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Abstract

A νµ disappearance analysis performed on the dataset collected during the first
physics run of the T2K experiment is presented. This dataset represents an
accumulated exposure of 3.23×1019 protons on target (POT). A total of eight
events passed all the selection criteria at the far detector, Super-Kamiokande,
with an expectation of 22.8± 4.8(stat)+3.7

−3.7(syst).
A two flavor neutrino oscillation fit was performed with systematic uncer-

tainties using a Markov Chain Monte Carlo method and a Bayesian approach.
The sin2 2θ23 oscillation parameter was constrained to the physical region.
Under these conditions, we found best fit values for the oscillation parameters
of sin2 2θ23 = 0.83+0.16

−0.18 and ∆m2
32 = 2.9+0.8

−1.0 × 10−3 eV2/c4.
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Introduction

Billions of neutrinos pass through our human body every single second of
every single day leaving us both completely unharmed and unaware. These
ghostlike particles only interact via the weakest force of nature and travel
mostly unhindered through space, matter and time. In fact, given their cross
section, it would take approximately one light year of lead to block 50% of the
neutrinos produced in the sun.

Originally created in the big bang, they are also produced naturally on
various scales. On a cosmological scale, they are produced in massive bursts
in exploding stars or more constantly in nuclear reactions in the sun. On the
scale of our planet earth they are produced naturally in the interactions of
cosmic rays in the atmosphere or in radioactive rocks and also artificially in
nuclear reactors, particle accelerators or nuclear bombs. Neutrinos are small,
nearly massless (they travel close to the speed of light) and plentiful.

Their existence only started creeping into the world of science at the turn
of the 20th century when physicists began to study nuclear decays. Physicists
such as Chadwick studying nuclear Beta decay detected two outgoing particles:
an electron (beta particle) and a proton [1]. From conservation of energy
principles, they were expecting that the energy spectrum of two body decay
particles must be discrete but the physicists observed that the energy spectrum
of electrons was instead continuous. This led Wolfgang Pauli to postulate the
existence of a new particle in his poignant “Open Letter to the Radioactivity
Group at the Regional Meeting in Tubingen” [2]:

“I have hit upon a desperate remedy to save the exchange theorem
of statistics and the law of conservation of energy. This is the
possibility that electrically neutral particles exist which I will call
neutrons”

Enrico Fermi renamed this new particle the neutrino.
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1 Neutrino history, phenomenology

and experimental developments

This introductory section will cover the history of neutrino physics starting
from the initial discovery by Cowan and Reines in 1956 to the current and fu-
ture generation of experiments. The experimental apparatus of each neutrino
experiment mentioned will be briefly described in order to illustrate the evolv-
ing techniques and technologies that led to the present generation of detectors.

1.1 The discovery

The elusive neutrino haunted physicists for more than two decades from the
time it was first postulated by Wolfgang Pauli to the time that it was finally
detected experimentally by Cowan and Reines in 1956 using the Savannah
River nuclear reactor [3, 4].

The Savannah River nuclear reactor experiment:

The experiment at the Savannah River nuclear reactor was designed to mea-
sure the reaction

νe + p+ → e+ + n (1.1)

where positron annihilation produces a gamma ray pair and neutron capture
a time delayed gamma ray. Three tanks of liquid scintillator with 110 5-inch
photomultiplier tubes were layered with two target tanks filled with a solution
of cadmium chloride. The detector was then shielded with lead and placed
underground. The liquid scintillator tanks were used to detect the gamma
rays and the tanks of cadmium chloride were used to absorb the neutron.

Cowan and Reines measured a four to one signal to background ratio of
events with the expected signature of a neutrino event and also measured the
dependence of the signal rate on the reactor power.
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1.2 Flavours of neutrinos

The neutrino observed at the Savannah River nuclear reactor experiment was
of course an electron anti-neutrino but the concept of flavour had not yet been
introduced. Progress on that front was made from observations of disparities
between the expected and measured branching ratio of rare muon decays.

1.2.1 Electron and muon neutrinos

The muon is an unstable particle that decays via the weak interaction into an
electron, a neutrino and an anti-neutrino:

µ→ e+ ν + ν (1.2)

The concept of conservation of lepton number was postulated by Schwinger
[5] in order to explain why the muon would not also decay to an electron and
a photon or into three electrons:

µ→ e+ γ (1.3)

µ+ → e+e+e− (1.4)

With this concept came the idea that there exists distinct flavours of neu-
trino and that each flavour is paired up with the corresponding lepton: the
electron with an electron neutrino and the muon with a muon neutrino.

The two neutrino experiment in 1962 was designed specifically to test the
neutrino flavour assumption by using pion decay to look for muon neutrino
production [6].

The Two Neutrino Experiment:

The two neutrino experiment was based on the precept that the following
two reactions should occur at the same rate if there exists only one type of
neutrino:

ν + p→ n+ µ (1.5)

ν + p→ n+ e (1.6)

The Alternating Gradient Synchrotron (AGS) in Brookhaven was used to
create a beam of neutrinos from pion decays by striking a beryllium target with
15 GeV protons. The primary pion decay mode with probability of 99.99% is:

π+ → µ+ + ν (1.7)

π− → µ− + ν (1.8)
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From lepton number conservation, the neutrinos produced along side the
muon have the same flavour and will produce a muon when interacting ac-
cording to:

νµ + p→ µ+ + n (1.9)

A spark chamber made up of 90 aluminium plates with neon gas filling the
space in between was used to identify the charged particles (electron or muon)
from neutrino interaction based on the topology of the tracks: the heavier
muon results in clean tracks where as electrons showers in the detector.

Large amounts of shielding were used in order to filter out cosmic rays and
remove muons from the pion decays before they themselves have the chance to
decay. This included, notably, 13.5 meters of steel from a dismantled warship
used as a beam dump. A timing window coincident with the beam was also
used as an additional filter against cosmic rays. The detector measured an
excess of muon events over electron events which confirmed the existence of a
second distinct type of neutrino and validated the lepton number conservation
law.

Schwartz, Lederman and Steinberger earned the Nobel prize in 1988 for
their work on the design of the first neutrino beam and on the detector for
measuring the neutrino reactions [7].

1.2.2 Tau neutrino

The tau neutrino is the third and heaviest neutrino and is paired with the Tau
lepton. The Tau lepton was first suggested to have been observed in 1975 by
Perl et al in order to account for missing energy in e+ e− annihilation [8] in
events of the form

e+ + e− → e± + µ∓+ ≥ 2 undetected particles. (1.10)

The experiment used the SPEAR (Stanford Positron Electron Asymmetric
Rings) electron positron collider at SLAC (Stanford Linear Accelerator Cen-
ter) and the LBL (Lawrence Berkeley Laboratory) magnetic detector.

The discovery was confirmed with the demonstration of the existence of
other predicted decay channels: the anomalous µ - hadron, the anomalous e -
hadron and semileptonic decay modes from various independent experiments
including PLUTO [9] and Mark I [10].

The Tau neutrino was naturally assumed to exist once the Tau lepton had
been detected but credit for the actual observation goes to the DONUT (Direct
Observation of the NU Tau) collaboration at Fermilab in 2000 [11].
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The DONUT Experiment:

The idea underlying the DONuT experiment was simple: a beam of ντ is
created and ντ charged current events are measured:

ντ +N → τ +X, (1.11)

Although simple in principle, the task was very complex because of the
difficulty of creating an intense beam of τ neutrinos and in identifying the τ
lepton from the charged current interactions.

The neutrino beam was generated primarily by the leptonic decays of charmed
particles, pions and kaons form the hadronic shower created by 800 GeV pro-
tons hitting a beam dump of tungsten alloy. Measurements of the composition
of the neutrino flux gave a breakdown of 97% of νe and νµ and 3% of ντ with
the majority of the tau neutrinos coming from the decay of Ds mesons:

Ds → τ + ντ , (1.12)

Sweeping magnets and a large amount of concrete shielding were used to
reduce the two main backgrounds from the dump: muons and neutrons re-
spectively

The most common signature for a τ lepton is a short track with a kink
caused by the decay of the τ into a charged particle (this happens with a
branching ratio of 86%). This characteristic topology was recognised by using
a high resolution emulsion tracking system. It was necessary for the emulsion
system to achieve high resolution because of the short 2 mm decay length of
the τ lepton.

An electronic spectrometer was placed behind the emulsion target in order
to pre-select neutrino interaction candidates and estimate the position of their
interaction vertex in the emulsion.

The DONuT experiment successfully observed 9 ντ interactions with an
estimated background of 1.5 events.

1.2.3 The Z boson constraint

Three neutrino flavours have been observed so far corresponding to the three
lepton flavours: νe, νµ and ντ but could there be more?

A partial answer to this question is given by electroweak measurements on
the Z resonance which provides a constraint on the number of “light” neutrino
species (neutrinos that have a mass of less than half the Z mass).

The total width Γtot of the Z boson is the sum of the visible and invisible
partial widths Γvis and Γinv. The visible width corresponds to Z decays to
quarks and charged leptons whereas the invisible width is assumed to be due
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to the number of light neutrino species Nν . Nν is given by:

Nν =
Γinv

Γl

(
Γl
Γν

)
SM

, (1.13)

where Γl and Γν are respectively the lepton and neutrino partial widths and(
Γl
Γν

)
SM

, the Standard Model value for the ratio of the charged leptonic to
neutrino partial widths, is used to reduce the model dependence.

In what is one of the most precise measurement in the field of high energy
physics, the number of ”light” neutrino species has been determined to be
2.9840± 0.0082 [12].

This does not discard the possibility of the existence of ”heavy” neutrinos
or sterile light neutrinos.

1.3 Neutrino mass and the standard model

When the standard model was first constructed, neutrinos were assumed to be
massless particles. Indeed there was no evidence at the time to the contrary.
This is illustrated in the next sections on attempts at direct measurements of
the neutrino mass and the measurement of neutrino helicity.

The mechanism by which mass is introduced in the standard model is re-
viewed in the section on Dirac mass.

1.3.1 Direct measurements of mass

Experiments on direct measurements of the electron neutrino mass look at the
energy spectrum of the electron in tritium β-decay:

3H →3 He+ e− + νe, (1.14)

A non-zero neutrino mass will change both the slope at the end point and
the maximum allowable energy in the electron energy spectrum. No searches
indicated any significant effect attributable to the neutrino which implied that
the neutrino mass was either zero or very small.

1.3.2 Neutrino helicity

Helicity is the projection of a particle’s spin along its direction of motion. By
definition, the helicity of a massive particle can be reversed from the point of
view of an observer by changing to a reference frame where the particle moves
in the opposite direction. This is not possible if a particle is massless because
it travels at the speed of light.

Maurice Goldhaber made a direct measurement of neutrino helicity in a
famously ingenious experiment using a combined analysis of circular polari-
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sation and resonant scattering of γ rays following electron capture in EU152m

[13]. He found that 100% of the neutrinos had negative helicity which implied
once again that they are massless particles.

1.3.3 Chirality

An object is said to be chiral if it cannot be super-imposed on its mirror image.
Chirality is an intrinsic quantum mechanical property of particles. Physically,
it is a phase shift in the particle’s wave-function. Just like helicity, a particle
can have left or right chirality and the two concepts are actually the same in
the case of massless particles. However, unlike helicity, chirality is invariant
under Lorentz transformation.

1.3.4 Dirac mass

The mathematical formalism of the standard model of particle physics de-
scribes particles as quantum fields. Their equations of motion are solutions
to the Euler-Lagrange equation. Since we know that the equation of motion
of a spin 1/2 fermion is given by the Dirac equation, the Lagrangian of a free
fermion is constructed such that the solution of the Euler-Lagrange equation
yields the Dirac equation. Mass is included in the Lagrangian by the addition
of the Dirac mass term:

mΨΨ = mΨLΨR +mΨRΨL, (1.15)

where ΨL and ΨR are the left and right chiral states. Therefore a non-zero
Dirac mass requires a particle to have both a left and a right handed chiral
state and the Dirac mass is the coupling constant between the two components.
For example, an electron is actually a superposition of states of a left and right
chiral electron.

One particularity of the standard model is that it is a chiral theory: left
and right chiral particles behave differently. For instance, the W boson which
mediates the charged-current weak interactions only couples to the negative-
chirality component of fermions (left handed neutrinos and right handed anti-
neutrinos). As a note, the mixing between the left and right chiral fermions
should be prohibited by “Gauge invariance” given that only the left handed
fermion can interact with the W. The process by which this happens in the
standard model is called electroweak symmetry breaking. Basically, the vac-
uum expectations value of the Higgs gives particles their mass but at the same
time breaks the conservation of weak charge and therefore allows the different
chiral states to mix without breaking Gauge invariance.
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1.4 Neutrino flavour change and oscillation

Neutrino physics took a new turn in the 1970s when evidence in favour of neu-
trino flavour change began to emerge. By the end of the century, the evidence
collected was unequivocal: neutrinos change flavours, and, by implication,
leptons mix and neutrinos have non-zero masses.

1.4.1 Neutrino Oscillation formalism

The theoretical framework designed to account for neutrino oscillation rests
upon the existence of neutrino mass and lepton mixing.

To demonstrate this, we postulate that neutrinos have masses and leptons
mix. Consequently, from the first postulate, there is a spectrum of neutrino
mass eigenstates νi, i = 1, 2, · · · , each with mass mi. From the second postu-
late, the neutrino of flavour α that associates with the lepton of same flavour
is in fact a superposition of mass eigenstates according to the unitary trans-
formation

|να〉 =
∑
i

U∗αi|νi〉, (1.16)

where U∗αi gives the amplitude for the mixing between the lepton of flavour α
and the neutrino of mass eigenstate mi.

Equation 1.17 can also be inverted to express each mass eigenstate νi as a
superposition of flavours:

|νi〉 =
∑
α

Uαi|να〉. (1.17)

In effect, a neutrino flavour change is an inherently quantum-mechanical
effect that can be visualised in three stages enumerated below and depicted in
figure 1.1 from [14].

1. A neutrino of flavour α is created at a source,

2. it travels a distance L to a detector,

3. it interacts in the detector and produces a charged lepton of flavour β.

Since να is actually a coherent superposition of mass eigenstates νi, the particle
that propagates from the neutrino source to the detector is one of the νi and
all contributions must be added coherently.

The probability for the neutrino of flavour α to oscillate to a flavour β is
given by:

P (να → νβ) = |Amp(να → νβ)|2, (1.18)
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Figure 1.1: Neutrino flavour change in vacuum. “Amp” denotes amplitude
[15].

where the amplitude Amp(να → νβ) is:

Amp(να → νβ) =
∑
i

U∗αiProp(νi)Uβi. (1.19)

The amplitude for the initial neutrino to propagate from the source to the
detector Prop(νi) can be shown to approximate to [14]:

Prop(νi) = exp (−im2
i

L

2E
), (1.20)

in the limit that neutrinos have very small masses, and, using the fact that
different mass eigenstate components of a beam that contribute coherently
to the oscillation signal must have the same energy, E [16]. L stands for the
neutrino travel distance between the source and the detector.

Assuming that CPT invariance holds, the probability P (να → νβ) for the
corresponding anti-neutrino oscillation is given by:

P (να → νβ) = P (νβ → να). (1.21)

Finally, combining equations 1.18, 1.19, 1.20 and 1.21, the following rela-
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tionship for neutrino oscillation can be derived:

P (
(—)

να →
(—)

νβ ) = δαβ − 4
∑
i>j

<
(
U∗αiUβiUαjU

∗
βi

)
sin2

(
∆m2

ij

L

4E

)
+

(−) 2
∑
i>j

=
(
U∗αiUβiUαjU

∗
βi

)
sin
(

∆m2
ij

L

4E

)
,(1.22)

where ∆m2
ij ≡ m2

i −m2
j .

From equation 1.22, we see that if the mixing matrix U is complex, P (να →
νβ) and P (να → νβ) will in general differ. Since να → νβ is the CP-mirror
image of να → νβ, P (να → νβ) 6= P (να → νβ) would be a violation of the CP
invariance [15].

For three neutrino flavours, the collection of U∗αi’s give the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) mixing matrix [17, 18]:

U =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 (1.23)

where cij is short for cos θij and sij for sin θij.
The leptonic mixing matrix is then often factorised into three components

to separate the dominant terms that arise from atmospheric, solar and reactor
and beam experiments (equation 1.24). By substituting α and β with the
relevant neutrino flavours in equation 1.22, we find that:

• the dominant atmospheric oscillation term P (νµ → νµ) depends on the
θ23 mixing angle,

• the reactor/accelerator sub-dominant oscillation term P (νµ → νe) de-
pends on the θ13 mixing angle and the CP-violating phase δ,

• the solar oscillation term P (νe → νe) depends on the θ12 mixing angle.

U =

 1 0 0
0 c23 s23

0 −s23 c23


 c13 0 s13e

−iδ

0 1 0
−s13e

−iδ 0 c13


 c12 s12 0
−s12 c12 0

0 0 1


(1.24)

The minimal neutrino oscillation model therefore adds seven new parameters
to the Standard Model: the masses of the three neutrino mass eigenstates, the
three mixing angles θij and the CP violating phase δ of the PMNS mixing
matrix. The absolute masses have no effect on oscillations and the actual
observables are the differences of the squares of the masses ∆m2

ij .
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In the two neutrino approximation, the “survival probability” for the obser-
vation of a νµ of energy E (GeV) having travelled a distance L (Km) is:

P (νµ → νµ) ' 1− sin2 2θ23 sin2

[
1.27∆m2

23L

Eν

]
, (1.25)

and the probability for the νµ to oscillate to a νe is:

P (νµ → νe) ' sin2 2θ13 sin2

[
1.27∆m2

23L

Eν

]
(1.26)

where ∆m2
ij the mass difference m2

i -m
2
j . The mass difference ∆m2, in combi-

nation with L and E, therefore dictate the period of oscillation where as the
angles θij give the magnitude.

1.4.2 Experimental evidence for neutrino flavour change and

oscillation

Neutrinos are constantly emitted in very large quantities by the sun, by
hadronic decays from hadrons produces in the collisions of cosmic rays with
nuclei in the upper atmosphere and by operating nuclear reactors. Physi-
cists made good use of this fact over three decades to study the properties of
neutrinos.

Solar neutrinos

The first hint for flavour change came with the observation of an anomaly
in the solar electron neutrino flux. In 1970, the Homestake [19] experiment
observed a deficit of electron neutrinos from predictions made by the reliable
standard solar model (SSM). This anomaly was confirmed by the SAGE [20]
and GALLEX [21] experiments.

The Sudbury Neutrino Observatory was the first experiment to show direct
evidence for neutrino flavour transformation [22]. Using the charged current
(CC) reaction νe + d→ p+ p+ e−, they confirmed the electron neutrino solar
flux deficit for 8B neutrinos. Simultaneously, using the neutral current (NC)
reaction νx + d→ p + n + νx which is equally sensitive to all active neutrino
flavours (νe, νµ, ντ ), they showed conservation of the total 8B solar neutrino
flux in agreement with the SSM prediction, thus showing that some electron
neutrinos had changed to one of the other two flavours.

Reactor experiments

The KamLAND reactor experiment demonstrated that this flavour change was
the consequence of neutrino oscillation by observing distortion of reactor νe
energy spectrum [23] as a function of the distance from the reactor. Figure
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1.2 plots the ratio of the background-subtracted νe candidate events, including
the subtraction of geoneutrinos, to no oscillation expectation [24].

Figure 1.2: Ratio of the background and geoneutrino-subtracted νe spectrum
to the expectation for no-oscillation as a function of L0

E . L0 is the
effective baseline taken as a flux-weighted average (L0 = 180 km)
[24].

Atmospheric neutrinos

Similarly, atmospheric neutrinos, produced as decay products in hadronic
showers resulting from collisions of cosmic rays with nuclei in the upper at-
mosphere, were studied by the Super-Kamiokande water Cherenkov detector
[25]. The data presented a zenith angle dependent deficit of muon neutrinos
consistent with νµ ↔ ντ oscillation. Long baseline neutrino experiments K2K
[26] and MINOS [27] observed νµ disappearance consistent with the Super-K
results. Figure 1.3 presents 68% and 90% contours for the MINOS oscillation
fit and 90% contours for the Super-K and K2K experiments.

1.4.3 Current values and limits of neutrino oscillation

parameters

The current values and limits of the neutrino oscillation parameters are given
in table 1.1.
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Figure 1.3: Contours for the MINOS 68% and 90% oscillation fit including
systematic errors. Also shown are results from Super-K [28] and
K2K [26] and the earlier MINOS result [27, 29]. Figure obtained
from [30]

Parameter Value/Limit (MeV)
∆m2

21 (7.59± 0.21)× 10−5eV 2

∆m2
32 2.32+0.12

−0.08

sin2 2θ12 0.861+0.026
−0.022

sin2 2θ23 > 0.92, CL=90%
sin2 2θ13 0.092±0.016(stat.)±0.005(syst.)

Table 1.1: Current values and limits of the neutrino oscillation parameters [31].
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2 T2K Experiment

The T2K (Tokai-to-Kamioka) experiment is a long baseline neutrino oscillation
experiment.

Physics goals

The primary physics goal of the T2K experiment is the measurement of the last
unknown lepton sector mixing angle θ13 from observations of νe appearance
in a νµ beam. The aim is to improve the sensitivity to θ13 by an order of 20
compared to the current best limit set by the CHOOZ experiment [32]

A secondary goal is to do a precision measurement of the known atmospheric
oscillation parameters sin2 2θ23 and ∆m2

23 with precisions of respectively 0.01
and 10−4 eV2 using νµ disappearance studies.

The T2K neutrino beam will also be used for neutrino interaction cross
section studies.

Experiment Overview

A focused beam of muon neutrinos is produced at the J-PARC accelerator
in Tokai, Japan using an intense proton beam and neutrino beamline. The
neutrinos with an energy spectrum peaked on axis at approximately 2 GeV are
sent 2.5◦ off-axis towards the Super-Kamiokande [33] detector 295 km. There,
the neutrino rates and energies are measured.

A near detector complex composed of an on-axis detector, INGRID, and
an off-axis detector, the ND280, was constructed 280 m downstream of the
neutrino target to sample the beam immediately after production [34]. The
INGRID detector measures the neutrino beam direction and profile. The
ND280 measures the muon neutrino flux and energy spectrum in the direction
of Super-K. The intrinsic electron neutrino contamination of the beam and
rates for exclusive neutrino reactions are also measured by the ND280 in order
to characterise signals and backgrounds at the far detector.

