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Abstract

In this thesis, methods for studying the flavour changing neutral current

decay Bd → K∗0µ+µ− at LHCb are investigated. The decay proceeds via

a b→ s loop, and will be sensitive to the effects of new particles, predicted

in many models of beyond-the-Standard-Model physics. The formalism

used to describe the decay will be introduced, and a number of observables

available in its angular distribution presented.

In the first few years of LHCb data taking, the number of signal events

available will be relatively small and measurements must be optimized for

experimental sensitivity. The vanishing point of the angular observable S5

will be of particular interest; it has reduced theoretical uncertainties from

hadronic form factors and can be extracted with high precision at LHCb.

It provides a complementary measurement to that of AFB and FL, already

considered by BABAR, Belle, and CDF.

Once O(104) Bd → K∗0µ+µ− signal events have been collected, a full-

angular analysis can be performed that will give the maximum available

sensitivity to new physics in the decay. It will also provide access to many

other observables with reduced theoretical uncertainties that are optimized

for sensitivity to particular classes of new physics. It is shown that the

full-angular analysis will be a sensitive probe of the decay, and can provide

power to distinguish between models if physics beyond the Standard Model

is discovered at the LHC. Many of the conceptual issues associated with

making this measurement are explored.

Finally, a new decay model of Bd → K∗0µ+µ− is presented for the

decay simulator EvtGen that allows the model independent simulation of

new physics. This model is used to investigate the current state of b → s

observables, and it is shown that their 2009 experimental values are in

excellent agreement with the Standard Model.
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Chapter 1

Introduction

(a) Visible (b) X-ray

Figure 1.1: The merging galactic cluster 1E 0657-558 at visible and X-ray wave-

lengths. In each case, the white scale bar shows how large a 200 kpc object would

appear if it was the same distance from us as the cluster. Fig. from Ref. [10].

1.1 Motivations

A drive to understand the world around us has long been an important feature

of mankind. As new technologies have been pioneered, this understanding has

grown, leading to a virtuous circle of development that has transformed our lives.

Today, we live in a world quite different from our ancient ancestors; however,

many of the same questions remain: Where did we come from? How were the

things around us made? Why is our universe like it is? We have learnt so much,

but as we develop new tools we find new questions to ask.

In modern physics, our ability to make measurements on very large and very

small distance scales has left us with many new challenges. An example can be

taken from astronomy. In 1933, the Swiss astrophysicist Fritz Zwicky showed that

an analysis of the Coma cluster of galaxies led to an estimate of the cluster mass

that was much greater than would be expected by looking at its light output

11



[11]. The large ratio of these two mass estimates (∼ 500) led him to propose

that there was dark matter present in the cluster. Fig. 1.1 shows the merging

galactic cluster 1E 0657-558 in both X-ray and visible light [10]. The colliding

cluster can be conceptually divided into three components: the stars, the dust

and gas, and a hypothetical dark matter halo. The stars can be treated as

gravitational point masses at these scales, and do not collide; the two sub-clusters

are clearly distinguishable in Fig. 1.1a. The gas and dust, however, interact

greatly, producing electro-magnetic (EM) radiation, visible in the X-ray image,

Fig. 1.1b. These interactions cause drag, leading to the separation of the visible

and X-ray distributions we see. The green lines show contours of the gravitational

field, derived from the statistical ellipticity of the background galaxies. These

contours follow the distribution of stars, but not that of the gas and dust. The

gravitational warping effect extends much beyond the visible boundary of each

grouping. This suggests that each sub-cluster is surrounded by a halo of dark

and massive matter which does not interact electro-magnetically with the dust

and gas.

Results from the Wilkinson Microwave Anisotropy Probe (WMAP) quantify

this significantly when combined with other astrophysical constraints [12]. They

find that only 4.6% of our Universe is made up of ordinary baryonic matter, and

23% from dark matter. Cosmological evolution models suggest that this must

be stable or extremely long lived, low energy (cold or warm) and non-baryonic

(for a review see Ref. [13]). Consideration of the conditions that existed in the

early Universe can be used to predict the interaction cross-section required to

produce the dark matter density we see today, e.g. Ref. [14]. The cross-section

found is one typical of the weak scale, corresponding to particle masses in the

100 GeV-1 TeV range. This conclusion is known as the WIMP miracle and ties in

with predictions from electroweak theory that there must be new physics (NP) at

the TeV scale if any scalar fields present in the Standard Model (SM) are to be

protected from logarithmic divergences, e.g. Ref. [15]. The missing CP violation

in the Universe [16] or the experimental value of (g − 2)µ [17] are also seen as

hints that there is beyond-the-SM physics at work in our Universe.

The LHC project [18] at the Organisation Européenne pour la Recherche

Nucléaire (CERN) offers the chance for physics at the TeV scale to be studied

in detail for the first time (for a brief review see Ref. [19]). If there is NP active

at LHC energies then we may hope to find it. There are two basic approaches

to this; we may look for the decays of new massive particles directly or study

their virtual contributions to the decays of SM particles. The latter approach is

the one taken in flavour physics, which deals with the couplings of quarks and

leptons from different generations. At the time of writing, the agreement between

12



precision flavour measurements and SM predictions is rather good (e.g. Ref. [20]),

which leaves us with a problem, known as the new physics flavour puzzle: If there

is NP at the weak scale, why haven’t we seen its effects in flavour physics? If

we hope to understand the physics of weak scale interactions, then both high-pT

and flavour physics observables must be considered. This thesis is focused on

the indirect search for NP contributions to b → s quark transitions in the rare

electroweak penguin decay Bd → K∗0(→ Kπ)µ+µ− with the LHCb detector.

1.2 The Standard Model of particle physics

The SM [21–29] is a relativistic quantum field theory that describes the strong,

weak, and electromagnetic forces and their interactions with the particles that

make up the Universe as we know it today. It is based upon the principle that

there are fundamental symmetries of nature that must be respected by any theory

which attempts to describe it1. These symmetries are specified in the language

of group theory as a product of three gauge groups,

GSM = SU(3)C ⊗ SU(2)W ⊗ U(1)Y ; (1.1)

SU(3)C describes the strong interaction and SU(2)W⊗U(1)Y the electromagnetic

and weak interactions. The twelve generators of the group correspond to the eight

gluons, g, three weak bosons, W± and Z0, and the photon, γ, which respectively

mediate the strong, weak, and electromagnetic forces. Together these account

for the known phenomenology of the quarks and leptons studied in collider and

low-energy experiments.

The matter fields of the SM can be assigned electroweak and strong quantum

numbers and grouped into gauge multiplets, as shown in Tab. 1.1. The parity2

violation seen in weak interactions [36] is implemented by giving the right- and

left-handed components different weak quantum numbers, so that they are placed

in different multiplets of the SU(2)W ⊗U(1)Y group. The left-handed leptons are

grouped in SU(2)W doublets:

Le =

(
νe,L

eL

)
, Lµ =

(
νµ,L

µL

)
, Lτ =

(
ντ,L

τL

)
, (1.2)

1This section has been written following Refs [30–35].

2The parity operator changes the sign of all spatial elements in a vector: P
xy
z

→
−x−y
−z

.
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and similarly for the quarks,

Qd =

(
u′L
d′L

)
, Qs =

(
c′L
s′L

)
, Qb =

(
t′L
b′L

)
, (1.3)

while their right-handed chiral partners are placed in singlets:

eR, µR, τR; (1.4)

uR, dR, cR, sR, tR, bR. (1.5)

The L and R labels denote the left- and right-handed projections of the spinor

fields (chiralities),

ΨL,R =
1

2
(1∓ γ5)Ψ, (1.6)

that, in the limit of vanishing particle mass, select the right and left helicity

states. The primes indicate that these are the weak and not the mass eigenstates.

In the simplest form of the SM, where the neutrino masses vanish, right-handed

neutrinos do not interact with any of the known particles and so are removed from

the theory, leaving purely left-handed neutrinos. A summary of the symmetry

properties of the SM matter fields is shown in Tab. 1.1.

Field SU(3)C SU(2)W U(1)Y Lorentz

Qi
L =

(
u′iL
d′iL

)
3 2 1/6 (1/2, 0)

uiR 3 1 2/3 (0, 1/2)

diR 3 1 −1/3 (0, 1/2)

LiL =

(
νiL
eiL

)
1 2 −1/2 (1/2, 0)

eiR 1 1 −1 (0, 1/2)

H =

(
H+

H0

)
1 2 1/2 (0, 0)

Table 1.1: Matter fields of the SM. The dimensions of the SU(3)C and SU(2)W
representations are shown, as is the U(1)Y charge, and the properties of the field
under the Lorentz group. The i index denotes the generation and runs from one
to three.

The SM Lagrangian, LSM, is the most general re-normalizable Lagrangian

that is consistent with the SM gauge group, describes the known particles and

implements spontaneous symmetry breaking. It can be divided into three parts:

LSM = LKinetic + LHiggs + LYukawa. (1.7)
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The requirement of local gauge invariance leads to the natural inclusion of the

force carriers of the SM. It is most easily introduced by considering the La-

grangian density for a free Dirac field, ψ, with mass m:

L = ψ̄(iγµ∂µ −m)ψ. (1.8)

This is invariant under a global phase transformation, known as a global gauge

transformation,

ψ → eiαψ. (1.9)

The group of all such transformations is known as U(1). In quantum mechanics

(QM) the probability of finding a given state at position x̂ can be found by taking

the squared modulus of the wave-function,

P (x̂) = |ψ|2 = ψ∗ψ. (1.10)

The probability density P (x̂) is invariant under the global gauge transformation

showing that α is not an observable, but it is also invariant under the more general

local gauge transform,

ψ(x̂)→ eiα(x̂)ψ(x̂), (1.11)

where this transformation can be also extended to transform SU(N) spinors [37].

In order to enforce conservation of this symmetry on Eq. (1.8), the derivative can

be replaced by a new covariant derivative,

DQED
µ ≡ ∂µ + ieAµ, (1.12)

where Aµ is a new vector gauge field, the photon. It is required if we are to

include derivative terms in the Lagrangian, which describe how the spinor ψ(x̂)

transforms as x̂ changes. We note that adding a mass term m2AµA
µ is forbidden

without spoiling the invariance; the photon is required to be massless.

These ideas can be extended to include the more complex SM group. In this

case the covariant derivative required is

Dµ ≡ ∂µ + igsG
µ
aLa + igW µ

b Tb + ig′BµY, (1.13)

leading to the force carriers of the SM: Gµ
a are the eight gluon fields, W µ

b the three

bosons of the weak interaction and Bµ is a single hypercharge boson, all of which

are also massless. The La terms are the generators of SU(3)C (the 3 × 3 Gell-

Mann matrices), the Tb terms are the SU(2)W generators (the Pauli matrices),

and the Y s are the U(1)Y charges. Finally, gs, g, and g′ are the associated gauge
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coupling constants. In order to recover the Quantum Electrodynamics (QED)

result, the SM group must be spontaneously broken, reducing the group from

SU(3)C ⊗ SU(2)W ⊗ U(1)Y → SU(3)C ⊗ U(1)Q, where the quantity

Q ≡ Y + T 3 (1.14)

is conserved and can be identified with the electric charge quantum number. In

order to implement this spontaneous symmetry breaking, a single scalar field,

H =

(
H+

H0

)
, (1.15)

is added to the theory, leading to the term

LHiggs = (DµH)†(DµH)− V (H), (1.16)

appearing in the Lagrangian. The electroweak symmetry is broken by the Higgs

potential, V (H), an example of which is shown in Fig. 1.2. The symmetry break-

ing mixes the W and Y bases,(
Z0

A

)
=

(
cos θw − sin θw

sin θw cos θw

)(
A3

B

)
, (1.17)

to form the physical Z0 and γ, where θw is the weak mixing angle. The mecha-

nism is outlined for U(1) in the caption of Fig. 1.2, however, the details for the

SU(2)W ⊗ U(1)Y are similar but more involved. This transformation allows for

gauge invariant mass terms for the Z0 and W± to be generated and predicts a

simple relationship between their coefficients,

mW = mZ cos θw. (1.18)

Testing this and other predictions of the theory has led to remarkable agreement

being found between SM predictions and precision electroweak data, e.g. Refs [38,

39].

The quarks and leptons do not acquire masses during this process, and this

must be changed if the SM is to describe nature. Our choice of placing the left-

and right-handed components of the fermion fields in different gauge multiplets

means that we can not include a mass term in the Lagrangian without violating

the local gauge symmetry. Spontaneous symmetry breaking can again be used to

introduce fermion masses in a gauge invariant way. The quarks and leptons get
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Figure 1.2: An example of a Higg’s potential that leads to spontaneous symmetry
breaking. In this case, the potential V (φ) = −µ2φ∗φ + λ

2
(φ∗φ)2 leads to a U(1)

invariant minimum at 〈φ〉 = φ0 =
(
µ2

λ

)1/2

. Decomposing φ around its minimum

gives φ = φ0 + 1√
2
(φ1 + iφ2), so that V (φ) ≈ − 1

2λ
µ4 + 1

2
· 2µ2φ2

1; φ1 acquires a

mass,
√

2µ, while φ2 is left massless.

masses because of their Yukawa3 couplings to the Higgs doublet,

LYukawa = giju ū
i
RH

T εQj
L − gijd d̄iRH†Qj

L − gije ēiRH†LjL + h.c. (1.19)

where repeated i, j indices are summed and ε is the antisymmetric matrix4. The

non-zero vacuum expectation value of the H doublet,

〈H〉 =
1√
2

(
0

v

)
, (1.20)

produces mass terms,

∆LYukawa = − 1√
2
λevē

i
Le

i
R −

1√
2
λdvd̄

i
Ld

i
R −

1√
2
λuvū

i
Lu

i
R + h.c. (1.21)

These terms give rise to the 3× 3 quark and lepton mass matrices,

Mu = vλu/
√

2; Md = vλd/
√

2; Me = vλe/
√

2, (1.22)

where λi are the dimensionless and re-normalizable Yukawa couplings. We can

3Named following the ideas presented in Ref. [40].
4 ε =

(
0 1
−1 0

)
.
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define matrices, U , which diagonalize the Yukawa couplings so that all Higgs

interactions are generation specific,

U(u,R)†Mu U(u, L) =

mu 0 0

0 mc 0

0 0 mt

 , (1.23)

U(d,R)†Md U(u, L) =

md 0 0

0 ms 0

0 0 mb

 , (1.24)

U(e, R)†Me U(e, L) =

me 0 0

0 mµ 0

0 0 mτ

 . (1.25)

For the leptons, this poses no problem as neutrino masses may be neglected. To

diagonalize the quark Higgs couplings however requires different transformations

for the uL and dL fields, which are part of the same SU(2) doublet. We can

redefine the original quark doublets as

Qd =

(
u′L
d′L

)
=

(
U(u, L)uL

U(d, L)dL

)
= U(u, L)

(
uL

VCKMdL

)
, (1.26)

where VCKM is the unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix [28, 29],

defined as,

VCKM = U(u, L)†U(d, L) (1.27)

=

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 . (1.28)

Making the relevant substitutions in the SM Lagrangian leaves the quark kine-

matic terms, as well as the Z0 and A couplings unaffected. However the W

couplings are not invariant under VCKM, leading to tree-level flavour changing

charged interactions mediated by the W±.

The unitarity constraint in the CKM matrix means that not all the elements

are independent; further re-phasings of the quark fields can be used to remove

five parameters, leaving three independent angles, θ12, θ13, θ23, and a single CP -
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violating5 phase, δ. The most common parametrization has become [41],

VCMK =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (1.29)

where sij ≡ sin θij, cij ≡ cos θij, and the angles are chosen so that sij, cij ≥ 0.

Experimentally, s13 � s23 � s12 � 1, meaning that there is clear hierarchy in the

matrix structure, with off-diagonal elements being much smaller than diagonal

elements. To an accuracy of better than O(0.05), we may write,

VCMK ≈

 1 λ 0

−λ 1 0

0 0 1

 , (1.30)

where λ = 0.2257 +0.0009
−0.0010 [41].

Many of the measurements made in B-physics investigate corrections to this

picture, illustrated by the over-constrained unitary triangle, shown in Fig. 1.3.

This makes use of the Wolfenstein parametrization [42], with the following defi-

nitions:

s12 = λ =
|Vus|√|Vud|2 + |Vus|2

; s23 = Aλ2 = λ

∣∣∣∣VcbVus

∣∣∣∣ ; s13e
iδ = V ∗ub = Aλ3(ρ+iη);

so that we can write VCKM as

VCKM =

 1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4). (1.31)

The unitarity of the CKM matrix requires that, e.g.,

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (1.32)

This relation prescribes a triangle in the complex plane; one of six which may be

drawn. We define

ρ̄+ iη̄ = −VudV
∗
ub

VcdV ∗cb
, (1.33)

so that expanding in a Taylor series around λ, we have,

ρ̄ = ρ− 1

2
ρλ2 + ...; η̄ = η − 1

2
ηλ2 + .... (1.34)

5The charge conjugation operator, C, negates the charge quantum number, so C : e− → e+.
CP is the combination of this and the parity operator previously defined.
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Figure 1.3: The current (summer 2009) status of the CKM matrix [43, 45].

The height of this triangle in the ρ̄− η̄ plane directly measures the CP -violation

seen in the SM, while the angles are defined as

β = arg

(
−VcdV

∗
cb

VtdV ∗tb

)
; α = arg

(
− VtdV

∗
tb

VudV ∗ub

)
; γ = arg

(
−VudV

∗
ub

VcdV ∗cb

)
. (1.35)

Fig. 1.3 combines many different measurements from the B-factories and the

TeVatron to make multiple constraints on parameter space to check for inconsis-

tencies which would be a sign of physics beyond the CKM picture. The length of

each side of the triangle is O(λ3), illustrating the precision required to make these

measurements. This framework has been extensively tested at the B-factories and

the TeVatron and has been found to be in excellent agreement with data [43, 44].

While some discrepancies have been reported, the overall picture is one of great

consistency with the CKM picture, and so with the SM.
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1.3 Rare decays

As discussed in Sec. 1.1, we are looking for the effects of NP at the weak scale,

mW , which naturally leads us to consider diagrams involving weak transitions.

As any new particles discoverable at the LHC will likely have masses O(102 GeV),

the decays of heavy SM particles will be of particular interest [46]; specifically the

τ lepton and the t and b quarks. The mass hierarchy is such that mt � mb > mτ

[41]. The t quark has a huge mass relative to other SM particles; despite the large

numbers that will be produced at the LHC, making detailed measurements will

be very challenging due to the complex decay topologies involved.

The decays of the b quark are experimentally attractive for a number of rea-

sons. It is the heaviest of the quarks that form bound states. These states are

relatively stable, and decay a measurable distance from where they are produced6.

This allows for their identification in a hadronic environment, by looking for de-

cay vertices displaced from the primary interaction point. At the LHC, they will

be produced in bb pairs via processes like g → bb in huge quantities: the LHCb

collaboration estimates that O(1012) bb pairs will be produced at their interaction

point per nominal year of data taking [47]. The effects from high mass scale par-

ticles in the decays of the b quark will, in general, be less significant than for the

t quark, however this may be compensated for by the large statistics and higher

selection efficiencies available.

The study of rare b decays is an attempt to combine the advantages of making

precision B-physics measurements with the probing of high mass scale processes.

We define a rare decay as being one which proceeds via an electroweak flavour

changing neutral current (FCNC) loop process, which are forbidden at tree-level

in the SM. In the case of the b → s quark transition, the large mass of the

t quark means that the electroweak contribution can be significant even where

Quantum Chromodynamics (QCD) processes are also active [48]. One strategy

is to consider final states were the loop contribution from electroweak processes

must dominate. The canonical example of this are the b→ sγ decays.

The one-loop SM diagrams for b→ sγ are shown in Fig. 1.4. In this case, QCD

effects only contribute as corrections, and relatively clean theoretical predictions

can be made for its inclusive branching ratio [49]. This can also be measured

cleanly at the B-factories (see Ref. [20] and references therein). If there are new

massive particles acting on the weak scale, they may be able to enter the b → s

loops, altering the branching fraction we see. Current measurements are, however,

in good agreement with the SM predictions, and this represents one of the greatest

challenges for the NP hypothesis. A more extensive treatment of the current state

6The B meson has a mean lifetime of τB = (1.530± 0.009)× 10−12 s[41].
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Figure 1.4: SM diagrams for the rare decay b→ sγ. Figures from Ref. [30].

of b → s constraints is given in Sec. 6.6. However, B(B → Xsγ) is not the end

of the story. It is only sensitive to certain classes of NP effects that could be

added to Fig. 1.4. Other rare decays provide overlapping and complementary

measurements of the underlying electroweak parameters and may be sensitive to

NP effects with different underlying gauge structures. To take these ideas further

requires the introduction of the Operator Product Expansion (OPE).

1.3.1 The Operator Product Expansion

Effective field theories in particle physics7 are built on the idea that the typical

energies involved in a particular process define a scale, µ, for that process. The

contributions from virtual particles with masses much greater than that scale are

suppressed [46]. This can be thought of in terms of the typical distances involved

in an interaction. Unstable massive particles generally have short lifetimes so the

distances over which they can be involved in a process must also be short. Pro-

cesses operating at different scales are both spatially and temporally separated,

and so decoupled.

The force carriers of the weak interaction are very heavy relative to the masses

of the SM particles we see in the world around us; the typical distances at which

the weak force operates on are very small. Effective theories enable us to model

a process at the mass scale relevant to the particles involved. The canonical

example of this is Fermi’s description of β decay [50], shown in Fig. 1.5. The

Figure 1.5: The electroweak process of β-decay in the full and effective pictures.
Figures from Ref. [30].

7The following section is based on Refs [30, 35].
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weak vertex is parametrized as an effective vertex with a coupling constant GF ,

the Fermi constant, given by

GF =

√
2

8

g2

m2
W

= 1.16637(1)× 10−5 GeV−2, (1.36)

where g is the coupling constant of the weak force [41]. Fermi’s theory is invariant

under local SU(2)W ⊗U(1)Y , and corresponds to the limit of the SM with infinite

heavy boson masses.

