 10 % effect [132]. This is smaller than the statistical

error on the cross sections, but should be kept in mind.

7.6 Systematic Error Evaluation

Several different sources of systematic error have been considered, principally those arising

from the variation of the selection cuts. For each check the analysis was repeated and the

resulting cross section compared with the nominal values calculated in the previous section.

The 24 checks which were made are listed below.

1. Increase E′
e cut to 9 GeV.

2. Decrease E′
e cut to 7 GeV.
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Bin (X) Mean Data Mean MC Mean MC Mean Data

(uncorrected) (uncorrected) (corrected) (corrected)

Q2: 6 — 17 GeV2 10.6 GeV2 10.3 GeV2 10.3 GeV2 10.6 GeV2

Q2: 17 — 28 GeV2 22.2 GeV2 22.1 GeV2 21.5 GeV2 21.7 GeV2

Q2: 28 — 400 GeV2 66.9 GeV2 58.7 GeV2 56.7 GeV2 64.6 GeV2

W : 50 — 120 GeV 94.2 GeV 95.8 GeV 95.6 GeV 93.7 GeV

W : 120 — 160 GeV 139.5 GeV 139.8 GeV 139.3 GeV 139.3 GeV

W : 160 — 250 GeV 199.0 GeV 193.9 GeV 193.3 GeV 199.1 GeV

Table 7.2: The mean values of Q2 and W in the cross section bins from data and Monte

Carlo before and after acceptance correction.

3. Decrease SINISTRA probability cut to 0.7.

4. Increase E − pz cut to 42 GeV.

5. Decrease E − pz cut to 38 GeV.

6. Tighten all box cuts by 1 cm.

7. Use cells for hadronic quantities.

8. Tighten pT (πs) cut by 15 %.

9. Loosen pT (πs) cut by 15 %.

10. Tighten pT (K,π) cut by 15 %.

11. Loosen pT (K,π) cut by 15 %.

12. Tighten |pT (K)| + |pT (π)| cut by 15 %.

13. Loosen |pT (K)| + |pT (π)| cut by 15 %.

14. Loosen M(D0) window to 1.78 → 1.94 GeV.

15. Tighten M(D0) window to 1.80 → 1.92 GeV.

16. Determine number of signal candidates using wrong charge combinations to subtract

the combinatorial background.

17. Exclude DIS13 as a check on the trigger efficiency
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18. Use condensates to determine ηMAX and not ZUFOs.

19. Move ηMAX noise threshold to 300 MeV.

20. Move ηMAX noise threshold to 500 MeV.

21. Tighten ηMAX cut to 1.5.

22. Increase proton-dissociation background contribution to 46 %.

23. Decrease proton-dissociation background contribution to 16 %.

24. Use RIDI to calculate the acceptance instead of RAPGAP. It is important to re-

member the upper Q2 limit of 300 GeV2 applied to this sample during generation.

However, it is not expected that this should have a significant effect on the accep-

tances calculated with the sample.

The cross sections resulting from each of the 24 checks for each cross section bin, as well

as the total cross section are illustrated in figures 7.11 and 7.12.

When considering the systematic errors on the total cross section, it is clear that the largest

systematic error contributions are those from checks 21 — 24, which all relate specifically

to requirements which are sensitive to model dependencies or are beyond the control of

this analysis. When the binned cross sections are considered more fluctuation is seen,

with check 7 becoming particularly bad. This is due to the fact that the bin choices have

been optimised using variables based on ZUFOs which will have different migrations to

those calculated using cells. All the cross section bins exhibit greater fluctuations than the

total cross section, due to the limited statistics involved in this analysis. This can cause

overestimation of the systematic errors, making them more a reflection of the statistical

error than a true systematic error.

On inspection of figures 7.11 and 7.12 the variation of the fraction of proton dissociation

background is consistently one of the largest systematic errors. This is supported by equa-

tion 7.6 which quotes the error on the total cross section which arises from the uncertainty

on the level of proton dissociation background separately from the rest of the systematic

errors.