Figure 2.1 presents a diagram of the T2K beam.
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Figure 2.1: Diagram of the path of the T2K beam and location of the detectors

Off-Axis experiment

T2K is the first long baseline neutrino experiment to use an off-axis neutrino
beam. By pointing the beam 2.5 degrees off-axis from the Super Kamiokande
detector, a narrower neutrino energy spectrum (in the no oscillation hypothe-
sis) is obtained centred around 600 MeV rather than 2 GeV (see fig 2.2). The
peak of the spectrum at 600 MeV corresponds approximately to the expected
oscillation maximum in the νµ survival probability formula (equation 1.25)
given the best fit values for the oscillation parameters from the MINOS re-
sults (figure 1.3) and the length of the T2K baseline. This coincidence results
in maximised neutrino oscillation effects and therefore an improved sensitivity.
The νe background due to the contamination of the beam and neutral current
background events that arise predominantly from higher energy neutrinos are
also reduced at the off-axis position [35].

Figure 2.2: Predicted neutrino energy spectra comparison for on axis beam
(black) and 2, 2.5 and 3 degree off axis beams. The beam off axis
has a much narrower energy band and cuts out NC background
events that come predominantly from higher energy neutrinos.
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2.1 J-PARC complex and T2K beam

The J-PARC complex consists of three accelerators: a linear accelerator (LINAC),
a rapid-cycling synchrotron (RCS) and a main ring (MR) synchrotron. A pro-
ton beam with 6 or 8 bunches (since June 2010) is accelerated up to 30 GeV
in the main ring and extracted into the neutrino beamline by a set of 5 kicker
magnets. The neutrino beamline is composed of a primary and a secondary
beamline:

Primary neutrino beamline

The primary beamline redirects the proton beam to point towards Kamioka
using normal and superconducting magnets. The intensity, position, profile,
and loss of the beam in the primary section are monitored to ensure that it is
operational and adequately tuned using respectively:

• current transformers (CTs),

• electrostatic monitors (ESMs),

• segmented secondary emission monitors (SSEMs),

• beam loss monitors (BLMs).

Descriptions of the CTs, ESMs, SSEMs and BLMs can be found in [34].

Secondary neutrino beamline

The secondary beamline consists of a target station, a decay volume and a
beam dump. The proton beam collides in the target station on a fixed graphite
rod, cooled with helium gas, to produce pions and kaons. The charged hadrons
are focused into a 100 m long decay volume with powerful magnetic fields.
obtained by using three sets of two concentric aluminium cylinders, called
magnetic horns, with 250 kA current pulses. Pions then decay in the decay
volume into muons and muon neutrinos: π+ → µ+νµ. The beam dump placed
at the end of the decay volume stops the remaining pions and kaons whilst the
neutrinos and high energetic muons carry on in the direction of the the near
detector complex and the Super-K far detector.

T2K beam

The off-axis neutrino beam is composed of approximately 95% νµ, 4% νµ and
less than 1% νe. Figure 2.3 presents the predicted flux by flavor at the ND280
and Super-K detectors simulated using FLUKA2008 [36] and GEANT3 [37].
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(a) ND280 (b) Super-K

Figure 2.3: T2K beam flux prediction by flavor [38].

The νµ component of the beam arises from primary charged pion and kaon
decays and secondary anti-muon decays. The relevant decay channels and
branching ratios are presented in table 2.1.

Decay Branching Ratio (%)

π+ → µ+νµ 99.987
K+ → µ+νµ 63.4
µ− → e−νµνe ∼ 100

Table 2.1: Beam νµ signal decay channels and branching ratios [39].

Electron neutrino beam contamination also arises from primary charged
pion and kaon decays and secondary muon decays. The relevant decay channels
and branching ratios are presented in table 2.2.

Decay Branching Ratio (%)

π+ → e+νe 0.012
K+ → π0e+νe 4.9
µ+ → eνµνe ∼ 100

Table 2.2: Beam νe contamination signal decay channels and branching ratios
[39].

The high purity of the beam is possible because the π+ → e+νe decay
channel is heavily suppressed due to helicity effects. Muon neutrinos originate
primarily from pion parents below 2.5 to 3 GeV and primarily from kaon
parents above 3 GeV for both the near and far detectors. Muon anti-neutrinos
arise mainly from pion decays below 5 GeV and mainly from kaon decays
above. A significant fraction of lower energy events are from muon parents.

34



Electron neutrino contamination below 1.2 GeV originates mainly from muon
decays and almost exclusively from kaon parents above. Figure 2.4 and 2.5
present respectively the predicted Super-K and ND280 parent contribution for
each neutrino flavor component of the off-axis neutrino beam. Each spectrum
was predicted using FLUKA2008 and GEANT3.

(a) νµ (b) νµ

(c) νe (d) νe

Figure 2.4: T2K beam flux parent contribution prediction at Super-K with
statistical uncertainties [38].

2.2 Near detectors

As previously mentioned, the near detector complex, located 280 m from the
production target, is composed of an on-axis and an off-axis detector: INGRID
and ND280. It was designed to measure the neutrino beam direction, energy
spectrum, flavor content and interaction rates of the beam before oscillation.

2.2.1 ND280

The ND280, shown in an exploded diagram in figure 2.6, is an aggregate of
several complementary sub-detectors placed inside the UA1/NOMAD 0.2 T
magnet recycled from the famous CERN experiment. The physical size of the
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(a) νµ (b) νµ

(c) νe (d) νe

Figure 2.5: ND280 beam flux parent contribution prediction at Super-K with
statistical uncertainties [38].

detectors are therefore limited by the dimensions of the UA1 magnet cavity
(7.0 m long, 3.6 m high, 3.5 m wide).

A Pi-zero detector (P0D) is placed upstream and a tracker downstream.
The tracker is composed of three time projection chambers (TPCs) alternated
with two fine grain detectors (FGDs). These innermost detectors are all sur-
rounded by electromagnetic calorimeters (ECals). The magnet return yoke
is instrumented with scintillator to measure the ranges of muons that exit
the side of the detector. The scintillator bars used in the near detector were
developed and produced at Fermilab [40].

UA1 Magnet

The UA1 magnet at 0.2T surrounds the ECAL allowing accurate measure-
ment of charged-particle momenta and sign in the tracker and is instrumented
with scintillator bars to detect sideways going muons (the Side Muon Range
Detector). It can also act as a veto or trigger for cosmic events.
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Figure 2.6: Exploded diagram of the ND280m off-axis detector. Left in the
figure is upstream of the beam, right is downstream. Dimensions
of the UA1 magnet cavity (7.0m long, 3.6m high, 3.5m wide) limit
the sizes of the detectors

Pi-zero detector (P0D)

The P0D is composed of scintillator bars alternated with layers of lead foil,
brass sheets and water. Each scintillator bar is mounted with a wavelength
shifting fibre (WLS) inserted through a hole in the centre. One end of the
fibre is mirrored, the other is instrumented using a multi-pixel photon-counter
(MPPC) from Hamamatsu [41, 42]. Each photo-detector is read out with a
TRIP-t front end board (TFB) [43]. The P0D layout is presented in figure
2.7.

The primary role of the P0D is to measure the rate of neutral current π0

production on water, which is the main background to the νe appearance at
Super-K:

νµ +N → νµ +N + π0 +X. (2.1)

The P0D can be operated with the water targets either filled or empty which
enables determination of the water target cross sections with a subtraction
method. The scintillator bars provide sufficiently fine segmentation to recon-
struct charged particle tracks (muons and pions) and electromagnetic showers
(electrons or photons from π0’s).
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Figure 2.7: A schematic of the P0D. The beam is coming from the left and
going right. Insets show details of the Water Target and ECal
layers.

Time projection chamber (TPC)

The TPCs are argon-based drift gas detectors with readout planes on each end
that act as anodes and a central cathode panel. A uniform electric drift field is
produced as a result in the active drift volume of the TPC. Charged particles
passing through the TPCs produce ionisation electrons in the gas. These
electrons drift away from the central cathode and towards one of the readout
electrodes where they are multiplied using an avalanche process and sampled
by a charge amplifier in a Micro-Mesh Gaseous Structure (MICROMEGAS)
with 7.0 mm × 9.8 mm anode pad segmentation [44]. The electronics are read
out with AFTER “ASIC” front end boards [45]. Three dimensional imaging
of charged particle tracks is obtained. Figure 2.8 presents a simplified diagram
of the TPC design.

The TPCs operate in the magnetic field of the UA1 magnet and offer ex-
cellent imaging capabilities in three dimensions. These characteristics allow
measurement of the 3-momenta and dE/dx of charged particles for particle
identification and selection of high purity samples of different types of neu-
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Figure 2.8: Diagram of the TPC design.

trino interactions. Deposited energy resolution of 7.8% was obtained for min-
imum ionising particles compared to a 10% requirement for a 3σ separation
of electrons and muons in the T2K energy region [46].

Fine grained detector (FGD)

The two FGDs are placed respectively downstream of the first and of the
second TPC and are composed of finely segmented plastic scintillators oriented
perpendicular to the beam in either the x or y direction. The first FGD
consists exclusively of plastic scintillator bars arranged in 15 XY modules. The
scintillator provides the target mass for neutrino interactions and allows for
tracking of charged particles produced in these interactions. The second FGD
consists of seven XY modules of plastic scintillator alternating with six 2.5 cm
thick layers of water to provide separate determination of exclusive neutrino
cross-sections on carbon and on water. Just like with the P0D, each scintillator
bar is mounted with a Y-11 fibre mirrored on one side and instrumented on the
other side with an MPPC. The electronics are read out with AFTER “ASIC”
front end boards rather than TRIP-t.

The aim of the FGDs is to provide target mass for neutrinos in the tracker
and track charged particles from interaction vertices.
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Electromagnetic calorimeter (ECal)

The ND280 calorimeters are sampling calorimeters made up of alternating
layers of plastic scintillator bars for the active material and lead absorber
sheets. Thirteen different modules are used to surround the inner detectors
(P0D, TPCs, FGDs) on all sides so as to provide a near hermetic coverage
for all particles exiting the inner detector volume. Six Barrel-ECal modules
surround the tracker volume on its four sides parallel to the direction of the
beam and another six surround the P0D. An additional module is placed
downstream of the Tracker. The ECals use WLS fibres (single or double
ended with the single ended ones being mirrored at the other end), MPPCs
and TFBs to digitise the light signal produced by scintillation inside the bars.

The ECals are used to complement the inner detectors in full event recon-
struction. The energy and direction of photons are measured for the recon-
struction of π0 decays. Charged particles (electrons, muons and pions) are
also detected and particle identification information is extracted.

Side muon range detector (SMRD)

One half of the UA1 magnet yoke consists of 8 C-shaped flux return yokes
with each yoke of 16 steel plates arranged radially (like an onion). The yokes
are labelled 1 through 8 from upstream to downstream.

The SMRD consists of three layers of scintillator modules on the top and
bottom for all yokes. Both sides of each yoke are instrumented with three layers
for yokes 1 through 5, four layers for yoke 6 and six layers for yokes 7 and 8.
Figure 2.9 presents a diagram of the UA1 magnet and the instrumentation of
each yoke. Like the P0D and ECal sub-systems, the SMRD digitises the light
signal from the scintillator bars using the combination of WLS fibre, MPPC
and TFB.

The purpose of the SMRD is threefold. Muons escaping with high angles
with respect to the beam direction are recorded and their momenta measured.
The SMRD can provide a trigger on cosmic ray muons that cross the ND280.
Finally, the SMRD also helps identify beam-related event interactions in the
surrounding cavity walls and the iron of the magnet [47].

2.2.2 Interactive neutrino grid (INGRID)

The INGRID on-axis detector is designed to measure the on-axis beam in-
tensity and direction. Because the energy spectrum at Super-Kamiokande
is highly sensitive to the off-axis angle, an accuracy of 1mrad on the beam
direction is required.

The detector consists of 14 identical modules arranged as a cross with 7
modules along both the horizontal and vertical axis. An additional two sepa-
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Figure 2.9: Diagram of the UA1 magnet with emphasis on SMRD scintillator
modules. The light blue lines represent the 3 layers of horizontal
modules for the top and bottom of each yoke. The green line
represents the vertical modules on each side of each yoke with 3
layers for yokes 1 to 5, 4 layers for yoke 6 and 6 layers for yokes 7
and 8 (hidden for all yokes except the upstream side of yoke 1).

rate modules are also placed at off-axis directions in order to check the axial
symmetry of the neutrino beam. Using the number of observed neutrinos in
each module, the beam centre is measured to a precision better than 10 cm or
0.4 mrad.

Each module consists of nine iron plates alternated with 11 tracking scintil-
lator planes surrounded by veto scintillator planes to reject interactions outside
the module. The light signal from the scintillator bars is digitised using WLS
fibres with mirroring at one end, MPPCs and TFBs.

Figure 2.10 presents the layout of the 16 INGRID modules. Figure 2.11
presents the x and y beam profiles from the horizontal and vertical axis mod-
ules fitted with Gaussian functions.

2.3 Far detector: Super Kamiokande

The Super-Kamiokande detector, famous for past measurements of flavor os-
cillations in atmospheric, solar and accelerator produced neutrinos [25, 49, 26,
50], is used as the far detector in the T2K experiment.

Super-K is a cylindrical water Cherenkov detector of diameter 39.3 m and
height 41.4 m built 1 km underground in the Kamioka mine and filled with
50 KTon of ultra pure water (see figure 2.12). Geometrically, it consists of
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Figure 2.10: INGRID on-axis detector.

(a) Horizontal profile (b) Vertical profile

Figure 2.11: Neutrino beam intensity on-axis profiles measured by the IN-
GRID detectors in the first T2K run (accumulated exposure of
3.23×1019 protons on target (POT) [48]. Each data point repre-
sents the beam intensity measured by one INGRID module. The
fitted beam profiles provide a measurement of the beam centre
with precisions of respectively 2.9 cm and 3.2 cm. This level of
precision exceeds requirements.

an inner detector (ID) and outer detector (OD) separated by a stainless steel
structure.

42



Figure 2.12: Super-Kamiokande detector.

Inner Detector (ID).

The ID is itself a cylindrical volume of diameter 33.8 m and height 36.2 m
instrumented on the inner wall with 11,129 50 cm diameter Hamamatsu pho-
tomultiplier tubes (PMT) giving a total of 40 % surface coverage.

Outer Detector (OD).

The OD is instrumented on its outer wall to act as an active veto of cosmic ray
muons and other backgrounds. In contrast to the ID, the OD is only scarcely
populated with 1,885 20 cm PMTs that give a total surface area coverage of
approximately 1 %. This is sufficient for a rejection efficiency of cosmic ray
backgrounds from the OD of almost 100% given the typical sizes of Cherenkov
rings produces when charge particles exceed the speed of light in water. [34].

GPS synchronisation system

The T2K experiment also uses a GPS synchronisation system to select beam
events within a time window of ±500 µs from a beam spill. The combination of
OD veto and GPS synchronisation results in an excellent background rejection
for the T2K analysis (see 5.5.2 for more details).

Super-K operation.

Charged particles travelling in the water result in the production of a cone of
Cherenkov photons if their energy is above the Cherenkov threshold in water.
This is the case when β ≥ 1

n where n is the refractive index of the medium.

43



The energy threshold for a particle of rest mass m is given by:

Eth = γm,

=
m√

1− β2
,

=
m√

1− 1
n2

,

(2.2)

Table 2.3 presents the rest mass and theoretical Cherenkov energy threshold
of some relevant particles.

mass (MeV) Cherenkov threshold (MeV)

e± 0.51 0.78
µ± 105.66 160.26
π± 139.57 211.70
p 938.272 1423.13
τ± 1776.84 2695.04

The Cherenkov light reaches the PMTs on the ID walls in ring-shape pat-
terns from which information can be reconstructed such as the event vertex
position or the momentum of the charged particle. The ring topology also
allows distinguishing between different lepton flavors:

• Muons have a relatively large rest mass so they experience only small
changes in momentum and travel in a relatively straight line. As a result,
they produce well-defined cones of Cherenkov light which translate into
sharp rings of PMT hits.

• Electrons in contrast have a smaller mass and tend to produce electro-
magnetic showers at the energies relevant to Super-Kamiokande. This
results in “fuzzier” PMT ring patterns on the ID walls.

The difference between an electron and a muon-like event is presented in figure
2.14 for illustration.

The strategy used by Super-K for the measurement of νµ oscillation to either
νe or ντ is to use the distinction between lepton rings to count the number of
charged current quasi-elastic (CCQE) interactions of each flavor. Statistical
intervals of probabilistic values of the oscillation parameters are obtained by
comparing the reconstructed energy spectrum of the neutrino parents to the
expected observations.
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Figure 2.13: Event display of an electron-like ring at Super-Kamiokande [51].

Figure 2.14: Event display of a muon-like ring at Super-Kamiokande [51].
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3 Characterisation of the MPPC

response with Y-11 fibre and

TRIP-T electronics

The P0D, FGD, ECal, SMRD and INGRID sub-detectors all use plastic scintil-
lation material as an active volume to sample the energy of daughter particles
in neutrino interactions.

Charged particles that go through these detectors deposit energy in the
scintillator bars by ionisation. A fraction of that energy is released as photons
when the excited molecules fall back to their ground state. Those photons
are then collected by wavelength shifting fibres and channelled to the MPPC,
and, finally, the MPPC signal is read out by the electronics (AFTER ASIC
for the FGD and TRIP-T front end board for all others).

Energy calibration accurate to a few percent is required for particle identi-
fication (PID) purposes with some specificity depending on the sub-detector.
Because of the novelty of MPPCs and lack of existing literature, a test bench
experiment was designed at Imperial College by A.Vacheret in order to char-
acterise the MPPC’s (non linear) response accurately enough to calibrate the
measurement of the light signal.

Time calibration is required for the purpose of track reconstruction: timing
and hit position are used to match hits into showers or tracks. The test bench
experiment was also used to characterise the time-walk effects caused by the
fibre and TRIP-t front end boards for calibration purposes.

Energy Calibration

The electronic readout of each sub-detector provides a signal for every channel
in an ADC unit. The corresponding energy lost in scintillator material is
recovered by applying a succession of calibration and reconstruction steps.

Calibration of the TRIP-t front end board converts the raw ADC signal into
a “pixel equivalent unit” (PEU) used to represent the MPPC output charge
in a meaningful way. Calibration of the MPPC linearity response provides the
conversion from PEU to surface illumination in number of photons. Finally
the wavelength shifting (WLS) fibre is calibrated to get the light signal in the
scintillator bar. A conversion factor to recover the energy from the fibre signal
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is determined using the minimum ionising properties of cosmic muons.
Properties of the MPPC, TFB and WLS fibre are summarised in sections

3.1, 3.3 and 3.4. The test bench procedure and measurements to characterise
the MPPC linearity response are described in section 3.5.

3.1 MPPC properties

MPPCs are an array of independent avalanche photo-diodes (APDs) connected
in parallel on a single substrate with a common resistive layer and common
electrodes, and operated in Geiger mode (with a reverse bias voltage above
the breakdown voltage). An MPPC has a finite number of APDs and each
APD has a single photon detection capacity: whether one or n photons hit
a single pixel at time t, the output signal of that APD will be identical. As
a consequence, the MPPC response is intrinsically non linear. Properties are
summarised below. T2K used MPPC arrays of 667 APDs. More details about
the MPPC properties can be found in [52].

3.1.1 Operating principles

An incident photon striking the MPPC in Geiger mode creates an avalanche
discharge with probability given by the photon detection efficiency (PDE).
A very large current flow with an amplification gain up to 106 can be ob-
tained from a single photon so single photon events can be counted by the
device. Each diode has a quenching resistor (RQ) in series in order to stop the
avalanche current and then restore the initial bias condition. In steady state,
the pixel capacitances, Ci, are charged at Vbias > Vbr. When an avalanche
discharge is initiated, Ci discharges down to the breakdown voltage with a
time constant τ = RQC ns. The output signal of the MPPC is the sum of the
charge from all Geiger mode APDs.

3.1.2 Photon Detection Efficiency (PDE)

The photon detection efficiency is defined as the probability for an incident
photon to produce an avalanche and is the product of the quantum efficiency,
the geometrical efficiency and the Geiger efficiency:

PDE = QE ∗ εgeom ∗ εGeiger, (3.1)

Quantum efficiency: QE is the quantum efficiency or the probability for
a photon to generate an electron-hole pair in the active area of the device.
It takes into account the reflection on the surface, which is minimised by
implementing an anti-reflective coating, the optical absorption as a function
of wavelength and the effective thickness of the depletion layer.
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Geometrical efficiency: The geometrical efficiency εgeom is the ratio of
the active area over the total area of the device.

Geiger efficiency: The Geiger efficiency εGeiger is the probability for a
photo-electron to trigger an avalanche.

3.1.3 Gain

The gain, G, for a single pixel is defined by the total charge, Q, collected
during the discharge of the pixel capacitor:

G =
Q

|e|
=
Ci
|e|
× (Vbias − Vbreakdown), (3.2)

where Vbias − Vbreakdown is the over-voltage.

3.1.4 Dark noise

Dark noise hits are avalanches caused by electrons generated due to thermal
noise.

3.1.5 After-pulse

When an avalanche occurs, carriers may be trapped in defects in the silicon.
These carriers are then released with a statistical delay and can re-trigger an
avalanche. The probability of having an after-pulse increases with the amount
of charge during an avalanche and therefore increases with bias voltage. Mea-
surements have characterised that this effect occurs with an exponentially
falling time distribution with two decay constants: short and long. At 25◦C,
the short decay constant τS is 17.6± 2.1 ns and the long decay constant τL is
71.4 ± 8.3 ns. The intensities of long and short after-pulses are almost equal
with total probability of about 0.16 at an over-voltage of ∆V = 1.4 V [52].

3.1.6 Crosstalk

Crosstalk describes the process by which optical photons produced during the
avalanche process of the MPPC propagate to neighbouring pixels and trigger
further avalanches [53]. As a result, two or more pixels can be fired almost
simultaneously with only one initial photo-electron.

3.1.7 Recovery

When a pixel is fired, the voltage across the pixel is reduced from the operating
voltage to the breakdown voltage. Recovery mechanisms describe how the
pixel voltage is brought back to its initial voltage Vbias. For the case of a single
pixel fired, charge is drained from other pixels and the recovery happens with
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an exponential time constant RQ×C ∼ 13.5 ns with RQ = 150 kΩ and C = 90
fF given by Hamamatsu.

3.1.8 Temperature effect

Temperature was measured to affect the breakdown voltage of the MPPC
according to equation 3.3:

Vbr(T ◦C) = Vbr(25◦C)− 0.056∆T, (3.3)

where Vbr(T ◦C) is the breakdown voltage at temperature T, Vbr(25◦C) is
the known breakdown voltage at 25◦ and ∆T is the temperature difference
T − 25◦C).

A temperature increase causes a drop in breakdown voltage. For an MPPC
held at a constant bias voltage, this results in an increase in Gain and all that
this implies (increase in PDE, dark noise, crosstalk, after-pulse. . . ). Control
and monitoring of temperature are therefore highly desired features to keep
the calibration procedure more manageable.