The framework of effective field theories is often applied to weak interactions

of the b quark. Rather than treat b decays with the full SM, we integrate out the

particles whose masses are significantly greater than that of the b quark, such as

the weak bosons and the t quark. This allows us to concentrate on modelling

the physics active at the scale µ ≈ mb, which is dominated by QCD, while still

including the effects from higher scale physics.

Making this separation requires that our full theory can be parametrized at

the scale at which it is active. For the SM, this is the weak scale, µ = mW . We

can write the full SM Hamiltonian in terms of an effective Hamiltonian, so that

for a given process

〈f |Hfull|i〉 = 〈f |Heff |i〉 =
∑
k

Ck(µ) 〈f |Ok|i〉
∣∣∣∣
µ

, (1.37)

where the Wilson coefficients, Ck(µ), parametrize the effects of physics acting on

scales higher (shorter range) than µ, and Ok are matrix elements, often referred

to as local operators, for physics acting on lower scales (longer ranges) [51]. This

is know as the Operator Product Expansion. The values of the Wilson coefficients

can be found by matching the full and effective Hamiltonians at the weak scale.

They represent the coupling constants on effective vertexes, the gauge structure

of which are specified by the local operators. An illustration of this may be seen

in Fig. 1.5 for the process of β-decay.

The Wilson coefficients can be calculated with high precision in the SM, e.g.

Ref. [52], matching order-by-order in αs; the same can also be done for NP models,

such as the Minimal Supersymmetric Standard Model (MSSM) [53]. The values

of the Wilson coefficients are sensitive to the underlying physics model, and will

change from their SM values in the presence of new terms in the true Hfull found

in nature. They are process independent, and so may be determined separately

from many different measurements. If we can measure these coefficients, we can

either discover or exclude entire classes of NP, as classified by the underlying

gauge structure of each corresponding operator. This makes the OPE treatment

of B decays extremely powerful for making model independent tests of the SM.
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Figure 1.6: Contributions to b → s`+`− corresponding to O9 and O10. Figures
from Ref. [30].

The effective Hamiltonian relevant for this thesis is given in Eq. (1.38) and

describes the inclusive transition b→ s`+`−:

Heff = −4GF√
2
λt

(
C1Oc1 + C2Oc2 +

6∑
i=3

CiOi +
∑
j

(CjOj + C ′jO′j)
)
, (1.38)

where j = 7, 8, 9, 10, P, S and λt = VtbV
∗
ts – a combination of the relevant CKM

matrix elements. The most important contributions are given in the SM by the

operators O7,9,10, defined in Eqs (1.39), (1.41), and (1.42) (e.g. Refs [54–56]).

O7 =
e

g2
m̄b(s̄σµνPRb)F

µν , O′7 =
e

g2
m̄b(s̄σµνPLb)F

µν , (1.39)

O8 =
1

g
m̄b(s̄σµνT

aPRb)G
µν a, O′8 =

1

g
m̄b(s̄σµνT

aPLb)G
µν a, (1.40)

O9 =
e2

g2
(s̄γµPLb)(¯̀γµ`), O′9 =

e2

g2
(s̄γµPRb)(¯̀γµ`), (1.41)

O10 =
e2

g2
(s̄γµPLb)(¯̀γµγ5`), O′10 =

e2

g2
(s̄γµPRb)(¯̀γµγ5`). (1.42)

O7 corresponds to the SM diagrams shown in Fig. 1.4 and describes the emission

of a photon during the b → s transition; the photon undergoes leptonic pair

production to produce the `+`− pair seen in the final state. A gluonic version

of this operator, O8, also contributes, but is much suppressed in the SM, and

considered unpromising for NP. There are also the vector, O9, and axial, O10,

operators, contributions to which are shown in Fig. 1.6.

The operators all have right-handed partners, denoted with a prime, that are

suppressed by a factor of ms/mb in the SM. The contributions of O′i for 1 ≤ i ≤ 6

are normally neglected as their impact is either heavily constrained or generically

very small. O′7−10 can be greatly enhanced by NP and are of particular interest

(e.g. Ref. [57]). For C ′7,8, both the helicity suppressed and non-suppressed terms

can be included as

C ′7,8 =
ms

mb

(C7,8
SM + CNP

7,8 ) + C ′7,8NP
. (1.43)

This may lead to large effects in the case where NP contributes to both right-
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and left-handed Wilson coefficients.

It is also possible to include scalar and pseudoscalar operators, OS,P , and their

primed equivalents which vanish in the SM, but may arise in certain NP scenarios

such as the MSSM, due to scalar or pseudoscalar particles in the loops. These

are:

OS =
e2

16π2
mb(s̄PRb)(µ̄µ), O′S =

e2

16π2
mb(s̄PLb)(µ̄µ), (1.44)

OP =
e2

16π2
mb(s̄PRb)(µ̄γ5µ), O′P =

e2

16π2
mb(s̄PLb)(µ̄γ5µ). (1.45)

For convenience, the following combinations of Wilson coefficients are defined:

C eff
7 =

4π

αs
C7 − 1

3
C3 − 4

9
C4 − 20

3
C5 − 80

9
C6,

C eff
8 =

4π

αs
C8 + C3 − 1

6
C4 + 20C5 − 10

3
C6,

C eff
9 =

4π

αs
C9 + Y (q2),

C eff
10 =

4π

αs
C10

C ′ eff
7,8,9,10 =

4π

αs
C ′7,8,9,10 , (1.46)

where the function Y (q2) is as given in Ref. [54] and includes the doubly-Cabibbo

suppressed contributions which lead to CP -violation in the SM. If NP was discov-

ered at the LHC, making measurements of the Wilson coefficients in b → s`+`−

would allow its underlying gauge structure to be probed, giving guidance to model

builders as they work to replace the SM.

The Wilson coefficients parametrize effects from particles with masses higher

than µ; to describe physics at the mb scale, they must be evolved down from

the matching scale, mW . As the scale is brought downwards, the effects of more

particles are integrated out from the local operators and into the Wilson coeffi-

cients, making the coefficients dependent on µ. This evolution is implemented by

requiring that

µ
d

dµ
〈f |Heff |i〉 = 0, (1.47)

and solving the Renormalisation Group equations. This requires the calculation

of an anomalous dimension matrix, γ, such as found in Ref. [58]. This will induce

mixing between the operators introduced and other b→ s operators8. An example

of this is shown in Fig. 1.7. These mixing effects are included in the anomalous

dimension matrix, however truncation of the perturbative expansions used will

8A very extensive review of these issues can be found in Ref. [59].
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Figure 1.7: An example of operator mixing between O7 and O2. O2 is a four-
quark operator defined as e.g. O2 = (c̄L,iγµbL,j)(s̄L,jγµcL,i), mediated by a gluon.
In the diagram, a higher order correction to O7, where an additional gluon loop
is included, leads to the embedding of O2 in O7. Figures from Ref. [30].

introduce some residual scale dependence that must be included in theoretical

uncertainty estimates.

1.3.2 Quantum Chromodynamics and HQET

The strong force is described using the SU(3)C theory of QCD9. This is a lo-

cally gauge invariant quantum field theory (QFT) in which the quarks and gluons

carry colour charge. Physical states must, however, remain colour neutral, lead-

ing to the formation of mesons, qaq̄
a, and baryons, εabcqaqbqc. The presence of

non-Abelian terms in the QCD field strength tensor, and the size of its running

coupling constant, αs, make perturbative calculations challenging for many pro-

cesses. The study of approximate symmetries of the QCD Lagrangian is then

particularly important, as they allow for calculations to be made outside of the

perturbative regime.

The running of αs naturally leads to a division in QCD between processes

operating at short (hard) and long (soft) ranges. The self-coupling of the gluon

fields and the confinement of colour lead to a competition between screening and

anti-screening effects. At short ranges, anti-screening effects, from integrating

over a spatially separated colour field, do not significantly contribute; a quark

can be approximated as a colour point charge. At these ranges, αs is small and

perturbative methods may be used. At longer ranges, when the energy scale

is greater than ∼ ΛQCD, anti-screening effects dominate; αs is large and non-

perturbative methods must be used.

In the case of mesons containing a heavy quark, such as a b quark, we may

consider the limit where mq → ∞. Unlike the case where mq → 0, this is

not a formal limit of the QCD Lagrangian and an effective field theory must be

constructed which allows for this limit to be explicitly considered. This is the

heavy quark effective theory (HQET) [61, 62]. In this limit, the heavy quark is

9The following section is based on Refs [34, 35, 60].
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stationary in the rest frame of the meson, and provides a central source of colour

charge, much like a proton provides electric charge in the hydrogen atom. In this

colour potential sits a complex array of light qq̄ pairs and gluons, termed brown

muck by Isgur (e.g. [63]). This sea of coloured objects is non-perturbative, and

hard to treat from first principles. The second valence quark (the light quark) in

the meson couples to the brown muck, rather than directly to the heavy quark,

through the emission and absorption of soft gluons; the underlying properties

of the heavy quark, such as its flavour, mass and spin, are unimportant. This

is analogous to the invariance of the properties of atoms under a change in the

isotope being considered; it leads to additional approximate symmetries which

may be exploited to simplify calculations [61]. Put exactly, the configuration of

the light quark in a meson should remain unchanged if the heavy quark, Q(s, v),

with spin s and velocity v, is replaced by another heavy quark, Q′(s′, v), with

different spin or flavour but the same velocity. This allows, for example, for

universal form factors to be calculated which will be valid for any heavy quark

coupling to a particular light quark. In reality, the heavy quarks do not have

infinite mass and there will be symmetry breaking corrections to this picture;

these will be of order ΛQCD/mq and arise due to the motion of the heavy quark

inside the meson.

These approximations are not enough to the treat heavy-to-light form factors

of interest in this thesis; additional constraints must be introduced. In the case

where the energy of the light hadron is large, an additional expansion in powers

of 1/E can be performed, using large energy effective theory (LEET) [64]. In

the limit where E → ∞, the formation of the light hadron is mediated by soft-

gluon exchange; hard spectator effects can be neglected. When the light hadron

energy is large but finite, the hard spectator effects are suppressed by a factor

of 1/E. This separates the two different regimes, simplifying calculations. The

LEET must be modified to include the effects of collinear gluons in order to

reproduce the correct infrared behaviour of QCD. This theory is known as soft-

collinear effective theory (SCET) and has been used extensively in the theoretical

treatment of B decays [65–67].

1.4 Bd → K∗0µ+µ−

Bd → K∗0µ+µ−10 is a FCNC b → s decay that proceeds via penguin and box

diagrams such as those shown in Fig. 1.8.

10We deal with the Bd as this contains the b quark. The formalism can be applied equally
to the Bd with appropriate redefinitions which will be indicated explicitly in the text.
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Figure 1.8: SM Feynman diagrams for the Bd → K∗0µ+µ− decay.

It was first observed at Belle [68] and has a branching ratio of (1.10+ 0.29
− 0.26)×

10−6 [41]. The decay is sensitive to NP contributions through the addition of new

diagrams where charged or neutral NP particles run in the loop [57, 69–71] and

can be described with Eq. (1.38). Studies show that the decay can be selected

using the LHCb detector, giving 6200 +1700
−1500 Bd → K∗0µ+µ− signal events with

1550± 310 signal-like background events per nominal year of running [72, 73].

As with B(b→ sγ), introduced in Sec. 1.3, B(Bd → K∗0µ+µ−) is sensitive to

NP effects; however, the value measured is very compatible with SM predictions11.

However, as discussed in following chapters of this thesis, the four body final state

of Bd → K∗0µ+µ− can be used to access angular observables with complementary

sensitivity to the branching fraction. The kinematics of the decay are introduced

in Sec. 3.1, and various angular observables are defined in Sec. 3.4.

Two of these observables, AFB and FL, have been measured by BABAR, Belle,

and CDF, and are shown in Fig. 1.9 for the kinematic region for which theoretical

calculations can be made [75–81]. It can be seen that these measurements are

also in good agreement with the SM; however, the clustering of the central values,

as well as larger than expected isospin asymmetries, has led to some suggestions

that NP effects are present, e.g. Ref. [82]. As shown in Sec. 6.6, speculations of

this sort are perhaps premature (see also Ref. [83]). The large increases in signal

statistics expected at LHCb should be able to clarify this situation considerably.

11In the region where theoretical predictions can be made, Ref. [74] predicts B(Bd →
K∗0µ+µ−)1−6 GeV2 = (1.2± 0.4)× 10−7, while the Belle collaboration measures (1.49 +0.45

−0.40 ±
0.12)× 10−7 [75].
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(a)

(b)

Figure 1.9: Recent results from BABAR (red triangles), Belle (blue circles)
and CDF (purple squares) for (a) AFB, and (b) FL, re-drawn from Ref. [75, 77,
81]. SM theoretical predictions are shown; the orange, light green, and dark
green bands show the parametric and estimated 5% and 10% contributions from
unknown higher order terms in the 1/mb expansion, known as Λ/mb corrections
[1]. The light purple bands show the rate-weighted SM average in the region
q2 ∈ [1 GeV2, 6 GeV2], with all uncertainties.
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Chapter 2

The LHCb detector

2.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is a particle accelerator currently being com-

missioned at the Organisation Européenne pour la Recherche Nucléaire (CERN)[18].

It is designed to collide protons with a center-of-mass energy (
√
s) of 14 TeV and

an unprecedented luminosity of 1034 cm−2s−1. It will also be used to collide heavy

ions; for lead nuclei the energy per nucleon is expected to be 2.8 TeV with a peak

luminosity of 1027 cm−2s−1. For protons,
√
s will be a factor of approximately

seven greater than the previous record holder, the TeVatron at Fermilab in Illi-

nois, which collides pp̄ at 1.96 TeV.

The LHC is the latest addition to the CERN accelerator complex and makes

use of previously installed accelerators. The full chain can be seen in Fig. 2.1.

Considering only protons, the beam begins its journey as hydrogen gas that is

then ionized and fed into the Linac2. The beam is accelerated to 50 MeV per pro-

ton before being injected into the Proton Synchrotron Booster (PSB), which takes

its energy to 1.4 GeV. The PSB feeds into the Proton Synchrotron (PS) (25 GeV)

from which the protons enter the Super Proton Synchrotron (SPS) (450 GeV)

and finally the LHC (7 TeV) via two injection lines, TI2 and TI8. The LHC fea-

tures two counter-rotating beams that can be brought into collision at interaction

points (IPs) around the ring. The beams are accelerated with a system of super-

conducting radio frequency (RF) cavities, operating at a nominal frequency of

408 MHz. Bending and focusing of the beams is handled using a system of super-

conducting dipole and quadrupole magnets, along with a large number of smaller

beam correcting magnets. A cross-section through a LHC dipole magnet can be

seen in Fig. 2.2, where the dual-beam design is visible.

There are four main detectors at the LHC, two of which are general purpose

– ATLAS [85] and CMS [86]. These have been designed to probe the high-
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Figure 2.1: The CERN accelerator complex showing the full chain required to
inject particles into the LHC [84].
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Figure 3.3: Cross-section of cryodipole (lengths in mm).

an important operation for the geometry and the alignment of the magnet, which is critical for the
performance of the magnets in view of the large beam energy and small bore of the beam pipe.
The core of the cryodipole is the “dipole cold mass”, which contains all the components cooled
by superfluid helium. Referring to figure 3.3, the dipole cold mass is the part inside the shrinking
cylinder/He II vessel. The dipole cold mass provides two apertures for the cold bore tubes (i.e. the
tubes where the proton beams will circulate) and is operated at 1.9 K in superfluid helium. It has an
overall length of about 16.5 m (ancillaries included), a diameter of 570 mm (at room temperature),
and a mass of about 27.5 t. The cold mass is curved in the horizontal plane with an apical angle of
5.1 mrad, corresponding to a radius of curvature of about 2’812 m at 293 K, so as to closely match
the trajectory of the particles. The main parameters of the dipole magnets are given in table 3.4.

The successful operation of LHC requires that the main dipole magnets have practically iden-
tical characteristics. The relative variations of the integrated field and the field shape imperfections
must not exceed ∼10−4, and their reproducibility must be better than 10−4after magnet testing and
during magnet operation. The reproducibility of the integrated field strength requires close control
of coil diameter and length, of the stacking factor of the laminated magnetic yokes, and possibly
fine-tuning of the length ratio between the magnetic and non-magnetic parts of the yoke. The struc-
tural stability of the cold mass assembly is achieved by using very rigid collars, and by opposing
the electromagnetic forces acting at the interfaces between the collared coils and the magnetic yoke
with the forces set up by the shrinking cylinder. A pre-stress between coils and retaining structure

– 23 –

Figure 2.2: A cross-section through an LHC dipole magnet. The two beam pipes
can be seen. Fig. from [18]

energy frontier directly and are optimized to select objects with large transverse

momentum (pT ). The other two detectors are LHCb, to be discussed in detail in

the next section, and ALICE, a heavy ion experiment that aims to study QCD

in the asymptotically free regime [87].

At the time of writing1, the LHC had restarted operation in November 2009,

following almost a year of repairs after an abortive 2008 run. The previous energy

record for a proton beam was broken on the 29th of November 2009; some fifty

thousand proton-proton collisions were induced at a
√
s of 2.36 TeV a few weeks

later. The machine was then stopped for a short winter shutdown and is scheduled

to restart in March 2010. It will then run at 3.5 TeV per beam for 18-24 months

before a longer shutdown, required to make the upgrades necessary for 7 TeV per

beam operation.
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Figure 2.3: Angular correlations in the production of bb pairs where θb,b is the an-
gle defined with respect to the beam axis in the pp centre-of-mass frame. Fig. from
[47].

2.2 LHCb

LHCb is the experiment at the LHC optimized for the study of CP violation and

rare decays in the B meson system [89]. The proposed physics programme re-

quires large data samples and a precision detector in order to study the flavour sec-

tor in the high-energy frontier. However, the b-quark production section at 14 TeV

will be huge, ∼ 500µb, meaning that for a modest luminosity of 2×1032 cm−2s−1,

1012 bb pairs should be produced in 107 s of running [47]. This corresponds to a

nominal year of data-taking. At Leading Order (LO), b quark production at the

LHC is via gg, qq → bb where the former is dominant. The asymptotic nature of

the g and, to a lesser extent, the light quark parton distribution functions (PDFs)

mean that the bb system is more likely to be produced in the forward direction,

due to the kinematical bias introduced by the bb mass. Fig. 2.3 shows this an-

gular correlation explicitly. In order to access these bb pairs, LHCb has been

designed to instrument the forward region with the detector covering from 10

to 300 (250) mrad in the bending (non-bending) plane. A diagram of LHCb is

shown in Fig. 2.4a, where the right-handed coordinate system can also be seen.

A photograph of the cavern just before the 2009 run is shown in Fig. 2.4b for

comparison.

In order to make the best use of the existing Intersection Point 8 (IP8) cavern,

which previously housed the DELPHI detector, the IP of the two LHC beams

is displaced to one side of the cavern (the right-hand side of Fig. 2.4b) using

a modification to the general LHC optics. This allows for a very long detector

(∼ 20 m) to be installed, from the IP until almost the end of the cavern, as shown

1This section was written on the 16th of February, 2010. Updates can be found in Ref. [88].
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Figure 2.4: Fig. (a): A cross-section of the LHCb detector, from [89]. The
projective layout used for the sub-detectors is illustrated in the diagram. Fig. (b):
The LHCb cavern in August 2009. The interaction point is at the right edge of
the picture; the view is from the opposite side of the detector to that seen in (a).
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in Fig. 2.4a. Excellent spatial resolutions can be achieved for tracks, which is

of great importance for many B-physics measurements. In order to reduce the

material budget, to keep detector services out of the acceptance, and to allow

access for maintenance, a slice architecture has been adopted, with sub-detectors

separated with empty space where possible. A warm dipole magnet, shown in

Fig. 2.4, provides bending in the horizontal plane, allowing for the momentum of

charged objects to be found with high precision. A 10 m track will experience an

integrated field of 4 Tm over its length.

The forward region will contain a large contribution from soft QCD processes,

collinear with the beam direction. Including particle identification (PID) capa-

bilities in the detector will help suppress soft pions and allow the study of final

states where the hadron type is important – K, π, and p hadrons should all be

distinguishable with high efficiency.

In nominal conditions, it is expected that reconstructible interactions will

occur within LHCb at a rate of 10 MHz. This must be reduced to 2 kHz if the

detector readout is to be stored and processed effectively. This will require very

fast and effective triggering, so that b decays can be selected with high efficiency.

In the following sections, the individual subsystems will be reviewed to il-

lustrate how LHCb is designed to deal with the harsh environment of the LHC.

The rare decay Bd → K∗0µ+µ− will be used as an example, following the off-line

selection given in Refs [72, 90] and the discussion of trigger strategies found in

Ref. [8].

2.2.1 The tracking system

The tracking system is very important for LHCb. As discussed in Sec. 1.3, the

relatively long lifetime of the B meson combined with the large boosts seen in the

forward direction mean that the decay vertex is displaced from the IP by distances

of O(1 mm). Measuring this displacement via an impact parameter allows for the

unambiguous tagging of B meson decays and forms an important part of many

LHCb selections [8]. Having excellent vertex resolution also allows for particle

lifetimes to be measured with high precision.

High tracking efficiency is vital for the success of the experiment. Detector

technologies must be chosen that are very sensitive to the passing of charged

particles, while keeping the signal-to-noise ratio high; noise hits can generate

ghost tracks which obscure the physics processes of interest.

The off-line selection of Bd → K∗0µ+µ− makes very tight requirements on the

quality of the B vertex as well as the individual Kπ and µµ vertices. The B vertex

is also required to be significantly displaced from the interaction point. The decay
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features four charged tracks that are found by fitting a smoothly varying line to

the collection of detector hits. The quality of each track in this fit is also required

to be good. These quantities can be used to select the decay without biasing the

angular distribution, and so particularly stringent requirements are made [8].