The total systematic error is calculated by converting the cross section from each system-

atic check into a percentage difference from the nominal cross section. Those systematic
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Figure 7.11: The cross sections resulting from each systematic error check versus check

number for the total cross section (top) and in the Q2 and W bins.

checks which increase the cross section are then summed in quadrature separately from

those which decrease the cross section to give the upper and lower systematic errors. The

final cross section can therefore be written as

σ(ep → eD∗±Xp) = 245 ± 39(stat.)+38
−28(syst.) ± 53(bkgd) pb (7.6)

where “bkgd” indicates the error arising from the uncertainty on the level of proton dis-

sociation background.

The correlation between the different systematic checks has been tested by repeating

the analysis first with all the systematic checks which increase the cross section applied

simultaneously and then again with all the systematic checks which decrease the cross

section applied simultaneously. The cross sections determined using this method give

consistent results for the systematic errors to those given in equation 7.6, indicating that

there is little correlation between the different checks.

Figure 7.13 shows the final differential cross sections, along with the preliminary ZEUS

results shown at ICHEP98 [59] which were measured in the kinematic region defined by
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Figure 7.12: The cross sections resulting from each systematic error check versus check

number for the xIP , pT (D∗±) and η(D∗±) bins.

3 < Q2 < 150 GeV2

0.02 < y < 0.7

pT (D∗±) > 1.5 GeV

−1.5 < η(D∗±) < 1.5

0.002 < xIP < 0.012

0 < β < 0.8

Good agreement is observed between the two sets of results, despite the difference in choice

of kinematic region.

The differential distributions exhibit the expected behaviour, such as the sharp fall-off of

dσ/dQ2 and dσ/dpT with increasing Q2 and pT (D∗±). The W dependence is, as with the

ICHEP98 results, reminiscent of that observed in the inclusive DIS D∗± analysis [16] and

is mainly determined by the pT (D∗±) and η(D∗±) restrictions. Within errors, the dσ/dxIP

distribution is consistent with being flat, although there is a hint of an increase in the
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cross section at very low xIP , while dσ/dη also exhibits similar behaviour to that expected

in the DIS D∗± analysis [16], apart from in the forward region which will be reduced due

to the presence of the rapidity gap.

Comparisons can also be made with the most recent H1 result [60] for the diffractive D∗±

cross section, σ(ep → eD∗±XY ) = 154 ± 40(stat.) ± 35(syst.) pb in the kinematic region

2 < Q2 < 100 GeV2

0.05 < y < 0.7

pT (D∗±) > 2 GeV

−1.5 < η(D∗±) < 1.5

xIP < 0.04

MY < 1.6 GeV

|t| < 1 GeV2

where X and Y are defined in the same way as in equation 7.4, MY is the mass of the

hadronic system Y and |t| is the square of the four-momentum transfer to the hadronic

system Y . The majority of these requirements can be equivalently applied to ZEUS data,

with the exception of the MY and |t| restrictions. The last two requirements arise as a

result of the extended coverage of the H1 detector in the forward region compared to ZEUS

[19] and cannot therefore applied when the cross section is measured from ZEUS data for

comparison. The |t| < 1 GeV2 requirement should not be important as the cross section

decreases sharply with increasing |t|. The H1 Collaboration find that by applying these

cuts on |t| and MY , they restrict the proton dissociation background in their diffractive

data sample to the level of 5 % [83] compared to the 31 % estimated from ZEUS data.

Thus subtracting the proton dissociation background appears to have the same effect as

restricting MY when the cross section in the H1 kinematic region is measured from ZEUS

data.

The cross section measured from ZEUS data using the H1 kinematic region, but without

the |t| and MY restrictions applied, is found to be σ(ep → eD∗±XY ) = 426 ± 80 pb,

where only the statistical error has been given. The proton dissociation background can

then be subtracted giving a final cross section of σ(ep → eD∗±Xp) = 294 ± 55(stat) ±
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Figure 7.13: The differential cross sections calculated from the diffractiveD∗± data sample,

using diffractive RAPGAP Monte Carlo to unfold from the measured number of candi-

dates. The black dots are the points from this analysis, while the open triangles are the

preliminary ZEUS results shown at ICHEP98. The inner error bars indicate the statistical

error, while the outer bars are the statistical and systematic errors added in quadrature.