3.2 MPPC Response

Characterisation of the MPPC response with an analytical function is neces-
sary for the calibration of the light intensity. Due to the complexity of the
device, an empirically constructed model was proposed and tested using a test
bench measurement. This section describes the construction of this model and
justifies approximations made.

3.2.1 The Ideal Response

The device used at the near detector is composed of 667 pixels. In an ideal
case using simple statistics, each pixel can be described as a binary device and
the MPPC response is obtained by summing up the individual pixel response.
Since the number of pixels is finite, the photon detection capacity saturates
at high intensity. The MPPC saturation response is described as ideal and
following “simple statistics” if characterised by the following assumptions:

• all photons hit the MPPC simultaneously

• the beam cross section is larger than the MPPC

• the distribution of photons is uniform over the array

• the response of the MPPC is Poissonian;
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The response is measured as an average number of pixel equivalents (PEU)
which is a unit that converts the output signal into a number of pixels triggered
at full charge. In the first order approximation, the saturation formula derived
in equation 3.4 is a function of the number of effective pixels and the photon
detection efficiency

〈Npe〉 = Npix

(
1− exp

(
−Nphot × PDE

Npix

))
, (3.4)

where the number of effective pixels Npix is the number of illuminated pixels,
Nphot is the number of photons hitting the MPPC surface and PDE is the
photon detection efficiency.

Figure 3.1 presents a plot of the deviation from linearity in this idealised
case as a function of the number of photons times the PDE for MPPCs with
respectively 100, 400, 667 and 1600 pixels.

Figure 3.1: Simulation of the 10% deviation from linearity as a function of the
number of photons times the PDE for MPPCs with respectively
100, 400, 667 and 1600 pixels.

3.2.2 Correlated noise effects

Correlated noise effects cause the response to deviate from an ideal behaviour.
Crosstalk increases the total number of pixels triggered and skews the

charge distributions towards higher values.
After-pulse increases the output charge of affected pixels by creating a new

avalanche. The combination of after-pulse exponential decay time and pixel
recovery time results in avalanche with varying gain and skews the charge
distribution to higher charge values.

Crosstalk and after-pulse are two correlated noise effects that impact the re-
sponse of the MPPC and break the ideal Poissonian assumption used to derive
equation 3.4. Other remaining first order assumptions: timing simultaneity,
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active pixel assumption and uniformity of the distribution of photons over the
array are broken by the Y-11 fibre and the finite acceptance coupling between
the MPPC and fibre.

Although the assumptions used to derive the analytical formula (equation
3.4) clearly don’t hold under experimental conditions, we have verified empir-
ically that it can still be used to describe the MPPC saturation accurately
with minor changes (section 3.7). The saturation function with correlated
noise effects is given by equation 3.5.

〈Npe〉 = Neff

(
1− exp

(
−Nphot × CN

Neff

))
, (3.5)

where:

• Nphot is the number of photons hitting the MPPC.

• Neff is the number of effective pixels and an unknown non linearity com-
ponent (due to after pulse effects, fibre to MPPC connection, beam
profile on the MPPC effective area and fibre decay time).

• CN is the correlated noise factor, equivalent to the PDE with some excess
due to non-linearity effects (crosstalk and after-pulse).

3.2.3 Signal Resolution

The signal resolution σγ
〈Nγ〉 of the MPPC response is given by:

σγ
〈Nγ〉

=
f−1 (〈Npe〉+ σpe)− f−1 (〈Npe〉)

f−1 (〈Npe〉)
, (3.6)

where σpe is the resolution on the pe value and f−1 (〈Npe〉) is the inverted
MPPC response function, or linearised signal.

The linearised signal gives the average value 〈Nγ〉 of the number of photons
that hit the MPPC. Inverting equation 3.5:

〈Nγ〉 = −Neff

CN
ln
(

1− 〈Npe〉
Neff

)
, (3.7)

Assuming that σpe from equation 3.6 is small,

σpe = N(pe+ σdist)−N(pe) = N(pe)−N(pe− σdist), (3.8)

where σdist is the sigma of the skew Gaussian fit to the ADC signal in the low
gain channel, divided by the peak value.
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The final signal resolution approximation is given by:

σγ
〈Nγ〉

'
ln
(

1− N(pe+σdist)
Neff

)
− ln

(
1− N(pe)

Neff

)
ln
(

1− N(pe)
Neff

) , (3.9)

3.3 TRIP-t front end board (TFB)

3.3.1 TFB Operation

TRIP-t front end boards with four TRIP-t ASICs chips of 16 channels each
are used to read out the MPPCs which are connected to the TRIP-t board by
miniature coaxial cables. An FPGA (Field Programmable Gate Array) imple-
ments time-stamping with a discriminator, sequences the operation, digitises
and reads out the TRIP-t chips and formats and transmits the data off-board.
The boards have two channels in order to accommodate the whole range of
signals while allowing sufficient precision in the discriminator setting: the sig-
nal capacity is divided between high gain and low gain channels with a 10 to
1 gain ratio. Figure 3.2 shows schematically how the MPPC interfaces with
the TRIP-t electronics. The high to low channel gain ratio is set with the CHI
and CLO capacitances and the value of CG is used to adjust the overall gain.
The front end boards integrate the signal in cycles. A cycle has 23 integration
periods of 480 ns (540 ns in our setup) with reset periods of 100 ns and two
readout modes: cosmic and beam mode. In cosmic mode, a sequence of cycles
is continuously running. A trigger stops the cycling and the last 23 integration
periods are kept. In beam mode, a cycle of 23 integration periods is triggered
at the target and the six bunches of the beam fall in consecutive integration
periods at the near detector starting from the 5th period (figure 3.3).

Figure 3.2: Schematic of the MPPC/TRIP-t channel architecture interface
showing the charge splitting between low and high gain channels
and MPPC bias scheme [43].
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Figure 3.3: Ingrid event timing distribution for T2K runs from 2010 with six
bunches. [48].

3.3.2 Electronics time walk

When a signal is received, the TRIP-t discriminator sets the time-stamping
after the charging capacitor exceeds the threshold value. The charging of a
capacitor is a function of the voltage V across the capacitor and the capacitance
C and impedance R of the circuit:

Q = C × V, (3.10)

The charge reaches the discriminator threshold QTh value after a time tTh:

QTh = C × V0

(
1− exp

(
− tth
τ

))
, (3.11)

tTh = −τ × ln
(

1− Qth
Q0

)
, (3.12)

where τ = RC is the decay constant.
Figure 3.4 shows the charge as a function of time for 3 potential voltage

values that correspond to final charges in the capacitor of Q1, Q2 and Q3,
where Q1 < Q2 < Q3. This figure illustrates that the charge of the capacitor
exceeds the threshold value faster for larger signals: t1 > t2 > t3. This effect
is called the electronic time-walk.
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Figure 3.4: Charge as a function of time for 3 potential voltage values that
correspond to final charges in the capacitor

Figure 3.5: Y-11 scintillating fibre diagram. The Y-11 fibre is composed of
a Polystyrene (PS) core of refractive index 1.59, a Polymethyl-
methacrylate (PMMA) inner cladding of refractive index 1.49 and
a Fluorinated polymer (FP) outer cladding of refractive index 1.42.
The critical angle inside the core is 26.7◦ and the cone of light angle
is 45.7◦ (taken from Kuraray documentation)

3.4 Y-11 fibre

3.4.1 Transmission mechanism

T2K ND280 sub-detectors use Kuraray Y-11 wavelength shifting fibres with
core diameter of 1 mm and multi-cladding. A diagram of the fibre with trans-
mission mechanism is presented in figure 3.5.

Photons absorbed in the fibre are re-emitted isotropically with an emission
peak of 476 nm and an exponential time decay of an order of 9 ns [42]. Those
that are emitted with an angle smaller than the critical angle in the core
(26.7%) then diffuse along the fibre to the MPPC, or, in the case of single
ended bars, are reflected at the dead end back towards the MPPC.

The cone of light angle of photons leaving the fibre is 45.7o. The thickness
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of the fibre is 1 mm and the square length of the MPPC is 1.3 mm. The
transmission mechanism and coupling distance between the MPPC and fibre
therefore affect the distribution of photons, or light profile, over the active
area of the MPPC.

3.4.2 Fibre time-walk

Coupled with the TRIP-t discriminator threshold, the fibre transmission mech-
anism creates a second time-walk effect. The discriminator threshold times-
tamps hits when enough photons have created a signal. Because of the expo-
nential re-emission decay and diffusion path along the fibre, the time-stamp
delay after the first photon has been detected will be affected by the number of
photons above threshold of the hit, i.e the charge. The effect the re-emission
decay probability has on the electronics has been studied and simulated with
the following model:

Assuming that the photon distribution out of the fibre follows an exponential
decay with time constant τ , the probability that the nth photon out of N is
detected at time t is given by:

P (t, τ,N, n) = exp
(
− t(N − n)

τ

)(
1− exp

(
− t
τ

))n
, (3.13)

where n is the threshold value in pe and N is the number of photo-electrons.
Time-walk is then calculated from the first moment:

mµ(τ,N, n) =
∫
tP (t, τ,N, n)dt∫
P (t, τ,N, n)dt

. (3.14)

This equation has analytical solutions that can be calculated for each thresh-
old value n and are function of N and τ only.

3.5 MPPC linearity response

Two test bench measurements were used for the following purposes:

• Measurement of the photon detection efficiencies;

• Determination of empirical fit parameters to match the MPPC response
function with TFB and TFB plus Y-11 fibre;

• Calculation of the signal resolution given by the linearised MPPC re-
sponse function;

• Determination of fit parameters for the electronics and fibre time-walk
models.
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Figure 3.6: Diagram of the 2nd stage of the experiment

The MPPC response, photon detection efficiencies and signal resolutions
were characterised as a function of over-voltage with temperature variations
in the lab kept below 1◦C.

The first test bench was set up to illuminate the MPPC uniformly and in
short pulses in order to measure the response in a near ideal case and decoupled
from any fibre effect. The second test bench was set up to illuminate the
MPPC surface with light from a Y-11 fibre in order to measure the MPPC
response in conditions that approximate the ND280 environment.

3.6 Experimental setup and calibration

Figure 3.6 presents a diagram of the second experimental setup built by An-
tonin Vacheret at Imperial College in order to characterise the MPPC response
with Y-11 fibre and TRIP-t Front end Board (TFB).

An LED of wavelength 463 nm and FWHM of approximately 1 ns coupled
with a pulse generator of frequency 105Hz controlled by an external trigger
were used to make short pulses of light on a small section of a Y-11 fibre. An
MPPC of dimensions 1.3mm×1.3mm with 667 pixels was mounted on the end
of a Y-11 fibre and connected for read out to a TFB and Read-Out Merger
Module (RMM). The light intensity was controlled using two neutral density
filter wheels placed on railings with 6 filters on each wheel allowing for a total
of 49 configurations. Transmissivity values provided by the constructor are
given below:

• wheel 1: 0.7, 0.5, 0.4, 0.25, 0.125, 0.003

• wheel 2: 0.63, 0.32, 0.20, 0.10, 0.03, 0.01
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A 918D-UV-OD3 Newport optical metre with 10 mm diameter circular area
was used to measure the beam power and verify the transmissivity of the
density filters. Finally, the whole apparatus was placed in a black box to
prevent contamination from external light.

The first test bench experiment was set up similarly. Instead of a fibre, a
diffuser was placed in the path of the beam in front of an MPPC mounted on
an X coordinate control stage (figure 3.7).

Figure 3.7: Diagram of the optical beam-line for the first experimental setup.

3.6.1 Optical Meter Calibration

The OM measures the power of the LED pulse on a circular surface of diameter
10 mm and is used to calculate the number of photons per pulse using the
formula:

NOM
γ =

P

E · f
=
P

f
× λ

hc
, (3.15)

where P is the power measured with the Optical meter in Watts, f is the
frequency of the LED in Hertz and λ is the mean wavelength of the LED.

The number of corresponding photons per pulse hitting the MPPC surface
before correction for flux non uniformity is:

NMPPC
γ = NOM

γ · SR, (3.16)

where SR is the ratio of active surfaces between the MPPC and the OM:

SR =
SMPPC

SOM
=
l2MPPC

πR2
OM

, (3.17)

where lMPPC = 1.3 mm is the square side of the active surface of the MPPC
and ROM = 5 mm is the radius of the OM.

An additional flux non uniformity correction is applied by measuring the
flux variations in the X-direction using the MPPC. The non uniformity over
a 40 mm range in the X direction is plotted in figure 3.8 and a Gaussian fit is
applied close to the maximum of the profile.
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Figure 3.8: LED pulse X-profile over a length of 40 mm measure with the
MPPC. A Gaussian fit is applied close to the maximum of the
profile

The integrated power on the MPPC and OM are measured by integrating
the area under the Gaussian fit in the X direction and assuming circular sym-
metry of the beam shape. For the MPPC, the area is integrated from -0.65
to 0.65 mm and from -5 to 5 mm for the OM. The ratio of integrated power
from the circular optical meter to the square MPPC is given by:

FMPPC

FOM
=

I2
MPPC

π(IOM/2)2
=

4
π
×
I2
MPPC

I2
OM

, (3.18)

where FMPPC is the MPPC square integrated profile and FOM is the OM
circular integrated profile. The final flux correction is given by:

Fcor =
(
RMPPC

ROM

)
/

(
FMPPC

FOM

)
≈ 0.98 (3.19)

3.7 Results

Results are presented for both test bench measurements.

3.7.1 Error Analysis

Statistical errors:

Intrinsic PDE is measured using the fraction of pedestal to total events:
λ = −ln

(
N0

Ntotal

)
(see section 3.7.3). The error in the fraction of pedestal to
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total events is given by:

σs =
√

1
Nzero

+
1

Ntotal
(3.20)

Due to correlations, an error on the saturation and resolution measurements
is determined from upper and lower bounds on the function parameters

Systematic errors:

An uncertainty over the range of the OM measurements of 1% was given
by the manufacturer detector calibration report. In addition, fluctuations in
the power and baseline of 5.10−13 W, corresponding to approximately 0.25
photons were determined empirically.

Temperature in the experimental environment was monitored on a regular
basis for the determination of temperature induced systematic uncertainties.
Fluctuations of ±10C were measured, corresponding to a 0.056V maximal
variation in breakdown voltage. By comparison, daily and seasonal variations
in temperature of several degrees are observed in the ND280 pit.

Temperature, which affects the breakdown voltage of the MPPC, was mon-
itored in the laboratory. Variations in a range of ±10C were measured corre-
sponding to a 0.056V variation in breakdown voltage.

3.7.2 Pedestal data

The pedestal is the average TRIP-t electronic response of the MPPC in the
absence of any signal. The response is non-zero in part due to intrinsic systemic
noise and in part due to a deliberate bias introduced in order to avoid low ADC
channels where the response is less linear. Typical pedestal peaks in the high
and low gain channels are presented in figure 3.9. The photo-electron structure
is visibly resolved in the high gain channel. In the low gain channel, additional
peaks are merged with the pedestal and therefore indistinguishable.
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(a) Hi-Gain channel (b) Low-Gain channel

Figure 3.9: Typical pedestal peaks in the high and low gain channels. Several
photo-electron peaks are visible in the high gain channel. In the
low gain channels, additional peaks are merged with the pedestal
and therefore indistinguishable.

3.7.3 PDE extraction

The PDE was extracted at low photon intensity based on the fit of the average
number of Pixel Equivalent Unit, 〈Npeu〉, versus the estimated number of
photons hitting the active area of the MPPC Nγ . At low intensity, saturation
is negligible so the relation is linear and the gradient of the fit to the data
gives the PDE.
〈Npeu〉’s were estimated for each intensity Nγ , measured with the OM (sec-

tion 3.6.1), by first taking repeated MPPC readings in PEU at each intensity
and assuming that they follow a Poisson distribution:

P (n, λ) =
λne−λ

n!

where λ is the average number of PEU and n is the PEU value.
Using the pedestals which are not affected by crosstalk and after-pulse, the

average intrinsic PDE value un-affected by correlated noise was measured:

P (0, λ) = e−λ

⇒ λ = − ln
(

N0

Ntotal

)
(3.21)

where 0 stands for the pedestal, N0 is the number of events in the pedestal
and Ntotal is the total number of events.

Figures 3.10(a) and 3.10(c) present measurements of 〈Npeu〉 versus Nγ for
over-voltages of 0.95 V, 1.14 V, 1.34 V, 1.53 V, 1.73 V and 1.92 V for both
experimental setups. The fibre length to MPPC is 50 cm for the setup with
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fibre. First order polynomials are used to fit the data. The PDEs are extracted
from the fit, plot in figures 3.10(b) and 3.10(d) versus over-voltage and fitted
with second order polynomials.

(a) 1st setup (no fibre) (b) 1st setup (no fibre)

(c) 2nd setup (d) 2nd setup

Figure 3.10: (a) and (c): Average number of pe as a function of the number of
photons hitting the active surface of the MPPC for over-voltages
of 0.95 V, 1.14 V, 1.34 V, 1.53 V, 1.73 V and 1.92 V, fitted with
first order polynomials. (b) and (d): PDE as a function of over-
voltage fitted with second order polynomials.

The PDE for the second experimental setup with Y-11 fibre was found to
be smaller than for the first by several percentage points. This difference was
attributed to a loss of photons caused by the coupling between the MPPC and
fibre.
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3.7.4 Saturation response

The saturation response was characterised by fitting the saturation functions
from equation 3.5 to 〈Npeu〉 versus Nγ for high photon intensities (over 50 pe)
and extracting the fitted model parameters. For the first experimental setup,
the number of effective pixels Neff was fixed to 667: the number of pixels on
the MPPC surface.

Figures 3.11(a) and 3.11(b) present the fitted saturation curves for over-
voltages of 0.95 V, 1.14 V, 1.34 V, 1.53 V, 1.73 V and 1.92 V for both exper-
imental setups. The fibre length to MPPC is 50 cm for the setup with fibre.
The fit residuals for the first experimental setup with no fibre and uniform illu-
mination, plotted on figure 3.11(c), are below 1% and uncorrelated. Residuals
for the second experimental setup with Y-11 fibre, plotted on figure 3.11(d),
are mostly below 5% and also uncorrelated indicating. The test bench mea-
surements results therefore demonstrate that the derived saturation model is
a good approximation for the description of the MPPC response.

The CN fit parameters for both experimental setups are plotted as a function
of voltage and fitted with second order polynomials. The Neff fit parameter
for the second experimental setup is plotted on figure 3.12(c) and fitted with
a first order polynomial. Both fit parameters are plotted as a function of
voltage and fitted with respectively first and second order polynomials (see
figures 3.12(b) and 3.12(c)).
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(a) 1st setup (no fibre) (b) 2nd setup

(c) 1st setup (no fibre) (d) 2nd setup

Figure 3.11: (a) and (b): Average number of pe as a function of the number of
photons hitting the active surface of the MPPC for over-voltages
of 0.95 V, 1.14 V, 1.34 V, 1.53 V, 1.73 V and 1.92 V, fitted with
equation 3.5.
(c) and (d): Residuals of the saturation fits. The X axis is the
number of photons and the Y axis is the fractional residual (fit-
data)/data. Residuals for the first experimental setup (c) are
below 1% and uncorrelated. This shows excellent agreement be-
tween the derived saturation model and test bench data with no
fibre and uniform illumination of the MPPC surface. Residuals
for the second setup (d) are mostly inferior to 5% and uncorre-
lated which also implies good agreement with the model.
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(a) 1st setup (no fibre)

(b) 2nd setup

(c) 2nd setup

Figure 3.12: (a) and (b): Correlated Noise (CN) fit parameter of the saturation
data as a function of voltage fitted with second order polynomials
on the left. CN with intrinsic PDE subtracted on the right.
(c): Fit parameter Neff of the saturation data as a function of
voltage fitted with a first order polynomial from 0.8 V to 1.8 V.
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3.7.5 Signal resolution

The signal resolution was calculated using the approximation derived in section
3.2.3 and fitted based on the particle data group energy resolution function
for photon detectors (eq 3.22):

σ(E)
E

=

√
fN

nγPDE
+
(

Ne

GnγPDE

)2

, (3.22)

where E is the energy, Ne the electronic noise, fN the excess noise factor and
nγ , G and PDE are respectively the number of photons, the gain and the PDE.

The actual function used for the fit expresses the resolution in terms of the
number of photons and 3 variable parameters:

σ(N)
N

=

√
tfN

nγ
+
(

tNe

nγ

)2

+ C, (3.23)

where:

• tfN stands for excess noise term and is equivalent to the excess noise
factor fN over the PDE,

• tNe stands for electronic noise term and is equivalent to the electronic
noise Ne over the gain and PDE,

• C is an extra constant term

The MPPC resolution combines both statistical and detector effects. The
irreducible statistical component can be obtained separately using equation
3.24 below:

σstat

Nγ
=

1√
NγPDE

, (3.24)

The detector resolution effects can then be inferred by subtracting the sta-
tistical component of the resolution from the total.

The signal resolution for the setup with fibre is plotted as a function of
the number of photons for over-voltages of 0.95 V, 1.14 V, 1.34 V, 1.53 V,
1.73 V and 1.92 V and fitted with equation 3.23 (figure 3.13). The statistical
component for an over-voltage of 1.34 V (dashed black line) and the detector
resolution are also added to the plot.

Two competing effects shape the detector resolution: crosstalk and satura-
tion. The fraction of pixels triggered by crosstalk is larger at low luminosity
where the saturation effect is smaller. At high luminosity, the MPPC saturates
and most pixels are triggered by optical photons. Overall, for an over-voltage
value of 1.34 V, the resolution is better than 5%.
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The fit parameters tfN , tNe and C are plotted as a function of over-voltage
and fitted with second order polynomials (figure 3.14).

Figure 3.13: Total Signal resolution (top) and statistical (dashed black line)
and detector components (bottom) for over-voltages of 0.95 V,
1.14 V, 1.34 V, 1.53 V, 1.73 V and 1.92 V.

Figure 3.14: Parameters of the resolution fit, fitted with second order polyno-
mials. (a): electronic noise, (b): excess noise factor (c): constant
term
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3.8 Time Calibration

3.9 TRIP-t time-walk

Figure 3.15(a) presents the results of the electronics time-walk in the hi gain
channel, fitted with the three variable parameter fit below:

tTh = A− τ ln
(

1− QTh
Q0

)
, (3.25)

where Q0 is the charge with pedestal subtracted and the three fit parameters
are:

• A, the initial time of the event,

• τ , the decay constant from the electronics RC value (expected τ value
from the circuit impedance and capacitance: 21.5 ns),

• QTh, the threshold charge with pedestal subtracted in ADC.

A 3.5 pe threshold was used in the test bench measurements so the threshold
charge in ADC is given by

QTh = pedestal + 3.5×G

, where G is the gain. The data were fitted from 0.5 pe after the threshold up
to 500 ADC in order to avoid threshold effects and electronics non-linearity
effects. The fitted parameter value for τ is 21.4 ± 0.2, in good agreement
with the expected value. Residuals are presented in figure 3.15(b) and are
all below 10%, apart from one outlier. The electronics model is therefore
considered to be a good approximation to the data. For longer cable lengths, a
parametrisation of MPPC cable reflection effects might be required to improve
the validity of the model.