The Vertex Locator

The Vertex Locator (VELO) detector is a silicon vertex detector, responsible for

providing high precision tracking information close to the primary IP. The active

area of the detector is made up of twenty-one discs of silicon, each divided into two

equal and partially overlapping segments. These segments are held in a vacuum

tank mounted at the LHC interaction point (see Fig. 2.4a), and separated from

the LHC beam by 200µm thick corrugated aluminium foil. They are parted while

the LHC beams are injected into the machine and then brought together once

stable conditions have been reached. This allows for the sensors to be placed

only 8 mm away from the beam axis providing the best possible resolution for

vertex position measurements by reducing the distances over which tracks must

be extrapolated. The harsh radiation environment at this distance means that the

silicon technology used must be extremely radiation hard if detector performance

is to be sustained over many years; the modules are held at a temperature between

−10◦ and 0◦ to slow ageing. The individual segments follow an R − φ layout,

shown in Fig. 2.5a: the R strips are laid out in concentric semi-circles centring

on the beam axis; these are sub-divided into 45◦ segments to reduce capacitance.

The φ sensors are implanted on the other face of the segment, and laid out radially

so that position information on silicon hits anywhere in the disc can be found

by combining the two faces. The segments are aligned so that segment faces of

the same type face one another, but with a relative offset in direction of the φ

sensors to improve stereo resolution. This stereo angle is shown in Fig. 2.5a. A

picture of the lower segments, mounted in the VELO vacuum tank, can be seen

in Fig. 2.5b.

There are a further two sensors mounted upstream of the beam collision point,

known as the pile-up veto system. As LHCb is intended for making precision

measurements, the design luminosity is significantly reduced, compared to the

LHC design luminosity, by focusing the beams relatively less before collision than

for the other LHC experiments. At this luminosity, most beam crossings will have

zero or one proton-proton interactions, however some events will have more than

this. As discussed in Sec. 2.2.5, beam crossings with multiple interactions can

be vetoed in the Level-0 (L∅) trigger; these events will be rejected with 80%

efficiency while correctly accepting 95% of single interaction events.
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(a) The R− φ geometry (b) VELO modules

Figure 2.5: The VELO detector [89].

The Silicon Tracker

The Silicon Tracker (ST) is made up of two sub-detectors, the Tracker Turicensis

(TT) and the Inner Tracker (IT).

The Tracker Turicensis The TT is 150 cm wide and 130 cm high. It is lo-

cated upstream of the LHCb dipole magnet and covers the full acceptance of

the experiment, as shown in Fig. 2.4a. It is made up of four layers of silicon

micro-strip detector with the first and third layers rotated by a stereo angle of

5◦. The detector has an active area of 8.4 m2 with 143360 readout strips of up to

38 cm in length. Each layer is made of overlapping tiles with the required cooling

and readout electronics located outside of the active area. The TT is positioned

to provide hit information between the RICH1 detector and the magnet while

keeping the material budget to a minimum.

The Inner Tracker The IT covers a 120 cm by 40 cm region in the centre of the

three tracking stations, T1, T2, and T3. As shown in Fig. 2.4a, it is positioned

downstream of the magnet. The same silicon micro-strip technology is used as

the TT to provide 50µm spatial resolutions in the central region, which will have

the highest occupancies. These resolutions are required throughout the ST so

that the track momentum resolution is dominated by multiple scattering effects

over the majority of particle momentum ranges. The IT has an active area of

4.0 m2 with 129024 readout strips of either 11 cm or 22 cm in length. In both

the TT and the IT, the strip lengths were chosen to keep occupancies to a few

percent while minimizing the number of readout channels required.

37



Figure 2.6: CF4 rings in RICH 2, produced during proton-proton collisions at
450 GeV per beam on the 6th of December 2009 [91].

The Outer Tracker

The final pieces of the tracking system are provided by the Outer Tracker (OT),

marked as T1, T2, and T3 in Fig. 2.4a. This covers the areas in these tracking

stations, further away from the beam pipe, that are not within the acceptance

of the IT. The three tracking stations are located after the magnet, and so of

particular importance for making precision momentum measurements. The active

regions are made from gas-tight straws containing Argon (70%) and CO2 (30%),

providing drift times of below 50 ns while keeping drift-coordinate resolutions at

about 200µm. Each tracking station is made up of four layers of straws making

a total active area of 5971 × 4850 mm2 per station. The straws in the first and

fourth layers are orientated vertically, with the second and third offset by ±5◦

with respect to the vertical. The relative areas of IT and OT were chosen so that

the occupancy of the OT is always less than 10% per straw.

2.2.2 The particle identification system

PID is very important at LHCb. The background in the forward direction will

be dominated by soft pions from collinear QCD effects. While these can often be

removed with momentum cuts, this can be problematic for measurements of the

Bd → K∗0µ+µ− angular distribution, where they produce systematic distortion

effects. The two Ring-Imaging Čerenkov (RICH) detectors are used to separate

kaons and pions, which will be useful e.g. for the study of charmless B decays,

as described in Ref. [8], and for some of the measurements studied in this thesis.
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Figure 2.7: The geometry and construction of RICH1 and the momentum depen-
dence of the Čherenkov radiators used [89].

The RICH1 detector sits in between the VELO and the TT in an iron box

that shields its sensitive Hybrid Photon Detectors (HPDs) from the magnetic

field. Its position can be seen in Fig. 2.4a, and a schematic diagram of its layout

is shown in Fig. 2.7a. It uses both aerogel and C4F10 as Čherenkov radiators

and then focuses the light produced on a close-packed array of 196 HPDs using

a system of flat and spherical mirrors. As a particle passes through the radiator,

light is emitted by the material at an acute angle, θc, to the particle’s direction of

travel. This light forms a cone, producing a ring such as those shown in Fig. 2.6

when it is projected onto the HPD plane. For a given radiator, θc is a function of

the momentum of the particle travelling through the medium and its type; this is

illustrated in Fig. 2.7b. By combining information from the tracking system with

the radius of the ring seen, an identification of the particle type can be made.

Several radiators are used so that the entire range of particle momenta is covered.

The necessity of this can again be seen in Fig. 2.7b.

RICH2

The RICH2 detector is significantly larger than RICH1, and is located between

the last of the tracking stations and the first muon station. It uses CF4 gas as

a radiator to provide PID for particles with momenta from 15 to 150 GeV. The

momentum dependence of the Čherenkov angle for this gas is shown in Fig. 2.7b.

The detector again uses a system of large flat and spherical glass mirrors to focus
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the Čherenkov light on to an array of 288 HPDs. The support box is built to

keep the HPDs and all the support structure outside of the detector acceptance.

An example of rings found during 900 GeV proton-proton collisions is shown in

Fig. 2.6. The individual pixel hits can be seen, as can the ring centre as found

from the tracking system.

2.2.3 Calorimetry

The calorimetry system of LHCb consists of the three sub-detectors: the scintillator-

pad detector/pre-shower (SPD/PS); an electromagnetic calorimeter (ECAL); and

an hadronic calorimeter (HCAL). Together these detectors perform several func-

tions. They can be used to detect high transverse energy (ET ) objects for the trig-

ger. This can be done fast enough for them to enter at L∅. They provide identifi-

cation of electrons, photons, and hadrons and will help measure their position and

energies. These detectors are not heavily used in the selection of Bd → K∗0µ+µ−,

where the majority of events are triggered at L∅ in the muon lines; however they

will be essential for studying other rare decays such as Bs → φγ.

The technology used in all three detectors is similar; they are sampling calorime-

ters featuring lead plates separated by sheets of plastic scintillator. If a shower

forms, the energy of any ionizing particles is deposited in the scintillator and

re-emitted as light. This is then transmitted to photomultiplier tubes (PMTs)

outside the detector acceptance. The intensity of the light output gives a measure

of the real deposited energy once careful calibrations have been made.

The SPD/PS

The SPD/PS detector provides pre-shower information before particles enter the

ECAL. It consists of a 15 mm (2.5 X0) thick plate of lead sandwiched in between

two high granularity planes of segmented scintillator. The segments are arranged

to correspond with those of the ECAL; a total of 12032 read-out channels are

employed. The detectors main purpose is to provide a π0 veto for the electron

and photon identification algorithms used with the ECAL.

The electromagnetic calorimeter

The ECAL is responsible for identifying events which contain high-ET objects for

the L∅ trigger, as well as providing energy deposition and location information

for later analysis. The detector has enough energy resolution to give a B mass

resolution on photon penguin decays like Bs → φγ of 65 MeV. It is segmented into

modules: each is made up of alternating layers of 2 mm thick lead plates, 120µm

thick reflecting paper and 4 mm thick compressed polystyrene scintillating tiles.
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Figure 2.8: Energy deposition of a ECAL module in (a) 50 GeV electrons and
(b) pions, produced by the PS.

A total of sixty-six layers are used giving a combined thickness of 42 cm (25 X0).

Electrons and pions can be distinguished by looking at the profile of the shower

as it progresses; the differing detector responses are shown from test beam data

in Fig. 2.8.

The hadronic calorimeter

The HCAL is a sampling calorimeter, made up of alternating layers of scintillating

tiles and iron plates. Hadrons passing though the iron plates interact with the

material, producing a shower of charged particles that then induce light to be

radiated in the scintillator. This light is collected with optical fibres and read out

with PMTs located outside of the detector acceptance. The detector is segmented

into square cells with 131.3 mm length sides in the inner section of the detector

and 262.6 mm in the outer section. Information from the HCAL is available to

the L∅ trigger in order to identify events containing high-ET hadrons.

2.2.4 The muon system

The study of decays with muons in the final state is key for many measurements

at LHCb [8]. Muons also play an important part in the LHCb triggering and

flavour tagging strategies. There are five muon stations, M1-M5, placed from

before the SPD/PS system to the cavern wall. Their positions may be seen

in Fig. 2.9 (left). M2-M5 are separated by 80 cm thick blocks of iron absorber

that stop the majority of particles before they reach M5. In order to select

highly-penetrating muons, hits are required in all five muon stations by the LHCb

reconstruction algorithms; the minimum momentum for a muon to traverse the

entire system is about 6 GeV/c. Muons with momenta down to 3 GeV/c can be
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Figure 2.9: The layout of the LHCb muon system.

found by reducing the required number of stations hit. These low-momentum

muons are important in the selection of Bd → K∗0µ+µ−, as the systematic failure

to reconstruct events with one hard and one soft muon leads to a distortion of the

full-angular distribution [8]. An example of a proton-proton collision containing

at least one muon can be seen in Fig. 2.10; the associated tracks are shown in

green.

Each muon station is split into regions, shown in Fig. 2.9 (left). Each region is

then segmented into logical pads, which provide binary hit information to the L∅
trigger. The granularity of the segments decreases from region one to region five

to maintain a constant occupancy, as shown in Fig. 2.9 (centre and right). M1-M3

have high spatial resolutions in the bending plane, and provide the track direc-

tion and momentum resolution. M4 and M5 are much more coarsely segmented,

and are mainly for identifying penetrating particles. MWPCs are used for all

segments apart from R1 of M1, where gas electron multiplier (GEM) detectors

are instead used due to their superior radiation hardness and granularity. These

detector technologies provide the very high efficiencies and fast response times

required for a five-coincidence (i.e. ε5) trigger operating at 40 MHz. The off-line

muon identification efficiency is expected to be better than ninety percent for a

few percent mis-identification rate over a large range of muon momenta, from

3-200 GeV/c [92, 93].

2.2.5 The trigger

Building an efficient trigger is of utmost importance in a hadronic environment.

The huge data rates available at the LHC will make the filtering of interesting

events essential. The LHC bunch-crossing rate is 40 MHz. The lower operating

luminosity of 2 × 1032 cm−2s−1 chosen for LHCb means that the actual rate of

events which contain at least one collision visible in the detector should be about
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Figure 2.10: A proton-proton collision at 450 GeV per beam recorded during
stable LHC running on the 12th of December 2009. A large number of particles
are seen, including three muons tracks (shown in green) [91].

10 MHz; about one percent of these will contain a bb pair. This gives a bb rate of

about 100 kHz, however, only fifteen percent of these pairs will produce at least

one B meson with its decay products in the detector acceptance. The rate of B

decays that can be analysed should then be about 15 kHz.

The LHCb computing model allows for a final data rate from the detector

of 2 kHz, which will be stored and processed off-line. This rate is very high

compared to the general purpose detectors at the LHC [85, 86] and is made

possible by the relatively small number of read-out channels in LHCb (leading to

small data files, O(40kb) per event). To make the final reduction from 15 kHz to

2 kHz, the most interesting events must be selected from those which are poorly

reconstructed or unlikely to be of physics interest. The level to which this is

possible will directly affect the statistical uncertainties available for the physics

observables under study at LHCb. However, throwing away events that were

of physics interest risks that new discoveries are missed. This is the nightmare

scenario at the LHC.

The LHCb trigger is made up of two basic levels: a L∅ trigger implemented in

hardware that runs synchronously with the machine, and a software High-Level

Trigger (HLT) that runs asynchronously on a dedicated computing farm. The

basic structure and inputs to the trigger are shown in Fig. 2.11a. The L∅ trigger

must be very fast to throw events away while still maintaining high efficiency for

signal events. The HLT should confirm the L∅ decision once the full detector
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Level-0 Line Signal Selection Efficiency (%) Rate ( kHz)

Single muon 89.9± 0.2 230
Di-muon 62.9± 0.3 40
Hadron 27.0± 0.3 720

Total 93.1± 0.2 ∼1000

Table 2.1: Estimated Level-0 efficiencies and rates for Bd → K∗0µ+µ−. The
efficiencies shown are relative to off-line selected signal events [8].

readout is available and then filter out those events which are most likely to be

of physics interest.

Level 0

The architecture of the L∅ trigger is shown in Fig. 2.11b. Due to the large mass

of the B meson, the decay products often feature high-pT and ET objects that

can be identified via the calorimeter and muon systems. These are described in

Secs 2.2.3 and 2.2.4 respectively. The L∅ trigger attempts to find the largest ET

hadron, electron, and photon clusters in the calorimeters, and the two highest pT

candidates in the muon system. Events with multiple interactions in the same

bunch-crossing can be vetoed with the pile-up system. The trigger is made up

of three sub-systems, described below, that are then combined in the L∅ decision

unit with the OR logical operation.

For Bd → K∗0µ+µ−, the majority of signal events come through the single

and di-muon lines at L∅. However, a non-negligible fraction are from the hadronic

trigger also, due to the K∗0 decay. A summary of the L∅ efficiencies for Bd →
K∗0µ+µ− is shown in Tab. 2.1.

The calorimeter trigger The calorimeter trigger looks for high ET hadrons,

electrons, or photons. It forms clusters by considering 2 × 2 cells, and then se-

lecting the clusters with the largest ET . Simple PID is achieved by considering

whether clusters appear in the SPD/PS, ECAL, or the HCAL. The ET of all

HCAL cells is summed in order to reject events outside the detector acceptance

and muons from LHC beam halo interactions. A hierarchical structure is adopted

where neighbouring sections of the calorimeter are read out and the highest ET

clusters in each section found using twenty-eight custom validation cards, located

close to the detector. Each card takes eight input-channels from the three de-

tectors and finds the highest ET electron, photon, and hadron. The output from

these cards are then fed into the L∅ decision unit, where ET > 3.5 GeV in the

HCAL gives a hadron trigger, and ET > 3.5 GeV in the ECAL gives a photon or
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(b) The L∅ trigger architecture

Figure 2.11: The LHCb trigger: (a) shows the overall architecture while (b) shows
the inputs used in the L∅ trigger.
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electron trigger, depending on the hits seen in the SPD/PS.

The muon trigger The muon trigger uses stand-alone tracking from the muon

system to produce pT estimates with a resolution of ∼ 20%. The two highest pT

muon candidates in the detector are then selected. Straight-line track finding

is used by combining hits in the five muon stations to form vectors pointing

towards the interaction point, starting from seed hits in M3. Hits in the other

muon stations are then added to the track until there are five points lying on an

approximately straight line. The track is marked as a muon track for further use

and the pT measured.

As described in Sec. 2.2.4, each muon station is subdivided into regions, R1-

R4, which are then subdivided into towers (forty-eight per quadrant), spread over

the five stations. The output from each tower is read into a processing element.

In order to deal with the borders between towers, fast communication between

neighbouring elements is essential. Each processing element is able to run up

to ninety-six track-finding algorithms in parallel – one for every M3 seed within

the tower. This massively parallel architecture is made possible by the use of

large field-programmable gate arrays (FPGAs), which allow many copies of the

same algorithm to be implemented in low-level logic. The processing elements

for nearby parts of the detector are collected in groups of four on a processing

board. A fifth FPGA selects the two highest pT tracks from the board, which

are then passed to a chain of controller boards that finally find the two highest

pT muon tracks in the detector. These are used in the L∅ decision unit, giving

the single and di-muon trigger channels. The current configuration triggers for

muon candidates with pT > 1.5 GeV/c (single-muon) or |pT 1|+ |pT 2| > 1.5 GeV/c

(di-muon) [94].

The pile-up system This consists of two R-geometry discs before the VELO

(see Sec. 2.2.1 and Fig. 2.5a) to measure the radial distance of hits from the beam

line. As the magnetic field at this point in the detector is negligible, coincident

pairs of hits in the two discs can be used to find the position on the z-axis

(shown in Fig. 2.4a) from where the track originated. Due to radiation hardness

requirements, the sensitive areas are formed in strips, which give coverage to a 45◦

arc in the x − y plane. As many pairs of hits are produced, their corresponding

z-axis co-ordinates can be histogrammed; each primary interaction point will

produce multiple tracks and so a peak in the histogram. Bunch-crossings with

multiple interactions will produce multiple peaks in this histogram and can be

vetoed. This is primarily of use for the hadronic trigger lines; the veto is currently

not included in the muon trigger.
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The High-Level Trigger

The HLT is implemented in C++, and runs on a dedicated computing cluster

(the event filtering farm), located underground at IP8. It is designed to use the

full detector readout progressively so that events may be discarded quickly. It

is subdivided into two levels – HLT1 and HLT2. Each trigger is made up of

multiple alleys, the function of which will be detailed below. As the HLT is

software based, its algorithms and architecture may be refined as experience with

the LHC environment is gained.

HLT1 The objects in the detector that led to the L∅ trigger are used as seeds

for a partial reconstruction of the event. Hits in the tracking stations and VELO

are matched to the L∅ track in order to improve the pT resolution and add im-

pact parameter information. Secondary vertexes are also identified, so that loose

invariant mass constraints can be applied. The main trigger alleys are2:

• Hadron: The L∅ hadron candidate is confirmed if its pT it greater than

2.5 GeV/c and its impact parameter is above 150µm. The candidate can

also be accepted if a secondary vertex is found along with a track [95].

• Muon: The L∅ muon and di-muon candidates are confirmed in a similar

way to the hadrons. Single muons tracks are accepted if they have an

impact parameter of 8 mm or greater and a pT greater than 1.3 GeV/c.

Candidates with pT > 6 GeV/c are accepted without the impact parameter

requirement. Di-muon candidates are confirmed if the distance of closest

approach between the two muon tracks is less than 0.5 mm and Mµµ >

2.5 GeV/c2 or they have an impact parameter greater than 0.15 mm and

Mµµ > 0.5 GeV/c2 [96].

• Muon + track: The L∅ confirmed muon candidate is required to form

a vertex with another track; the combined invariant mass must be greater

than 0.8 GeV/c2. In addition, we require pT (µ, track) > (1, 0.8) GeV/c and

IP(µ, track) > (25, 50)µm [97]. This alley is the most efficient for triggering

Bd → K∗0µ+µ− events; a selection efficiency of 87.2± 0.2% relative to off-

line and L∅ selected events is expected [8].

• Electromagnetic: Electron and photon candidates are confirmed by con-

sidering clustering in the ECAL and then vetoing merged π0 s using shower

shape variables. Tracking from the VELO is used to identify at least one

2The cuts presented in this section are particularly liable to change as the LHCb trigger is
commissioned. They are intended to be representative, however, different strategies are used in
different regions of phase space.
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track with impact parameter greater than 0.15 mm and pT greater than

2.8 GeV/c [98]. This trigger line has been carefully optimized so that b→ sγ

decays can be identified.

It is envisaged that there will be also be a small number of inclusive HLT1 selec-

tions to identify, for example, D∗, D±s and φ decays.

HLT2 The HLT2 uses the full detector readout and event reconstruction to

analyse events. In addition to many exclusive selections implemented with custom

algorithms, there are inclusive algorithms such as:

• Topological: This attempts to identify the decays of b and c quarks by

looking for displaced vertexes and by making constraints on the invariant

mass of the system.

• Leptonic: The single-muon, di-muon and muon+track triggers found in

HLT1 are all present. The improved mass, impact parameter, and momen-

tum resolutions means that more stringent constraints can be used to reduce

the rates from background events. For Bd → K∗0µ+µ−, the muon+track

alley dominates as in HLT1. The overall trigger efficiency is expected to be

about 87%, once all of the contributing lines have been combined.