The systematic shift between the two sets of results is caused by the kinematic region in

which the cross sections are measured being different.
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64(bkgd) pb, where “bkgd” indicates the error arising from the uncertainty on the level

of proton dissociation background in diffractive ZEUS data. Reasonable agreement is

observed when this value is compared with the H1 preliminary cross section for diffractive

D∗± production in this kinematic region.

7.7 Ratio Extraction

It is also interesting to look at the ratio of diffractive D∗± production to allD∗± production

in the kinematic region

6 < Q2 < 400 GeV2

0.02 < y < 0.7

pT (D∗±) > 1.5 GeV

−1.5 < η(D∗±) < 1.5

0.001 < xIP < 0.016

β < 0.8

It is not possible, however, to apply the β and xIP requirements directly to the inclusive

D∗± sample, but they can be replaced by requirements on Bjorken x using the relation

xIPβ = xBj . The upper limit is therefore xmax
IP

βmax = 0.0128. For the lower limit, the

minimum value of β accessible in this analysis, βmin, is required and is given by

βmin =
Q2

min

M2
X(max) +Q2

min

Figure 6.15 indicates that the maximum value of MX accessible in this analysis is approx-

imately 30 GeV, making βmin ≃ 0.007. This then gives xmin
Bj ≃ 7 × 10−6. However, the

lowest value of xBj accessible for the given Q2 and y limits is

xmin
Bj =

Q2
min

ymaxs
= 9.5 × 10−5

indicating that both the diffractive and the inclusive D∗± samples have the same implicit

low xBj limit and that no explicit low xBj cut is required.

The DIS D∗± ∆M distributions for the above kinematic region and in the Q2 and W bins

used for the diffractive differential cross sections are shown in figure 7.14. The numbers of
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D∗± candidates and acceptances calculated using the non-diffractive RAPGAP samples,

along with the cross sections are summarised in table 7.3. The mean values of Q2 and W

for each of the bins are also given in table 7.3 and are taken from the acceptance-corrected

data inclusive D∗± sample. Good agreement is observed in the mean values from both

data samples, with the exception of the highest Q2 bin. The inclusive D∗± data and Monte

Carlo samples are better understood theoretically than the diffractive samples, hence the

choice of mean values.
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Figure 7.14: The DIS ∆M distributions in the Q2 bins (top row) and W bins (bottom

row) used in the calculation of the D∗± ratios.

The total ratio in the above kinematic region is

σ(ep → eD∗±Xp)diff

σ(ep→ eD∗±XY )
= 6.3 ± 1.1(stat)+1.6

−1.4(syst) % (7.7)

where in the denominator X indicates the hadronic system arising from the hard scatter

and Y indicates the proton remnant. The systematic errors have been determined from

systematic checks 18 – 24 only, under the assumption that all other checks will cancel

out when the ratio is taken. The total systematic error is then calculated by converting

the results of each check into a percentage difference from the nominal diffractive cross

section and summing in quadrature those checks which increase the cross section and

those checks which decrease the cross section separately. The resulting upper and lower
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systematic errors are then divided by the nominal inclusive D∗± cross section to obtain

the upper and lower systematic errors on the ratio.

The ratio measured in this analysis is consistent with the preliminary ZEUS results pre-

sented at ICHEP98, which is

σ(ep → eD∗±Xp)diff

σ(ep → eD∗±XY )
= 7.0 ± 1.3(stat)+1.7

−1.8(syst) %

It is also consistent with the fraction of diffractively produced events in inclusive DIS,

as measured by ZEUS [129], where it is found that the ratio is independent of W , but

varies with both Q2 and MX for low values of MX (MX < 7.5 GeV). However, in the

interval 7.5 < MX < 15 GeV (the most appropriate for comparison with this analysis),

no strong Q2 dependence is observed and the ratio is approximately 4 %. The Q2 and W

dependencies of the ratio measured in this analysis are shown in figure 7.15. The ratio

appears to be independent of both Q2 and W within errors, as observed in the inclusive

DIS case.
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Figure 7.15: The differential ratios of diffractive D∗± production to DIS D∗± production

as a function of Q2 and W . The inner error bars indicate the statistical errors, while the

outer bars indicate the statistical and systematic errors added in quadrature. The solid

horizontal line indicates the total ratio, while the shaded band indicates its statistical and

systematic errors added in quadrature.
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Bin (X) No. of D∗± Acceptance Cross Section < X >