3.10 Fibre time-walk

Figure 3.15(a) presents the results of the electronics and scintillation time-
walk in the hi gain channel for fibre lengths of 100, 200 and 300 cm. The
scintillation time-walk fit is derived using equation 3.14 for a 3.5 pe threshold:

Y 11Fit =
1
N2 − 4

(N−1)2 + 6
(N−2)2 − 4

(N−3)2 + 1
(N−4)2

1
N −

4
(N−1) + 6

(N−2) −
4

(N−3) + 1
(N−4)

× τfibre, (3.26)

where N is the number of photons and τfibre is the fibre decay constant.
The combined fit for both electronics and scintillation time-walk is the sum

of equations 3.25 and 3.26 and is a function of four parameters. To reduce
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(a) (b)

Figure 3.15: (a) MPPC Electronics time-walk effect in the high gain channel,
fitted with a three parameter fit derived from the discriminator
threshold effect. (b) Residuals between the electronics time-walk
fit and data.

the number of free parameters, τ is set to the experimentally measured value
of 21.5 ns and QTh is calculated for each set of data. The remaining two free
parameters are the initial time constant A and the fibre decay constant τfibre.

The fitted fibre decay constant values for the three fibre lengths are, in
order of increasing length, 7.97± 0.08, 7.13± 0.09 and 6.41± 0.08 where the
errors on the fit are statistical only. Residuals for the fit are plotted in figure
3.16(b) and show a clear bias indicative of either a flaw in the model or a non-
linear systematic error in the measurements. A study of the time properties
of different WLS fibres including Kuraray models found results of the same
order of magnitude [54].
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(a) (b)

Figure 3.16: (a) MPPC electronics plus scintillation time-walk effects in the
high gain channel for fibre lengths of 100 cm, 200 cm and 300 cm,
fitted with a 4 parameter fit given by the sum of equations 3.25
and 3.26. (b) Residuals between the electronics plus scintillation
time-walk fit and data for the 3 fibre lengths used.
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4 Simulation of the near detector

response

Monte-Carlo studies require a working simulation of the detector response. A
software package was therefore developed in order to simulate the electronics
response to energy deposited in active parts of the ND280 detectors. More
specifically, the package was designed to convert simulated GEANT4 hits into
digitised hits, in analogue to digital charge (ADC) unit, ready for calibration
with three intermediary key steps identified: simulation of the active medium,
sensor response and electronics read-out (figure 4.1).

Figure 4.1: Diagram of the detector electronics simulation package.

In order, the response of the active medium to energy deposited in the
form of GEANT4 hits was simulated, then the sensor response and finally the
electronics read-out. Three different chains account for all variations between
sub detectors summarised in table 4.1. Table 4.2 indicates the correspondence
between chains and sub-detectors. 4.2.

Chain active medium sensor read-out
1 Scintillator bars MPPC TRIP-t
2 Scintillator bars MPPC After ASIC
3 Drift volume Micromegas After ASIC

Table 4.1: Chains of active media, sensor and electronics read-out.

This section presents data to Monte-Carlo comparisons for validation pur-
poses in the case of chain 1 sub-detectors.
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Chain Detectors
1 ECAL, P0D, SMRD, INGRID
2 FGD
3 TPC

Table 4.2: Correspondence between chains and sub-detectors.

4.1 Fibre model

The fibre model in the electronics simulation package simulates the re-emission
time of absorbed photons with an exponential decay. The direction of the re-
emitted photons is generated from an isotropic distribution and the critical
angle of the fibre then determines whether photons escape or diffuse along to
the MPPC. In case of diffusion, a constant drift velocity is assumed.

The scintillator bars of ND280 detectors are instrumented with an MPPC
on either one or both ends. In the former case, Y-11 fibres with mirroring
on the non-instrumented end are used to increase the light yield. Both fibre
models are implemented in the simulation.

The initial GEANT4 hits are characterised by their timing and spatial co-
ordinates. The spatial coordinates are used to calculate the channel ID and
position of hits in the scintillator bar. The fibre response is then simulated
using this information, the timing and a mapping to relate each channel with
it’s corresponding fibre model and length.

The timing information and channel ID of photons leaving the fibre is passed
on to the MPPC model. Details of individual photon paths in the fibre are
not simulated and the light profile is left as a property of the MPPC model.

4.2 MPPC model

A fully featured simulation of the MPPC response was implemented in the
Monte-Carlo with total control over the customisation of both external and
internal parameters provided in a separate configuration file. An extensive
study and validation of the simulation of all the important MPPC parameters
was done for low light yields [42].

Light profile

The fibre model simulation provides a list of hits with timing and channel ID
information. For each hit, a probability density function that describes the
illumination profile from the fibre to the MPPC is used to calculate X and Y
potential hit coordinates on the MPPC surface. By default, a two dimensional
uniform distribution is used.
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Dark noise

The coordinate of pixels hit by dark noise and time in the integration win-
dow are generated respectively with a two dimensional uniform distribution
in position and uniform distribution in time. Two dark noise models were
implemented to satisfy different needs.

model 1: first principles

Description: Monte-Carlo model of the dark noise using the known dark
noise frequency to generate hits.

Advantages: Correct implementation.
Drawbacks: A time-stamp is given by the TFB after the accumulated

charge in an integration window exceeds the TDC threshold. If there are too
few dark noise hits in an integration window to exceed the TDC threshold,
then these hits are discarded. Since dark noise decreases linearly as a function
of PEU on a log scale, depending on the threshold value, orders of magnitude
of computations are wasted.

model 2: time-stamp probability method

Description: Pedestal data runs were used to determine the probability of
getting a time-stamp for one integration window as a function of the TRIP-t
front end board TDC threshold value. Then, given a TDC threshold nth in
PEU and a known probability of time-stamp at thresholds of nth and nth− 1:

• A first order approximation for the noise is obtained by generating noise
based on the time-stamp probability at nth.

• A second order approximation for the noise is obtained by generating
noise based on the time-stamp probability at nth − 1.

Advantages: Orders of magnitude of computations are saved.
Drawbacks: Approximate method needs to be validated.

Operation

When a pixel is triggered, its bias voltage is set to the breakdown voltage. If
the same pixel is triggered a second time, the photon detection efficiency is
automatically updated to take into account the pixel recovery. As a result,
saturation is an inherent property of the simulation.

Crosstalk and after-pulse

Crosstalk and after-pulse are simulated probabilistically from first principles
based on the probability functions derived in [52].
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4.2.1 MPPC saturation and light illumination profile.

The MPPC simulation and fibre light illumination profile model were tested
by comparing results from test bench measurements to Monte-Carlo results
obtained by running the MPPC model in standalone mode. In the first test
bench measurement, fibre and MPPC effects were decoupled and the MPPC
was illuminated with a uniform light profile. The second test bench measure-
ment used a Y-11 fibre connected to an MPPPC. This first measurement was
used to test the intrinsic MPPC model while the second was used to test light
illumination profile models.

MPPC saturation

Figure 4.2 presents a data to Monte-Carlo comparison of saturation decoupled
from fibre effects for over-voltage values of 0.95 V, 1.14 V, 1.3 V, 1.53 V, 1.73
V and 1.92 V. The Monte-Carlo was tuned to match with the data at lower
over-voltage values since values of 1.53 V and above are not relevant for the
T2K experiment. Very good agreement is observed at low over-voltage with

Figure 4.2: Data to Monte-Carlo comparison of saturation decoupled from fi-
bre effects for over-voltage values of 0.95 V (6), 1.14 V (5), 1.3 V
(4), 1.53 V (3), 1.73 V (2) and 1.92 V (1) tuned for a best fit at
low over-voltage values.Black: Monte Carlo data, red: fit extracted
from the test bench measurements (see figure 3.11(a)).

deviations contained within 5%.
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Light illumination profile

The light illumination profile from the fibre to the MPPC is not yet well
understood. The second test bench measurement with both fibre and MPPC
was used to test different models empirically. Using the MPPC model in
standalone, a time delay was added with exponential decay 9 ns in order to
simulate the fibre time-walk effect.

Two different light illumination models were tested by reproducing the sat-
uration curve and comparing the parameter values of the saturation function.

Two dimensional Gaussian function

Starting with minimal complexity, a two dimensional Gaussian function was
investigated.

The width of the Gaussian was optimised manually to obtain the best re-
production of the saturation data with Y-11 fibre. A width of 0.25 mm was
found to give very good agreement between data and Monte-Carlo at high
over-voltage but a poorer agreement at low over-voltage which is the region of
interest (figure 4.3).

The first fitted parameter of the saturation function, CN, represents the
PDE and correlated noise. It shows a reasonable agreement with data with
a 10% deviation at lower over-voltage values but better agreement at higher
over-voltages (see figure 4.4).

The second fitted parameter, Neff , also illustrated in figure 4.4, represents
the number of effective pixels of the MPPC. Unlike CN, it shows a poor agree-
ment between data and Monte-Carlo with over 30% deviation at low over-
voltages and a large difference in the gradient. For Neff , the Monte-Carlo
result gives a flatter response compared to the data that is indicative of a
more “uniform” illumination over the MPPC surface. Reducing the width
of the Gaussian provides a less “uniform” response but degrades the overall
saturation agreement.

In order to account for the disparities observed, a second model implement-
ing a Gaussian function in cylindrical coordinates was investigated.

Gaussian function in cylindrical coordinates

A Gaussian function in cylindrical coordinates with mean value of radius R
was tested according to the following algorithm: For each potential hit,

1. a radial coordinate, r, is chosen based on a 1 dimensional Gaussian
probability density function of mean R and sigma σR,

2. an angular position, θ, is chosen uniformly in the range [0, 2π],
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Figure 4.3: Comparison of Data to Monte-Carlo saturation for test bench mea-
surement with Y-11 fibre and Gaussian illumination model with σ
of 0.25 mm for over-voltage values of 0.95 V (6), 1.14 V (5), 1.3
V (4), 1.53 V (3), 1.73 V (2) and 1.92 V (1). Black: Monte Carlo
data, red: fit extracted from the test bench measurements (see
figure 3.11(b)).

Figure 4.4: Comparison of the parameters of the data and Monte-Carlo sat-
uration fits, CN (left) and Neff (right) versus over-voltage for the
Gaussian illumination model with σ of 0.25 mm. Residuals be-
tween the Monte Carlo data and test bench fits are also shown.
Black: Monte Carlo data, red: fit extracted from the test bench
measurements (see figure 3.12(b) and (c)).
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3. the corresponding X and Y-coordinates of the hit on the MPPC surface
are calculated trivially:

x = r cos θ,

y = r sin θ. (4.1)

4. The potential hit is kept if the X and Y-coordinates fall in an active area
of the MPPC.

Figure 4.5 presents some illumination profile examples for different values
R and σR. Such a configuration is symmetric in circular coordinates. This is

Figure 4.5: Monte-Carlo distributions over the MPPC surface of 106 hits for
a Gaussian probability density function in cylindrical coordinates
with radii R of respectively 0.4 mm and 0.3 mm and widths of
respectively 0.15 mm and 0.30 mm. 1 bin represents 1 pixel.

consistent with the fact that the fibre model under consideration has a circular
cross-section and presents two advantages compared to the simple Gaussian
configuration:

• More hits are concentrated on a smaller surface which results in a smaller
value of Neff at lower illuminations,

• outer pixels on the MPPC still, none the less, get more illumination than
with a simple Gaussian model resulting in a larger value of Neff at higher
illuminations.

In the case of a Gaussian in cylindrical coordinates, both the radius and
width of the Gaussian were optimised manually to obtain a good fit between
the data and Monte-Carlo saturation results. A radius of 0.3 mm and width
of 0.25 mm were found to give the best agreement between data and Monte-
Carlo with less than 10% deviation in the worst case (figure 4.6). The first
fit parameter, CN, of the saturation function was found to agree with data
to the level of 5% for over-voltages below 1.3 V (figure 4.7). A similar slope
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between data and Monte-Carlo was found for the second parameter Neff but
with a deviation of no less than 25% for the same over-voltage values.

Figure 4.6: Comparison of Data to Monte-Carlo saturation for test bench mea-
surement with Y-11 fibre and Gaussian model in cylindrical coor-
dinates with radius of 0.3 mm and σ of 0.25 mm for over-voltage
values of 0.95 V (6), 1.14 V (5), 1.3 V (4), 1.53 V (3), 1.73 V (2)
and 1.92 V (1). Black: Monte Carlo data, red: fit extracted from
the test bench measurements (see figure 3.11(b) and (c)).

The MC simulation is used for the measurement of systematic uncertain-
ties. Since the first T2K runs are dominated by statistical uncertainties, a
10% deviation in the saturation response between data and Monte-Carlo was
considered acceptable. Further studies requiring better agreement might con-
sider different models, such as a Gaussian with kurtosis, and study possible
optical and reflection effects caused by the epoxy of the MPPC.

4.3 Full electronic simulation model

The full electronics simulation model is the combined implementation of the
fibre, MPPC and TRIP-t front end board. To validate the simulation, Monte-
Carlo runs were compared to data taken with the ND280.

Pedestal runs

The pedestal of a TFB board is the average intrinsic electronic response of the
TFB in ADC in the absence of any signal, obtained by integrating the charge
in one of the 23 integration windows. In so called “pedestal” runs, signal from
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Figure 4.7: Comparison of the parameters of the data and Monte-Carlo sat-
uration fits, CN (left) and Neff (right) versus over-voltage for the
Gaussian model in cylindrical coordinates with radius of 0.3 mm
and σ of 0.25 mm. Residuals between the Monte Carlo data and
test bench fits are also shown. Black: Monte Carlo data, red: fit
extracted from the test bench measurements (see figure 3.12(b).

the TFB integration windows is recorded in the absence of beam data. These
runs serve various purposes such as:

• Alignment and calibration of pedestals amongst all the TFB boards,

• Verification of the MPPC gains (given by the separation between two
peaks in the hi-gain channel),

• Tuning of the dark noise simulation and the PEU structure in the high
gain channel (figure 4.8),

• Tuning of the time structure of noise hits in the TFB integration windows
(figure 4.9).

Here in particular, we concentrate on the study of the last two items. The PEU
structure of the dark noise simulation in the high gain channel, presented in
figure 4.8, shows a good agreement between data and Monte Carlo with some
divergence in the tail where more events are observed in the data than the
Monte-Carlo. In pedestal runs, all photo-electron peaks arise probabilistically
from a combination of dark noise followed by crosstalk or after-pulse. Any
discrepancy between the probability values of these underlying quantities be-
tween the model and reality get compounded for higher photo-electron peaks
in the tail. However, because of the logarithmic form of the event distribution,
these higher order effects are not consequential.
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Figure 4.8: Comparison of Dark Noise in the high gain channel between an
ND280 pedestal data run in the downstream ECAL and a Monte
Carlo electronics simulation noise only run in the downstream
ECAL with ADC cut of 2.5 PEU.

The time structure of noise hits in the TFB integration windows is presented
in figure 4.9. A slight excess of timestamped events in the Monte Carlo (grey)
is visible close to the end of each window.

The general shape of the distribution is a function of the TDC threshold
value because a time-stamp is created only if and when the total accumu-
lated charge in the integration window has exceeded the TDC threshold. For
a threshold corresponding to 1 PEU, hits are timestamped with a uniform
distribution over the integration window. As the threshold increases, proba-
bilistically, hits will be given a time-stamp increasingly towards the end of the
integration window.

Given a constant TDC threshold, the time of time-stamp will depend on the
frequency of dark noise and the probability of crosstalk and after-pulse. For
a lower dark noise frequency or smaller probability of crosstalk or after-pulse,
timestamps would be given, on average at a later time.

A reasonable assumption is therefore that the dark noise, crosstalk or after-
pulse models are underestimated in the simulation. We also observe that
this corroborates with the observations made based on figure 4.8. Dark noise
probabilities are well measured but the crosstalk measurement in particular
is subject to more uncertainty. The models implemented in the Monte Carlo
were taken from results published in [42].

Beam runs

Beam runs are used to verify the matching of calibrated hit charges (figure
4.10) , and, verify the bunch structure of simulated beam events and alignment
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Figure 4.9: Comparison of the time distribution of pedestals in one TFB cycle
between a data run and Monte-Carlo.

of sub-detector beam timing (figure 4.11).
Data is collected in beam runs using a trigger that coincides with beam spill

times. Out of all the channels in the detector, most will only record pedestals
or noise during the spill coincidence window. The vast majority of calibrated
hit charges shown in figure 4.10 are therefore below 10 PEU. The region of
interest in this case lies above 10 PEU.

Most of the region of interest shows good agreement between data and
Monte Carlo apart from the region between 10 and 20 PEU where a large
discrepancy, still under investigation by the calibration group, can be clearly
observed.

Figure 4.10: Comparison of the calibrated hit charge in ADC for the down-
stream ECAL between data and Monte-Carlo for beam data runs.

The time structure of simulated beam events on the other hand shows that
the bunch times of the three TRIP-t sub-detector are well aligned. The first
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Figure 4.11: Monte-Carlo plot of the Lo gain ADC as a function of time in the
TFB cycle for the downstream ECAL, P0D and SMRD for beam
data runs.

bunch also falls inside the first half of the 5th integration window as expected.

Cosmic runs

Cosmic runs were used to verify the Monte-Carlo reconstructed MIP spec-
trum (figure 4.12). The cosmic muon distributions were corrected for channel
by channel and attenuation variations and fitted with a convolved Landau-
Gaussian fit. The most probable value for the fit was obtained and used as a
scaling factor to recover the energy deposited in scintillator bars.

Poor agreement was found between data and Monte-Carlo with variations
of up to 100% in the normalised distributions. In particular, the width of the
MC spectrum was found to be smaller than the width of the data spectrum.
Ongoing work is being carried out in order to account for the divergence ob-
served. For instance, the light illumination model used in the Monte-Carlo
simulation results presented in figure 4.12 was the uniform distribution. A
Gaussian illumination model has since been set as default in the software.

The calibration effort by the calibration group is still very much a work in
progress at the time of writing. The first T2K runs are highly statistically
limited however so uncertainties due to calibration have little impact on the
final physics results. The first T2K run in particular, presented in the next
section, has a stronger focus on the far detector measurement at Super-K
which is a very well understood detector.
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Figure 4.12: Comparison between the data and Monte-Carlo reconstructed
MIP spectrum where the MC spectrum is fitted with a convolved
Landau-Gaussian fit.
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5 νµ disappearance in T2K

T2K uses a beam of muon neutrinos to investigate νe appearance and νµ dis-
appearance. The disappearance measurement compares the observed number
of muon neutrinos at the far detector with the expected number at Super-K.
If fewer events are observed than expected, as predicted by the mathematical
formalism, this is interpreted as νµ having oscillated to other flavours of neu-
trinos. In the two-flavour approximation, all the muon neutrinos are assumed
to have oscillated to τ neutrinos according to the oscillation probability given
by equation 1.25.

The ultimate aim of the disappearance analysis is to achieve the most sen-
sitive measurement to date of the oscillation parameters sin2 2θ23 and ∆m2

32.
This chapter provides a detailed description of all the steps of a νµ disappear-

ance analysis. In section 5.1, the reconstructed energy spectrum at Super-K
is formally derived and potential sources of systematic error are discussed.
Section 5.2 introduces the maximum likelihood method used to estimate the
oscillation parameters based on the measured and predicted data. Sections
5.3 and 5.4 compare two candidate methods for the construction of the statis-
tical intervals in the parameter space of the oscillation parameters. The first
method explores techniques of minimisation, optimisation with constraints
and the construction of confidence regions. The second method approaches
the problem with a different angle and introduces marginalisation, the sam-
pling of the likelihood function using a Markov Chain Monte Carlo (MCMC)
method and the construction of Bayesian credible intervals. The signal and
backgrounds to the disappearance analysis at the far and near detectors are
introduced respectively in sections 5.5 and 5.7. Section 5.6 describes the PDF
construction procedure for the Super-K and ND280 inputs. The effect of
the oscillation parameters on the expected number of events and final recon-
structed spectrum at Super-K is studied. Section 5.8 introduces the systematic
error sources and illustrates how the variation of each systematic affects the
expected energy spectrum at Super-K. Sections 5.9 presents the results of an
MCMC simulation in the favoured oscillation hypothesis for an accumulated
exposure of 3.23 × 1019 POT. The T2K results for the first physics run are
finally presented in section 5.10.
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5.1 Derivation of expected energy spectra at

Super-K

The muon neutrino disappearance analysis in the two neutrino flavour approx-
imation is a function of the two oscillation parameters and the energy spectra
of the neutrinos at the far detector. The distance travelled by each neutrino
is constant and so does not need to be considered.

The T2K experiment aims to make a precision measurement of the atmo-
spheric oscillation parameters by comparing the Monte Carlo prediction of
the reconstructed energy spectrum at Super-K with the collected data. The
understanding and simulation of physical processes that affect the expected
energy spectrum at Super-K are therefore critical to the success of the T2K
experiment. Where our understanding is lacking and uncertainties creep in,
it is necessary for the validity of our results to assign appropriate systematic
errors.

This section goes through a step by step formal derivation of the expected
energy spectrum at Super-K using a top down approach and based on the
derivation provided in [55]. Sources of systematic uncertainties are then clar-
ified based on this derivation.

5.1.1 Formal derivation of the expected energy spectrum at

Super-K

Step 1: Separation of neutrino flavours and interaction modes.

The predicted reconstructed energy spectrum at Super-K:
dNexp

SK(Er)

dEr
, con-

sists of all the events that have passed a set of selection cuts designed to select
νµ’s from Charged Current Quasi Elastic (CCQE) interactions. νµ CCQE
events are therefore the signal sample. However, other types of events also
pass the chosen set of selection cuts and are backgrounds to the analysis (see
section 5.5 for an exhaustive description of signal and backgrounds). dNexp

SK (Er)
dEr

must therefore be equal to the sum of the reconstructed energy spectrum of
all parent neutrino flavours “f” and interaction mode “m” that are present
after the selection cuts are applied:

dN exp
SK (Er)
dEr

=
∑
f

∑
m

dN exp
SK;f;m(Er)

dEr
. (5.1)

The selection efficiency determines the fraction of events of each parent neu-
trino flavor and interaction mode to appear in the final reconstructed energy
spectrum. Equation 5.1 is re-written below taking into account the selection
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efficiency εsel
SK;f;m(Er):

dN exp
SK (Er)
dEr

=
∑
f

∑
m

dN tot
SK;f;m(Er)
dEr

εsel
SK;f;m(Er), (5.2)

where
dNtot

SK;f;m(Er)

dEr
is the total reconstructed energy spectrum of parent neu-

trino flavour ”f” and interaction mode ”m”.