2.2.6 Detector summary

Performing B-physics measurements at the LHC will be challenging. The LHCb

detector has been carefully designed to give excellent mass, momentum, and

vertex resolutions, which will be essential for identifying events B decays with

charged tracks in the final state. The detector also features dedicated calorimetry

and PID to enable complex final states to be disentangled. The general design of

the detector has been reviewed with emphasis on the selection of the rare decay

Bd → K∗0µ+µ−. The overall selection efficiency for this decay is expected to

be about one percent [8], meaning that many thousands of signal events will be

selected each year. Commissioning of the detector is currently taking place; the

author looks forward to the first publications analysing proton-proton collision

data at the LHC from LHCb.
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Chapter 3

The full-angular distribution of

Bd→ K∗0µ+µ−

3.1 Angular distribution

We assume that the K∗0 always decays on its mass shell to a K− and a π+,

explicitly ignoring any non-resonant Bd → K−π+µ+µ− contributions1. In this

approximation, known as the narrow width approximation, the decay is com-

pletely kinematically constrained by three decay angles, θ`, θK∗ , and φ, and by

the invariant mass of the muon pair, q2. This allows for a manifestly covariant

expansion to be made, see Eqs 3.12-3.14, while still explicitly conserving energy

and momentum. The angles are defined in the intervals

0 ≤ θ` ≤ π , 0 ≤ θK∗ ≤ π , −π ≤ φ < π , (3.1)

where only the φ angle is signed. The decay kinematics are shown in Fig. 3.1 and

the definitions of the angles are given in the caption. We can derive a simplified

differential decay width for the Bd, where a sum over final state particle spins

has been included. The distribution for the Bd is

d4ΓBd
dq2 dθ` dθK∗ dφ

=
9

32π
I(q2, θ`, θK∗ , φ) sin θ` sin θK∗ , (3.2)

1The size of these non-resonant contributions is currently unknown, but expected to be small.
These contributions will affect the angular distribution, as it no-longer fully Pseudoscalar→
VectorVector, but may give additional NP sensitivity [99].
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Figure 3.1: The angles used to describe the decay Bd → K∗0µ+µ−. The z-axis
is the direction in which the B meson flies in the rest frame of the µ+µ−. θ` is
the angle between the µ− and the z-axis in the µ+µ− rest frame, θK∗ is the angle
between the K− and the z-axis in the K∗ rest frame, and φ is the angle between
the normals to the µ+µ− and Kπ decay planes in the B rest frame. For the B,
the angles θ` and θK∗ are defined relative to the µ+ and K+ respectively.

where the physical region of phase space is 4m2
l ≤ q2 ≤ (mB −mK∗)

2 and

I(q2, θ`, θK∗ , φ) = Is1 sin2 θK∗ + Ic1 cos2 θK∗ +
(
Is2 sin2 θK∗ + Ic2 cos2 θK∗

)
cos 2θ`

+ I3 sin2 θK∗ sin2 θ` cos 2φ+ I4 sin 2θK∗ sin 2θ` cosφ

+ I5 sin 2θK∗ sin θ` cosφ+ Is6 sin2 θK∗

+ I7 sin 2θK∗ sin θ` sinφ+ I8 sin 2θK∗ sin 2θ` sinφ

+ I9 sin2 θK∗ sin2 θ` sin 2φ. (3.3)

For the Bd

d4ΓBd
dq2 dθ` dθK∗ dφ

=
9

32π
I(q2, θ`, θK∗ , φ) sin θ` sin θK∗ , (3.4)

and if CP conservation is assumed, we have

I1,2,3,4,6,7 = I1,2,3,4,6,7 , (3.5a)

I5,8,9 = −I5,8,9 . (3.5b)

The functions I1−9 in Eq. (3.3) can be written in terms of K∗0 spin amplitudes,

At, A0, A‖, A⊥
2; the latter three have both left- and right-handed components

and all are functions of q2. At corresponds to the scalar component of the virtual

K∗0, which is negligible if the individual lepton masses are small in comparison

2These amplitudes are linear combinations of the relevant helicity amplitudes – A⊥,‖ =
(H+1 ∓H−1)/

√
2, A0 = H0, At = Ht [55].
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to the mass of the lepton pair. For ml = 0, we find,

Is1 =
3

4

[|A⊥L|2 + |A‖L|2 + (L→ R)
]

(3.6a)

Ic1 =
[|A0L|2 + |A0R|2

]
(3.6b)

Is2 =
1

4

[|A⊥L|2 + |A‖L|2 + (L→ R)
]
, (3.6c)

Ic2 = − [|A0L|2 + |A0R|2
]

(3.6d)

I3 =
1

2

[
(|A⊥L|2 − |A‖L|2) + (L→ R)

]
, (3.6e)

I4 =
1√
2

[
Re(A0LA

∗
‖L) + (L→ R)

]
, (3.6f)

I5 =
√

2

[
Re(A0LA

∗
⊥L)− (L→ R)

]
, (3.6g)

Is6 = 2

[
Re(A‖LA

∗
⊥L)− (L→ R)

]
, (3.6h)

I7 =
√

2

[
Im(A0LA

∗
‖L)− (L→ R)

]
, (3.6i)

I8 =
1√
2

[
Im(A0LA

∗
⊥L) + (L→ R)

]
, (3.6j)

I9 =

[
Im(A∗‖LA⊥L) + (L→ R)

]
. (3.6k)

The (L → R) terms above represent a repeat of the previous terms with the

left-handed amplitudes exchanged for right-handed. Note that Is1 = 3Is2 and

Ic1 = −Ic2. It is by extracting the values of the K∗0 spin amplitudes that we

can detect the effects of physics beyond the SM acting on the underlying Wilson

coefficients.

3.2 Symmetries

The angular distribution has four independent global symmetries in the ml = 0

limit. In this case there is no interference between right- and left-handed ampli-

tudes, the distribution is invariant under both L and R global phase transforma-

tions,

A
′

⊥L = eiφLA⊥L, A
′

‖L = eiφLA‖L, A
′

0L = eiφLA0L (3.7)

and

A
′

⊥R = eiφRA⊥R, A
′

‖R = eiφRA‖R, A
′

0R = eiφRA0R . (3.8)
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There is a global symmetry under continuous L↔ R rotations,

A
′

⊥L = + cos θA⊥L + sin θA∗⊥R

A
′

⊥R = − sin θA∗⊥L + cos θA⊥R

A
′

0L = + cos θA0L − sin θA∗0R

A
′

0R = + sin θA∗0L + cos θA0R

A
′

‖L = + cos θA‖L − sin θA∗‖R

A
′

‖R = + sin θA∗‖L + cos θA‖R. (3.9)

One consequence of this is that the L and R labels are actually arbitrary, as L

amplitudes can be rotated to R amplitudes and vice-versa. Finally there is a

fourth global continuous symmetry which was unknown at the time of writing

Ref. [1],

A
′′

⊥L = + cosh iφA⊥L + sinh iφA∗⊥R

A
′′

⊥R = + sinh iφA∗⊥L + cosh iφA⊥R

A
′′

0L = + cosh iφA0L − sinh iφA∗0R

A
′′

0R = − sinh iφA∗0L + cosh iφA0R

A
′′

‖L = + cosh iφA‖L − sinh iφA∗‖R

A
′′

‖R = − sinh iφA∗‖L + cosh iφA‖R. (3.10)

These relations must be taken into account when constructing both angular ob-

servables and the full-angular fit.

3.3 Theoretical cleanliness

As discussed in Chap. 5, the framework of QCD factorization (QCDf) can be used

to separate physics effects operating at different energy scales so that they can

be considered independently. Starting from the effective b→ sl+l− Hamiltonian,

the matrix element for Bd → K∗0(→ Kπ)µ+µ− can be written as [55],

M =
GFαs√

2π
VtbV

∗
ts

{[
C eff

9 〈Kπ|s̄γµPLb|B〉

− 2mb

q2
C eff

7 〈Kπ|s̄iσµνqνPRb|B〉
]
(l̄γµl)

+ C eff
10 〈Kπ|s̄γµPLb|B〉(l̄γµγ5l)

}
, (3.11)
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where the helicity suppressed contributions have been neglected and non-standard

symbols are defined in Chap. 5 or below. The hadronic part of the matrix element

describes the B → Kπ decay. It can be parametrized in terms of form factors by

finding the most general expansion which is invariant under the Lorentz group

using an approximation (see for example [100]) where the width of the K∗0 is

neglected. The form factors are scalar functions which give the relative contri-

bution of each possible term. For Bd → K∗0µ+µ−, there are seven form factors

and they are functions of q2. Conceptually they parametrize the q2 dependence

of the K∗0 formation and are defined in the following way [55]:

〈K∗(pK∗)|s̄γµPL,Rb|B(p)〉 = iεµναβε
ν∗pαqβ

V (q2)

mB +mK∗

∓1

2

{
ε∗µ(mB +mK∗)A1(q

2)− (ε∗ · q)(2p− q)µ A2(q
2)

mB +mK∗

−2mK∗

q2
(ε∗ · q)[A3(q2)−A0(q

2)]qµ

}
, (3.12)

where

A3(q2) =
mB +mK∗

2mK∗
A1(q

2)− mB −mK∗

2mK∗
A2(q

2) , (3.13)

and

〈K∗(pK∗)|s̄iσµνqνPR,Lb|B(p)〉 = −iεµναβεν∗pαqβT1(q
2)

±1

2

{
[ε∗µ(m2

B −m2
K∗)− (ε∗ · q)(2p− q)µ]T2(q

2)

+(ε∗ · q)
[
qµ − q2

m2
B −m2

K∗
(2p− q)µ

]
T3(q

2)

}
. (3.14)

In the above, εµ is the K∗ polarization vector, and PL,R = 1
2
(1∓γ5) is a projection

operator. The seven form factors are shown in bold. In the limit where the B

hadron is heavy and the K∗0 has a large energy, EK∗0 , they can be reduced to

two heavy-to-light transition form factors, ξ⊥,‖, the so called soft form factors3. A

double perturbative expansion in ΛQCD/mb and ΛQCD/EK∗0 is employed to make

this reduction [64, 101–103] that induces symmetry-breaking corrections of order

αs and 1/mb. The αs corrections are known to Next-to-Leading Order (NLO)

[54], but the ΛQCD/mb corrections are not. While there are other approaches

available [56], the one described above is most commonly used in the literature.

The seven form factors are a priori independent and unknown. They are

low-energy quantities which must be calculated within some non-perturbative

3These form factors are calculated in the large recoil limit where the b and s quarks in the
initial and final states are assumed to interact with the spectator quark via the exchange of soft
gluons.
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framework such as in Ref. [104]. Once the reduction is made we are left with only

two unknown form factors. Some constraints on these can be set by looking at

B → K∗0γ decays [54, 74], but they still lead to large theoretical uncertainties

on e.g. B(Bd → K∗0µ+µ−) [69]. This is a particular problem for NP searches,

where robust SM predictions are required.

Once the form factor reductions have been made, at LO we can write the K∗0

spin amplitudes as [55]:

A⊥L,R =
√

2NmB(1− ŝ)
[
(C eff

9 ∓ C eff
10 ) +

2m̂b

ŝ
(C eff

7 + C ′ eff
7 )

]
ξ⊥(EK∗), (3.15a)

A‖L,R =−
√

2NmB(1− ŝ)
[
(C eff

9 ∓ C eff
10 ) +

2m̂b

ŝ
(C eff

7 − C ′ eff
7 )

]
ξ⊥(EK∗) ,

(3.15b)

A0L,R =− NmB

2m̂K∗
√
ŝ

(1− ŝ)2

[
(C eff

9 ∓ C eff
10 ) + 2m̂b(C

eff
7 − C ′ eff

7 )

]
ξ‖(EK∗) ,

(3.15c)

with ŝ = q2/m2
B, m̂i = mi/mB, and neglecting At. The chirality-flipped op-

erators O′9,10 = O9,10(PL → PR) may be included by making the substitutions

Ceff
9,10 → (Ceff

9,10 + C ′ eff
9,10) in Eq. (3.15a) and Ceff

9,10 → (Ceff
9,10 − C ′ eff

9,10) in Eqs (3.15b)

and (3.15c) [55]. It is then possible to find observables which use ratios of these

amplitudes to cancel the soft form factor contributions at LO by taking specific

combinations of ξ⊥,‖ [1, 55, 105]. We refer to these observables as being theoret-

ically clean. Outside of the q2 ∈ [1, 6] GeV2/c4 range these cancellations cannot

be made as the assumptions used are no longer valid. This leads to uncontrolled

theoretical uncertainties on the observables. It is an important requirement that

any observable is invariant under the symmetries presented in Sec. 3.2. This is

not true for all observables in the literature including A
(1)
T [55], whose extraction

was the initial motivation of the analysis presented in the next chapter.

3.4 Observables

We would like to use the angular distribution ofBd → K∗0µ+µ− to gain sensitivity

to the underlying Wilson coefficients and so to any NP contributions present. This

can be done in several ways:

• The angular distribution can be expressed in terms of the Wilson coefficients

and a fit made to the observed distribution. Due to the large uncertainty in

the form factors introduced by perturbative QCD, this approach would leave

us with a large theoretical uncertainty on the extracted Wilson coefficients

and correlations between the form factors and Wilson coefficients in the fit.
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• For a set of NP models one could compute the full-angular distribution and

compare it to the observed angular distribution. On a model-by-model basis

it would then be possible to exclude them as being incompatible with the

observations. This approach is obviously not model independent and would

make it very difficult to use the quoted results to exclude models that were

not considered at the time of publication.

• One can derive a set of observables that can be extracted directly from

the observed angular distribution but at the same time have the advantage

that theoretical uncertainties cancel out as discussed in Sec. 3.3. In this way

the model independence can be retained while also reducing the theoretical

uncertainty in the quoted results. For any new theory these new observables

can be calculated at a later date.

We have chosen to investigate the last of these approaches. The observables are

carefully constructed combinations of the spin amplitudes, which are themselves

functions of the Wilson coefficients and form factors as shown in Eq. (3.15).

We need to find observables with good sensitivity to any NP operators, small

theoretical uncertainties and finally good experimental resolutions.

The angular observables to be investigated are listed below, where theoreti-

cally clean observables are shown in bold:

AFB =
3

2

Re(A‖LA
∗
⊥L)− Re(A‖RA

∗
⊥R)

Γ′
; (3.16)

AIm =
Im(A⊥LA

∗
‖L) + Im(A⊥RA

∗
‖R)

Γ′
; (3.17)

A
(2)
T =

|A⊥|2 − |A‖|2

|A⊥|2 + |A‖|2
; (3.18)

A
(3)
T =

|A0LA
∗
‖L +A∗0RA‖R|√
|A0|2|A⊥|2

; (3.19)

A
(4)
T =

|A0LA
∗
⊥L −A∗0RA⊥R|

|A∗0LA‖L +A0RA
∗
‖R|

; (3.20)

FL =
|A0|2

Γ′
; (3.21)

where

AiA
∗
j ≡AiL(q2)A∗jL(q2) + AiR(q2)A∗jR(q2) (i, j = 0, ‖,⊥), (3.22)

and

Γ′ =
dΓ

dq2
=
(|A0L|2 + |A⊥L|2 + |A‖L|2 + (L→ R)

)
. (3.23)
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The NP sensitivity provided by each of these observables is model and param-

eter space dependent, however they have been studied for models with non-SM

contributions to C ′ eff
7 in [1, 55, 57]. In the SM, AFB has a zero-crossing point,

where AFB(q2) vanishes. At this point the soft form factors cancel at LO; the

value of q2 at which this occurs is also theoretically clean. We define this point as

q2
0(AFB). There are no such cancellations found for FL or AIm. Further theoretical

discussions of the observables will be left to Ref. [1].

In addition to these constructed observables, it is possible to consider the

angular coefficients I1−9. These are generally not theoretically clean but are

more directly linked with the angular distribution. Chap. 6 looks in more detail

at this as a way of finding NP effects in the angular distribution in the first few

years of LHCb data-taking.

3.5 Estimating ΛQCD/mb corrections

The theoretically clean observables highlighted in Sec. 3.4 are expected to have

reduced theoretical uncertainties due to the cancellation of the soft form factors.

However the relations used to make these cancellations are only valid at LO in

the Λ/mb expansion, and corrections to higher orders are not known. For these

theoretically clean observables to be useful, the impact of these corrections on

the observables must be robustly bounded. If NP is to be discovered in Bd →
K∗0µ+µ−, it must be possible to demonstrate that any effect seen is indeed NP

and not just the effect of an unknown SM correction. Various solutions to this

problem are evaluated.

3.5.1 Ensemble method

One relatively conservative approach to this is to parametrize each of the K∗0

spin-amplitudes with some unknown linear correction,

A′i = A0
i (1 + Cie

iθi). (3.24)

Ci gives the size of the correction relative to the full NLO amplitude A0
i and θi is

an associated strong phase. If we vary Ci and θi within their chosen ranges, an

estimate for the theoretical uncertainty due to these unknown parameters can be

found. In order to make this parametrization generic, however, extra terms must

be introduced. In principle the effective Hamiltonian which controls the decay

has three terms,

Heff = H(u)SM
eff +H(t)SM

eff +H(t)NP
eff . (3.25)
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The first term is very small, arising from doubly-Cabibbo suppressed penguin

diagrams, but is responsible for all the SM CP -violation in the decay. It is

neglected for most purposes in this thesis. The second term is responsible for

the decay in the SM while the third adds possible NP contributions. The fourth

possible term H(u)NP
eff generically does not contribute to the model independent

amplitudes and is neglected. Each of these contributions is generated by different

sets of diagrams and so in principle can have different values of Ci and θi. The

amplitude parametrization must be modified so that each of the three possible

sub-amplitudes is treated separately [6],

A =
[
(ASM(λu 6= 0)− ASM(λu = 0))× (1 + C1e

iθ1)
]

+[
ASM(λu = 0)× (1 + C2e

iθ2)
]

+[
(AFull(λu 6= 0)− ASM(λu 6= 0))× (1 + C3e

iθ3)
]
. (3.26)

The full amplitude AFull(λu 6= 0) includes all NP and SM contributions, however it

is assumed that only one NP operator is active so as not to introduce extra terms.

The sub-amplitudes can then be extracted from the full amplitude calculation by

applying Eq. (3.26) to the SM amplitudes with (λu 6= 0) and without (λu = 0)

the CP -violating contributions; λu is the product of the b → d CKM elements

VubV
∗

us/VtbV
∗

ts.

An estimate of the theoretical uncertainty arising from the unknown Λ/mb

corrections and strong phases can now be made using a randomly selected en-

semble. For each member of the ensemble, values of C1−3 and θ1−3 are chosen

in the ranges Ci ∈ [−0.1, 0.1] or Ci ∈ [−0.05, 0.05] and θi ∈ [−π, π] using the

random uniform distribution. This is done for the seven K∗0 spin-amplitudes,

At, A0L,R, A‖L,R, A⊥L,R, to provide a complete description of the decay, Mi,

using the full distribution with ml = mµ. It is assumed that the corrections and

phases are not functions of q2, although in practise they may actually be. Any

(unknown) correlations are also ignored. While these effects could lead to an

underestimate of the theoretical envelope, it is thought that this method allows

for a conservative estimate of the theoretical uncertainties to be made [6]. An

ensemble of these amplitudes was created, {Mi}500.

To estimate the contribution to the theoretical uncertainties from Λ/mb cor-

rections for a particular observable, each element in the ensemble was used to

calculate the value of that observable at a fixed value of q2. This gave five hun-

dred values of the observable, which were then sorted. The size of the theoretical

envelope could be estimated by selecting the values closest to the one σ contour.

This was done for both Ci ∈ [−0.05, 0.05] and Ci ∈ [−0.1, 0.1] to illustrate the

effects of five and ten percent corrections. By repeating this process for different
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values of q2, bands can be built up. These show the likely range of values that

the observable will have in the presence of a small and approximately linear cor-

rection and strong phase. In principle, this method could be extended to other

forms of theoretical uncertainties to improve the statistical validity of, e.g., scale

dependence and parametric uncertainties. However, computational constraints

make this difficult for calculations implemented in Mathematica.

3.5.2 Quadrature method

The method presented above must be contrasted to that used in Ref. [1]. In that

case a similar parametrization was made,

A′i = A0
i (1 + Ci), (3.27)

and CP -violatating effects were neglected. To calculate the theoretical uncertain-

ties from Λ/mb corrections for a particular observable at a fixed value of q2, each

amplitude was varied in turn while keeping the others at their central values. The

seven differences in the observable were then added in quadrature to produce a

total estimate of the theoretical uncertainty. This process was repeated for all val-

ues of q2 and with Ci set to 0.05 and 0.1. This procedure is however statistically

dubious. There is no reason to expect all amplitudes to receive the maximum

possible correction, even if we assume that a ten percent correction is genuinely

the largest allowed. Adding the differences in quadrature is also unlikely to pro-

duce a correct estimate, as there are few normally distributed quantities present.

It will be shown that the quadrature method provides an over-estimate of the

probable contribution from Λ/mb corrections. This is obviously significant when

it comes to comparing theoretical and experimental results at LHCb.

3.5.3 Results

The full QCDf amplitudes were used as input to the two methods described above.

Those used with the quadrature method are detailed in Ref. [1], while those for

the ensemble method were updated versions from [6]. We choose to compare the

observable A
(2)
T , whose central value is approximately zero in both treatments.

Any differences in the size of the estimated Λ/mb uncertainties should then be due

to the difference in methods used. This can be seen in Fig. 3.2. The corrections

estimated using the quadrature are over twice the size of those found using the

ensemble. While there are assumptions in either approach, it is thought that

the ensemble approach produces a more realistic estimate of the contribution of

unknown Λ/mb corrections to the overall theoretical uncertainty. This will have
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Figure 3.2: Fig. (a) shows the effect of unknown five (light band) and ten

(dark band) percent Λ/mb corrections on A
(2)
T [1]. These were produced with

the quadrature method described in Sec. 3.5.2. Four NP models, described in
Ref. [57], are shown for comparison. The small dark (orange) band shows the
contribution from the soft form factors, as well as parametric and scale uncer-
tainties to the final error. Fig. (b) shows the same thing, but using the ensemble
method described in Sec. 3.5.1. However, only the Λ/mb bands are shown.

implications when considering the overall theoretical uncertainty estimate.

3.5.4 Adding new physics

The methods presented above can be used to estimate the effects of Λ/mb cor-

rections in the presence of NP. The model independent amplitudes described in

Ref. [6] include both real and imaginary NP contributions to the Wilson coeffi-

cients C eff
9 , C eff

10 , and C(′)
S,P including all NLO QCD effects. When evaluating

observables, it is useful to see whether they provide enough sensitivity to NP once

all theoretical uncertainties have been taken into account. If they are in principle

distinguishable theoretically, it then becomes interesting to know whether they

are distinguishable experimentally. This will be dealt with in the next chapter.

Fig. 3.3 shows the distributions of the theoretically clean observables A
(2)
T , A

(3)
T ,

and A
(4)
T in the presence of NP contributions to C eff

9 and C
(′) eff
10 . It can be seen

that there is considerable sensitivity to NP effects in these Wilson coefficients,

particularly in A
(3)
T and A

(4)
T . The variation in A

(2)
T is less extreme, but it has

been optimized for sensitivity to C ′ eff
7 [57], which was not changed here. The

magnitudes and phases of the NP contribution to each Wilson coefficient should

be compared to the currently allowed parameter space presented in Chap. 6.