Candidates (%) (nb)

Q2: 6 — 17 GeV2 761.8 ± 41.6 28.92 ± 0.44 2.32 ± 0.16 10.6 GeV2

Q2: 17 — 28 GeV2 313.4 ± 26.9 36.86 ± 0.78 0.75 ± 0.07 22.0GeV2

Q2: 28 — 400 GeV2 534.9 ± 37.6 52.45 ± 0.68 0.90 ± 0.07 83.0 GeV2

W : 50 — 120 GeV 683.5 ± 38.0 36.24 ± 0.51 1.66 ± 0.11 94.3 GeV

W : 120 — 160 GeV 403.1 ± 30.3 40.31 ± 0.68 0.88 ± 0.08 140.4 GeV

W : 160 — 250 GeV 522.3 ± 37.3 34.90 ± 0.64 1.32 ± 0.11 197.7 GeV

Table 7.3: A summary of the information relating to the inclusive D∗± cross sections.

7.8 Comparison with Theoretical Predictions

Having extracted the cross sections shown in figure 7.13, it is interesting to compare

them to the predictions of different theoretical models. To start with it is useful to

compare the data cross sections with those predicted by the model on which the diffractive

RAPGAP Monte Carlo samples are based. However, having observed discrepancies in the

numbers of D∗± candidates predicted by this model when data and Monte Carlo were

compared (see section 7.3), it is important to first understand where these discrepancies

come from. The solution comes from the form of the pomeron flux which contains an

arbitrary normalisation factor, which can only be determined by performing fits to the

data. Given that the pomeron flux factorises from the pomeron structure function, this

will affect the production rate and not the shapes of the distributions predicted by this

model. Thus comparisons can still be made between the data and the predictions of

this model, but the predictions must first be normalised to the data production rate.

The appropriate normalisation factor required is given by σdata/σMC , where σMC is the

diffractive D∗± cross section predicted by the model for the kinematic region used in this

analysis and σdata is the equivalent cross section measured from ZEUS data in this analysis.

Figure 7.16 shows the comparisons made between the measured differential cross sec-

tions and the predictions made using the Ingelman-Schlein model, as implemented in the

RAPGAP Monte Carlo generator. Two different forms for the initial pomeron parton

distributions are shown: the first assumes hard parton distributions of the form

βfg/IP (β,Q2
0) = 6β(1 − β)
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βfq/IP (β,Q2
0) =

1

4
fg/IP (β,Q2

0) (7.8)

These are the same as those implemented in the diffractive RAPGAP Monte Carlo samples

used for cross section unfolding. σMC is found to be 944 pb, giving a normalisation factor of

245/944 = 0.260. The second model shown in figure 7.16 assumes soft parton distributions

of the form

βfg/IP (β,Q2
0) = 6(1 − β)5

βfq/IP (β,Q2
0) =

1

4
fg/IP (β,Q2

0) (7.9)

and gives a value of 580 pb for σMC . This implies a normalisation factor of 245/580 =

0.422. The data shapes are reasonably well reproduced by both sets of parton distributions,

although there is perhaps a slight preference for the dσ/dxIP prediction based on the hard

parton distributions. However, given the limited statistics involved in this analysis, it is

not possible to make any definitive statements.

HERA data have been fitted by Alvero et al. [55] using the Ingelman-Schlein model and

assuming five different initial configurations for the pomeron parton distributions. In four

of the fits (A — D), the initial forms of the different parton distributions are given by

βfq/IP (β,Q2
0) = aq

[

β(1 − β) + ãq(1 − β)2
]

βfg/IP (β,Q2
0) = agβ(1 − β) (7.10)

For the fifth fit (SG), “super-hard” distributions are assumed which have the form

βfq/IP (β,Q2
0) = aqβ(1 − β)

βfg/IP (β,Q2
0) = agβ

8(1 − β)0.3 (7.11)

and are based on results determined by the H1 Collaboration from QCD fits of their

measurements of the diffractive structure function F
D(3)
2 [54]. The values of the constants

aq, ãq and ag which are free parameters of the different fits are summarised in table 7.4.