Step 2: Expression of reconstructed energy spectrum in terms of

true energy.

We can then express the expected reconstructed energy spectrum in terms
of the total true neutrino energy spectrum

dNtot
SK;f;m(Et)

dEt
:

dN exp
SK (Er)
dEr

=
∑
f

∑
m

∫
dEt

dN tot
SK;f;m(Et)
dEt

RSK;f;m(Et, Er)εsel
SK;f;m(Er)εreco

SK;m(Et),

(5.3)
where εreco

SK;m(Et) and RSK;f;m(Et, Er) are defined below:

• εreco
SK;m(Et): Super-K efficiency for reconstructing a neutrino event of

mode m and true energy Et.

• RSK;f;m(Et, Er): Super-K energy transfer matrix for events of neutrino
parent flavour f and mode m; gives the probability for an event of true
energy Et to be reconstructed with energy Er.

RSK;f;m(Et, Er) is defined such that:

dN exp
SK (Er)
dEr

=
∫
dEt

d2NSK;f ;m

dErdEt
=
∫
dEt

dNSK;f ;m

dEt
RSK;f;m(Et, Er), (5.4)

and therefore:

RSK;f;m(Et, Er) =
d2NSK;f ;m

dErdEt

/
dNSK;f ;m

dEt
. (5.5)

For each true energy value Et, a probability density function normalised to
1 can be computed that describes the probability for an event of true energy
Et to be reconstructed with energy Er.

Step 3: Separation of the oscillation probability function depen-

dence.

The dependence on the νµ oscillation probability as a function of true neu-
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trino energy P osc
f ;m(Et) is removed below from equation 5.3:

dN exp
SK (Er)
dEr

=
∑
f

∑
m

∫
dEt

dN tot;unosc
SK;f;m (Et)

dEt

×P osc
f ;m(Et)RSK;f;m(Et, Er)εsel

SK;f;m(Er)εreco
SK;m(Et), (5.6)

where
dNtot;unosc

SK;f;m (Et)

dEt
is the total non oscillated neutrino energy spectrum for a

neutrino of flavour f and interaction mode m.

Step 4: Expression of true neutrino energy spectrum in terms of

neutrino flux at Super-K.

The true neutrino energy spectrum is a function of the estimated neutrino
flux at SK dΦSK(Et)

dEt
:

dN tot;unosc
SK;f;m (Et)

dEt
= NPOT

SK Mfid
SK

NA

AH2O

dΦSK(Et)
dEt

σtot
H2O;f ;m(Et)fm(Et), (5.7)

where the terms NPOT
SK , Mfid

SK, NA
AH2O

, σtot
H2O

(Et) and fm(Et) are defined below:

• NPOT
SK : Number of protons on target corresponding to the Super-K data

sample.

• Mfid
SK: Mass of the Super-K fiducial volume.

• NA
AH2O

: Avogadro’s number divided by the water mass number.

• σtot
H2O;f ;m(Et): Total neutrino interaction cross section in water at energy
Et for a neutrino parent f and interaction mode m.

• fm(Et): Fraction of events of interaction type m.

Substituting equation 5.7 into equation 5.6 gives:

dN exp
SK (Er)
dEr

= NPOT
SK Mfid

SK

NA

AH2O

∑
f

∑
m

∫
dEt

(
dΦSK(Et)
dEt

σtot
H2O;f ;m(Et)fm(Et)

×P osc
f ;m(Et)RSK;f;m(Et, Er)εsel

SK;f;m(Er)εreco
SK;m(Et)

)
. (5.8)

The estimation of the true neutrino flux at SK dΦSK(Et)
dEt

is a cause of large
systematic uncertainties. One of the key factors to a successful analysis in
the T2K experiment is the appropriate use of ND280 measurements in order
to constrain these systematic errors and demonstrate that we understand the
neutrino beam. This leads to the next step in the formal derivation of the
final reconstructed energy spectra at Super-K: the use of the far to near ratio
RF/N(Et) to constrain the Super-K neutrino flux.
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Step 5: Use of far to near ratio to constrain the Super-K neutrino

flux.

The far to near ratio is defined as the ratio of neutrino fluxes at Super-
K and ND280:

RF/N(Et) =
(
dΦSK(Et)
dEt

)/(
dΦND280(Et)

dEt

)
. (5.9)

In order to constrain the Super-K neutrino flux, RF/N(Et) is approximated
with Monte Carlo and then used in combination with ND280 data in order to
constrain the Super-K neutrino flux:

dΦSK(Et)
dEt

= RF/N(Et)
dΦND280(Et)

dEt
. (5.10)

The use of RF/N(Et) is justified because the systematic uncertainty associ-
ated with its calculation is considerably smaller than the uncertainty in the
calculation of the far detector neutrino flux due to cancellations in the near
to far ratio. The near detector flux is of course determined to better accuracy
since the neutrino flux is orders of magnitude greater than at the far detector.
Therefore the far to near ratio has constraining power over the far detector
neutrino flux. The next steps detail how ND280 data are used to measure the
neutrino flux at ND280.

Step 6: Expression of the ND280 neutrino flux in terms of the

ND280 neutrino energy spectra.

The neutrino flux at ND280 is a function of the true neutrino energy spectra
at ND280 dNND280(Et)

dEt
:

dΦND280(Et)
dEt

=
AND280

NPOT
ND280M

fid
ND280NA

1
σND280(Et)

dNND280(Et)
dEt

, (5.11)

where the terms NPOT
ND280, Mfid

ND280 and σND280(Et) are defined below:

• NPOT
ND280: Number of protons on target corresponding to the ND280 data

sample.

• Mfid
ND280: Mass of the ND280 fiducial volume.

• σND280(Et): Total neutrino interaction cross section on scintillator at
energy Et.
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In turn, the true neutrino energy spectrum at ND280 is expressed as a
function of the reconstructed energy spectrum of sample “s” dNND280;s(Er)

dEr
:

dNND280(Et)
dEt

=
∑
s

∫
dEr

(
dNData

ND280;s−like(Er)
dEr

−
dNMC

ND280;s−bkg(Er)
dEr

)

×
RND280;s(Er, Et)

εsel
ND280;s(Er)ε

reco
ND280;s(Et)

, (5.12)

where the Monte Carlo prediction on the ”s”-like background
dNMC

ND280;s−bkg(Er)

dEr

is subtracted from the ”s”-like data sample
dNData

ND280;s−like(Er)

dEr
to get the recon-

structed energy spectrum of sample ”s” dNND280;s(Er)
dEr

.
The terms εsel

ND280;s(Er), ε
reco
ND280;s(Et) and RND280(Er, Et) are defined below:

• εsel
ND280;s(Er): ND280 selection efficiency determines the fraction of events

that have passed selection cuts associated with sample “s” to appear in
the final reconstructed energy spectrum.

• εreco
ND280;s(Et): ND280 efficiency for reconstructing a neutrino event of true

energy Et.

• RND280;s(Er, Et): Gives the probability for an event of reconstructed
energy Er to have true energy Et. Is equivalent to the transpose of the
energy transfer matrix: RTND280;s(Et, Er).

Step 7: Bringing it all together.

Combining equations 5.10, 5.11, 5.12 shows how the Super-K neutrino flux
is constrained by ND280 data and Monte Carlo prediction:

dΦSK(Et)
dEt

=
RF/N(Et)AND280

NPOT
ND280M

fid
ND280NAσND280(Et)

dNND280(Et)
dEt

×

∑
s

∫
dEr

(
dNData

ND280;s−like(Er)
dEr

−
dNMC

ND280;s−bkg(Er)
dEr

)
.

(5.13)
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The final expression for the Super-K reconstructed energy spectrum is ob-
tained by combining equation 5.13 with equation 5.8:

dN exp
SK (Er)
dEr

=
NPOT

SK Mfid
SKAND280

NPOT
ND280M

fid
ND280AH2O

∑
f

∑
m

∑
s

∫
dEt

∫
dEr′

(
RF/N(Et)P osc

f ;m(Et)×

σtot
H2O;f ;m(Et)fm(Et)
σND280;s(Et)

(
dNData

ND280;s−like(Er′ )
dEr′

−
dNMC

ND280;s−bkg(Er′ )
dEr′

)
×

RSK;f;m(Et, Er)RTND280;s(Et, Er′ )
εsel
SK;f;m(Er)εreco

SK;m(Et)

εsel
ND280;s(Er′ )ε

reco
ND280;s(Et)

)
. (5.14)

5.1.2 Discussion of systematic uncertainties based on the

derived Super-K reconstructed energy spectrum

With each new term introduced during the derivation of the Super-K recon-
structed energy spectrum, associated systematic uncertainties must be consid-
ered. Overall, sources of systematic uncertainties affect both the far and near
detectors and can be subdivided into the following categories:

Selection efficiencies:

The selection efficiencies are a function of reconstruction energy for each
interaction mode and neutrino parent. The systematic uncertainty in the
selection efficiencies therefore describe the uncertainty in the shape and nor-
malisation of the spectrum of each interaction mode after selection cuts.

Energy reconstruction efficiencies:

Energy reconstruction efficiency uncertainties are introduced when convert-
ing from true to reconstructed energy or vice versa.

Neutrino flux shape and normalisation:

Neutrino flux uncertainties represent the uncertainty in our knowledge of the
shape and normalisation of the flux of neutrinos at the near and far detectors.

Nuclear interactions:

Nuclear interaction uncertainties refer to uncertainties in the cross sections
of neutrino interactions with detector target material and uncertainties in the
final state of an interaction.

An in-depth description of each systematic error included in the analysis is
provided in section 5.8
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5.1.3 Practical implementation

The formal derivation described in section 5.1.1 is useful, especially for the
visualisation of systematic effects that enter the analysis. In practice the
analysis is much simplified by the use of sets of templates that describe the
inputs from Super-K and ND280.

A first set of templates describes the true energy spectrum of events of
each interaction mode and neutrino parent that pass the Super-K selection
cuts. A second set gives the conversion from true to reconstructed energy for
each interaction mode and neutrino parent that pass the Super-K selection
cuts. A third set describes the ND280 reconstructed energy spectrum for each
interaction mode and neutrino parent that passes ND280 selection modes.

In order to produce the first two sets of templates, neutrino generators
NEUT [56] and Genie [57] are used in the Super-K software in combination
with flux information. The Super-K software creates a ROOT [58] NTuple
that describes Super-K variables for each neutrino interaction simulated in the
Monte Carlo process. Information provided in the NTuple includes, for each
neutrino interaction, the number of rings produced at Super-K, the visible
energy, inner and outer detector number of PMT hits, particle type, fitted
direction, three momentum and many more parameters. The first two sets of
templates are generated by applying selection cuts on Monte Carlo neutrino
interaction events based on the Super-K NTuples. Similarly, the third set
of templates is constructed by processing the NEUT or Genie Monte Carlo
through the ND280 software.

Using these templates and the oscillation probability formula is sufficient
to build the final reconstructed energy spectrum at Super-K. Systematics are
then included by determining how they affect these templates.

The construction of these templates is detailed in sections 5.5 and 5.7.

5.2 Fitting method

The “observable” quantity in the disappearance measurement is the recon-
structed energy spectra of the νµ CCQE-like events at the Super-K detector.
This “observable” is parametrised as a function of the oscillation parameters
to be determined. Once data are collected, either experimentally or by Monte
Carlo simulation, the parameters can be estimated and statistical intervals
drawn.

Section 5.2.1, based on [31], describes the statistical method used, a maxi-
mum likelihood method, to find the oscillation parameters that give the best
fit between Super-K data and the Super-K reconstructed oscillated energy
spectrum probability density function from Monte Carlo.
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5.2.1 Maximum Likelihood method

Suppose we observe a set of N measured neutrino events of reconstructed
energies ER = (ER1, ..., ERN ) described by the same probability density func-
tion (PDF) f(ER| sin2 θ23,∆m2

32), where sin2 θ23 and ∆m2
32 are the oscillation

parameters to be determined. The likelihood function is given by the PDF
evaluated with the data ER as a function of the oscillation parameters. Since
the measurements for each neutrino event are statistically independent and
“drawn” from the same PDF, the likelihood function is:

L(sin2 θ23,∆m2
32) =

N∏
i=1

f(ERi| sin2 θ23,∆m2
32), (5.15)

The estimators ̂sin2 θ23 and ∆̂m2
32 give us the best guess for the values of

the oscillation parameters. They are found by finding the values of sin2 θ23

and ∆m2
32 that maximise the likelihood function L(sin2 θ23,∆m2

32).
In fact we use the log of the likelihood for convenience. This is equivalent

as both L and lnL are maximised for the same values of the oscillation pa-
rameters. The maximum likelihood estimators can be found by solving the
likelihood equations:

∂ lnL
∂(sin2 θ23)

= 0, (5.16)

∂ lnL
∂(∆m2

32)
= 0. (5.17)

An unbinned maximum likelihood method is advantageous when the num-
ber of events in the data sample is small because binning results in a loss
of information associated with larger statistical errors for the parameter esti-
mates.

An extended maximum likelihood method is used if the sample size is
treated as a Poisson distributed variable. For the extended maximum like-
lihood method, equation 5.15 becomes

L(sin2 θ23,∆m2
32) =

(
NSK

exp(sin2 θ23,∆m2
32)
)NSK

obs

NSK
obs!

exp
(
−NSK

exp(sin2 θ23,∆m2
32)
)

×
NSK

obs∏
i=1

f(ERi| sin2 θ23,∆m2
32). (5.18)

which we re-write as

L(sin2 θ23,∆m2
32) = LNorm

(
sin2 θ23,∆m2

32

)
×LShape

(
sin2 θ23,∆m2

32

)
, (5.19)
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where the first term LNorm corresponds to the normalisation and the second
term LShape is the multinomial shape of the reconstructed neutrino energy
spectrum.
In case of a large number of expected events at Super-K, the exponential term
in the Poisson distribution becomes a source of numerical instability. Under
the same condition, however, a Gaussian distribution provides a good approx-
imation for the Poisson distribution. Consequently, the Poisson normalisation
term is replaced with a Gaussian term for large numbers of expected events
at Super-K:

LNorm

(
sin2 θ23,∆m2

32

)
= exp

(
−1

2
(NSK

exp −NSK
obs)

2

NSK
exp

) /√
2πNSK

exp . (5.20)

In contrast, a binned maximum likelihood can be used for large data samples
in order to reduce computation time. In this case, we have a set of n bins,
n = (n1, ..., nN ), with expectation values ν = E[n] and probabilities f(n;ν).
Maximising the likelihood function based on the contents of the bins gives the
estimators for the oscillation parameters. This is equivalent to maximising the
likelihood ratio

λ(sin2 θ23,∆m2
32) = f

(
EB;ν(sin2 θ23,∆m2

32)
)/
f(EB; EB) (5.21)

or to minimising −2 lnλ(sin2 θ23,∆m2
32) where:

−2 lnλ(sin2 θ23,∆m2
32) = 2

N∑
i=1

[
νi(sin2 θ23,∆m2

32)− EBi + EBi ln
EBi

νi(sin2 θ23,∆m2
32)

]
.

(5.22)
In the limit of zero bin width, it can be verified that maximising equation 5.22
is equivalent to maximising the unbinned maximum likelihood function.

The method used in this particular analysis is the extended unbinned maxi-
mum likelihood described in equation 5.19. Systematic errors will be added to
equation 5.19 in the next section and the complete Likelihood will be derived.

5.3 Minimisation procedures and construction of

confidence regions

Confidence regions can be constructed by minimising the likelihood in the
multi-dimensional parameter space of the oscillation parameters and nuisance
terms. Two techniques in particular are described for the construction of con-
fidence regions: a Gaussian approximation, as recommended by the Particle
Data Group (PDG) [31], and the Feldman-Cousins method [59].

One particularity of the disappearance analysis is that the favoured oscil-

92



lation angle sin2 2θ23 lies on the boundary between a physical and unphysical
region. A few of the most popular minimisation algorithms were tested for
bias and execution speed. Problems arising from boundary conditions are de-
scribed and an approach of optimisation with inequality constraint is presented
as a work-around.

5.3.1 Construction of confidence intervals

The Neyman construct [60] is used to find a sensitivity region for the oscillation
parameters. There are some subtle differences between a frequentist approach
such as the Neyman construct and a Bayesian formalism. It is important
to understand the differences between both approaches in order to interpret
appropriately the results of the frequentist method used.

In the case of a Bayesian construct, the Bayesian region gives the proba-
bility based on some prior assumptions that the true parameters lie in said
region. Quoting a 90% Bayesian region therefore indicates a belief given prior
assumption that the true parameters lie in the quoted region with 90% prob-
ability.

The frequentist method calculates the probability of observing a data-set
given values of the parameters. The estimators are the values of the param-
eters for which the probability density function evaluated with the data is
maximised. The Neyman construct specifies a procedure to build frequentist
confidence intervals. For all possible true values, the interval in the estimators
with a specified probability of occurring is calculated and a confidence belt of
these intervals is built. Following a measurement, the estimators are calcu-
lated and the corresponding confidence interval of true values with probability
as specified during the construct of the confidence belt is read out from the
confidence belt. As opposed to the Bayesian construct, a 90% confidence in-
terval does not mean that the confidence interval contains the true values with
a 90% probability. For any one set of data, the probability could be less or
even zero if the confidence interval lies in the unphysical region. However, on
average, 90% of generated confidence intervals would contain the true value.

Constructing proper frequentist confidence intervals is often difficult so ap-
proximations are generally used. The Gaussian approximation recommended
by The Particle Data Group (PDG) is described below.

Gaussian approximation

An approximate confidence interval for the oscillation parameters can be built
based on the probability content of a χ2 with d degrees of freedom by finding
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the contour of values (sin2 θ23)′ and (∆m2
32)′ such that

lnL((sin2 θ23)′, (∆m2
32)′) = lnLmax −

∆χ2(d)
2

, (5.23)

where lnLmax is the value of the maximum of the log likelihood. Table 5.1
presents some relevant χ2 values used in the Gaussian approximation.

∆χ2

Confidence Level DOF = 2 DOF = 3 DOF = 4
68 % 2.28 3.51 4.70
90 % 4.61 6.25 7.78
95 % 5.99 7.82 9.49
99 % 9.21 11.35 13.28

Table 5.1: ∆χ2 for common Confidence Levels for 2, 3 and 4 Degrees Of Free-
dom (DOF)

The Gaussian approximation is valid in the large sample limit or in the case
of a linear model with Gaussian errors. This method does not however give
proper coverage if these conditions are not met or near a physical boundary
Coverage is defined as the proportion of the time that the interval contains
the true value of interest. In other words, an interval constructed with 90%
confidence level under an invalid Gaussian approximation will not contain the
true values of the parameters 90% of the time.

Past experiments such as MINOS have measured the θ23 mixing angle
and found maximal mixing. At maximal mixing, that oscillation parameter
sin2 2θ23 is 1, right at the physical boundary. Since the Gaussian approxima-
tion recommended by the PDG doesn’t have the right coverage near a physical
boundary, the Feldman-Cousins method is considered instead.

Feldman-Cousins method

The Neyman confidence interval construction allows freedom in the procedure
used to define the region that contains the desired percentage (say 90%) of
the probability content for a fixed value of the parameters. Popular choices
include the following where in all cases the chosen region should contain 90%
of the probability:

• Drawing a central region with equal probability of the measurement
falling either above or below.

• Using an upper or lower limit: all parameters with value greater than or
less than a given value are added to the region.
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• For binned distributions with no particular shape, points can be added
in decreasing order of maximum probability until the region contains
90% of the probability.

The Feldman-Cousins method proposes a different ordering procedure that
is meant to fix some issues with classical confidence intervals. Namely, the
possibility for confidence intervals to return the empty set, issues with un-
physical regions and discontinuities caused by ”flip-flopping” (changing the
ordering procedure from an upper or lower limit to a central region).

The ordering principle proposed by Feldman and Cousins uses the likelihood
ratio:

R =
P (x|µ)

P (x|µbest)
, (5.24)

where x is the measured value of the parameters, µ is the true value and µbest

is the best fit to the data. Since we don’t have probability density functions
as required, a Monte Carlo procedure is used instead to re-normalise the ∆χ2

value from the Gaussian method at each point in the parameter space. The
implementation of this Monte Carlo procedure is the following:

• Many fake experiments are done for one set of true parameters.

• For each fake experiment, the ∆ logL between the best fit and true value
is calculated.

• The required number of experiments (say 90%) are ordered in terms of
increasing ∆ logL. The threshold is then set by ∆ logL which contains
90% of the fake experiments.

• This procedure is repeated over all possible sets of true parameters.

As mentioned previously, the main advantage of this method compared to
the Gaussian approximation is that it get rids of physical boundary issues. On
the other hand the Monte Carlo procedure used to re-normalise the ∆χ2 value
at each point in the parameter space is costly in terms of computing time.

5.3.2 Minimisation of the likelihood

One method to find the estimators of the oscillation parameters and construct
confidence regions is to minimise the negative log likelihood function in the
multi-dimensional parameter space. Constraints for the viability of a particu-
lar method are determined by usual factors: accuracy, speed and cost.

The bottleneck of minimisation algorithms in terms of computational speed
is generally the evaluation of the likelihood function for a set of parameter
values. In the case at hand however, the likelihood function first needed to be
re-calculated and then evaluated for every parameter change. In particular,
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the likelihood function was found to take an order of seconds to compute. It
was therefore critical that any algorithm used minimised the likelihood with
as few evaluations as possible.

Two general categories of algorithms were identified: those that require the
computation of the gradient of the likelihood function at each step and those
that don’t. In general, algorithms that use gradients such as “conjugate gradi-
ent” or “quasi-Newton” methods are significantly more efficient than methods
that don’t such as a “simplex” method [61]. However, in the first case, the
gradient of the likelihood function at each point must be computed using finite
differences since the functions analytical form is not known. This implies that
the likelihood function be calculated at least an order of n times more at each
evaluation for gradient methods and seriously deteriorates the efficiency.

Rather than re-inventing the wheel, minimisation algorithms from the GNU
Scientific Library (GSL) [62] and MINUIT [63] package were tested.

Overall, both categories of algorithm were found to share the same flaw for
the problem considered: poor scaling with increasing dimensions.

5.3.3 Optimisation with inequality constraint

The most likely value for the oscillation parameter sin2 2θ23 sits at 1.0 on the
boundary between the physical and unphysical region. When minimising the
likelihood function with regards to the oscillation parameter sin2 2θ23, one of
two scenarios must be chosen: either

1. constrain the oscillation parameter to the physical region when minimis-
ing the likelihood: sin2 2θ23 <= 1.0,

2. or, do not constrain the parameter and let the minimiser find a minimum
in the non physical region.