The impact of Λ/mb corrections on observables sensitive to CP -violation can

also be studied. In Ref. [106] it is shown that their effect is negligible on the

available CP asymmetries, the exact definitions of which will be left until Chap. 6

(Eq. (6.2)). As explained in Sec. 3.5.1, the CP -violation coming from the CKM
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Figure 3.3: The effect of unknown five (light band) and ten (dark band) percent
Λ/mb corrections, estimated using the ensemble method, on the theoretically

clean observables A
(2)
T , A

(3)
T , and A

(4)
T in the presence of NP. In each case, the

green bands show the SM distribution, while the red, grey and blue bands show
C eff

9
NP = 2ei

π
8 , C eff

10
NP = 1.5ei

π
8 , and C ′ eff

10 = 2ei
π
8 respectively.
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Figure 3.4: The effect of unknown five and ten percent Λ/mb corrections on the
CP asymmetry A7 for two different values of the NP phase. The colour coding is
the same as in Fig. 3.3, but in Fig. (a) the NP phase is π

8
while in Fig. (b) it is π

2
.

matrix is very small. Any significant CP -violation would have to come from a

mechanism beyond this. This is included by allowing the Wilson coefficients to

acquire new weak phases. Fig. 3.4 shows estimates for the Λ/mb related un-

certainties for the CP asymmetry A7, the rate averaged asymmetry of I7. As

shown in Ref. [56], this asymmetry can become quite large in the presence of

NP. However it can be seen from the figure that the Λ/mb uncertainties scale

with the value of the observable. The assumption that these corrections can be

neglected for the CP asymmetries is probably not valid. These uncertainties must

be included when making comparisons to the SM.

3.6 Summary

In this chapter the basic properties of the Bd → K∗0µ+µ− angular distribution

relevant to making an experimental analysis have been presented. It has been

shown that the angular distribution is subject to four continuous global symme-

tries. These will be of particular importance when it comes to constructing a

full-angular analysis. A selection of observables that are both invariant under

these symmetries and theoretically clean have been presented. These use specific

combinations of the K∗0 spin amplitudes to cancel the dependence on two uni-

versal heavy-to-light form factors ξ⊥,‖ at LO. They are however then dependent

on unknown Λ/mb corrections, arising from reducing the number of form factors

from seven to two. A simple parametrization was presented that can be used to

investigate the likely impact of these corrections on the theoretically clean observ-

ables. It was shown that for CP -conserving observables such as A
(2)
T , the expected

Λ/mb corrections are smaller than previously thought. It was also shown that

the opposite is true for the CP asymmetries. This will be particularly useful once
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LHCb data sets become large enough to perform a full-angular analysis, which is

the subject of the next chapter.
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Chapter 4

Performing the full-angular

analysis of Bd→ K∗0µ+µ−

The rare decay Bd → K∗0(→ Kπ)µ+µ− can be used to probe the inner work-

ings of the b → s quark transition by studying its angular distribution. This

provides information beyond that available from B(b→ sγ) measurements alone.

In addition to the O(′)
7 operators active in those decays, O(′)

9,10 can also make sig-

nificant contributions away from the photon pole (see Sec. 5.2.6). The angular

dependence of each term active in the distribution (see Eq. (3.2)) means that the

contributions of the different operators can be disentangled. There are enough in-

dependent angular observables available to fully constrain the operators expected

to play a significant role in the decay, allowing both the magnitude and phase

of each of the relevant Wilson coefficients to be measured. This could allow for

physics beyond the SM to be discovered. However, it also offers the opportunity

to learn something of the underlying gauge structure of the NP if discovered else-

where. The huge statistics at LHCb should make the full-angular analysis of this

decay possible for the first time. There will be other interesting measurements

on the way (see for example Chap. 6), but it is the full-angular analysis which

offers the chance to extract all of the available information from the decay. This

has the potential to be one of the most exciting measurements made by LHCb.

In the previous chapter, the properties of the angular distribution were in-

troduced, as were a set of observables with reduced theoretical uncertainties.

While A
(2)
T is available with poor resolution using a counting experiment or one-

dimensional fit, A
(3)
T and A

(4)
T are only available via the full-angular analysis [107].

It was for this reason that a fit was developed, leading to Refs [1, 2]. At the time

of their publication, the symmetry shown in the previous chapter as Eq. (3.10)

was not known. Many of the results shown in this chapter were produced without

this symmetry. The implications of this will be dealt with in Sec. 4.6.
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4.1 Sensitivity at LHCb

Theoretical treatments of Bd → K∗0µ+µ− at NLO normally make use of the

QCD factorization (QCDf) framework [65, 66, 108] as described in Ref. [54].

These calculations are involved and while it is now possible to perform a Monte

Carlo (MC) simulation of the decay using a full treatment, as described in Chap. 5,

this was not the case when the bulk of the work presented in this chapter was

undertaken. Instead a toy MC approach was used where the results of the full

calculation from Ref. [1] are used as input to a toy model. This allows the

generation of toy LHCb data sets which can then be used to verify the fitting

methods presented in the next sections and assess their relative merits.

4.1.1 A toy model of Bd → K∗0µ+µ−

A toy Monte Carlo model of the decay was created within the RooFit framework

[109] using Eq. (3.2) as a probability density function (PDF). The function

I(q2, θ`, θK∗ , φ) is parametrized in terms of the real and imaginary parts of the

spin amplitudes, A⊥L,R, A‖L,R, and A0L,R, giving twelve parameters for each

point in q2. It was assumed that ml = 0 and At was neglected as explained in

the previous chapter.

The symmetry relations introduced in Sec. 3.2 can be exploited to reduce the

number of free parameters in the system. Eq. (3.7) is used to make A0L real

by setting φL = − arg(A0L) and similarly for A0R with Eq. (3.8). Eq. (3.9) can

then be used to remove A0R completely by setting θ = arctan(−A0R/A0L). This

leaves nine free parameters at each point in q2. One more parameter can be

eliminated by recognizing that the angular observables are not sensitive to the

absolute normalization which cancels in each case. Sensitivity can be gained to

the relative normalization, Γ′, by performing an explicit normalization at some

fixed value of q2, here denoted X0. We divide all spin amplitudes by the value of

Re(A0L) at X0 = 3.5 GeV2/c4. This leaves the eight degrees of freedom. The effect

of adding the fourth available symmetry constraint will be assessed in Sec. 4.6.

Following Ref. [107], the signal is assumed to have a Gaussian distribution in

mB with a width of 14 MeV/c2 in a window of mB±50 MeV/c2 and a Breit-Wigner

in mKπ with width 48 MeV/c2 in a window of mK∗0 ± 100 MeV/c2. A simplified

background model is included. This is uniformly distributed in all angles, effec-

tively treating all background as combinatorial, but follows the q2 distribution of

the signal. Acceptance effects have been studied in Ref. [8], where it is shown that

the detector’s geometric acceptance produces the main effect, with the trigger and

offline selection having little extra impact. A data-driven acceptance correction is

being investigated, and so these effects are neglected in this study. CP violation
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effects are also neglected, allowing us to treat Bd → K∗0µ+µ− and its charge

conjugate simultaneously. Contributions from non-resonant Bd → K−π+µ+µ−

events are not included, as they can not normally be treated within QCDf.

4.1.2 Generation of toy data

The model described in the last section allows the probability of a particular set

of observables (θ`, θK∗ , φ and q2) occurring to be calculated. The overall nor-

malization of the PDF is not known a priori, however it could be determined

numerically by integrating Γ′, defined in Eq. (3.23), over the allowed q2 range.

This is done explicitly using the GNU Scientific Library (GSL) [110]. An ac-

cept/reject algorithm can then be used to generate a data set of events with the

correct distributions. The q2 dependence of the spin amplitudes is included by

generating many sub-data sets in 0.05 GeV2/c4 q2 bins and then combining them,

so avoiding the q2 parametrization introduced in the next section. In each sub-

bin, Γ′ weighted mean spin amplitudes, found using values taken from Ref. [1],

were used when calculating I(q2, θ`, θK∗ , φ). The number of events for a given q2

sub-bin is

ns,b = N s,b
0

∫ qmax

qmin
Γ′∫ 9 GeV2/c4

4 m2
µ

Γ′
, (4.1)

whereN s
0 is the number of signal events expected in 2 fb−1 for q2 ∈ [4µ2, 9] GeV2/c4

(N s
0 = 4032, giving a total selection efficiency of approximately 1%.) [72] and Γ′

is derived from the input amplitude calculation. As H(u)SM
eff is neglected, the B

and B contributions for each sample can be generated together. The number of

background events was calculated in the same way with the value of N b
0 taken

from the same full simulation study (N b
0 = 1168). In both cases the value of ns,b

is Poisson fluctuated so that not all toy data sets are of the same size. For 10 and

100 fb−1 samples N s
0 and N s

0 were scaled linearly. NP models were dealt with by

supplying input spin amplitude values, again from [1], for a particular NP model.

4.1.3 Fitting of data to extract sensitivities

As discussed in Sec. 4.1.1, the decay PDF has eight unconstrained spin ampli-

tudes at each point in q2, which can be extracted from data using a fit. The q2

dependence of these amplitudes must be taken into account. We can explicitly

parametrize this dependence or divide the experimental data into a small number

of q2 bins (ideally a single 1-6 GeV/c2 bin) and perform an independent fit in each

bin, making the assumption that the q2 dependence can be neglected. The latter

approach allows for fewer parameters to be used, assuming the number of bins
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is ≤ 3, but produces significant systematic fit biases if the q2 dependence across

the bin is non-linear and the effect ignored. These biases arise from the differing

q2 dependence of each of the spin amplitude components and appear even if the

fit is properly convergent1. It was found that the biases could not be eliminated

while preserving enough statistics in each bin to perform the fit reliably. Instead

an unbinned approach was used where the q2 dependence of each spin amplitude

component is parametrized as a 2nd order polynomial, the coefficients of which

are then extracted.

The parametrization is as follows. For Re(A0L) we use a standard polynomial

fp(q
2) = Ap(q

2 −X0)2 +Bp(q
2 −X0) + Cp, (4.2)

where Ap, Bp, and Cp are constant coefficients and X0 is defined below. This form

allows a normalization choice, made at the point fp(X0), to directly constrain Cp.

For the other amplitude components we use a Chebyshev polynomial,

fc(q
2) = Ac(2(q2 −X0)2 − 1) +Bc(q

2 −X0) + Cc, (4.3)

to improve fit stability. In this parameterization, the polynomials corresponding

to the amplitude components Re(A0R), Im(A0L), and Im(A0R) are f
Re(A0R)
c =

f
Im(A0L)
c = f

Im(A0R)
c = 0 for all q2, while the constant term of the polynomial

parameterizing Re(A0L), C
Re(A0L)
p , is set to one once the symmetry transforms

and normalization, introduced in Sec. 4.1.1, have been applied. Making a mea-

surement in this framework requires that the polynomial ansatz be satisfied for

all spin amplitude components in the range q2
min − q2

max. Fig. A.1 in Appendix A

shows an example data set, generated following Sec. 4.1.2, where numerical pro-

jections of the final polynomial PDF for each of the experimental observables can

be seen. The background component is also shown separately. The agreement

between the binned generation PDF and the unbinned fitting PDF is excellent.

By generating an ensemble of toy-LHCb data sets and then fitting them with

the polynomial model, the experimental sensitivities for a given integrated lumi-

nosity can be estimated and any biases introduced by the method can be found.

The fit was well behaved but could be sensitive to the initial values chosen for

the fit parameters. To deal with this, the fit was run repeatedly with randomly

chosen initial values until an accurate covariance matrix was found2. Each refit

was initialized from scratch so that each refit result was independent of the last.

1If it was possible to integrate Eq. (3.2) over q2 then these problems could be avoided.
However it is not possible to do this in a model independent way as the q2 dependence of the
spin amplitudes must be explicitly known.

2Signified by a Minuit covariance quality of three.
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Figure 4.1: Sensitivity bands for the individual spin amplitude components as
a function of q2 for 10 fb−1 of SM data. The dashed black line is the SM input
distribution. The solid red line shows the median result over an ensemble of a
thousand toy experiments, while the light and dark bands show the one and two
σ confidence levels. The effect of the normalization at q2 = X0 = 3.5 GeV2/c4

can be seen on Re(A0L), as can the strong anti-correlation between Re(A‖R) and
Re(A⊥R).

For an ensemble of 1076 10 fb−1 experiments, each of which assumed the SM, the

mean number of refits required was 2.97, and the maximum was 103. For 1006

2 fb−1 SM data sets the mean increased to 6.81 and 0.7% of experiments failed

to converge at all3. It was verified that the final fit results were independent of

the starting values by performing several refits of each data set. Any variation

on the output of repeated successful refits was seen to be small compared to the

errors on the fit parameters.

There were significant correlations between parameters in some of the experi-

ments. The constant terms of Re(A‖R) and Re(A⊥R) and to a lesser extent those

of Im(A‖R) and Im(A⊥R) were anti-correlated, leading to significant biases on

these parameters. The biases were not seen in the angular observables, but are

3The maximum number of allowed refits was fixed at 1600 in order to limit the amount of
Grid resources used. This number could be dramatically increased if required when the real
measurement was made.
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obvious in the individual amplitude components shown in Fig. 4.1. This is symp-

tomatic of an extra symmetry in the angular distribution and eventually aided

its discovery [6].

4.2 Results

The methods described in Sec. 4.1 were used to generate and fit ensembles of

experiments for three different LHCb integrated luminosities; 2, 10, and 100 fb−1.

These are the expected data set sizes for a nominal year of data-taking, at the

end of LHCb data-taking and at the end of a run with an upgraded SuperLHCb

detector respectively. The results for 10 fb−1 will be presented here, while those

for the other integrated luminosities are available in Appendix A.

Fig. 4.2a shows the experimental sensitivity to AFB in the SM as derived from

the ensemble of 10 fb−1 experiments. The median value is shown as the solid (red)

line while the light and dark (blue) regions mark the contours of one and two σ

significance at their external boundaries. These are calculated, as in Chap. 3, by

ordering the ensemble of results and then selecting 33% and 47.5% of experiments

either side of the median at any given q2 value.

Fig. 4.2b shows explicitly the ensemble of AFB zero-crossing point results4. By

comparing the dashed black SM and median lines in both figures, the agreement

between input and output distributions can be seen. The fit fails to reproduce

the input exactly, but the discrepancy is small compared to the overall exper-

imental uncertainty. These discrepancies seem to be due to the failure of the

polynomial ansatz, and are particularly significant at the edges of the q2 region

under consideration as seen by the deviation of the solid red (input) and dashed

black (median fit result) lines in the figure.

Figs. 4.3a and 4.3b show the sensitivity bands for the new observables A
(3)
T and

A
(4)
T . The limitations of the polynomial ansatz can again be seen, but the overall

shape is well reproduced, and the deviation is small compared to the statistical

errors. Figs. 4.4a, 4.4b and 4.4c show respectively the sensitivity bands for AIm,

A
(2)
T and FL. Like AFB, these observables are also accessible by making projection

fits as discussed in Sec. 4.3. Finally Fig. 4.4d shows the sensitivity band for Γ′

relative to the point X0 = 3.5 GeV2/c4, the midpoint of the q2 range.

4One of the thousand toy experiments did not have a zero-crossing point and so is excluded
from the distribution.
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Figure 4.2: (a) The estimated experimental sensitivity to AFB as a function of
q2 for a 10 fb−1 sample of LHCb data, assuming the SM. (b) The ensemble of
AFB zero-crossing points found from each experiment, giving an estimated value
of 4.33+0.15

−0.18 GeV2/c4. The colour scheme is the same as in Fig. 4.1, but zero-
crossings outside the ninety-five percent confidence are also shown in the outer,
dark blue, regions.
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the same as in Fig. 4.1.
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4.3 Comparison with a simultaneous projection

fit

4.3.1 AFB, AIm, A
(2)
T and FL

In Ref. [107], angular projections over Eq. (3.2) were used to extract the param-

eters AFB, AIm, A
(2)
T and FL in bins of q2. For the Bd decay:

dΓ′

dφ
=

Γ′

2π

(
1 +

1

2
(1− FL)A

(2)
T cos 2φ+ AIm sin 2φ

)
(4.4a)

dΓ′

dθ`
= Γ′

(
3

4
FL sin2 θ` +

3

8
(1− FL)(1 + cos2 θ`) + AFB cos θ`

)
sin θ(̀4.4b)

dΓ′

dθK∗
=

3Γ′

4
sin θK∗

(
2FL cos2 θK∗ + (1− FL) sin2 θK∗

)
(4.4c)

These differential widths were used as PDFs in the construction of three new

RooFit models with the same physics and background treatment as that de-

scribed in Sec. 4.1.1. Simultaneous fits to the three decay angles were performed

in single bins of q2 from 1− 6 GeV2/c4 to find rate weighted averages of each

observable across the bin. Input data sets were generated as in Sec. 4.1.2. A

reasonable comparison can be made between the full-angular and projection fit

approaches by explicitly calculating the rate average over the q2 range for each

observable, A, using

〈A〉 =

∫ q2max

q2min

dΓ
dq2
A(q2)∫ q2max

q2min

dΓ
dq2

, (4.5)

where dΓ/dq2 is extracted directly from the fit, as shown in Fig. 4.4d.

In Tab. 4.1 resolution estimates from an ensemble of a thousand fits are shown

for both full-angular and projection fits. It can be seen that the full-angular ap-

proach provides a significant increase in experimental resolution for all observables

considered. The difference in resolutions between the full-angular and projection

fit approaches, shown in the table, is particularly significant for A
(2)
T . This arises

from the (1− FL) suppression in Eq. (4.4a) where FL is 0.86± 0.05 in the SM5.

In contrast, FL is well constrained in the projections and the full-angular fits do

not significantly improve the resolutions attainable.

5Value from Ref. [1]. This can be contrasted with 0.76± 0.08 from Chap. 5, 0.73 +0.08
−0.10 from

Ref. [106], and 0.73± 0.12 from Ref. [111].
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Input Projection Full Angular (σ̂F−σP)
σP

〈A〉I 〈A〉P σP 〈A〉F σF %

AFB 0.036 0.0325 ±0.0078 0.0344 +0.0047
−0.0050 38

AIm 0.000 0.000 ±0.015 0.0004 +0.0060
−0.0057 61

A
(2)
T -0.030 -0.03 ±0.26 -0.043 +0.095

−0.094 64

FL 0.865 0.8799 ±0.0064 0.8582 +0.0052
−0.0058 14

Table 4.1: Comparison between integrated values for the angular observables
AFB, AIm, A

(2)
T and FL in the range 1 ≤ q2 ≤ 6 GeV2/c4 from an ensemble of a

thousand 10 fb−1 LHCb data sets with averaged input values 〈A〉I. 〈A〉P,F are
the median values of the averages as calculated using Eq. (4.5), while σP,F are
estimates of the 1σ uncertainty for both methods. The percentage resolution
improvement offered by the full-angular analysis relative to the projection fit
method is shown in the last column, where σ̂F is the mean of the asymmetric
uncertainties for each observable.

4.3.2 The AFB zero-crossing point

A comparison of the sensitivity to the AFB zero-crossing point can also be found

by following the methods of Ref. [112], but fitting the three angles simultane-

ously. In this case a thousand 10 fb−1 data sets were binned into five q2 bins in

the range 1 ≤ q2 ≤ 6 GeV2/c4, each with width of 1 GeV2/c4. For each data set

an independent simultaneous projection fit was performed in each of the q2 bins

and the resulting points fit to a straight line in the range 2 ≤ q2 ≤ 6 GeV2/c4 to

extract the zero-crossing point. An example of this is shown in Fig. 4.5. The me-

dian zero-crossing found was 4.35+0.23
−0.24 GeV2/c4 for an input value of 4.39 GeV2/c4.

The quoted sensitivity is in reasonable agreement with that found in Ref. [112],

although the two results are not directly comparable. Comparing now with the

full-angular fit, we see a 28% improvement in the resolution relative to the pro-

jections result.

The value of AFB at a given q2 value is a quadratic function of the universal

form factor ξ⊥ [54], introduced in Sec. 3.4. Again, following [54], the q2 depen-

dence of the form factor can be parametrized as

ξ⊥(q2) = ξ⊥(0)

(
1

1− q2/M2
B

)2

, (4.6)

where MB is the mass of the Bd and ξ⊥(0) gives the normalization at q2 =

0. This can be extracted from experiment by performing a fit to Bd → K∗0γ

measurements or from QCD [54, 113]. At the zero-crossing point, these form

factors cancel at LO, however the particular value of ξ⊥(0) used to generate the
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Figure 4.5: An example toy experiment in which an AFB value has been extracted
in five independent 1 GeV2/c4 q2 bins using a simultaneous projection fit to the
three decay angles. The points show the AFB value found for each q2 bin and its
error. The x error bar shows the width of the q2 bin. The solid red line shows a
fit to the linear function y = p1x+ p0 in the range 2 ≤ q2 ≤ 6 GeV2/c4 as used in
[112]. This allows a zero-crossing point of q2

0 = 4.09±0.21 GeV2/c4 to be extracted
for this particular experiment.

AFB spectrum will affect the gradient of AFB going through the zero-crossing

point quadratically.

The experimental sensitivity for the zero-crossing point should be an approx-

imately linear function of the AFB gradient, so the value of ξ⊥(0), both in this

study and in nature, strongly affects the experimental sensitivity to the zero-

crossing point. The zero-crossing sensitivities we quote are extracted from toy

input data where ξ⊥(0) = 0.26, based on the updated value from [74]. This

should be contrasted with the model used in [112] and based upon [69], which

uses a value of ξ⊥(0) = 0.34. If this value had instead been used in this study

then an improvement in the zero-crossing resolution by a factor two would be

expected. The observables A
(2−4)
T are constructed to have no sensitivity to the

form factors over the complete q2 range under study and so no major change in

their resolutions is expected as we vary ξ⊥(0).

4.4 New physics model discrimination

In this section the methods in Sec. 4.1 will be applied to a generic NP model

with right-handed currents in order to demonstrate the discriminating power of

the angular observables. Sensitivities to the observables introduced in Sec. 3.4

are extracted and compared to the SM theoretical distributions.

The NP model to be examined, SUSY-b, is a non-minimal flavour changing

version of the MSSM with R-parity conservation, where the gluino mass is large,
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mg̃ = 1 TeV, the down squark mass is md̃ = 250 GeV and there is a low value

of tan β = 5 [57]. In addition, there is a single insertion in the down squark

mass matrix, parametrized by (δdLR)32 = 0.036, which generates right-handed

currents. The flavour diagonal parameters are fixed at µ = M1 = M2 = MH+ =

mũ = 1 TeV. It has been recently re-verified that this scenario is within current

experimental and theoretical bounds [1].