The fits were performed three times, each time with αIP (0) set to a different value (1.08,

1.14 or 1.19). For fits A — C and SG, the fits with the lowest χ2 where achieved with

αIP (0) = 1.14. For fit D the lowest χ2 was achieved with αIP (0) set to 1.19. The parton

distributions were evolved from the starting scale of Q2
0 = 4 GeV2 using the standard NLO

DGLAP equations.

Using the results of these fits, Alvero et al. [81] then calculated the diffractive D∗± differ-

ential cross sections in the bins used for the preliminary ZEUS results shown at ICHEP98
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Figure 7.16: The final differential cross sections compared to the RAPGAP implementa-

tion of the Ingelman-Schlein model using hard (solid line) and soft (dashed line) parton

distributions, appropriately normalised (see text).
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Fit aq ag ãq

A 0.0240 ± 0.006 0 0

B 0.0239 ± 0.006 4.5 ± 0.5 0

C 0.0249 ± 0.011 0 −0.031 ± 0.029

D 0.1750 ± 0.008 6.7 ± 1.0 −0.191 ± 0.026

SG 0.2250 ± 0.008 7.4 ± 2.2 0

Table 7.4: The fit parameters from the Alvero et al. calculations.

[59]. The calculations were made using the Peterson model for charm fragmentation [26]

and assuming a charm mass of 1.5 GeV.

Figure 7.17 shows comparisons between these calculations and the cross sections measured

in this analysis, which have been recalculated in the ICHEP98 bins to allow direct compar-

isons to be made. For this reason no systematic errors are available for this comparison.

From Figure 7.17 it can be concluded that only fits which contain a significant hard gluon

component (fits B and D) are able to reproduce the cross sections measured in this analy-

sis. This is consistent with the fit qualities observed by Alvero et al. and with the results

determined from diffractive dijet production at HERA [53]. It is also observed that the

“super-hard” gluon distribution suggested by the H1 Collaboration [54] does not describe

the data as well as the standard β(1 − β) distribution.

Since the predictions were made by Alvero et al. for the ICHEP98 results, the range

of favoured charm masses has decreased to 1.1 – 1.4 GeV. It might be expected that

the choice of charm mass could affect the normalisation of the cross sections predicted

using the Ingelman-Schlein model — a source of theoretical uncertainty which must be

investigated. Other sources of theoretical uncertainty which must also be studied are the

choice of αIP (0), the exact value of f(c→ D∗±) and the choice of hadronisation model.

In order to investigate the different theoretical uncertainties, small samples of events were

generated with one of the parameters being studied changed from its nominal value. The

“nominal” values are those implemented in the RAPGAP Monte Carlo samples used for

cross section unfolding, ie. mc = 1.25 GeV, αIP (0) = 1.157, f(c → D∗±) = 0.26 and the

ARIADNE hadronisation scheme [130]. From these samples, dσ/dW is then determined as

an example distribution to illustrate the magnitude of the different sources of uncertainty.
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Figure 7.17: A comparison of the final differential cross sections with the five different fits

made by Alvero et al., the details of which are in the text. The data appear to favour fits

B and D. It should be noted that the upper solid line is fit SG and is in some cases the

only solid line visible.
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Figure 7.18 shows the effect of varying the different parameters on the dσ/dW distribution.

The variation caused by changing from ARIADNE to the MEPS hadronisation scheme

[119] is even smaller than that caused by the uncertainty on f(c→ D∗±) and is therefore

not shown. The two values of f(c → D∗±) shown are the old [25] and new [27] values

determined by the OPAL Collaboration. The old value is implemented in the RAPGAP

generator. Figure 7.18 shows that the largest sources of uncertainty arise from the charm

mass and from varying αIP (0). These two effects are then combined for the final plot in

figure 7.18 to give an estimate of the overall uncertainty. There is no obvious evidence for

any correlation between the effects of the charm mass and the pomeron intercept indicating

that, in future, indirect measurements of both these quantities may be possible.