However, both choices have underlying issues. Because fast multi-dimensional
minimisers calculate the gradient of the likelihood function, they do not work
well close to physical boundaries if a discontinuity is introduced by constrain-
ing the likelihood. On the other hand, minimisers were found to frequently
diverge in the non physical region. We may also wish to find a local minimum
in the physical region.

Resolution of minimisation problems with such constraints are commonly re-
ferred to as optimisation problems with inequality constraint. These problems
are often resolved by transforming the bounded problem into an unbounded
one.
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Penalty function method

With the penalty function method, a continuous penalty function is added to
the likelihood with the aim of ensuring that the minimiser does not reach a
stable state in the non physical region. The likelihood is then minimised with
no constraint. A quadratic penalty function is often used to ensure that the
derivative of the function is also continuous. This is particularly relevant for
minimisation algorithms that calculate the Hessian matrix at each point, such
as quasi-Newton methods.

The updated likelihood function with quadratic penalty is given by:

L
′
(sin2 θ23,∆m2

32, ρ) = L(sin2 θ23,∆m2
32) + ρ(sin2 θ23 − 1)2, (5.25)

where:

ρ =

0 if sin2 θ23 ≤ 0,

ρ� 0 if sin2 θ23 > 0.
(5.26)

With very large values of ρ, the penalty function effectively forces the min-
imiser into the physical region whilst keeping the likelihood function well be-
haved.

The sequential unconstrained minimisation technique (SUMT) [64] was used
to minimise the likelihood in order to avoid instabilities and inefficiencies as-
sociated with very large values of ρ. Using this technique, a small value of ρ
is chosen initially and then incrementally increased as the solution is found.

Augmented Lagrange multiplier method

In the penalty method approach, the constrained minimum approximately
coincides with the minimum of the penalised function but high accuracy is
not guaranteed due to numerical instabilities associated with large values of
ρ.

The augmented Lagrange multiplier method combines the classical Lagrangian
method with the penalty function approach and does not suffer from the same
ill-conditioning.

The classical Lagrangian method defines a Lagrangian function, L(x, y, λ),
based on the constrained function to minimise: f(x, y) with constraint g (x, y) ≤
b, such that the minimum of the constrained problem coincides with a station-
ary point of the Lagrangian function. The classical Lagrangian in the example
outlined is given by:

L(x, y, λ) = f(x, y)− λg (x, y) , (5.27)
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and the minimum found by solving the set of equations

∂L

∂x
= 0,

∂L

∂y
= 0, λ(g (x, y)− b) = 0. (5.28)

The augmented Lagrange multiplier method, on the other hand, is based on
the use of approximations of the Lagrange multipliers. If a good approximation
to the classical Lagrange multipliers is found, then it is possible to approach
the optimum through the unconstrained minimisation of the augmented La-
grange function without using large values of ρ for the penalty term. The
value of ρ must only be sufficiently large to ensure that the augmented La-
grangian has a local minimum point with respect to the parameters rather
than simply a stationary point at the optimum [64]. A comparison of the
partial derivatives of the classical and augmented Lagrange function suggests
the following iterative approximation to determine an approximation for the
Lagrange multiplier:

λk+1 = 〈λk + 2ρkg(xk)〉 (5.29)

The following augmented Lagrange likelihood function was used for the
disappearance analysis:

L
′
(sin2 θ23,∆m2

32, λ, ρ) = L(sin2 θ23,∆m2
32) +

〈
λ/2 + ρ(sin2 θ23 − 1)

〉2
,

(5.30)
where the Lagrange multiplier, λ, and penalty factor ρ were approximated
iteratively using respectively equation 5.29 and

ρk+1 = 2ρk, (5.31)

if ||λk − λk−1|| < 0.5.

5.4 Sampling of the likelihood function with

MCMC

The main issue common to the minimisation, optimisation and Feldman-
Cousins methods introduced in chapter 5.3 is the heavy reliance on computing
power and poor scalability for problems of high dimensionality. This section
explores alternative solutions that don’t suffer from these drawbacks.

The simple two flavour disappearance model is a function of two oscillation
parameters and various systematic uncertainty or “nuisance” terms. Marginal-
isation techniques exist to effectively integrate over the nuisance terms. Section
5.4.1 introduces the concept and justifies why the problem is best solved by
using a Monte Carlo method. Section 5.4.3 introduces the MCMC method
used to sample the likelihood function in the whole parameter space and
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marginalise over the nuisance terms. Numerous MCMC methods exist but
the methodology of a random-walk MCMC in particular is described. Finally,
the construction of credible regions from the MCMC method is detailed in
section 5.4.4.

5.4.1 Marginalisation of nuisance terms

The concepts of nuisance term and marginalisation can be illustrated using a
fully specified probabilistic model in discrete space. A fully specified proba-
bilistic model gives the joint probability for every combination of values that
its variables can take. Table 5.4.1 presents a simplistic joint distribution for a
model of the day’s weather (example reproduced from [65]).

x1 x2 x3 P(x1,x2,x3)
clear rising dry 0.40
clear rising wet 0.07
clear falling dry 0.08
clear falling wet 0.10

cloudy rising dry 0.09
cloudy rising wet 0.11
cloudy falling dry 0.03
cloudy falling wet 0.12

Table 5.2: Joint distribution for a model of the day’s weather. x1 = Morning
sky (clear or cloudy), x2 = Morning barometer (rising or falling),
x3 = Weather in the afternoon (dry or wet)

Say, for the purpose of illustration, that only the morning sky parameter,
x1, is of concern. Then the morning barometer, x2, and afternoon weather,
x3, are called “nuisance” terms. To find the probability that the sky is, for
example, “clear” in the morning, we marginalise over all the other parameters
by summing over them:

P (clear) = P (clear|rising, dry) + P (clear|rising,wet) +

P (clear|falling,dry) + P (clear|falling,wet) (5.32)

In general, marginal probabilities for subsets of the variables are found by
summing over all possible combinations of values for the other variables in a
discrete case, or, integrating over them if they are continuous.

In the case of the disappearance likelihood, the oscillation parameters and
nuisance terms (the systematics uncertainties) are all continuous. Numerical
integration method could be used to integrate over the nuisance parameters
but this option is too costly computationally and impractical because the
likelihood function needs to be re-calculated for each change of parameter.
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Monte Carlo integration methods can be significantly more efficient for the
calculation of multi-dimensional integrals. Section 5.4.2 presents the tech-
niques of simple Monte Carlo integration and importance sampling. Section
5.4.3 presents the superior class of MCMC and the particular algorithm se-
lected: a random walk MCMC.

5.4.2 Monte Carlo integration

Monte Carlo integration

The simple Monte Carlo integration method can be used to integrate a func-
tion, f , over a complicated domain D. To perform the integration, a simple
domain, D

′
, which contains D is chosen and sample points are generated ran-

domly over D
′
, as illustrated in figure 5.1. The volume V of D is estimated

Figure 5.1: Illustration of Monte Carlo integration in 1 dimensions (extensi-
ble to multi-dimension integration). Some complicated (undefined
here) function f is to be integrated over the domain D delimited
by the x axis and the red curve. A simple domain D

′
, represented

here, which contains D is chosen and sample points are generated
randomly over D

′
.

as the volume V
′

of D
′

times the fraction of points falling in D. The integral
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of f over D is then given by:∫
fdV ' v〈f〉 ±

√
〈f2〉 − 〈f〉2

N
, (5.33)

where:

〈f〉 ≡ 1
N

N∑
i=1

f(xi) and 〈f2〉 ≡ 1
N

N∑
i=1

f2(xi) (5.34)

The main issue with the simple Monte Carlo method is one of efficiency: a
large fraction of generated sample points are wasted and regions of high and
low density are sampled with equal probability.

These issues are partially resolved by the method of importance sampling.

Importance sampling

In the importance sampling method, also called weighted sampling, a distri-
bution h(x) that approximates the region of integration is sampled instead.
Samples are then weighted by f(x)/h(x), where f(x) is the function to be inte-
grated. This results in fewer wasted points evaluating the function where it is
known to be small. On the other hand, it may be difficult to find a suitable
approximate distribution h(x), Monte Carlo average may be dominated by
a few samples (high variance), or, none of the high weight samples may be
found.

Both methods and in particular importance sampling could potentially de-
liver good results for the disappearance study. None the less, an MCMC
algorithm, traditionally used to sample from high dimensional distributions,
was selected instead.

5.4.3 Markov Chain Monte Carlo (MCMC) method

Using MCMC, sequences of random numbers that accurately reflect compli-
cated and multi-dimensional probability density functions can be generated.

Markov chain definition: A Markov chain refers to a sequence of random
variables (X0, X1, · · · , Xn) generated by a Markov process.

Markov process definition: Let xt denote the value of a random variable
at time t, and let the state space refer to the range of possible X values. The
random variable is a Markov process if the transition probabilities between
different values in the state space depend only on the random variables current
state, i.e:

P (Xt+1|X0, . . . , Xt) = P (Xt+1|Xt) (5.35)
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A random walk is a good example of a Markov process: the probability
for the next step in the random walk to end at a particular location depends
entirely on the current position. Card games such as blackjack or poker on
the other hand are not: the whole history of the game, i.e which cards were
already drawn, is needed to calculate to probability for the card to come next.

Some notation

A Markov process is entirely defined by its transitional probability. For a
discrete process, the transition matrix P gives the probability P (j, i) that a
process at state space si moves to state sj in a single step:

P (j, i) = P (Xt+1 = sj |Xt = si). (5.36)

For a continuous process, the transition matrix becomes a probability kernel
P (x, y) that satisfies: ∫

P (x, y)dy = 1. (5.37)

The probability that the chain is in state j at time t for the discrete case is
given by:

πj(t) = P (Xt = sj), (5.38)

while π(t) denotes the row vector of the state space probabilities at step t.
The probability that the chain has state value si at step t+ 1 is given by the
Chapman-Kolomogrov equation:

π(t+ 1) = π(t)P, (5.39)

and by extension,
π(t) = π(0)Pt. (5.40)

The Chapman-Kolomogrov equation for a continuous process is given by:

πt(y) =
∫
πt−1(x)P (x, y)dy = 1. (5.41)

More details can be found in [66]

The Metropolis-Hastings algorithm

The general Metropolis algorithm was first proposed in 1953 for the Monte
Carlo simulations of atomic and molecular systems [67].

The underlying principle behind this algorithm and its derivatives, such as
Metropolis Hastings, is the generation of a Markov chain whose equilibrium
density is the density of the function being sampled.
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Given a distribution f(x) where x represents a state vector of n parameters:
x = [x1, x2, · · · , xn], the Metropolis algorithm generates a sequence of draws
from f(x) according to the procedure outlined:

1. A set of initial values for the state vector parameters, x0 = [x0
1, x

0
2, · · · , x0

n],
is first chosen such that x0 satisfies the condition f(x0) > 0. From there
on, repetitively,

2. a sample candidate xt+1 is chosen according to a proposal distribution
q(xt+1,xt) that gives the probability of returning a value, xt+1, given a
previous value, xt. In the case of the Metropolis algorithm, this proposal
distribution is required to be symmetric: q(xt+1,xt) = q(xt,xt+1).

3. The density ratio of the distribution f(x) between the sampled candidate
point xt+1 and current point xt is calculated:

α =
f(xt+1)
f(xt)

. (5.42)

4. If α > 1, the proposed point increases the density, is automatically
accepted, and the current point is replaced by the sample candidate
point. If α < 1, the proposed point decreases the density and is only
accepted with probability α. In both cases, the chain is continued by
returning to the second step.

The Metropolis algorithm generates a Markov chain (x1,x2, · · · ,xn) since
the transition probabilities only depend on the current element of the chain.

The algorithm was generalised by Hastings such that the proposal distri-
bution from step 2 need not be symmetric [68]. In the general Metropolis-
Hastings algorithm, the density ratio from step 3 is replaced by:

α =
f(xt+1)q(xt+1,xt)
f(xt)q(xt,xt+1)

. (5.43)

In the case that the proposal distribution is symmetric, the Metropolis algo-
rithm is automatically recovered.

Metropolis-Hastings for the disappearance analysis

The distribution we wish to sample in the disappearance analysis is the like-
lihood, L(sin2 θ23,∆m2

32, f) which is a function of the oscillation parameters
and the systematic uncertainties f . If we call θt the vector of parameters, the
density ratio for the Metropolis algorithm is given by:

α =
L(θt+1)
L(θt)

. (5.44)
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By taking the natural logarithm of equation 5.44, the likelihood distribution
can be sampled by using the negative of the log likelihood instead:

lnα = lnL(θt+1)− lnL(θt). (5.45)

The so called proposal distribution used is a random perturbation in each
parameter:

θt+1 = θt + ε, (5.46)

where ε is a vector of random numbers generated from a multi-dimensional
uniform distribution with boundaries defined by a vector t: [−t,+t]. The re-
sulting Metropolis algorithm takes a random walk along the likelihood function
density.

Tuning of the MCMC

Given sufficient time, Markov chains generated with the Metropolis algorithm
approach a stationary distribution (the one that is being sampled from). How-
ever, poor choice of starting values or proposal distribution can greatly increase
the “burn-in” period required to reach stationarity. Samples generated during
the “burn-in” period are discarded resulting in longer chains being required.

Unlike other Monte Carlo techniques, such as importance sampling, suc-
cessive draws in a random walk MCMC are correlated. However, correlated
draws still provide an unbiased picture of a stationary distribution provided
that the sample size is sufficiently large. The variance of a correlated sample is
greater than for an uncorrelated sample by the “sample size inflation factor”
[69]: √

1 + ρ

1− ρ
, (5.47)

where ρ gives the correlation.
The acceptance probability α of the Metropolis-Hastings algorithm is linked

with the mixing (defined below) and correlation of a Markov chain. The time
series of Markov chains that are characterised by a low acceptance probability
have long flat periods corresponding to strings of rejection of proposed points.
On the other hand, chains with very high acceptance often move in very small
steps and take time to explore the whole space. In both scenarios, the chains
are said to be poorly mixing and display high levels of correlation. As a
consequence, much longer chains and “burn-in” periods are required.

Tuning of the random walk Metropolis-Hastings MCMC is therefore sensi-
tive and requires care in order improve the efficiency and reduce the compu-
tational cost.

The range of the proposal distribution for a uniform random walk is used as
a handle to tune the acceptance, and by extension, the mixing and correlation
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of the Markov chains generated. Figure 5.2 illustrates the results of a change
of boundaries for a random walk Metropolis algorithm applied to a simple
1 dimensional Gaussian probability function with mean of 0 and standard
deviation of 1. Three different boundaries [−t,+t] are tested for the uniform
proposal distribution. Respectively [−1,+1], [−0.5,+0.5] and [−0.1,+0.1]. A
Markov chain of 5000 elements is generated in each case, and, in each case,
the distribution of values is fitted with a Gaussian function. The convergence
of the mean of the chain and the mixing are also presented.

The Gaussian fit to the Markov chain generated with t = 1.0 gives a rea-
sonable approximation for the mean and sigma of the underlying distribution
and a χ2 of 1.80. The mean also appears to converge after a few thousand
chain elements and the mixing plot shows that the whole parameter space is
being sampled uniformly.

The fit to the Markov chain with t = 0.5 has an even better χ2 of 1.18
but the approximation for the mean and sigma are poor with respectively
0.07 ± 0.01 and 0.94 ± 0.01. In this case, the convergence of the mean of the
distribution is clearly slower than for the first case and the mixing shows that
the chain takes longer to sample the parameter space.

The last Markov chain with t = 0.5 presents an example of poor mixing
with high acceptance (close to 100%) and no convergence.

To illustrate that Markov chains will eventually converge even in cases where
bad decisions lead to poor mixing and high correlation, the same example is
run for chains 500,000 elements and the results presented on figure 5.3.

5.4.4 Construction of Bayesian credible regions

Bayesian credible intervals are built using the following procedure:

1. Some binning width is chosen and the unbinned Markov chain data is
transformed into a binned histogram. Prior information can be used to
restrict the range of the histogram.

2. Confidence intervals are then constructed by picking bins in order of
decreasing number of events until the fraction of events corresponding
to the required sensitivity is reached (68%, 90% or 99% for example).

5.5 Signal event selection and Backgrounds at

Super-K

Data collected at the Super-K detector are sorted using a set of selection cuts.
The same set of selection cuts is applied to the Super-K NTuples in order to
build the Super-K templates. This section looks at the cuts used and how
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(a)

(b)

(c)

Figure 5.2: The random walk Metropolis algorithm is applied to a simple 1
dimensional Gaussian probability function with mean of 0 and
standard deviation of 1. The proposal distribution is a uniform
distribution in the range [−t,+t]. A Markov chain of 5000 el-
ements is generated for 3 cases. In each case, the distribution of
values is fitted with a Gaussian function (left), and the convergence
of the mean (middle) and mixing (right) are presented. The three
cases have different boundary conditions for the uniform proposal
distribution with: (a): t = 1.0, (b): t = 0.5, (c): t = 0.1.

they improve the signal efficiency and purity. Sources of background are also
discussed and categorised.

5.5.1 Signal

The signal event at Super-K is a muon-like ring-shaped hit pattern, pro-
duced when Cherenkov photons hit the PMT’s on the surface of the Super
Kamiokande detector, initiated by a νµ charged current quasi elastic event
(CCQE). A CCQE event is an exchange of a W boson between a neutrino and
nucleus leading to the emission of a charged lepton.

The selection cuts applied to select muon rings are the so called “Fully
Contained Fiducial Volume (FCFV) 1 ring µ-like tight cuts” [70] summarised
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(a)

(b)

(c)

Figure 5.3: Same as figure 5.2 with Markov chains of 500,000 elements instead
of 5,000.

below:

1. Number of PMT hits in highest charge Outer Detector cluster <= 15;

2. Reconstructed vertex from Inner Detector wall > 2m;

3. Visible energy > 30MeV;

4. Exactly 1 ring as reconstructed by the Super-K software;

5. Reconstructed particle ID of a muon;

6. Reconstructed momentum of the muon like ring > 200 MeV;

7. Reconstructed signal for 0 or 1 time delayed decay electrons.

The first cut on the number of PMT hits in the highest charge OD cluster is
used in order to remove events that originated outside of the fiducial volume.

The second cut defines the fiducial volume as starting from two metres
inwards from the walls of the inner detector. The resulting loss in efficiency
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can be calculated using the diameter dID and height hID of the inner detector
cylinder:

d2
IDhID

(dID − 4)2(hID − 4)
= 0.69.

This cut reduces the fiducial volume by more than 30% but events that oc-
cur close to the wall are poorly reconstructed and are associated with large
systematic errors [71].

The visible energy cut is used to reduce contamination from the photomulti-
plier tubes and corner events (events that enter and exit the tank in a “corner”
and are not removed by the outer detector cut) and to cut events with poor
energy reconstruction.

The 4th and 5th cuts are used to select events with only one ring where the
PID of the ring is that of a muon. These two cuts are self explanatory given
that the signal is the νµ CCQE interaction mode.

The momentum cut of the muon like ring is used to remove events with
reconstructed momentum below 200 MeV where the PID probability between
data and Monte Carlo is below requirements.

The final cut on the decay electron increases the signal purity at no cost for
the efficiency by requiring that there are less than 2 decay electrons. Decay
electrons cause time delayed secondary rings and come from a muon decay.
The CCQE signal is one muon so at most one decay electron is expected for
the situation when the muon decays before it is absorbed. Some backgrounds
such as charged current single pion production can appear like signal if only
one of the particles in the final state is above Cherenkov threshold. However,
pions quickly decay to muons and there is a chance that both muons will decay
to a Michel electron. The Cherenkov threshold of the electron is very low such
that both electrons are guaranteed to give a signal. Basically, observing more
than 1 decay electron is a strong indication that the reaction was not CCQE.

The purity and efficiency of the selection cuts on the signal from the Monte
Carlo based on Super-K NTuples are presented in figure 5.4 below:
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(a) (b)

(c) (d)

Figure 5.4: (a) Efficiency of the CCQE signal selection as a function of the
oscillated reconstructed energy after each cut (Monte Carlo). (b)
Purity of the CCQE signal over background from other νµ interac-
tions as a function of the oscillated reconstructed energy after each
cut (MC). (c) Legend for 5.4(a) and 5.4(b). (d) Total efficiency
and purity after each successive cut.

109



The energy and momentum of the ”assumed” muon and the angle of the
particle with respect to the beam direction are reconstructed based on the
charge and timing of the hits from the muon like ring. The energy of the
parent neutrino particle is then reconstructed using two body kinematics with
the neutron and neutrino particles as the initial state and the muon and proton
as the final state:

Eνµ =
m2
p − (mn − V )2 + 2(mn − V )Eµ −m2

µ

2(mn − V − Eµ + pcosθµ)
, (5.48)

where the parameters are listed below:

• mp: mass of proton;

• mn: mass of neutron;

• mµ: mass of muon;

• Eµ: Energy of muon;

• pµ: momentum of muon;

• θµ: angle of muon with respect to the beam direction;

• V: Nuclear potential energy (27 MeV for 16O).

Backgrounds to the CCQE signal distort both the count and the energy
spectrum of events passing the 1-ring µ-like cuts at Super-K. Understanding
these backgrounds and the associated systematic errors is therefore crucial to
the disappearance analysis.

5.5.2 Backgrounds

Backgrounds are any events that pass the FCFV cuts but don’t come from a
νµ CCQE reaction. We identify 3 different sources of potential background:

1. The beam

2. Cosmic events

3. Radioactivity from rocks surrounding the detector.

Each source is investigated independently below.

The beam

The beam is created from decaying pions and kaons as described in section
2.1 and contains 95% νµ’s with a contamination of 4% from νµ’s and 1% from
νe’s

Backgrounds from the beam can therefore be subdivided as a function of
neutrino flavour.
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νµ backgrounds: The signal reaction in the disappearance measurement is
a νµ CCQE reaction but muon neutrinos interact with matter via many other
modes.

CC1π: The main source of background to the disappearance analysis is
charged current resonant single pion production (CC1π). The final state of
a CC1π reaction is identical to a CCQE if either the π or the muon is not
observed but the neutrino energy is mis-reconstructed to a lower energy value.
The additional statistical information gained from using a CC inclusive analy-
sis rather CCQE only is more than counter balanced by the loss of constraining
power due to the spread of the peak and through of the distribution. The ad-
vantage of CCQE over CC inclusive is similar in effect to the advantage gained
by using an off axis rather than on axis beam.

Figure 5.5 shows the energy of the pion versus the energy of the muon after
the FCFV 1 ring µ like tight cuts have been applied. As expected, most
events are below threshold for either the pion or the muon. For events where
both particles are above Cherenkov threshold, the angular difference cos θπµ
between the direction of the π and µ is plotted in figure 5.6. We see that
in most cases, both particles travel in the same direction which increases the
likelihood that the light signal is reconstructed as only one ring.

Figure 5.5: Pion energy versus muon energy of CC1π events after FCFV 1
ring µ-like tight cuts. The red lines indicate the pion and muon
theoretical Cherenkov thresholds in water.