This model has been chosen as it generates non-SM values of C ′ eff
7 ; (C eff

7 , C ′ eff
7 ) =

(−0.32, 0.24) which should be compared with the SM values of (−0.31, 0.00). The

observables AIm, AFB (and its zero-crossing) and FL are not very sensitive to de-

viations in C ′ eff
7 and so offer little discrimination power. However, A

(2)
T , A

(3)
T and

A
(4)
T have been constructed in such as way as to maximize the sensitivity to this

Wilson coefficient and hence allow better discrimination between SUSY-b and the

SM.

Fig. 4.6 shows the comparison between the estimated sensitivities to SUSY-b,

as extracted from an ensemble of a thousand 10 fb−1 LHCb data sets and the

SM theoretical distribution from Ref. [1] for A
(2)
T , A

(3)
T , A

(4)
T . The power of these

observables is clear for observing non-SM values of C ′ eff
7 , particularly in the low

q2 region where the operator O(′)
7 dominates. Consideration of Fig. 3.3 suggests

that a similar conclusion would be reached if a NP scenario with contributions in

C eff
9 or C

(′) eff
10 had been studied. Due to the correlations along the band for both

the theory and experimental curves, careful thought is needed to turn these mea-

surements into a confidence level that the SM could be rejected if indeed nature

turned out to be supersymmetric in the way modelled by SUSY-b. However, it

seems clear that such a measurement could be of great interest if NP is discovered

at the LHC.

Fig. 4.7 shows the same comparison for the angular observables AFB, FL, and

AIm. As expected, these observables offer poor sensitivity to C ′7 across the entire

q2 range. FL looks more promising than AFB for this particular NP scenario, but

is hindered by the large theoretical uncertainties on the SM prediction.

4.5 CP -violation

Bd → K∗0(→ Kπ)µ+µ− will be reconstructed in LHCb via charged decays of the

K∗0, allowing the flavour of the B meson to be identified using the sign of the K

[8, 72]. Decays of this sort are known as self-tagging. As shown in Chap. 6, the

phases of the Wilson coefficients are almost completely unconstrained by current

experimental data. Any measurement of the CP -violation in Bd → K∗0µ+µ−

would therefore reduce the parameter space available for NP, or provide a clear

signal for it. The improved sensitivity that was shown for the full-angular analysis
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Figure 4.6: Comparison between the estimated experimental sensitivities to A
(2)
T ,

A
(3)
T , A

(4)
T and the theoretical SM distribution. The solid red line shows the

median of values extracted from an ensemble of a thousand 10 fb−1 LHCb data
sets where SUSY-b was used as the input model, shown as the dark-blue dotted
line. The (light and dark blue) bands either side of the median show asymmetric
1 and 2 σ confidence levels as in Fig. 4.1. The SM theory bands are explained
in more detail in Ref. [1]. The dashed (black) line is the SM central value, while
the surrounding bands (orange, light green, dark green), are respectively the
theoretical uncertainties excluding O(Λ/mb) corrections, and those including 5%
and 10% Λ/mb corrections.
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in Sec. 4.3 means that it could contribute to this programme significantly.

The methods described in Sec. 4.1 can be applied to get an estimate of the sen-

sitivities to the CP asymmetries introduced in Sec. 3.5.4. The mis-identification

of a B as a B in this channel will be very rare as it requires that both the K

and π are reconstructed incorrectly. A full simulation study of the selection and

backgrounds confirms this conclusion [8], although a specific mass veto must be

employed to remove Bs → φµµ decays. Thus, mis-id effects are neglected in this

study. The SM amplitudes used for the toy model generation do not include the

tiny CP violating contribution from b→ d penguin decays so the CP asymmetries

vanish in the MC. An ensemble of B-only data sets was produced as in Sec. 4.1.2

for 10 fb−1 of LHCb data, assuming the SM. Each data set was generated to

have, on average, half the contents of those used in Sec. 4.1. A full-angular fit

was then performed for each data set in the ensemble. An ensemble of B fits was

also produced in the same way. These two statistically independent ensembles

were then combined. The fits are only sensitive to the normalization of the spin

amplitudes relative to the value of Re(A0L) at X0. When combining a B and a

B fit result, the B result was re-normalized to correct for any differences between

the two reference points.

Results are shown for the CP -asymmetries A7 and A9 in Fig. 4.8 for 10 fb−1

of LHCb data, assuming the SM, but neglecting the CP violating terms [6]. A7

and A9 are respectively the rate weighted CP asymmetries of I7 and I9. The

sensitivities found are good when compared to A
(2−4)
T and suggest that large NP

effects could be detected with these observables. A selection of NP distributions

for A7 are shown in Fig. 3.4. Full estimates of the theoretical uncertainties can

be found in Refs [6, 56, 106], however the figure indicates the level of variation

attainable. It is interesting to compare Fig. 4.8b with Fig. 4.4a, which shows the

expected sensitivity to AIm. This is the CP -average of I9, and so is sensitive to

the same terms in the full-angular distribution as A9. Due to the self-tagging

nature of the decay, the penalty required to extract CP -asymmetries rather than

CP -averages is relatively small in this case. However, these measurements are

unlikely to provide enough resolution for anything other than a SM null-test to

be performed unless the NP phases are large.

4.6 The fourth symmetry

In order to extend this work to include the massive lepton terms in the angular

distribution needed to gain sensitivity to scalar and pseudoscalar NP contribu-

tions, a more systematic analysis of Eq. (3.2) was undertaken [6]. This revealed

the presence of a fourth symmetry in the massless leptons distribution unknown
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Figure 4.8: Estimated experimental sensitivities to the CP asymmetries A7 and
A9 using a full-angular analysis with 10 fb−1 of LHCb data. The SM is assumed,
but the tiny b→ d penguin contributions have been neglected. The colour scheme
is the same as in Fig. 4.1.

at the time of writing Refs [1, 2]6. This symmetry was first identified numerically

and then Eq. (3.10) found. This implies that the constraint counting done in

Sec. 4.1.1 was incorrect; there are only eight free parameters at each value of q2,

or seven once the normalization has been taken into account.

The rotation choices made in Sec. 4.1.1, along with the specific form of the

symmetries, lead to the spin amplitude correlations seen in Fig. 4.1. The ob-

servables presented in Sec. 3.4 are invariant under all four symmetries meaning

that the bias seen on the amplitudes does not lead to a bias on the observables.

The fit, although in principle under-constrained, is able to converge due to the

polynomial parametrization employed. Ignoring the normalization for a moment,

we have four independent rotations which can be made at every point in q2.

Fixing the value of three spin amplitude components means that three of the

rotation angles are also effectively fixed. The fourth rotation angle is free to vary.

The negative log-likelihood (NLL) that each signal event contributes is concep-

tually invariant under changes in this angle. However, the q2 dependent shape

of each spin amplitude component is not. The polynomial ansatz requires that

each amplitude must be smoothly varying. The fit then selects the value of the

fourth rotation angle for each signal event which produces the most polynomial-

like distribution, as this will have the smallest NLL. The minimizer is able to

find a genuine minimum and converges properly. This leads to the prediction

that adding the extra constraint implied by Eq. (3.10) should not significantly

improve the experimental resolutions, but should reduce the degree of correlation

seen in the fits.

6On which this chapter is based.
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4.6.1 The polynomial ansatz re-examined

A key assumption of the fitting approach taken in Sec. 4.1 is that the spin ampli-

tude components are smoothly varying functions in the range q2 ∈ [1, 6] GeV2/c4.

It was found that when all four symmetries of the massless angular distribu-

tion are taken into account, this assumption no longer holds. The shape of the

spin amplitude components is not invariant under the four symmetries; their

shape can be distorted in such a way that they are no longer well described

by 2nd order polynomials. This can be understood qualitatively by consider-

ing the three symmetry case at a fixed q2 value. A0R is removed by setting

θ = arctan (−Re(A0R)/Re(A0L)), once their phases have been rotated away. This

can be understood by substituting the trigonometric identities,

sin(arctan(Θ)) =
Θ√

1 + Θ2
; cos(arctan(Θ)) =

1√
1 + Θ2

. (4.7)

into Eq. (3.9). This introduces a [1 + (Re(A0R)2/Re(A0L)2)]−
1
2 term into each

non-zero amplitude component, which will not be well behaved as A0L → 0.

For the three-symmetry fit, these problems can be avoided by taking Re(A0L) as

the reference amplitude component, forcing it to be relatively large at X0. To

include the fourth symmetry constraint however, a more complicated form must

be used in order to set four amplitude components simultaneously. A different

value of each of the four rotation angles is required for every point in q2 due to the

changing spin amplitudes. There is no guarantee that a set of rotation angles can

be found such that the unfixed spin amplitude components resemble smoothly

varying polynomials for all q2. The q2 dependence of the SM input amplitude

Re(A0L) is shown in Fig. 4.9 once the four symmetries have been applied to

fix Im(A‖L), Im(A‖R), Re(A‖L), and Im(A⊥L) to zero, as required in the next

section. This particular feature is caused by Re(A‖L) → 0 at q2 ≈ 2, however

other rotation choices led to similar features. The distribution can no longer be

well described by a 2nd order polynomial. It may be possible to find a choice

of rotation parameters that preserve the polynomial features of the input spin

amplitude components, however, there are no guarantee that a particular choice

would work when faced with experimental data, particularly if we are looking

for NP. Worse still, an incorrect choice will lead to biases in the case where the

parametrization is a poor match for the underlying amplitudes. A more generic

solution is required, but is beyond the scope of this thesis.
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Figure 4.9: The q2 dependence of Im(A0L) after using the four symmetries of the
full-angular distribution to fix Im(A‖L), Im(A‖R), Re(A‖L), and Im(A⊥L) to zero.

4.6.2 Fit quality

The effect of adding the fourth symmetry constraint was tested, by comparing en-

sembles of three- and four-symmetry fits. The two ensembles were generated with

the same random seed values so that the ensemble of input data sets was the same

for the two approaches. To make the test more robust, the generation scheme

described in Sec. 4.1.2 was modified so that data was produced with the full PDF,

adding lepton mass effects. For completeness, doubly-Cabibbo penguin contribu-

tions and At were also included, and the signal and background estimates were

updated to the most recent LHCb estimates [8]. To allow comparison with other

parts of Ref. [6], the fixed spin amplitude components were chosen to be Im(A‖L),

Im(A‖R), Re(A‖L), and in the case of the four symmetry fit also Im(A⊥L). The

amplitudes were still normalized relative to Re(A0L) at X0 = 3.5 GeV2/c4, how-

ever the fits were performed in the range q2 ∈ [2.5, 6] GeV2/c4 to avoid the non-

polynomial features seen in the spin amplitude components, such as shown in

Fig. 4.9.

The sensitivities found for the angular observables are much poorer than those

presented in Sec. 4.1, due to the decreased signal statistics in the reduced q2

window, however it is interesting to compare the performance of the two fitting

methods. A histogram of the NLL of each fit is shown in Fig. 4.10a. The ensemble

of three-symmetry fits (hatched) and four-symmetry fits (solid) can be seen. The

ensemble of input data sets is slightly different in each case due to a small number

of failed computing jobs, but the output distributions look very similar. This

shows that the depth of the minima found is approximately the same for the

three- and four-symmetry fits. We can also introduce a global correlation factor

GC , which is the unsigned mean of the individual global correlation coefficients

calculated from the full covariance matrix. It takes values in the range GC ∈ [0, 1],

where zero shows all variables as completely uncorrected, and one shows total fit
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Figure 4.10: The negative log-likelihood (a) and global correlation factor (b)
for the three symmetry (blue hatched) and four symmetry (red solid) ensembles
of fits to 10 fb−1 toy data sets of LHCb data, assuming the SM and with q2 ∈
[2.5, 6] GeV2/c4.

correlation. It can be seen that the mean correlation of the fit is reduced once

the fourth symmetry is taken into account. There are less outliers at very low

GC and the distribution appears more Gaussian, indicating an increase in fit

stability has been achieved. The mean number of refits required also fell from

6.9± 27.6 to 0.1± 1.4; the uncertainty quoted is the root-mean square (RMS) of

the distribution.

Fig. 4.11 shows the estimated experimental sensitivities found for the theoret-

ically clean observable A
(3)
T in the range q2 ∈ [2.5, 6] GeV2/c4, with and without

the fourth symmetry constraint. The fits are for 10 fb−1 of LHCb integrated lumi-

nosity assuming the SM. The quality metrics of these fits are shown in Fig. 4.10.

As might be expected from Fig. 4.10a, there is little difference in the estimated

experimental resolutions seen. The same conclusion is reached when inspecting

other observables. We find that the three-symmetry fit presented in Sec. 4.1

probably provides a correct estimate of the statistical uncertainties that would

be expected from a experimental analysis of 10 fb−1 of LHCb data. However the

discovery of the symmetry Eq. (3.10) and a re-analysis of Eq. (3.9) suggests that

the fit must be reformulated if it is going to be robust in the presence of NP.

4.7 Summary and outlook

The full-angular fit for Bd → K∗0µ+µ− allows access to any arbitrary combination

of the spin amplitudes as a function of q2 in the region 1 ≤ q2 ≤ 6 GeV2/c4. A

set of angular observables can be constructed from these amplitudes which give

LHCb great power to discover NP and to discriminate between models in a model

independent way. In this chapter, several of these observables have been studied
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Figure 4.11: One and two σ contours of estimated experimental sensitivity to the
theoretically clean observable A

(3)
T with full-angular fit to 10 fb−1 of LHCb data

assuming the SM. Fig. (a) has Im(A‖L), Im(A‖R), and Re(A‖L) fixed at zero. In
Fig. (b), the fourth symmetry is used to fix Im(A⊥L) to zero also. The colour
scheme is the same as in Fig. 4.1.

in order to estimate the experimental sensitivities at LHCb for 2, 10 and 100 fb−1

data sets.

A full-angular analysis was constructed as a prototype for making the mea-

surement. It has been shown that the analysis can both significantly improve

the sensitivity to some observables assessable in other ways, as well as allow the

determination of theoretically clean observables which can only be found via a

full-angular analysis. A fit that was binned in q2 was first tried, but found to be

biased by the non-linear relationships between the K∗0 spin amplitudes. This led

to the development of a fit which used a polynomial parametrization to extract

the q2 dependence of the amplitudes. Despite correlations in the underlying am-

plitudes, unbiased measurements of the theoretically clean observables could be

made. Estimated sensitivities for both the SM and a NP model were presented

and it was shown that for larger integrated luminosities, these observables offer

powerful discrimination in the case where C ′ eff
7 6= C ′ eff

7
SM. The sensitivity to the

CP -asymmetries A7 and A9 was also estimated. It was shown that there is scope

to make an interesting and discriminating measurement if any NP found has large

phases coming from outside of the CKM mechanism.

This work led to a systematic re-analysis of the Bd → K∗0µ+µ− angular dis-

tribution. A new symmetry was found, so demonstrating that the fits presented

have been under-constrained in principle, although not in practise due to the

polynomial parametrization. This extra symmetry constraint was incorporated

into the fit and its implications studied. It was shown that the additional sym-

metry did little to improve fit quality, although it aided convergence. It did

however warp the distribution of the spin amplitude components in such a way

as to make the polynomial parametrization unworkable in the general case. A
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new approach must be developed that incorporates the symmetry constraints in

a more fundamental way. This will require study beyond the time-scale of this

thesis.

Putting these methods into practise at LHCb will be a great technical chal-

lenge, and the success of the analysis will depend on our ability to understand the

detector acceptance and the angular shapes of our backgrounds. This chapter has

demonstrated that the sensitivity gained by performing the full angular analysis

makes this a very interesting measurement to make at LHCb, and one that could

potentially be done after a few years of stable running.
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Chapter 5

A decay model of

Bd→ K∗0µ+µ−

An important ingredient in most High Energy Physics (HEP) analyses is a de-

tailed simulation of the detector response and underlying physics processes oc-

curring during collisions. In this chapter, a new decay model of Bd → K∗0µ+µ−

is presented [114]. The new model contains a state-of-the-art SM treatment as

well as a model-independent parametrization of possible NP effects through its

inclusion of operators suppressed or forbidden in the SM. Many more details may

be found in Ref. [7].

5.1 Simulating physics events at the LHC

LHC events are complex, with many different particles present. A typical bunch-

crossing simulation will start by determining the number and properties of the

protons interacting by considering the beam parameters and machine optics. The

individual interactions will then be simulated using a general purpose event gen-

erator such as those described in Refs [115, 116]. These generators are responsible

for the production and decay of particles coming from the hard process as well as

the treatment of the proton break-up. They use phenomenological models to re-

produce the distributions observed in collider events, and are highly configurable.

The majority of particles produced in a simulated event are not the children of

the particles created in the hard scatter but of quarks and gluons produced during

the early stages of the interaction’s evolution. These partons then hadronize to

form the long-lived particles seen in detectors. Their production and hadroniza-

tion is normally modelled using a parton shower. While many algorithms exist,

the ones in common use today produce daughter particles which are kinemati-

cally but not spin correlated. Any interference effects seen in the decay of heavy
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particles like b-quarks and τ -leptons are ignored. For a correct treatment of these

effects we can turn to the dedicated decay simulator EvtGen [117, 118]. This

can be used as a stand-alone generator or to handle the heavy particles created

by the general purpose generators once a particular spin configuration has been

chosen. The latter is the approach used within LHCb.

5.1.1 EvtGen

EvtGen is a framework for handling the decays of particles where the spin

correlations are important. It provides a large library of generic matrix elements,

while also supporting the inclusion of custom calculations for a particular decay.

These calculations are known as decay models. It makes use of the spin-density

framework (see Ref. [117]) in order to generate particle decays in a generic but

relatively optimal way.

Particle decays are treated as a tree where each node is handled separately,

however the correlations must still be propagated. The algorithm starts for ex-

ample with a B meson of known momenta and energy. EvtGen has a large table

listing all possible decays of each particle along with branching fractions for each

mode. It can then choose at random which mode to use, or this can be specified

by the user. As an example we take the decay B → D∗(→ Dπ)τ(→ πν)ν̄. The

amplitude for this can be written as the spin-averaged product of the individual

decays,

A =
∑
λD∗λτ

AB→D
∗τ ν̄

λD∗λτ
× AD∗→DπλD∗

× Aτ→πνλτ , (5.1)

where λτ,D∗ label the individual spin states of the τ and D∗ and for example

Aτ→πνλτ
gives the complex amplitude for the decay of τ → πν for the spin state

λτ . The algorithm treats each stage of the decay separately, starting from the B

and working down the decay chain. A phase-space calculator is used to generate

a random set of kinematics for the D∗, τ and ν̄. A semi-leptonic matrix element

is used to calculate the amplitude AB→D
∗τ ν̄ for each D∗ and τ spin configuration.

The probability for a particular set of kinematics x̂ is given by

PB(x̂) =
∑
λD∗λτ

|AB→D∗τ ν̄λD∗λτ
|2. (5.2)

PB(x̂) is rarely normalized to unity or easily integrable. In order to convert

it into a normalized probability distribution an accept/reject algorithm is used.

This requires that the maximum possible probability Pmax
B can be found. PB(x̂)

is then mapped on to the random uniform function, uniform(0, 1). This is a PDF

where the probability of drawing any value in the range [0, 1] is equal, and zero
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outside of this region. An event is accepted if PB(x̂)/ωps > Pmax
B × uniform(0, 1)

and rejected otherwise. ωps is used as a weight so that kinematically disfavoured

events are kept more often, ensuring that these regions are still sampled.

Once a B → D∗τ ν̄ event has been accepted the momenta of the D∗ and τ

are known and the particles can be decayed, again starting from the relevant

phase space distributions. The τ decay is performed with a specialized τ → Sν

decay model where S is a scalar, while the D∗ decay model is a generic vector

to two scalar model which takes account of the quantum numbers of the system.

The same VSS model is used to handle the K∗0 → Kπ part of the decay of

Bd → K∗0(→ Kπ)µ+µ−.

The probabilities to be accepted or rejected must be weighted with the prob-

ability that the daughter particle is produced in a particular spin state. This is

done with a spin-density matrix. Summing over the spin states of the τ we have

for the D∗,

ρD
∗

λD∗λ
′
D∗

=
∑
λτ

(AB→D
∗τ ν̄

λD∗λτ
)(AB→D

∗τ ν̄
λ′
D∗λτ

)∗, (5.3)

the matrix of probability densities for each D∗ spin state, labelled by λD∗ and

λ′D∗ . The probability to be used when accepting or rejecting a particular D∗

momentum configuration is then

PD∗ =
1

TrρD∗
∑

λD∗λ
′
D∗

ρD
∗

λD∗λ
′
D∗

(AD
∗→Dπ

λD∗
)(AD

∗→Dπ
λ′
D∗

)∗, (5.4)

where the trace term acts to re-normalize the probability without affecting the

angular distribution.

Finally the τ has to be decayed. In order to get the spin correlations in the

decay correct, spin-density matrices for both the B → D∗τ ν̄ and D∗ → Dπ decay

nodes must be considered. Combining these gives

ρτλτλ′τ =
∑

λD∗λ
′
D∗

[
(AD

∗→Dπ
λD∗

)(AD
∗→Dπ

λ′
D∗

)∗
]
×
[
(AB→D

∗τ ν̄
λ′
D∗λτ

)(AB→D
∗τ ν̄

λ′
D∗λτ

)∗
]
. (5.5)

The probability to be accepted or rejected can be easily obtained by making the

replacement D∗ → τ in Eq. (5.4). This algorithm allows for efficient generation

of large decay trees, as each node is accepted before the next one is considered. It

also allows for many different decays to be simulated with a smaller set of models,

as each one only needs to provide the spin-density matrix for one particular decay

node, from which complex topologies can be built up.
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5.2 The physics of Bd → K∗0µ+µ− decay

The EvtGen framework can be applied to simulate Bd → K∗0(→ Kπ)µ+µ−

where a dedicated decay model is used to handle the Bd → K∗0µ+µ− part and the

K∗0 produced is then decayed separately. A decay model, BTOSLLBALL, based on

Ref. [69] has been in use for some time at the B-factories and LHCb. This section

describes the physics used in a replacement for this model, BTOKSTARLLDURHAM07.