It is also interesting to compare the data with predictions from the other types of diffractive

models, such as the Ryskin model implemented in the RIDI Monte Carlo generator [65, 67]

and the soft colour interaction (SCI) model of Buchmüller et al. [75, 79], as implemented

in the RAPGAP Monte Carlo generator. These comparisons are shown in figure 7.19. It is

important to remember that the RIDI Monte Carlo sample was generated with Q2 < 300

GeV2. This, however, is not expected to have a noticeable effect on the predicted cross

sections. The predictions of Buchmüller et al. in figure 7.19 are shown for a charm mass of

1.4 GeV, while the RIDI predictions are shown for a charm mass of 1.5 GeV. The former

describes both the shape and the normalisation of the data quite well. The latter, however,

clearly overestimates the absolute values of the cross sections, although the agreement in

shape is quite good. Unlike the Ingelman-Schlein model, the Ryskin model predicts the

absolute values of the cross sections as well as the shapes of the distributions. This

means that the discrepancies observed in figure 7.19 cannot be attributed to the presence

of an arbitrary normalisation factor. There are, however, other theoretical uncertainties

associated with this model which may account for the observed discrepancies. For example,

there are large uncertainties associated with the precise form of the K-factor (the factor

by which the cross sections are enhanced by the inclusion of virtual gluon corrections [64]),

which could decrease the absolute values of the cross sections. The Ryskin model is also

sensitive to the choice of input proton gluon density — better agreement may be achieved

through the use of a different parametrisation. There are also several other two-gluon

exchange models available which may better describe the data, but comparisons with

these models are not currently possible. It is also interesting to note that the SCI model

of Buchmüller et al. only contains real gluon corrections and not the virtual corrections,
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Figure 7.18: The theoretical uncertainties associated with the Ingelman-Schlein model.

The solid line shows the “nominal value”, ie. that which is implemented in the RAPGAP

Monte Carlo samples, while the dotted lines indicate the effect of varying each parameter.

In the final plot the upper dotted line shows the combined effect of mc = 1.1 GeV and

αIP (0) = 1.157, while the lower dotted line shows the combined effect of mc = 1.4 GeV

and αIP (0) = 1.0850.
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Figure 7.19: A comparison of the final differential cross sections with the predictions

from the model of Buchmüller et al. (“BHM”) and from the RIDI Monte Carlo samples

(“RIDI”). Further details of the models are given in the text.
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which may account for the overestimation of the cross sections by RIDI. This absence of K-

factor enhancement could also explain the harder than expected β distribution observed in

the data, providing the level of enhancement is different for cc̄ and cc̄g final states. Another

explanation is that more charm is produced through two-jet processes than through three-

jet processes, regardless of whether the K-factor enhancement is included or not. In terms

of the Ingelman-Schlein model, the observed β distribution could be explained by the

presence of an additional direct coupling component, as this would enhance the high β

region (see chapter 2).

In conclusion, the data can be reasonably well described by both the Ingelman-Schlein

model and the model of Buchmüller et al., bearing in mind the effect which the uncer-

tainty on the charm mass may cause. The two-gluon exchange model of Ryskin [65], as

implemented in the RIDI Monte Carlo generator [67], does not describe the data as well,

but it is known that this model is sensitive to the choice of K-factor and the input proton

gluon density which, if carefully chosen, may improve the agreement of this model with

the data.

Despite all these uncertainties, it is clear that within the context of the Ingelman-Schlein

model, the pomeron must contain a significant gluon component in order to describe the

data well. It is also noted that the “super-hard” gluon distribution suggested by the H1

Collaboration [54] (fit SG in figure 7.17) does not appear to describe the data as well as

the standard hard gluon density given in equation 7.10 and used in fits B and D. It is also

clear that charm accounts for significantly more than the 1 % of diffractive interactions

predicted by the early calculations of Nikolaev and Zakharov [62]. This may indicate

the need for higher order corrections to be included in the two-gluon exchange models.

Alternatively, this higher level of charm production in diffraction could be attributed to

the cancellation of heavy flavour suppression at low xIP (xBj) by the fast increase of the

proton gluon density, as suggested in later work by Nikolaev and Zakharov [77].
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Chapter 8

Conclusions and Outlook

An analysis of diffractive open charm production in deep inelastic scattering (DIS) data has

been presented, using the full reconstruction of D∗±(2010) mesons in the D∗ → D0πs →
(Kπ)πs decay channel as the method of tagging charm. The analysis was performed on

the combined 1995-97 ZEUS data sample, which corresponds to an integrated luminosity

of 43.3 pb−1. Diffractive events are selected from this sample by requiring the presence of

a large rapidity gap in the forward region of the detector.