CC Other: This category includes other types of charged current reactions
such as multi-π in the final state, charged current resonant single eta or kaon
production or deep inelastic scattering.

111



Figure 5.6: Angular difference between the directions of the pion and muon
when both are above Cherenkov threshold

NC events: The largest contribution from neutral current events comes
from neutral current resonant single charged pion production. If the pion
is above Cherenkov threshold, its ring can be mis-identified as a muon ring.
Other contributing reactions include charge current multi-π, charged current
resonant single π0 or deep inelastic scattering. In the case of the CCπ0 reac-
tion, the final state of the reaction is identical to the CCQE signal if the γ
from the pion decay is misidentified as a muon, or if the π0 is absorbed in the
nucleus.

νµ backgrounds: The νµ backgrounds are identical to the νµ backgrounds
with the addition of the CCQE reaction which gives a µ+ in the final state.
Super-K has no sensitivity to the sign of charged particles so the final state if
the νµ CCQE reaction looks identical to the signal.

νe backgrounds: Again the νe backgrounds are identical to the νµ back-
grounds with the addition of the CCQE reaction which gives an e− in the
final state. The νe CCQE reaction looks identical to the signal of the electron
is mis-identified for a muon.

Cosmic events

The average number of daily cosmic events that enter the fully contained
fiducial volume atmospheric data sample is 8.11± 0.16 events/day for Super-
K IV [72]). Most are neutrinos since the OD cut gets rid of almost 100% of the
cosmic ray muon background [34]. However the T2K experiment uses a GPS
synchronisation system to cut out events that do not fall within a time window
of ±500 µs from a spill. The duration of a spill that contains 8 bunches is
approximately 5 µs and the time between 2 spills is approximately 3 s. An
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additional cut on beam events removes events that miss the beam spill by
approximately 2 µs. The effective “active” period is therefore approximately
10 µs for every 3 seconds and a quick calculation reveals that the average daily
equivalent cosmic contamination in the FCFV sample is negligible:

Cosmics =
10 (µs)
3 (s)

× 8.11 = 2.7× 10−5 Events/Day. (5.49)

Radioactive background

The radioactive backgrounds are mainly low energy events cut by the selection
cuts. With the GPS timing window and OD cuts included, these events are
also negligible.

5.6 Super-K PDF Construction and event rate

prediction

Section 5.2 introduced the Super-K reconstructed neutrino energy spectra as
the observable quantity measured and used in the fitting and minimisation
procedure. In this section, a step by step construction of the final recon-
structed energy spectra of expected events observed at Super-K parametrised
as a function of the oscillation parameters to be determined is presented. An
initial overview of the steps illustrated in section 5.6.1 is given below.

1. True energy spectra are constructed using the SK NTuples for each in-
teraction mode and neutrino parent flavour of single ring µ-like events.

2. Flux correction re-weighting is applied to the true energy spectra (if
necessary).

3. True oscillated spectra which are functions of the oscillation parameters
are obtained by multiplying the true Charged-Current spectra with the
neutrino survival probability PDF.

4. Conversion matrices of the true to reconstructed energy are built for
each interaction mode and neutrino parent flavour.

5. Reconstructed oscillated spectra are built from the true oscillated energy
spectra and the conversion matrices

6. The final oscillated reconstructed energy spectrum, function of the oscil-
lation parameters, is obtained by summing up the signal and background
spectra

Predictions of the expected number of events and energy spectra at Super-
K are presented for different oscillation hypotheses and amounts of collected
data in section 5.6.2.
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5.6.1 True and reconstructed energy spectra

1. True energy spectra:

The true energy spectra from the SK NTuples after application of the FCFV
single ring µ-like tight selection cuts are presented in figure 5.7. These plots
show the prediction for the shape of the signal and background spectrum in
the null oscillation hypothesis for the νµ signal and backgrounds and the νµ
and νe backgrounds for normalisations of respectively 269 years, 632 years and
1367 years. A year is defined as 750 kW for a 30 GeV beam for 1.07× 107 s.

2. Flux re-weighting:

The Monte Carlo energy spectra prediction for truth information are re-
weighted to correct for changes in the Flux expectations due to changes in
experimental conditions at J-PARC and improvements in the flux MC. The
alternative to re-weighting for flux correction would be to re-run the whole
Monte Carlo. However, because of the associated costs, Monte Carlo produc-
tions are done sparingly.

The Beam group provided three histograms to re-weight interactions from
the three different true neutrino parent modes of muon like events (νµ,νµ and
νe parents). These histograms are reproduced in figure 5.8.

3. True oscillated spectra:

The neutrino survival probability is applied to the true re-weighted charged
current energy spectra. Figure 5.9 illustrates the effect of varying the oscilla-
tion parameters sin2 2θ23 and ∆m2

32 over the relevant energy range of 0 GeV
to 10 GeV.

Qualitatively, variations of sin2 2θ23 affect the amplitude of the oscillation
dips. For any constant value of ∆m2

32, increasing the sin2 2θ23 parameter
results in lower neutrino survival probability. In the case where sin2 2θ23 is 0,
there is no oscillation and the survival probability is 1.

The positions of the oscillation dips over the energy range are determined
by the ∆m2

32 parameter as illustrated in figure 5.9. The angle of the off-axis
beam was chosen such that the dip in the neutrino survival probability for the
favoured oscillation hypothesis (∆m2

32 = 2.4 × 10−3) coincides with the peak
of the neutrino spectra in the null oscillation hypothesis.

The true re-weighted oscillated spectra for the νµ signal and backgrounds
and the νµ and νe backgrounds in the case of the favoured oscillation hypoth-
esis are presented in figure 5.10.
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(a) Neutrino parent: νµ (b) Neutrino parent: νµ

(c) Neutrino parent: νe

Figure 5.8: Super-K Flux correction for the three neutrino parent modes

Figure 5.9: Left: Survival probability function as a function of neutrino energy
for different values of sin2 2θ23 and constant ∆m2

32 of 2.4 × 10−3.
Right: Survival probability function as a function of neutrino en-
ergy for different values of ∆m2

32 and constant sin2 2θ23 of 1.0

4. Conversion matrices:

The energy of the parent neutrino of each µ-like ring at Super-K is re-
constructed assuming two body kinematics (see equation 5.48)
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The “measured” true and reconstructed energy of simulated µ-like Monte
Carlo interactions is plotted in a 2 dimensional histogram in order to build the
conversion matrices which give the true to reconstructed energy conversion.
A separate conversion matrix is built for each parent neutrino flavour and
neutrino interaction mode of the µ-like events. The conversion matrices for
each parent neutrino flavour and interaction mode are shown in figures 5.11
and 5.12.

The expectation for the 2-body interaction νµ CCQE events is to observe a
straight line along the diagonal. However, the reconstructed neutrino energy
formula assumes that the hit nucleon was at rest, which is not the case. The
other interactions or backgrounds are generally not 2-body collisions so the
reconstructed energy is lower than the true energy. In particular, in the case
of neutral current events, most of the energy is taken by the invisible neutrino
in the final state and the mis-reconstructed ring only carries a small fraction
of the parent neutrino. As a result, the reconstructed energy is highly biased
towards low energies.

Once the conversion matrices are built, the reconstructed neutrino energy
from the Monte Carlo is no longer used. Instead, the oscillation probability
is applied to the true spectrum and the conversion matrices are then used to
calculate the reconstructed oscillated neutrino parent energies.
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(a) SK νµ CCQE conversion matrix (b) SK νµ CC1π conversion matrix

(c) SK νµ CCOTH conversion matrix (d) SK νµ NC conversion matrix

Figure 5.11: Super-K νµ conversion matrices
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(a) SK νµ CCQE conversion matrix (b) SK νµ CC1π conversion matrix

(c) SK νµ CCOTH conversion matrix (d) SK νµ NC conversion matrix

(e) SK νe CCQE conversion matrix (f) SK νe CC1π conversion matrix

(g) SK νe CCOTH conversion matrix (h) SK νe NC conversion matrix

Figure 5.12: Super-K νµ and νe conversion matrices
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5. Reconstructed oscillated spectra:

The reconstructed re-weighted oscillated spectra for the νµ signal and back-
grounds and the νµ and νe backgrounds, in the case of the null and favoured
oscillation hypothesis, are presented in figures 5.13 and 5.14.

6. Final reconstructed oscillated spectrum:

The final reconstructed oscillated spectrum is obtained by taking the sum
of all other spectra and presented for various oscillation hypothesis in figure
5.15. The spectrum for each parent neutrino flavour is normalised to the same
exposure. In figure 5.15 the exposure chosen corresponds to the T2K physics
run 1 described in section 5.6.2 below.

The oscillation parameters are shown to have a strong influence on both the
shape and normalisation of the final neutrino spectra. This perfectly illustrates
the strong constraining power that the off-axis method has on the oscillation
parameters

5.6.2 Super-K event rate prediction

T2K physics run 1:

The first T2K physics data-set was collected from January to June 2010 and
corresponds to an integrated J-PARC neutrino beam exposure of 3.23× 1019

POT.
The Super-K event rate prediction in the null hypothesis and the favoured

oscillation hypothesis broken down as a function of parent neutrino flavour
and interaction mode are presented in table 5.3 for the T2K physics run 1.
The fraction of signal and background events change for each sample because
they all have a different energy response.

The total event rate prediction for the T2K run 1 as a function of the
oscillation parameters sin2 2θ23 and ∆m2

32 is presented in figure 5.16.
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Figure 5.15: Final reconstructed oscillated spectrum as a function of the os-
cillation parameters sin2 2θ23 and ∆m2

32. Left: Effect of the vari-
ation of sin2 2θ23 at a constant value of ∆m2

32 = 2.4 × 10−3.
Right: Effect of the variation of ∆m2

32 at a constant value of
sin2 2θ23 = 1.

Un-Oscillated Oscillated
Total 22.8 6.3

νµ
CCQE 18.1 (79.2%) 3.6 (56.7%)
CC1π 3.1 (13.5%) 1.5 (23.9%)

CCOther 0.5 (2.3%) 0.4 (6.4%)
NC 0.4 (1.7%) 0.4 (6.0%)

ν̄µ
CCQE 0.5 (2.2%) 0.3 (4.0%)
CC1π 0.2 (0.8%) 0.1 (2.1%)

CCOther 0.0 (0.1%) 0.0 (0.4%)
NC 0.0 (0.1%) 0.0 (0.3%)

νe
CCQE 0.0 (0.0%) 0.0 (0.0%)
CC1π 0.0 (0.0%) 0.0 (0.0%)

CCOther 0.0 (0.0%) 0.0 (0.0%)
NC 0.0 (0.1%) 0.0 (0.2%)

Table 5.3: Super-K event rate prediction in the null hypothesis and the
favoured oscillation hypothesis (sin2 2θ23 = 1 and ∆m2

32 = 2.4 ×
10−3) broken down as a function of the parent neutrino flavour and
the interaction mode.

5.7 ND280 PDF Construction and event rate

prediction

The near detector measurement, as mentioned previously, plays a critical role
in the constraint of systematic uncertainties that affect the Super-K energy

124



Figure 5.16: Final reconstructed oscillated number of events as a function of
the oscillation parameters sin2 2θ23 and ∆m2

32.

spectra. In particular, normalisation and shape of the neutrino spectra and
cross section uncertainties. This section details how the PDF for the ND280
measurement is constructed.

The expected reconstructed neutrino energy spectra at the near detector
are simulated step by step based on the following procedure:

1. The neutrino beam flux is predicted in T2K based on GEANT3: neutrino
vectors are provided as inputs to the near detector simulation.

2. The NEUT or GENIE neutrino interaction simulation packages are used
to simulate the interaction of neutrinos at the near and far detectors.

3. GEANT4 [73] is used for the simulation of the final state particles from
neutrino interactions at the near detector and the simulation of cosmic
rays and “sand” neutrinos.

4. The ND280 detector response is simulated including the active media,
sensor and electronic technologies, calibration, shower/track determina-
tion, vertex finding and particle identification.

5. The reconstructed information from the ND280 software is analysed in
order to determine signals and backgrounds relevant to the construction
of the νµ neutrino reconstructed energy spectra.
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The expected reconstructed neutrino energy spectra at the near detector are
the result of a combined effort from the ND280 group. Figure 5.17 presents the
signal and background events for a generated Monte Carlo sample of events
normalised to the T2K run 1 data that pass a set of cuts designed to select
charge current events in the ND280 tracker [74] For the T2K physics run 1, the
operational time of the ND280 corresponds to 2.88× 1019 POT. The amount
of Monte Carlo generated corresponds to 49.8× 1019 POT which is equivalent
to approximately 17.12 times the amount of data collected. The signals for the
charged current like (CC-like) sample are all charged current interactions. The
backgrounds are all neutral current interactions and “out-of-FGD events”.

Figure 5.17: Stacked histogram of expected reconstructed neutrino energy
spectra from Monte Carlo for events that pass charged current
like cuts in the ND280 tracker. The normalisation corresponds to
the T2K physics run 1 data.

Similarly to the Super-K spectra, the ND280 Monte Carlo has been re-
weighted to take into account flux corrections. The re-weighting histograms
for the near detector neutrino flux shape and normalisation are presented for
each parent neutrino flavour in figure 5.18. The spectra presented in figure
5.17 already include this flux re-weighting.

For the T2K physics run 1, the near detector data are used to re-normalise
the far detector neutrino flux using a single correction factor independent of
energy. The correction factor is the ratio of observed over expected number
of charged current like events in the ND280 tracker.

The expected number of events that pass Monte Carlo CC-like cuts with
NEUT is 1372. The corresponding number of selected events in the data 1456.
The ND280 data driven correction factor by which the Super-K spectra are
re-normalised is therefore:

CND280 =
Nobs

ND280;CC−like

NMC
ND280;CC−like

= 1.06, (5.50)

where CND280 is the ND280 data driven correction factor, Nobs
ND280;CC−like is the
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(a) Neutrino parent: νµ (b) Neutrino parent: νµ

(c) Neutrino parent: νe

Figure 5.18: ND280 Flux correction for the three neutrino parent modes

observed number of selected CC-like events and NMC
ND280;CC−like is the expected

number of selected CC-like events.
The far to near ratio RF/N (Et) is a function of energy so does not appear

in the normalisation only correction provided by the ND280 at this stage.

5.8 Systematic errors

The Super-K and ND280 expected reconstructed neutrino energy spectra do
not include any kind of systematic uncertainty at this stage. However, it
is of course necessary to take them into account in the analysis in order to
build correct confidence regions for the oscillation parameters. What these
systematic errors are, how they are included and how they affect the final
reconstructed energy spectra at Super-K is presented in detail in this section.

Sources of uncertainties are separated into the following four different cat-
egories based on the derived expected energy spectra (equation 5.14):

1. Super-K detector uncertainties

2. ND280 detector uncertainties

3. Neutrino flux uncertainties
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4. Neutrino generator model and cross section uncertainties

The uncertainties described below are applied to the T2K physics run 1
analysis and are generally conservative. This is deemed acceptable since the
first T2K run was highly dominated by statistical errors. As more data are
collected, continuous efforts are made by the various groups working on sys-
tematic errors to improve our knowledge of these uncertainties and the way
that they can be best incorporated into the oscillation analysis.

5.8.1 Super-K detector uncertainties

The Super-K detector uncertainties are implemented via the error on the effi-
ciencies of the selection cuts as a function of interaction mode and the uncer-
tainty on the reconstructed energy scale.

For each interaction mode, a 1-σ energy independent error on the efficiency
is provided by the Super-K group and applied uniformly to the whole energy
range. The energy scale error on the other hand is a function of reconstructed
energy and affects only the shape of the distribution. As an illustration, if
an uncertainty on the reconstructed energy scale of +1% is applied, then the
reconstructed energy of each event is scaled by a factor of 1.01. The normali-
sation is constant since no events are added or removed from the distribution.
Table 5.4 below summarises the 1-σ error of each Super-K detector uncertainty.

Systematic uncertainty 1-σ error
fSK
εCCQE

7.8%
fSK
εCCnnQE

25.5%
fSK
εNC

115.1%
fSK
ενeCC

100%
fSK
EScale

1%

Table 5.4: 1-σ error for each Super-K detector uncertainty for the T2K physics
run 1 analysis.

Figures 5.19, 5.20 and 5.21 illustrate how the total reconstructed neutrino
energy spectrum in the favoured oscillation hypothesis is affected by a 1-σ
standard deviation shift where each Super-K efficiency uncertainty is varied
independently. Since the fraction that each neutrino mode contributes to total
energy spectrum is a function of energy, a 1-σ shift of any Super-K efficiency
uncertainty actually affects the total energy spectrum in an energy dependent
manner. The favoured oscillation hypothesis is defined by sin2 2θ23 = 1.0 and
∆m2

32 = 2.4×10−3. The dominant error in the favoured oscillation hypothesis
is the neutral current efficiency with 1-σ deviations for bins below 1 GeV of
over 10 %.
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(a) SK CCQE efficiency (b) SK CCnonQE efficiency

Figure 5.19: Effect of ± 1-σ deviation of CCQE and CCnonQE SK systematic
efficiencies on the expected reconstructed energy spectrum at SK
in the favoured oscillation hypothesis. Blue: +1 σ, Red: -1 σ
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(a) SK NC efficiency (b) SK νe CC efficiency

Figure 5.20: Effect of ± 1-σ deviation of NC and νe CC SK systematic effi-
ciencies on the expected reconstructed energy spectrum at SK in
the favoured oscillation hypothesis. Blue: +1 σ, Red: -1 σ
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Figure 5.21: Effect of ± 1-σ deviation of the energy scale uncertainty on the
expected reconstructed energy spectrum at SK in the favoured
oscillation hypothesis. Blue: +1 σ, Red: -1 σ

5.8.2 ND280 uncertainties

The near detector measurement in the T2K run 1 analysis uses the ratio of
the number of events between data and Monte Carlo in a charged current
inclusive measurement in the tracker (TPC+FGD) [74] in order to provide
a near detector uncertainty. The analysis has no spectral dependence so the
resulting uncertainty provides only a normalisation error for the number of
events at Super-K. Uncertainties include detector systematics and efficiency
differences between data and Monte Carlo such as charge mis-identification
and time determination errors. Other systematics such as selection cut uncer-
tainties, reconstruction efficiencies and backgrounds from cosmics or neutral
current events form a non-exhaustive list of all the included uncertainties. The
combined error on the near detector normalisation measurement, summarised
in table 5.5, was estimated to be 5%.

Systematic uncertainty 1-σ error
fND280 5%

Table 5.5: 1-σ combined error for the ND280 normalisation uncertainty for the
T2K physics run 1 analysis.

Since no spectral information was provided by the near detector measure-
ment for the run 1 conditions, fND280 only affects the normalisation of the
Super-K spectrum and the probability density function is therefore unchanged.

5.8.3 Flux uncertainties

Flux uncertainties refer to the uncertainties in the normalisation and shape
of the neutrino energy spectra at Super-K. The beam production facilities
and monitors at the J-PARC accelerator complex were mentioned in section
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2.1. Knowing precisely the composition of the beam in terms of the neutrino
flavours content and energy spectra is certainly a challenge. For the T2K
physics run 1, hadron interactions from the 30 GeV protons hitting the tar-
get were simulated with FLUKA2008 [36] and tuned using results from the
NA61/SHINE experiment based at CERN [75, 76]. The results from FLUKA
are then used as inputs to the T2K neutrino beam simulation software, based
on GEANT3 [37]. The simulation tracks the particles that leave the target and
their interactions with the three horn magnets, decay volume, beam dump and
muon monitors until they decay to neutrinos. The neutrino tracks are then
simply extrapolated to the near and far detectors.

This section summarises the systematic errors on the flux uncertainties cal-
culated by the T2K beam group.

Flux normalisation uncertainty (fFLUX
SK/ND ):

The flux normalisation uncertainty represents the uncertainty in the nor-
malisation of the far and near neutrino energy spectra. Contributing sources
are listed below.

• hadron production cross section (p, π±,K±)

• off-axis angle

• proton beam position/angle

• absolute horn current

• horn alignment

• target alignment

Since the uncertainty on the flux normalisation is a function of the oscillation
parameters, it must be re-calculated by the fitter each time a new set of
parameters is tried. A function was provided by the beam group to calculate
this uncertainty in a transparent way. Using the near and far detector energy
spectra as inputs, this function returns a normalisation factor that is used to re-
weight the far detector energy spectra. In the favoured oscillation hypothesis,
the value of this uncertainty is approximately 6.2 % and independent of energy.

Flux shape uncertainty (fFLUX
Shape ):

The flux shape uncertainty describes the uncertainty on the shape of the νµ
energy spectrum at Super-K. Contributing sources listed below are the same
as for the flux normalisation ratio uncertainty with the addition of the hadron
production multiplicities.
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• π production multiplicity

• K production multiplicity

• Production cross section

• Off-axis angle

• Proton beam position/angle

• Horn absolute current

• Horn alignment

• Target alignment

The total uncertainty on the shape of the νµ energy spectrum at Super-K
is provided in the format of a fractional covariance matrix. The element at
the ith and jth position in the matrix give the covariance between the ith and
jth bins of the νµ energy spectrum. This matrix is itself the sum of covariance
matrices calculated independently for each contributing source. Figure 5.22
shows the binned covariance matrix for the flux shape uncertainty provided
by the beam group.

Figure 5.22: Beam shape covariance matrix

For an element at position i, j, the covariance matrix gives the covariance
between the ith and jth elements of a vector of random variables:

cov(xi, xj) = E[(xi, µi)(xj, µj)] (5.51)

where µi = E(xi) and E(xi) is the expected value of xi
Given a covariance matrix of parameters (in this case bins of the energy

spectrum at Super-K), a vector containing the fluctuation of each parameter
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can be obtained by sampling the matrix using linear algebra techniques as
described below.

step 1:

The Cholesky decomposition method [77] is used to obtain a triangular
decomposition of the covariance matrix in order to solve sets of linear equa-
tions more efficiently. Triangular matrices are square matrices were all the
entries either below or above the diagonal are zero. The Cholesky method is
a special case of LU decomposition that can be used when the square matrix
is symmetric and positive definite.

LU decomposition [78] is a well known linear algebra factorisation method
that expresses a square matrix A as the product of a lower and upper trian-
gulation matrix L and U:

A = L ·U.

L and U are then used instead of A to solve the set of linear equations A · x:

A · x = (L ·U) · x = L · (U · x) = b.

A matrix A is symmetric if, for all elements, ai,j = aj,i and is positive
definite if v ·A · v > 0 for all vectors v.

The Cholesky method is very similar to the LU method. A symmetric and
positive definite square matrix is decomposed into triangular matrices where
the upper triangular matrix is the transpose of the lower triangular matrix:

A = L · LT .