It is, to a close approximation, a complete implementation of Ref. [56]. A more

complete theoretical description of the model may be found in Ref. [7].

5.2.1 Factorization

The decay Bd → K∗0µ+µ− is made possible by physics effects operating at the

weak scale, where typical particle masses are O(mW ) and interaction times are

very short. We expect any NP effects to be operating at these scales, however

they must be detected via their effects on particles with masses far below this.

Understanding the formation of these particles is then critical if robust predictions

are to be made. It is this process to which QCDf is applied. In this framework,

QCD effects arising from the decay of the heavy b quark are separated from those

coming from other QCD processes. The former is dominated by hard gluons

which may be treated with perturbative QCD, and the latter by soft collinear

gluons which must be treated non-perturbatively. These two have distinct typical

energy scales; the mass of the b quark, mb ∼ 4.52 GeV, and the QCD scale

ΛQCD ∼ 0.22 GeV. This separation is broken by processes which operate at

intermediate scales, however these can often be brought under theoretical control

[64, 101, 102].

The Bd → K∗0µ+µ− decay proceeds via b → s quark loops such as the

SM diagrams shown in Fig. 1.8. The treatment of this decay employed by all

recent authors follows Refs [54, 74], however several updates have been made in

Refs [55, 56] to include recent theoretical results and additional NP operators. A

double expansion in the strong coupling constant, αs, and the ratio ΛQCD/mb is

used. This treatment is commonly classified as being NLO in αs, as corrections

proportional to α2
s are included, but only LO in 1/mb.

Starting from the effective Hamiltonian shown in Eq. (1.38), a decay amplitude

may be derived. Schematically, this can be written as

〈
l+l−K∗0a |Heff |B

〉
=

F︷ ︸︸ ︷
CVa ξa + ΦB ⊗ Ta ⊗ ΦK∗0︸ ︷︷ ︸

NF

+O(1/mb), (5.6)

where a =⊥, ‖ labels theK∗0 polarization as being transverse or longitudinal. The
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symbol ξa refers to the heavy-to-light or soft form factors introduced in Chap. 3.

These can be thought of as parameterizing the momentum dependence of the K∗0

formation and are calculable using non-perturbative methods such as in Ref. [104].

They are, however, universal, low energy, and should be free from NP effects.

These are weighted by a hard vertex correction factor, CVa = 1 +O(αs). Together

these determine the factorizable (F) contribution to the decay.

The second term is the non-factorizable part (NF), and groups those effects

not included in the soft form factors. Ta is a process dependent hard-scattering

kernel. This encodes the effects from short range, and so high mass scale, physics

parametrized by the Wilson coefficients. However, other QCD effects must also

be included. Finally, there are the process independent light-cone-distribution

amplitudes ΦB and ΦK∗0 . These are non-perturbative, and control the probability

of finding a valence quark in the B and K∗0 with a given momentum fraction.

5.2.2 Wilson coefficients

The Wilson coefficients Ci(µ) are process independent coupling constants for the

basis of dimension-five effective vertices described by local operators Oi(µ). They

encode contributions to the effective vertices at scales above a particular renor-

malization scale µ. In the presence of NP their values will change from their

SM values, and additional operators may become relevant. For more details see

Chap. 1. Tab. 5.1 gives the values of the Wilson coefficients at µ = mb in the

SM, while Tab. 5.3 gives their modified values for a number of benchmark NP

models included with the decay model.

The Wilson coefficients are calculated in the SM or other NP models by match-

ing the full and effective theories at a matching scale mW , the mass of the W

boson. For the SM Wilson coefficients Next-to-Next-to-Leading Log (NNLL)

accuracy is used, which requires the calculation of the matching conditions at

µ = mW to two-loop accuracy. This has been done in Ref. [53]. NP contributions

are included to one-loop accuracy only; model independent corrections are not

known but are expected to be small1. These coefficients must then be evolved

down to the scale µ ∼ mb. The evolution has been implemented using the full

10 × 10 anomalous dimension matrix following [58]. The primed operators are

evolved as their unprimed equivalents, and the scalar and pseudoscalars do not

require evolution as discussed in Ref. [56]. Finally, there is no sensitivity in ei-

ther Bd → K∗0µ+µ− or any of the constraints considered in the next chapter to

1We know from experiment that the SM dominates. Any NP contribution is constrained
to be small, and corrections to these contributions must be smaller still. A 10% correction
on a 10% NP effect would normally be of negligible importance, unless very high precision
experimental tests are available.
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C1(µ) C2(µ) C3(µ) C4(µ) C5(µ) C6(µ)

-0.135 1.054 0.012 -0.033 0.009 -0.039

C eff
7 (µ) C eff

8 (µ) ∆C eff
9 (µ) C eff

10 (µ)

-0.306 -0.159 4.220 -4.093

Table 5.1: SM Wilson coefficients at µ = mb,PS(2 GeV/c2) = 4.52 GeV/c2.
∆C eff

9 (µ) ≡ C eff
9 (µ)− Y (q2).

separate CS,P from C ′S,P . They are combined as (CS-C ′S) and (CP -C ′P ).

5.2.3 Decay amplitudes

EvtGen requires the calculation of the spin-amplitude ABd→K
∗0µ+µ− . For each

allowed spin state, the amplitude to be calculated, following the notation in

Refs [69, 119] for ease of comparison with the previous decay model, is

M∝ [T 1
µ (µ̄ γµ µ) + T 2

µ (µ̄ γµγ5 µ) + S(µ̄ µ)
]

(5.7a)

where

T 1
µ = A(q2)εµραβε

∗ρ p̂αB p̂
β
K∗ − iB(q2) ε∗µ+

iC(q2)(ε∗ · p̂B) p̂µ + iD(q2)(ε∗ · p̂B) q̂µ (5.7b)

T 2
µ = E(q2)εµραβ ε

∗ρp̂αB p̂
β
K∗ − iF (q2) ε∗µ+

iG(q2)(ε∗ · p̂B) p̂µ + iH(q2)(ε∗ · p̂B) q̂µ (5.7c)

and

S = i2m̂K∗(ε
∗ · p̂B) I(q2). (5.7d)

In the rest-frame of the B meson, pB,K∗0 and mB,K∗0 are the four-vectors and

masses of the respective particles, p ≡ pB + pK∗0 , q is the invariant mass of the µ

pair and ε∗µ is the K∗0 polarization vector. Each of these is represented by a ded-

icated EvtGen object which implements the appropriate algebraic operations.

Adding a hat denotes division by mB, so for example m̂K∗0 ≡ mK∗0/mB. The

functions A(q2) to I(q2), defined below, contain all theoretical information via

the Wilson coefficients and the P → V 2 form factors V , A0,1,2, and T1,2,3 (see for

example [104]). For the conjugate Bd → K∗0µ+µ− decay,

Ā(q2)→ −A(q2); Ē(q2)→ −E(q2), (5.8)

2Pseudoscalar→ Vector
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while the other auxiliary functions remain unchanged (see Eq. (3.5)). The terms(
l̄γµl

)
,
(
l̄γµγ5l

)
and (l̄l) refer to the vector, axial and scalar lepton currents

respectively, through which the lepton spins are included.

The auxiliary functions have been updated to include the additional opera-

tors O′7−10 and O(′)
S,P . QCDf corrections are also included through the functions

T NLO
‖ (q2) and T NLO

⊥ (q2). These are similar to T‖(q2) and T⊥(q2) defined in [54],

but neglect the factorizable corrections and numerically small weak-annihilation

diagrams derived in that reference. The corrections to the helicity suppressed

operators are also included. We define T ′NLO
‖ (q2) and T ′NLO

⊥ (q2) as the analo-

gous functions to T NLO
‖ (q2) and T NLO

⊥ (q2) with all Wilson coefficients replaced

by their primed equivalents. The factorizable corrections arise from expressing

the full form factors, V , A0,1,2, and T1,2,3 in terms of the soft form factors, ξ⊥,‖.

Following Ref. [56], the LO results are expressed in terms of the full QCD form

factors, automatically including these factorizable corrections from the form fac-

tor calculation.

A(q2) =
2

1 + m̂K∗
(C eff

9 + C ′ eff
9 )V (q2) +

4m̂b

q̂2

(
(C eff

7 + C ′ eff
7 )T1(q2)

+ T NLO
⊥ (q2) + T ′NLO

⊥ (q2)

)
; (5.9a)

B(q2) =(1 + m̂K∗)

{
(C eff

9 − C ′ eff
9 )A1(q2) +

2m̂b

q̂2
(1− m̂K∗)

(
(C eff

7 − C ′ eff
7 )T2(q2)

+ 2ÊK∗(q
2)(T NLO

⊥ (q2)− T ′NLO
⊥ (q2))

)}
; (5.9b)

C(q2) =
1

1− m̂2
K∗

{
(1− m̂K∗)(C

eff
9 − C ′ eff

9 )A2(q2)

+ 2m̂b

(
(C eff

7 − C ′ eff
7 )(T3(q2) +

1− m̂2
K∗

q̂2
T2(q2))

+ (1 +
(1− m̂2

K∗) 2ÊK∗(q
2)

q̂2
)(T NLO
⊥ (q2)− T ′NLO

⊥ (q2))

+ T NLO
‖ (q2)− T ′NLO

‖ (q2)

)}
; (5.9c)

E(q2) =
2

(1 + m̂K∗)
(C eff

10 + C ′ eff
10 )V (q2); (5.9d)

F (q2) =(1 + m̂K∗)(C
eff
10 − C ′ eff

10 )A1(q2); (5.9e)

G(q2) =(C eff
10 − C ′ eff

10 )
A2(q2)

(1 + m̂K∗)
; (5.9f)

H(q2) =
1

q̂2
(C eff

10 − C ′ eff
10 )

(
(1 + m̂K∗)A1(q2)− (1− m̂K∗)A2(q2)

− 2m̂K∗A0(q2)

)
− m̂K∗mB

2m̂µ

A0(q2)(CP − C ′P ); (5.9g)
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Figure 5.1: Comparison between the form factor models shown in Tab. B.2. The
(blue) triangles, (red) pluses, (green) crosses and (orange) circles show respec-
tively the Ball ’07 [120], Ali ’01 [69], Ball ’05 [104], and Beneke ’05 [74, 113]
models. The solid (black) line shows the full unparameterized Ball ’07 calcula-
tion. These figures can be compared with Fig. 1 of Ref. [56], which uses a very
similar calculation.

I(q2) =− A0(q2)(CS − C ′S). (5.9h)

5.2.4 Form factors

The default form factor model ‘Ball ’07’ was implemented as a full Light Cone

Sum Rules (LCSR) calculation in Mathematica 6.0 [120]. This has been

parametrized, following Ref. [69], as a exponentiated polynomial. To achieve

agreement between the parameterization and the full calculation at the sub-

percent level the polynomial has been extended to higher order than used in

that reference,

F (q2) = F (0) exp

(
6∑
i=1

Ciŝ
i

)
. (5.10)

F (0), and C1−6 are free parameters to be extracted via a fit to the full calculation

and ŝ ≡ q2/m2
B. The fitted values are listed in Tab. 5.2, while a comparison
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Form factor F (0) C1 C2 C3 C4 C5 C6 δ(%)

V 0.31 1.24 0.78 −0.11 −0.16 1.00 2.22 0.05
A0 0.35 1.31 0.79 −0.07 −0.16 0.81 2.10 0.05
A1 0.23 0.37 0.28 −0.12 −0.34 0.32 3.07 0.05
A2 0.19 0.89 0.44 −0.38 −0.31 1.42 3.39 0.03

T1 0.27 1.26 0.82 −0.15 −0.19 1.15 1.94 0.05
T2 0.27 0.33 0.20 −0.14 −0.29 0.34 2.82 0.06
T3 0.16 0.89 0.20 −0.20 0.42 1.41 0.30 0.04

ξ‖ 0.12 2.05 1.16 2.07 −3.06 −1.57 8.72 0.18
ξ⊥ 0.26 1.24 0.81 −0.15 −0.19 1.16 2.09 0.05

Table 5.2: Form factor parameters, as extracted from a fit to Eq. (5.10), of the
full Ball ’07 calculation.

between the parameterization and the original calculation is shown in Fig. 5.1.

To access the fit quality we use the metric

δ = 100%×
∑

t f(t)− ffit(t)∑
t |f(t)| , (5.11)

where f(t) is the result from the full calculation, ffit(t) is the result from the fit,

and t is the value of q2 over the range t ∈ {0, 14}GeV2/c4 in steps of 0.5 GeV2/c4

as in Ref. [104]. The goodness of fit as a function of q2 can be seen in Fig. 5.2,

as explained in the caption. The full calculation is reproduced to one percent

over most of the kinematic range. The parametrization performs most poorly

for ξ⊥, however it was found that going to even higher orders in the polynomial

led to oscillation in the shape. The failure to reproduce this form factor distri-

bution is one of the largest sources of numerical discrepancy between the C++

and Mathematica versions of the model. While other parametrizations from

Ref. [104] and their higher-order extensions were evaluated, none outperformed

Eq. (5.10) and so were not adopted. A number of other form factor models are

provided for comparison, and these are also shown in Fig. 5.1. Details can be

found in Tab. B.2. These may be of interest for some analyses where the q2

dependence of observables is important, however, the parameters used in these

models are often not compatible with current Particle Data Group (PDG) values

[41].

5.2.5 New physics models

A number of benchmark NP models have been included to enable the study of

experimental effects arising from the presence of beyond-the-SM physics. The

decay model is implemented model independently. New models can thus be in-
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Figure 5.2: Form factor fit quality as a function of q2 over the entire kinematic
range. Fig. (a) shows the fit quality δ(q2) metric, which is the value of Eq. (5.11)
at a given value of t = q2, for V , A0, A1 and A2 shown as solid (blue), dashed
(red), dotted (green) and dash-dotted (black) lines respectively. Fig. (b) shows
T1, T2 and T3 as solid (blue), dashed (red), and dotted (green) lines while Fig. (c)
shows ξ⊥, ξ‖ as solid (blue) and dashed (red).
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cluded as an additional table of Wilson coefficients or via the EvtGen decay file,

as described in Appendix B.1. Some benchmark models are listed below. The

effective Wilson coefficients for each model are shown in Tab. 5.3.

• Universal Extra Dimensions (UED): This model suggests that all

SM particles can propagate freely in additional spatial dimensions [121].

In order to respect existing experimental constraints on B(Bs → µ+µ−)

[122], the compactification scale 1/R = 400 GeV/c2 is adopted; otherwise

the treatment is as in Ref. [71].

• Flavour Blind MSSM (FBMSSM): Here the Minimal Flavour Violation

(MFV) version of the MSSM is modified by some flavour conserving but CP -

violating phases in the soft Supersymmetry (SUSY) breaking terms [123].

The Wilson coefficients used, [124], correspond to those calculated in sce-

nario FBMSSM II defined in Tab. 11 of Ref. [56].

• General MSSM (GMSSM): MFV is not imposed, and generic flavour-

and CP -violating soft SUSY-breaking terms are allowed [125]. The Wilson

coefficients used, [124], are similar those used in the scenario GMSSM IV

of Ref. [56].

• Littlest Higgs with T -Parity (LHT): The LHT model follows model

II from Ref. [56], however the phenomenology is such that the effects in

Bd → K∗0µ+µ− are very limited. It is included for completeness.

In order to allow for a more global view of b→ s transitions, detailed calculations

for a number of related experimental observables are included with the model.

Definitions, calculation details and SM uncertainties are included in Sec. 6.6.

However, their value for the benchmark models is shown in Tab. 5.4.

5.2.6 Validity

It is accepted that the assumptions required to use the QCDf framework for

Bd → K∗0µ+µ− only hold in the q2 region from 1 GeV2/c4 to 6 GeV2/c4. This

is discussed in a number of references including [1, 56]. At low q2, the decay is

dominated by the photon diagrams which give rise to the B → K∗0γ decay. This

photon pole is visible in Fig. 5.4a. There may be unknown resonances which will

spoil factorization as long-range effects become important. The same is true as q2

gets closer to the charm resonance at 4m2
c . The upper limit of 6 GeV2/c4 is thought

to be far enough away from this point that these effects can be neglected. While

there are some attempts in the literature to include resonance effects from ρ, ω

and cc̄ [126], it is not clear that studying these contributions in Bd → K∗0µ+µ−
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Model

SM FBMSSM GMSSM LHT UED

C eff
7 (µ) −0.306 0.031 +0.475i −0.186 +0.002i −0.308−0.001i −0.297

C eff
8 (µ) −0.159 −0.085 +0.149i −0.062 +0.004i −0.159 −0.137

∆C eff
9 (µ) 4.220 4.257 4.231 4.295 +0.006i 4.230

C eff
10 (µ) −4.093 −4.063 −4.241 −4.566−0.040i −4.212

C ′ eff
7 (µ) −0.007 0.008 +0.003i 0.155 +0.160i −0.007 −0.007

C ′ eff
8 (µ) −0.004 −0.000 +0.001i 0.330 +0.336i −0.004 −0.003

C ′ eff
9 (µ) 0.002 0.018 +0.018i

C ′ eff
10 (µ) 0.004 0.003 +0.003i

(CS − C ′S)(µ) −0.044−0.056i 0.000 +0.001i
(CP − C ′P )(µ) 0.043 +0.054i 0.001 +0.001i

Table 5.3: NP Wilson coefficients at µ = mb,PS(2 GeV/c2) = 4.52 GeV/c2.

Observable Model SM Error

SM FBMSSM GMSSM UED

B(Bs → µµ)× 109 3.70 34.0 3.79 3.92 ±0.31
B(Bd → Xsγ)× 104 3.28 3.28 3.05 3.13 ±0.25

B(Bd → Xsl
+l−)1−6 GeV2 × 106 1.97 3.23 2.19 2.05 ±0.11

SCP (Bd → K∗0γ)× 102 −2.6 −3.0 4.9 −2.6 ±0.5
q2

0(S5) 2.37 0.57 2.30 ±0.11
q2

0(AFB) 4.03 0.63 2.73 3.92 ±0.15
〈AFB〉1−6 GeV2 0.04 −0.12 −0.05 0.03 ±0.03
〈FL〉1−6 GeV2 0.76 0.56 0.70 0.76 ±0.08
〈S5〉1−6 GeV2 −0.11 −0.28 −0.34 −0.12 ±0.03

Table 5.4: Predictions for b → s observables for the benchmark NP physics
models.
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gives new information when compared to other more abundant channels. These

effects are not included in the present decay model as other models included in

EvtGen are better suited for these resonance regions.

The QCD form factors used may be applied over a wider q2 range than that

specified above. In Ref. [104], the B → K∗0 form factors are presented in the

range q2 ∈ [0, 14] GeV2/c4. As the Wilson coefficients are not q2 dependent, the

model may have some relevance above the charm resonances. However there are

few theoretical results in this region with which to compare. QCD corrections

are relatively small so the behaviour will be similar to the previous BTOSLLBALL

model. Simulations done with either model will be unreliable in this region.

However, the model will simulate signal events over the entire kinematic q2 range

as required for LHCb MC production.

5.3 Implementation

The decay model is a full implementation of the theoretical treatment introduced

in Sec. 5.2. It was first prototyped with Mathematica, and then translated into

C++ for inclusion in EvtGen. This two step process was important to guarantee

numerical correctness; the process of cross-checking the C++ model identified

numerous problems with the Mathematica version and vice-versa. The final

versions of both models were in agreement to one percent for a wide range of q2

values. The main source of differences was in the form factor parametrizations, as

discussed in Sec. 5.2.4. For this to be achieved, it was necessary to make extensive

usage of numerical routines provided in both the EvtGen framework and the

GNU Scientific Library [110]. Most stages of the calculation were required to

be undertaken using complex numbers, even if the input and outputs were real.

In addition, each spin-amplitude calculation requires four numerical integrals

to calculate contributions to T (′)NLO
⊥ (q2) and T (′)NLO

‖ (q2) at NLO. As one of

the design requirements was that additional NP models could be easily added,

these integrals are computed numerically during the decay amplitude calculation.

These factors makes the full calculation significantly slower than the previous

BTOSLLBALL model.

5.3.1 Performance

One requirement for the model was that it must be significantly faster to run

than the detailed detector simulation used within LHCb to produce MC signal

samples. Due to the accept/reject architecture of EvtGen, some events take

longer to generate than others depending on the region of parameter space they
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Figure 5.3: Fig. (a) shows the unnormalized decay probability for Bd →
K∗0µ+µ− for the SM (solid black), FBMSSM (dot-dash green), GMSSM (dot-
ted red), UED (dashed purple) and, LHT (long-dashed blue). The poles at high
and low q2 can be seen. Fig. (b) shows the same unnormalized probability dis-
tribution for the SM for three values of the K∗0 mass. These are mK∗0 = mPDG

K∗0

(solid black), mK∗0 = mmin
K∗0 (dot-dashed blue) and, mK∗0 = mmax

K∗0 (dashed green).

sample. As many signal events are typically produced in a single batch, the

important metric is the mean time to decay an event. The presence of very long

tails in the decay time distribution must be avoided.

When testing the model it was found that a very long tail was indeed present.

As explained in Sec. 5.1.1, the accept/reject algorithm used in EvtGen maps

the probability distribution encoded in the decay amplitudes into the uniform

distribution. One consequence of this is that the probability to accept a given

event scales with 1/Pmax, the maximum probability that can be produced by the

decay model. This is not known a priori and so is calculated during initialization

by scanning the allowed regions of q2 with three different values of the K∗0 mass,

mPDG
K∗0 , mmin

K∗0 , and mmax
K∗0 , where the latter two extremes are fifteen times the

K∗0 natural width away from the nominal PDG mass. The probability profiles

generated by the decay model are shown in Fig. 5.3. The probability is highly

asymptotic at large values of q2. This is mainly due to the form factors, shown

in Fig. 5.1, which increase sharply as q2 goes to its kinematic maximum. This

behaviour was seen to be particularly extreme in the GMSSM, which featured

Pmax values of O(105). Such large values are probably not physically meaningful,

as the calculation is being applied a long way from the region in q2 for which it

is valid. At the same time however, the phase space to actually produce a K∗0 is

decreasing; it must be produced approximately at rest. Events with high q2 have

a large decay probability, but a small phase space left to decay into. The result

of these competing effects can be seen in Fig. 5.4a which shows the generated q2

distribution. The number of generated events above a q2 of 18 GeV2/c4 rapidly

falls off, however, there is a distinct pole starting at this point. It was found that
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Figure 5.4: Fig. (a) shows the generated q2 distribution for the SM. Fig. (b)
shows the CPU time to generate a SM signal event. The mean generation time
over 8M signal events was 8.2 s.

the mean time to generate an event is strongly related to the value of Pmax. A

cut was introduced into the model, so that the probability is artificially forbidden

from increasing past 18.25 GeV2/c4. This cut-off was chosen to minimize the

impact on the q2 distribution while still providing acceptable performance.