Using this data sample, the cross section for diffractive D∗± production has been measured

in the kinematic region

6 < Q2 < 400 GeV2

0.02 < y < 0.7

pT (D∗±) > 1.5 GeV

−1.5 < η(D∗±) < 1.5

0.001 < xIP < 0.016

0 < β < 0.8

and is found to be 245 ± 39(stat)+38
−28(syst) ± 53(bkgd) pb. The ratio of diffractive D∗±

production to total D∗± production in this region is found to be

σ(ep → eD∗±Xp)

σ(ep → eD∗±XY )
= 6.3 ± 1.1(stat)+1.6

−1.4(syst)%

which is consistent with the fraction of diffractively produced events in inclusive DIS

[129]. The extension of the kinematic region with respect to previous ZEUS measurements
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[59, 82] has been made possible by the increase in size of the available dataset as well as

the inclusion for the first time of data taken with a specially-tailored DIS D∗ trigger.

These latest results remain consistent both with previous ZEUS results [59] and with

recent results produced by the H1 Collaboration [60]. The level of diffractive open charm

production observed through D∗±(2010) reconstruction already shows that heavy flavour

production is not suppressed, contrary to the original predictions of Nikolaev and Zakharov

[62]. This lack of suppression may indicate the need for the NLO corrections proposed

by Levin et al. [64] and Buchmüller et al. [79] to be included in calculations based on

two-gluon exchange models. Equally this effect could be attributed to the cancellation of

heavy flavour suppression by the fast increase of the proton gluon density at low x, as

suggested in the more recent work of Nikolaev and Zakharov [77].

Differential cross sections with respect to Q2, W , xIP , pT (D∗±) and η(D∗±) have also

been measured and compared to several different theoretical predictions. Comparisons

with the predictions of Alvero et al. [81] which are based on the Ingelman-Schlein model

indicate that the data prefer a pomeron which contains a substantial gluon component,

as was observed in diffractive dijet production at ZEUS [53]. A slight preference for hard

pomeron parton distributions over soft parton distributions in the data is also observed.

Comparisons are also made with predictions from the soft colour interaction (SCI) model

of Buchmüller et al. [75, 79] and the perturbative two-gluon exchange model of Ryskin

[65]. It is observed that while the SCI model appears to describe the data quite well, the

Ryskin model, as implemented in the RIDI Monte Carlo generator, does not perform as

well. There are, however, several different theoretical uncertainties associated with this

model which may account for the discrepancies observed.

The final results presented are the Q2 and W dependencies of the ratio of diffractive D∗±

production to all D∗± production in the previously defined kinematic region. It is found

that within the errors, the measured ratios are approximately independent of both Q2 and

W . Similar behaviour is observed in the inclusive DIS case [129].

It will not be possible to improve the accuracy of these measurements until after the

HERA luminosity upgrade in 2000. Although the current results have yielded important

information — the absence of heavy flavour suppression and the need for a substantial hard

gluon contribution in the context of the Ingelman-Schlein model — there are still more

important discoveries to be made in this area of diffractive physics. In the medium term,
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it will be possible to extract the diffractive open charm cross section and consequently

to determine the ratios of diffractive charm to all charm and all diffraction. This is not

currently possible, as the D∗± cross sections from which the charm cross sections will

be extracted are measured in a kinematic region restricted with respect to pT (D∗±) and

η(D∗±). In order to determine the charm cross sections, the D∗± cross sections must be

extrapolated to the full pT (D∗±), η(D∗±) region using some sort of theoretical calculation.

Such an extrapolation could be performed using Monte Carlo, but it is not certain that

the Monte Carlo can be trusted for such a procedure. Once the D∗± calculations of Alvero

et al. are publicly available as a Monte Carlo-like program, this could be used to perform

the extrapolation. This, however, is not expected to be available for several months.

In the long term, post-luminosity upgrade data will provide substantially larger samples for

analysis which will also benefit from the addition of the new MicroVertex Detector. Only

then can the errors on the cross sections be reduced sufficiently to allow discrimination

between the different theoretical models and hence to answer the fundamental question

— what is the Pomeron ?
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