A factor of 2 is gained in terms of efficiency in comparison to the LU decompo-
sition method. Figure 5.23 shows the lower triangular matrix of the covariance
matrix presented in figure 5.22.

step 2:

A vector v is drawn from a multivariate Gaussian distribution with mean 0
and variance 1 in all dimensions.

step 3:

A vector containing a set of fluctuations for the parameters consistent with
the covariance matrix is obtained by taking the product of the lower triangular
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Figure 5.23: lower triangular matrix of the covariance matrix (5.22) using
Cholesky decomposition.

matrix L with the random vector v:

x = L · v

Vectors containing different sets of fluctuations also consistent with the co-
variance matrix can be obtained by repeating step 2 and 3.

Figure 5.24 illustrates how the total reconstructed neutrino energy spectrum
in the favoured oscillation hypothesis is affected when the flux shape covariance
matrix is sampled 1000 times according to the procedure described above. The
relative error is also plotted by calculating the standard deviation of the 1000
samples.

Figure 5.24: Left: Effect of 1000 samplings of the flux shape covariance ma-
trix on the expected reconstructed energy spectrum at SK in the
favoured oscillation hypothesis. Right: Relative error calculated
by taking the standard deviation of the samples in each energy
bin
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5.8.4 Neutrino generator model uncertainties

The neutrino interaction generator simulates neutrino interactions with matter
at the near and far detector sites.

The neutrino generators predict the rates and kinematics of the interac-
tion modes that contribute to the neutrino events observed at the near and
far detectors by using a combination of fundamental physics models. These
models, which sometimes have different ranges of validity, are combined or
extrapolated in order to generate events over the whole experimental phase
space. To make matters worse, current simulations are based on limited data
samples with limited coverage in the range of neutrino energy, and often, have
been tuned to bubble chamber data taken over 30 years ago [79]. It therefore
goes without saying that there are substantial uncertainties associated with
neutrino interaction generators.

In order to acknowledge and reduce these uncertainties, two of the most
recognised competing neutrino generators are used in T2K: GENIE and NEUT.
The analysis presented uses the NEUT generator and therefore the uncertain-
ties quoted in this section relate to NEUT only.

The T2K Neutrino Interaction Working Group (NIWG) calculated system-
atic errors on the cross sections of the relevant interaction modes in NEUT by
comparison with SciBooNE, MiniBooNE, and K2K experiments, comparisons
with GENIE and NuWro generators and recent theoretical work [74]. The
parameters studies with their central value and 1-σ deviation are reproduced
from the NIWG in table 5.8.4.

Parameter Value 1-σ (GeV/c)2

MQE
A 1.21 (GeV/c)2 0.20 (GeV/c)2

MQE
V 0.84 (GeV/c)2 0.20 (GeV/c)2

pF 225 MeV/c 10 MeV/c
EB 27 MeV 3 MeV
MRES
A 1.21 (GeV/c)2 0.20 (GeV/c)2

MCOH
A 1.0 (GeV/c)2 0.5 (GeV/c)2

κ 1.00 0.007

Table 5.6: Central value and 1-σ systematic uncertainty on cross section pa-
rameters.

The calculated cross section systematic errors based on the variation of the
parameters in table 5.8.4 are presented below.

CCQE cross section uncertainty (fXsec
σCCQE

): The normalisation error of
the CCQE cross section is cancelled out in the far-to-near ratio. A residual
efficiency that includes nuclear model uncertainties and differences in target
nuclei between the near and far detector is none the less estimated. This
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systematic uncertainty on the CCQE cross section presented in figure 5.25(a)
is only applied to the Super-K sample and affects the true neutrino energy.

CC1π / CCQE cross section ratio (fXsec
σCC1π/σCCQE

): The systematic un-

certainty on the CC1π/CCQE cross section ratio was estimated by comparing
data from MiniBooNE and the NEUT MC generator. Figure 5.25(b) presents
the 1-σ uncertainty on the cross section ratio as a function of energy.

CCOTH / CCQE cross section ratio (fXsec
σCCOTH/σCCQE

): The 1-σ sys-

tematic uncertainty on the CCOTH/CCQE cross section ratio as a function
of true neutrino energy is presented figure 5.25(c).

NC / CCQE cross section ratio (fXsec
σNC/σCCQE

): The systematic uncer-

tainty on the NC/CCQE cross section ratio was estimated by comparing
SciBooNE data with NEUT MC. The 1-σ uncertainty on this cross section
ratio as a function of true neutrino energy is presented figure 5.25(d).

νe / νµ cross section ratio (fXsec
σνe/σνµ

): The 1-σ systematic uncertainty on

the νe/νµ cross section ratio as a function of true neutrino energy is presented
figure 5.25(c).

Final State Interaction (FSI) uncertainty (fFSI): FSI are hadronic in-
teractions of reaction products in the nucleus. The 1-σ systematic uncertainty
on the FSI cross section ratio as a function of reconstructed neutrino energy
is presented in figure 5.25(c).

The effect of a 1-σ deviation from the expected value for each cross section
error on the reconstructed neutrino energy spectrum at Super-K is presented
in figure 5.26.
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(a) Systematic uncertainty on the CCQE

cross section.

(b) Systematic uncertainty on the CC1π /

CCQE cross section ratio.

(c) Systematic uncertainty on the CCOTH

/ CCQE cross section ratio.

(d) Systematic uncertainty on the NC /

CCQE cross section ratio.

(e) Systematic uncertainty on the νe/νµ

cross section ratio.

(f) Systematic uncertainty on FSI.

Figure 5.25: The 1-σ CCQE cross section, cross section ratios and FSI system-
atic uncertainties as a function of energy (histograms provided by
the T2K beam group).
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(a) CCQE cross section uncertainty. (b) CC1π / CCQE cross section ratio uncer-

tainty.

Figure 5.26: Effect of ± 1-σ deviation of CCQE and CC1π / CCQE cross
section ratio systematic efficiencies on the expected reconstructed
energy spectrum at SK in the favoured oscillation hypothesis.
Blue: +1 σ, Red: -1 σ
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(a) CCOTH / CCQE cross section ratio un-

certainty.

(b) NC / CCQE cross section ratio uncer-

tainty.

Figure 5.27: Effect of ± 1-σ deviation of CCOTH / CCQE and NC / CCQE
cross section ratio systematic efficiencies on the expected recon-
structed energy spectrum at SK in the favoured oscillation hy-
pothesis. Blue: +1 σ, Red: -1 σ

140



(a) (b)

Figure 5.28: Effect of ± 1-σ deviation of νe / νµ cross section ratio systematic
efficiency and FSI uncertainty on the expected reconstructed en-
ergy spectrum at SK in the favoured oscillation hypothesis. Blue:
+1 σ, Red: -1 σ
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5.8.5 Effect of systematic uncertainty on expected number of

events at Super-K

The percentage change of the number of expected events in the Super-K recon-
structed energy distribution for a 1-σ independent variation of each systematic
uncertainty is summarised in table 5.8.5. The total error is obtained by adding
each contributing source in quadrature.

Systematic Error % change of NSK
exp

fSK
CCQE +4.74% -4.74%
fSK

CCnQE +8.34% -8.34%
fSK

NC +7.46% -7.46%
fSK

CCνe
+0.02% -0.02%

fSK
Escale +0.00% 0.00%
fND -4.75% 5.25%
fXsec

CCQE +2.54% -2.54%
fXsec

CC1π +0.47% -0.53%
fXsec

CCOTH -3.74% +4.20%
fXsec

CCNC +0.87% -0.90%
fXsec

νe/νµ
+0.00% -0.00%

fFSI +6.45% -6.32%
fFlux

SK/ND +6.28% -6.28%

Total 16.11% 16.30%

Table 5.7: percentage change of the number of expected events in the Super-K
reconstructed energy distribution for a 1-σ independent variation
of each systematic uncertainty

5.9 Monte Carlo simulation

Monte Carlo simulation was used to statistically investigate the range of pos-
sible outcomes, study the effect of variations in the oscillation parameters and
systematic errors and determine the sensitivity of the experiment for the T2K
run 1.

5.9.1 MCMC simulation

The MCMC Metropolis-Hastings method was used to sample the likelihood
function for the T2K run 1 normalisation given the favoured oscillation pa-
rameters sin2 2θ23 = 1.0 and ∆m2

32 = 2.4 × 103. Simulations are done with
and without systematic uncertainties and compared by computing 68%, 90%
and 99% Bayesian credible intervals in both cases. When systematic uncer-
tainties are included, the credible intervals over the oscillation parameters are
obtained via the marginalisation of the uncertainties. This is done trivially:
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the output of the MCMC simulation is an NTuple containing the sampled val-
ues of all the likelihood function parameters p1, p2, · · · , pn; plotting NTUple
entry p1 against entry p2 results in the effective marginalisation of all other
parameters.

5.9.2 Processing MCMC jobs

The MCMC jobs were parallelised and run on the Imperial College High En-
ergy Physics (HEP) computer cluster.

The generation of multiple Markov chains in parallel and subsequent com-
bination of all the generated chains offers a clear computational advantage
compared to using a single longer chain. On the downside, the multiple chains
need to be monitored more closely in case long “burn-in” periods are required
or if the chains are highly correlated.

For the MCMC with no systematic uncertainties, 15 chains of 60,000 entries
were generated resulting in a total of 900,000 entries. On average, 23 hours and
20 minutes were needed to generate one chain, corresponding to 1.4 seconds
per entry computed.

For the case with systematic uncertainties, 40 chains of 20,000 entries were
generated resulting in a total of 800,000 entries. On average, 23 hours and 10
minutes were needed for the generation of one chain, corresponding to 4.16
seconds per entry computed.

5.9.3 MCMC simulation results

The parameter space of the sin2 2θ23 oscillation parameter was limited to the
physical region: 0 < sin2 2θ23 < 1 and the ∆m2

32 parameter was bounded on
both sides by: 0 < ∆m2

32 < 6× 103 based on current estimation of its value.
Figure 5.29 plots the Markov chain parameters of the sampled disappearance

likelihood formula ∆m2
32 versus sin2 2θ23 with and without systematic uncer-

tainties. In the former case, the systematic uncertainties are marginalised. The
maximum of the sampled likelihood was found, according to expectations, for
oscillation parameter values of sin2 2θ23 = 1.0 and ∆m2

32 = 2.4×10−3 eV 2/c4.
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(a) left: no systematics, right: with systematics.

(b) same with log-scale on the Z axis.

Figure 5.29: Sampled disappearance likelihood in the parameter space of the
oscillation parameters ∆m2

32 and sin2 2θ23 for input parameters
∆m2

32 = 2.4× 103 and sin2 2θ23 = 1.0 obtained using the MCMC
Metropolis-Hastings method.

144



Figures 5.30 and 5.31 show the sin2 2θ23 and ∆m2
32 profiles as well as “time

series” of the convergence of the means and sampled parameter values of some
Markov chains. Out of the 40 chains for the MCMC with systematics and
the 15 chains for the MCMC without, a set of 6 Markov chains were selected
randomly in each case for illustration purposes.

The sin2 2θ23 parameter is observed to converge in the range between 0.86
and 0.88 for the case with no systematics and to 0.84 to 0.86 in the case where
they are included for all Markov chains. The ∆m2

32 parameter is observed to
converge to 2.4× 103 in both cases.

The “time series” of the sampled parameters show good mixing properties.
This indicates that correlations are not too large and that the results obtained
are of good quality.

(a) sin2 2θ23 profile, aggregate mean and sampled parameter; no systematics.

(b) ∆m2
32 profile, aggregate mean and sampled parameter; no systematics.

Figure 5.30: Left: profile of the sin2 2θ23 and ∆m2
32 Markov chain parameters

without systematic uncertainties. Middle: “Time series” of the
convergence of the means of sin2 2θ23 and ∆m2

32 for 6 Markov
chains chosen randomly amongst the 40. Right: “Time series” of
the sampled parameters for the 6 same chains; both exhibit good
mixing properties.
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(a) sin2 2θ23 profile, aggregate mean and sampled parameter; with systematics.

(b) ∆m2
32 profile, aggregate mean and sampled parameter; with systematics.

Figure 5.31: From Monte Carlo simulation. Same as figure 5.30 above but
with systematic uncertainties included.
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The posterior profiles of each systematic uncertainty for the relevant MCMC
simulations are plotted in figures 5.32 and 5.33 and fitted with Gaussian func-
tions.

In the disappearance likelihood function, the Lsyst term controls the values
of the systematic uncertainties using a multivariate Gaussian prior function.
The standard deviations of the multivariate Gaussian in each dimension are
given by the 1-σ variation of the underlying systematic uncertainty that were
summarised in section 5.8. In the Markov chain data, a value of ±1, for
instance, corresponds to a ±1-σ change in the systematic uncertainty in the
likelihood.

We observe that the posterior systematic profiles of figures 5.32 and 5.33
generally match the prior functions with some deviations in the means and
standard deviations observed. In particular, mean values of 0 are expected for
the simulated data. However, a mean value of -0.30 sigma units was found
for the Super-K CCQE efficiency systematic error, fSK

CCQE, for example. It is
possible that the presence of the unphysical boundary leads to some “pull”
effects: in the physical region, a lower value of fSK

CCQE can compensate for a
smaller sin2 2θ23 value where as a greater value of fSK

CCQE would be needed to
compensate for a value of sin2 2θ23 in the unphysical region.

The close agreement regarding the overall Gaussian shape and sigma is only
an indication that the T2K run 1 is heavily dominated by statistical errors
and that the fit has little constraining power on the systematic uncertainties
at this level.
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Figure 5.32: Profile of the systematic uncertainty parameters of the simu-
lated Monte Carlo Markov chains fitted with Gaussian functions.
Here, from top left to bottom right: Super-K CCQE, CCnQE,
NC and CCνe efficiency uncertainties, Super-K energy scale un-
certainty, ND280 normalisation uncertainty, CCQE cross section
uncertainty, CC1π cross section ratio uncertainty.
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Figure 5.33: Continued systematic uncertainty parameters from simulated
Monte Carlo fitted with Gaussian functions. From top left to
bottom right: CCOTH and CCNC cross section ratios uncertain-
ties, νe/νµ cross section ratio uncertainty, FSI uncertainty and
flux shape and normalisation uncertainties.
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Figure 5.34 presents 68%, 90% and 99% Bayesian credible intervals for T2K
run 1 exposure computed using the data from figure 5.29 and the method
outlined in section 5.4.4.

Figure 5.34: 68% (blue), 90% (green/yellow) and 99% (red) Bayesian credible
intervals from MC simulation for T2K run 1 exposure and input
oscillation parameters sin2 2θ23 = 1.0 and ∆m2

32 = 2.4 × 10−3.
With and without systematic uncertainties included.

5.10 T2K run 1 results.

A νµ disappearance oscillation result was obtained for the T2K physics run 1
data, from an exposure of 3.23×1019 POT, using the MCMC method outlined
in the previous sections. Boundary conditions identical to those used in the
simulation run were applied to the oscillation parameters.

5.10.1 Oscillation parameters

The oscillation parameter values, sampled from the disappearance likelihood
for the 8 1-ring µ-like events that passed the selection cuts at the far detec-
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tor, are plotted in figure 5.35. Results are presented for both the statistics
only and the stats+systs likelihood function. The systematic uncertainties are
marginalised in the case of the full likelihood functions. This analysis found
best-fit values of sin2 2θ23 = 0.83 and ∆m2

32 = 2.9× 10−3 eV 2/c4.

(a) left: no systematics, right: with systematics.

(b) same with log-scale on the Z axis.

Figure 5.35: T2K run1 data sampled disappearance likelihood in the param-
eter space of the oscillation parameters ∆m2

32 and sin2 2θ23 for
the 8 1-ring µ-like events that passed the selection cuts at the far
detector obtained using the MCMC Metropolis-Hastings method.

The reconstructed neutrino energy distribution for the 8 1-ring µ-like events
along with the best fit and null oscillation predictions are shown in figure 5.36.

The marginal sin2 2θ23 and ∆m2
32 profiles are shown in figures 5.37 and 5.38

along with the convergence of the means of 6 randomly selected Markov chains
and the sampled parameter values of these chains over “time”.

The sin2 2θ23 parameters are observed to converge for all Markov Chains in
the range between 0.75 and 0.77 for the case with no systematics and between
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Figure 5.36: Reconstructed neutrino energy distribution for the 8 1-ring µ-like
events collected during the first T2K physics run (3.23×1019 POT
exposure). The reconstructed energy distributions in the null
hypothesis (dashed line) and best fit hypothesis (solid line) are
overlayed. The oscillation parameters for the best fit hypothesis
are sin2 2θ23 = 0.83 and ∆m2

32 = 2.9× 10−3 eV 2/c4.

0.70 and 0.77 for the case where they are included. Conversions in the range
2.9× 10−3 eV 2/c4 to 3.1× 10−3 eV 2/c4 are observed for ∆m2

32 in both cases.
Different chain lengths were used in each case with lengths of 70,000 events
in the first and lengths of 20,000 for the second. In each case, the sampled
parameter value plots exhibit good mixing properties.

The data profiles with systematic uncertainties included, presented in figure
5.38, are used to calculate a 1-σ error on the best fit values. For both sin2 2θ23

and ∆m2
32, upper and lower limits are found by selecting bins in order of

decreasing number of entries until 68.3 % of the data has been included. Using
this method, the best fit values with statistical and systematical uncertainties
are sin2 2θ23 = 0.83+0.16

−0.18 and ∆m2
32 = 2.9+0.8

−1.0 × 10−3 eV 2/c4.
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(a) sin2 2θ23 profile, aggregate mean and sampled parameter; no systematics.

(b) ∆m2
32 profile, aggregate mean and sampled parameter; no systematics.

Figure 5.37: Left: T2K run1 data profile of the sin2 2θ23 and ∆m2
32 Monte

Carlo Markov chain parameters without systematic uncertainties.
Middle: “Time series” of the convergence of the means of sin2 2θ23

and ∆m2
32 for 6 Markov chains chosen randomly. Right: “Time

series” of the sampled parameters for the 6 same chains; both
exhibit good mixing properties as the parameter space is sampled
very fast.
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(a) sin2 2θ23 profile, aggregate mean and sampled parameter; with systematics.

(b) ∆m2
32 profile, aggregate mean and sampled parameter; with systematics.

Figure 5.38: T2K run1 data. Same as figure 5.37 above but with systematic
uncertainties included.
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5.10.2 Systematic uncertainties

The marginalised posterior profiles of each systematic uncertainty, for the
MCMC with systematics, are plotted in figures 5.39 and 5.40 and fitted with
Gaussian functions For each uncertainty, the nominal value from the prior
Gaussian penalty term of the likelihood is centred on zero and the x-axis scale
is in units of σ.

Most profiles retain a Gaussian shape with some small shifts in the mean
and standard deviation. This behaviour is expected: because the T2K run 1 is
heavily dominated by statistical errors, the likelihood fit has little constraining
power over the uncertainties.

5.10.3 Bayesian credible intervals

The 68%, 90% and 95% Bayesian credible intervals for the T2K run 1 data
are constructed using the results in figure 5.41 and the method outlined in
section 5.4.4. For comparison, results from MINOS, Super-K and K2K were
presented in figure 1.3.
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Figure 5.39: Profile of posterior marginalised systematic uncertainty parame-
ters of the Markov chain fitted with Gaussian functions for the
T2K run1 data. Here, from top left to bottom right: Super-K
CCQE, CCnQE, NC and CCνe efficiency uncertainties, Super-
K energy scale uncertainty, ND280 normalisation uncertainty,
CCQE cross section uncertainty, CC1π cross section ratio un-
certainty.
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Figure 5.40: Continued systematic uncertainty parameters fitted with Gaus-
sian functions for T2K run 1 data. From top left to bottom right:
CCOTH and CCNC cross section ratios uncertainties, νe/νµ cross
section ratio uncertainty, FSI uncertainty and flux shape and nor-
malisation uncertainties.
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Figure 5.41: 68% (blue), 90% (green/yellow) and 99% (red) Bayesian credible
intervals for the 8 1-ring µ-like events collected during the first
T2K physics run (3.23 × 1019 POT exposure) with and with-
out systematic uncertainties included. The best fit point, at
sin2 2θ23 = 0.83 and ∆m2

32 = 2.9× 10−3 eV 2/c4, is marked.
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6 Conclusion

The atmospheric mixing angle, sin2 2θ23, and mass splitting, ∆m2
32, were pre-

viously measured by the MINOS, Super-K and K2K experiments. Current
limits set on these parameters give a mixing angle value greater than 0.92
at 90% confidence and a mass splitting value of 2.43 ± 0.13 × 10−3 eV 2/c4.
The T2K experiment is set to give the most sensitive measurements of both
parameters in the next few years.

This thesis presented the results of a νµ disappearance analysis for the
first T2K physics data set. This first data set was collected from January
to June 2010 and comprised an integrated J-PARC neutrino beam exposure
of 3.23×1019 POT. In total, eight 1-ring µ-like events had passed the Super-K
selection cuts compared to an expectation of 22.8± 4.8(stat)+3.7

−3.7(syst) in the
null oscillation hypothesis.

The Markov chain Monte Carlo Metropolis-Hastings algorithm was used in
combination with a maximum likelihood method in order to construct 68%,
90% and 95% Bayesian credible intervals for the oscillation parameters. Os-
cillation parameter values of sin2 2θ23 = 0.83+0.16

−0.18 and ∆m2
32 = 2.9+0.8

−1.0 × 10−3

eV2/c4 were found to give the best fit between the likelihood function and
the 8 events in the data sample. The results presented in this thesis are in
agreement with the main T2K analysis.

This analysis included a complete set of systematic uncertainties with con-
tributions from Super-K, ND280, neutrino interactions and the beam provided
by various T2K working groups. These uncertainties were marginalised using
the MCMC method. Although most of the uncertainties used in the T2K run1
analysis were preliminary estimations, this did not matter because the first
T2K run was heavily dominated by statistical uncertainties. As the amount
of data collected increases, however, the analysis becomes increasingly limited
by the systematical uncertainties.

A second data run was collected by the T2K experiment, before the March
2011 earthquake interuption, giving a combined run1 and run2 exposure of
1.431×1020 POT. Figure 6.1 presents simulated Bayesian contours for the T2K
run1 and run2 combined exposure for best fit parameters of sin2 2θ23 = 1.0
and ∆m2

32 = 2.4× 10−3 using the MCMC method. The T2K run1 systematic
uncertainties were used.

A comparison of figures 5.34 and 6.1 shows that the systematic uncertainty
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Figure 6.1: 68% (blue), 90% (green/yellow) and 99% (red) Monte Carlo
Bayesian credible intervals for the first and second T2K physics
runs (1.431 × 1020 POT exposure) with and without systematic
uncertainties included.

accounts for an increasing fraction of the credible intervals in the second case.
The MCMC method will prove very useful for future high statistics T2K

dataset by providing a posterior distribution on the shape of the systematic
uncertainties that are presently assumed to be Gaussian.
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