Fig. 5.4b shows a histogram of the number of CPU seconds required to gen-

erate each signal event from a sample of 8 million SM events. This sample was

generated using 957 individual jobs, running at 42 different computing sites. This

is a representative sample for the kind of MC production done in LHCb. The

mean time to generate an event was 8.2 s. This should be compared with a mean

of 1.9 s for the previous model, however it is still much less than the time required

to run the full LHCb detector simulation.
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5.3.2 Comparisons
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Figure 5.5: Comparison of AFB distributions. The blue open points show the

AFB distribution produced by the BTOKSTARLLDURHAM07 decay model. The black

solid line shows the predicted distribution in the range q2 ∈ [1, 6] GeV2/c4 using

the underlying K∗0 spin amplitudes. The red triangles meanwhile show the AFB

distribution produced by the BTOSLLBALL model.

Fig. 5.5 shows the AFB distributions produced by the BTOKSTARLLDURHAM07 and

BTOSLLBALL models. The agreement is excellent in the region q2 ∈ [0, 5.76] GeV2/c4.

That the two models produce similar distributions is not surprising; both use sim-

ilar form factor models [104, 120] and NNLL SM Wilson coefficients. However,

there is a clear discontinuity at q2 of 5.76 GeV2/c4 arising from a change in the

Wilson coefficient treatment as different renormalization scales become appropri-

ate. The new model is able to avoid these unphysical effects as both low and

high scale contributions are simultaneously present for all q2 values. It should be

noted however that the AFB gradients produced by both models are similar at

the zero-crossing point. This was, however, not true for the previous version of

the BTOSLLBALL model considered in Ref. [112].

5.4 Summary

A new decay model for the simulation of Bd → K∗0µ+µ− has been developed

which allows for a state-of-the-art SM simulation to be performed. The LO con-
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tributions from NP may also be included using a selection of benchmark models,

or via the direct specification of NP Wilson coefficient components. The basic

theoretical framework used in the model has been described, and some compar-

isons have been made with the previous version. The model is fast enough to be

used in signal MC production. It is hoped that it will be a useful tool for the

study of Bd → K∗0µ+µ− as we enter the LHC era.

100



Chapter 6

Counting experiments for the

first few years

6.1 Introduction

The four-body final state of Bd → K∗0(→ Kπ)µ+µ− allows for a wealth of observ-

ables beyond the branching fraction. The majority of signal events reconstructed

at LHCb will be in the charged decay channel of the K∗0. The presence of four

charged tracks means that the angular resolution should be such that the three

decay angles shown in Fig. 3.1 are available with high precision. The invariant

mass of the muon pair will also be accurately determined. Thus it will be possible

to make a detailed study of the angular distribution of the decay with LHCb. In

the most commonly used basis, the angular distribution is made up of twelve

basic components. The relative contribution of each is given by a coefficient I
(a)
i

(see Chap. 3) [56]:

d4Γ

dq2d cos θ`d cos θK∗dφ
∝ Is1 sin2 θK∗ + Ic1 cos2 θK∗

+
(
Is2 sin2 θK∗ + Ic2 cos2 θK∗

)
cos 2θ`

+ I3 sin2 θK∗ sin2 θ` cos 2φ

+ I4 sin 2θK∗ sin 2θ` cosφ

+ I5 sin 2θK∗ sin θ` cosφ

+
(
Is6 sin2 θK∗ + Ic6 cos2 θK∗

)
cos θ`

+ I7 sin 2θK∗ sin θ` sinφ

+ I8 sin 2θK∗ sin 2θ` sinφ

+ I9 sin2 θK∗ sin2 θ` sin 2φ. (6.1)
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These coefficients are functions of q2 only. To avoid absolute measurements, these

coefficients are normalized by the total rate at a given value of q2 to give the

relative decay rate received by each component of the angular distribution. The

SM distribution for a fixed value of q2 is shown in Fig. 6.1. Both the symmetries

and the general features of the distribution can be seen. For more details see

Sec. 3.2. NP can alter it by enhancing or suppressing one or more of the I
(a)
i

basis coefficients, in turn making particular features more or less pronounced.

Disentangling the effect of each coefficient is the ultimate aim when planning a

programme of measurements at LHCb.

Figure 6.1: Contours of the differential decay rate for Bd → K∗0µ+µ−. The

surfaces show contours of equal differential decay rate, d4Γ/dq2dθ`dθK∗dφ, for

a fixed value of q2 equal to 3.5 GeV2/c4. The colour of a contour denotes the

decay rate on that contour, following a rainbow ordering where red shows the

largest decay rate. The distribution shown was generated from the decay model

described in Chap. 5 using the SM calculation.

Considering both CP -averaged and CP -violating quantities we can define two

sets of observables [56],

S
(a)
i =

(
I

(a)
i + Ī

(a)
i

)
/
d
(
Γ + Γ̄

)
dq2

, A
(a)
i =

(
I

(a)
i − Ī(a)

i

)
/
d
(
Γ + Γ̄

)
dq2

, (6.2)

that describe the properties of the angular distribution and can in turn be com-
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pared to theoretical predictions. The total differential width is

dΓ

dq2
=

3

4
(2Is1 + Ic1)− 1

4
(2Is2 + Ic2), (6.3)

implying the normalization condition

3

4
(2Ss1 + Sc1)− 1

4
(2Ss2 + Sc2) = 1. (6.4)

In the limit where the rest mass of the muons is small compared to their

invariant mass, further simplifications to the angular distribution are possible.

These are discussed further in Chap. 3. However these approximations will be

avoided unless explicitly stated as they may introduce small experimental sys-

tematic effects.

The distributions of the CP -conserving and CP -violating observables are shown

in Figs 6.2 and 6.3 for the theoretically clean region in q2 from 1-6 GeV2/c4 both

for the SM and for various NP models (see Chap. 5). While these figures do

not necessarily indicate the full range of allowed values they do show the relative

contributions to the angular distribution that might be expected. Several broad

conclusions can be drawn by inspecting these figures. Firstly considering the

CP -conserving observables shown in Fig. 6.2, the numerical sizes of S3 and S7−9

are rather small when compared to typical experimental resolutions attainable

for angular observables (e.g. Chap. 4). Noting that in the massless limit that

Ss2 = 1 − Sc2, there are four observables with predicted magnitudes of order 0.1

in the SM. These are Sc2, S4, S5 and, S6. Closer inspection of Eq. (6.1) shows

that S4 must be accessed via a full-angular fit due to the particular combination

of trigonometric functions present; the term that it contributes to integrates out

of the one- and two-dimensional distributions. The same is true for the term

containing S8. When a full-angular fit becomes possible (Sec. 4.1.3), other con-

siderations are relevant when choosing which observables to measure in order to

minimize the combined experimental and theoretical uncertainties (see Chap. 3).

The other three observables however can be accessed by considering one or two

decay angles only. This will allow for their extraction at an earlier stage than S4.

For this reason, they will be the major focus of this chapter.

103



SM

FBMSSM

GMSSM

UEDLHT

1 2 3 4 5 6

-0.8

-0.6

-0.4

-0.2

0.0

q2
HGeV2

L

S
2

c

(a) Sc2

SM

FBMSSM

GMSSM

UED
LHT

1 2 3 4 5 6
-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

q2
HGeV2

L

S
3

(b) S3

SM

FBMSSM GMSSM

UED

LHT

1 2 3 4 5 6

-0.05

0.00

0.05

0.10

0.15

0.20

q2
HGeV2

L

S
4

(c) S4

SM

FBMSSM

GMSSM

UED

LHT

1 2 3 4 5 6

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

q2
HGeV2

L

S
5

(d) S5

SM

FBMSSM

GMSSM UED LHT

1 2 3 4 5 6
-0.3

-0.2

-0.1

0.0

0.1

0.2

q2
HGeV2

L

S
6

(e) S6

SM

FBMSSM

GMSSM

UED

LHT

1 2 3 4 5 6
0.00

0.01

0.02

0.03

0.04

0.05

q2
HGeV2

L

S
7

(f) S7

SM

FBMSSM

GMSSM

UED

LHT

1 2 3 4 5 6

-0.012

-0.010

-0.008

-0.006

-0.004

-0.002

0.000

q2
HGeV2

L

S
8

(g) S8

SM

FBMSSM

GMSSM

UEDLHT

1 2 3 4 5 6

-0.008

-0.006

-0.004

-0.002

0.000

q2
HGeV2

L

S
9

(h) S9

Figure 6.2: CP -conserving angular observables with NP. These figures can be
compared with Fig. 2 of Ref. [56]. The individual models shown are introduced
in Sec. 5.2.5.
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6.2 CP -conserving observables

As discussed in Ref. [56], Sc2 and S6 are related to the commonly studied [75–

78, 81] observables AFB [127] and FL [55]:

AFB =
3

8
(2Ss6 + Sc6) ; FL =− Sc2. (6.5)

Sc6 vanishes in the SM and generically small in the presence of NP ([56] and the

constraints shown in Sec. 6.6). S5 is not linearly related to any other proposed

observable, although it contributes to A
(4)
T [1]. It provides complementary NP

sensitivity to AFB and FL; in addition to C eff
7 and C eff

9 it is sensitive to C ′ eff
7

and C ′ eff
10 [56]. These observables may be extracted using a fit to one or more

decay angles (e.g. [107]) or by counting the number of events in specific angular

bins. The latter approach has been extensively studied within LHCb as a method

of extracting AFB [112, 128]. In this case the number of signal events are split

into two samples; one with cos θ` ∈ [−1, 0] and another with cos θ` ∈ [0, 1]. AFB

can be found using Eq. (6.6) by estimating the number of signal events in each

sample.

AFB(q2) =

∫ 1

0
∂2Γ

∂q2∂ cos θ`
d cos θ` −

∫ 0

−1
∂2Γ

∂q2∂ cos θ`
d cos θ`∫ 1

0
∂2Γ

∂q2∂ cos θ`
d cos θ` +

∫ 0

−1
∂2Γ

∂q2∂ cos θ`
d cos θ`

. (6.6)

This is either done in bins of q2 as in Ref. [112] or unbinned in q2 as in Ref. [128].

These so called counting experiments are attractive as relatively early measure-

ments at LHCb due to their conceptual simplicity. If we limit ourselves to those

expressions which involve one or two decay angles then a variety of interesting

observables become accessible, including those shown below, where A
(2)
T is defined

in Chap. 3. We have:

Sc2 =− 1

9

(
11− 16

[∫ 1/2

−1/2

d cos θK∗d
d2(Γ + Γ̄)

dq2 dθK∗

/
d(Γ + Γ̄)

dq2

])
= −FL; (6.7)

S3 =
π

2

[∫ 2π

0

−4

∫ 3π
4

π
4

]
dφ

d2(Γ + Γ̄)

dq2 dφ

/
d(Γ + Γ̄)

dq2

≈1

2
(1− FL)A

(2)
T , if the lepton masses can be neglected; (6.8)

S5 =
4

3

[∫ π/2

0

+

∫ 2π

3π/2

−
∫ 3π/2

π/2

]
dφ

[∫ 1

0

−
∫ 0

−1

]
d cos θK∗

d3(Γ− Γ̄)

dq2 d cos θK∗ dφ

/
d(Γ + Γ̄)

dq2
;

(6.9)

Ss6 ≈
4

3

[∫ 1

0

−
∫ 0

−1

]
dθ`

d2(Γ + Γ̄)

dq2 dθ`

/
d(Γ + Γ̄)

dq2
, neglecting the contribution from Sc6,

≈4

3
AFB. (6.10)
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Of the numerically large observables, only Sc2 and Ss6 are accessible by considering

a single decay angle. At the price of considering two decay angles, S5 may also

be extracted.

6.3 CP -violating observables

The SM expectations for the A
(a)
i observables are very small and are neglected in

Fig. 6.3. Allowing a weak phase to enter the NP Wilson coefficients can generate

large CP asymmetries, for example in A7 and A9 which are both available without

performing a full-angular analysis [106]. The SM contribution comes from a

doubly Cabibbo suppressed term in the effective Hamiltonian (see Sec. 3.5.1).

Any observation of non-zero asymmetries would be a clear sign of physics beyond

the standard model. Both A7 and A9 may be extracted using angular counting

as shown below.

A7 =
4

3

[∫ π

0

−
∫ 2π

π

]
dφ

[∫ 1

0

−
∫ 0

−1

]
d cos θK∗

d3(Γ− Γ̄)

dq2 d cos θK∗dφ

/
d(Γ + Γ̄)

dq2
(6.11)

A9 =
π

2

[
4

∫ π
2

0

−
∫ 2π

0

]
dφ

d2(Γ− Γ̄)

dq2 dφ

/
d(Γ + Γ̄)

dq2
(6.12)

As discussed in Ref. [106], A9 is particularly attractive experimentally. It is the

CP asymmetry of the AIm observable studied in Chap. 4. The angular coefficients

I
(a)
i transform under CP as

I
(a)
1,2,3,4,7 → I

(a)
1,2,3,4,7; I

(a)
5,6,8,9 → −I(a)

5,6,8,9. (6.13)

By performing the transformation φ → −φ on the signal B sample, A9 may be

extracted by considering only the φ angle and considering the B and B samples

together.

6.4 Experimental analysis

In order to make a fair comparison between the statistical experimental sensi-

tivities that might be expected for the different observables, a framework for

making q2 binned and unbinned counting analyses was constructed, following

Refs [112, 128] where possible.
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Figure 6.3: CP -violating angular observables with NP. These figures can be
compared with Fig. 3 of Ref. [56].
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6.4.1 Generation

The decay model introduced in Chap. 5 was used to generate a sample of 8 million

generator level SM signal events. These events were used as a source of signal

events to produce an ensemble of toy experiments. A background sample was also

included. As in Chap. 4, this background was generated as flat in the decay angles

but follows the signal in q2 and a gently falling exponential in mB, the invariant

mass of the B meson. The signal, background, and combined distributions are

shown in Fig. 6.4. A particular event could be identified as being from the signal

or background distributions, however this information was not used in the fits.

6.4.2 B mass fits

Fits to the B invariant mass distribution were used to determine the relative

contribution of signal and background. The signal shape was parametrized as

a Gaussian with an exponential tail, known as the Crystal Ball function (e.g.

[129]). This includes the contribution from final state radiation. The background

was modelled as an exponential with a single negative floating parameter. The

shape parameters were determined in a fit to the entire data set and then fixed

to determine the fraction of signal and background present in each angular bin.

An example fit to 2 fb−1 of simulated SM data can be seen in Fig. 6.4e.

6.4.3 Polynomial fits

A simultaneous fit in the signal region (mPDG
B ±50 MeV) and the region outside of

this was performed to get the shape of each angular region as a function of q2; mB

is the measured B meson mass, while mPDG
B is its nominal value. A 10 MeV region

either side of the signal box was excluded so that the signal contamination in the

B mass side-band could be neglected. The background side-band region was taken

to be (mPDG
B − 250 MeV) ≤ mB ≤ (mPDG

B + 150 MeV), in line with LHCb offline

selections [72]. The signal fraction in the signal region was fixed using a fit to the

B mass distribution and re-normalized numerically using the background shape

function. It was assumed that all events in the mass side-band were background

events although a one percent contamination was seen in the lower mass side

band. The background distribution was modelled as a second order Chebyshev

polynomial, while the signal distribution was taken to third order.

6.4.4 Analysis procedure: AFB

Following Eq. (6.10), AFB can be extracted by performing separate fits in two

bins of the decay angle θ`. This was done for events with q2 ∈ [0.5, 8.5] GeV2/c4
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Figure 6.4: A sample 2 fb−1 SM toy data set showing the decay angles (Figs (a)-
(c)), and the invariant masses of the di-muon (squared; Fig. (d)) and total decay
(Fig. (e)). The blue closed circles, red open triangles and green open squares
show respectively the combined, generated signal, and background distribution.
In addition Fig. (e) shows an example mass fit to the entire toy data set.
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Figure 6.5: B mass and θ` polynomial fits for AFB. The F and B labels indicate
the forward and backward angular bins.
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to maximize the sensitivity to the zero-crossing [128]. The analysis framework

described above was applied as follows:

• Perform a fit to the B mass distribution for all events with q2 ∈ [q2
min, q

2
max]

to determine the mB signal and background shape parameters. An example

2 fb−1 fit can be seen in Fig. 6.4e.

• Divide the data set into two; one with cos θ` ∈ [−1, 0] and another with

cos θ` ∈ [0, 1], following Eq. (6.10).

• Perform individual fits to the B mass distribution with the shape param-

eters fixed. Determine the signal fraction in each of the angular bins and

estimate its value in the signal region. The number of signal events in each

bin, nF and nB can be found. Example fits are shown in Figs 6.5a and 6.5c.

• Fit the q2 distribution simultaneously in the signal and B mass side-band

regions using Chebyshev polynomials. The signal fraction in the signal

region is now fixed to the value found in the previous step. This allows for

the background subtracted signal distributions f(q2) and b(q2) to be found.

Example fits are shown in Figs 6.5b and 6.5d.

• Use the number of signal events found with the mass fits, and the shape

information from the polynomial fits to determine

AFB(q2) =
nFf(q2)− nBb(q2)

nF b(q2) + nBb(q2)
. (6.14)

• Determine the point in q2 were AFB is zero using a iterative numerical

algorithm applied to Eq. (6.14).

Any observable which can be extracted via a counting experiment of this sort

can in principle have its q2 dependent distribution determined if there are enough

events in each angular bin to perform a mass fit. For smaller data sets, considering

q2 integrated quantities will produce more robust results.

6.4.5 Integrated quantities

Theoretical uncertainties are under control in the theoretically clean window, q2 ∈
[1, 6] GeV2/c4, as discussed in Chap. 3. To minimize the combined experimental

and theoretical uncertainties, a single measurement can be made of the rate

average of an observable within this window, defined for a variable V (q2) as

〈V 〉1−6 GeV2 =

∫ 6 GeV2

1 GeV2

dq2V (q2)

/∫ 6 GeV2

1 GeV2

dq2 d(Γ + Γ̄)

dq2
. (6.15)
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While the q2 dependence of the angular observables will be important to separate

different classes of NP if discovered, comparing SM predictions and the rate

averaged quantities offer a chance for discovery with lower integrated luminosities

and allows for precision measurements.

The same tools are used to perform the fits as in the previous section. A B

mass fit of the entire data set is performed to extract the signal and background

shape parameters, as described in Sec. 6.4.2. The data is then split up into the

appropriate angular bins and a second B mass fit is performed in each bin. These

are used to extract the fraction of signal and background per angular bin, from

which an estimate of the actual number of signal events present can be made.

These numbers may then be used to find the integrated value of each observable

directly using the appropriate expression.

6.5 Results

The methods described in Sec. 6.4 can be applied to a number of observables us-

ing Eqs 6.7-6.12. This was done for toy LHCb data sets corresponding to 0.5 fb−1,

1 fb−1 and 2 fb−1, assuming the SM. It is expected that LHCb will accumulate the

largest of these data set sizes in the first three years of running, so these samples

illustrate what may be possible in this time. Following the methods of Chap. 4,

an ensemble of 1200 toy LHCb experimental data sets was generated for each of

the three integrated luminosities considered. Each data set was produced as de-

scribed in Sec. 6.4.1. For each data set, q2 dependent analyses were performed to

extract AFB, S3, S5, A7, and A9 as well as the zero-crossing points of AFB and S5.

In addition q2 integrated analyses were run to extract 〈AFB〉1−6 GeV2 , 〈FL〉1−6 GeV2 ,

〈S5〉1−6 GeV2 , and 〈A9〉1−6 GeV2 . Each data set was independent, however the indi-

vidual analyses were run sequentially on the same data, so that any correlations

could be seen. This produced a further ensemble, for example, {〈AFB〉1−6 GeV2}1200

enabling an estimate of the 1σ statistical uncertainty expected for a data set of

that size to be found. As in chapters 3 and 4, this was done by ordering the

ensemble and then selecting the results closest to the appropriate contour.

Fig. 6.6 shows the results of this process for the integrated quantities and zero-

crossings using 2 fb−1 SM data sets. The one and two σ contours are shown, as are

the median and input values. It can be seen that for all but 〈FL〉1−6 GeV2 , shown in

Fig. 6.6d, any biases seen are small compared to the estimated sensitivities. This

bias appears relative to the value of 〈FL〉1−6 GeV2 calculated using the underlying

amplitudes of the decay model and is thought to be an artefact of the method

used to generate the input data sets. A summary of the estimated sensitivities

can be found in Tab. 6.1. Where possible the smallest available official LHCb
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Observable 2 fb−1 1 fb−1 0.5 fb−1 LHCb 2 fb−1 Ref.

q2
0(AFB) +0.56

−0.94
+1.27
−0.97 – 0.42 [128]

q2
0(S5) +0.27

−0.25
+0.53
−0.40 – –

〈AFB〉1−6 GeV2
+0.03
−0.04

+0.05
−0.03

+0.08
−0.06 0.020 [107]

〈FL〉1−6 GeV2
+0.02
−0.02

+0.04
−0.03

+0.04
−0.06 0.016 [107]

〈S5〉1−6 GeV2
+0.07
−0.08

+0.09
−0.11

+0.16
−0.15 –

〈A9〉1−6 GeV2
+0.08
−0.07

+0.11
−0.11

+0.22
−0.14 0.015 [2]a

Table 6.1: Estimated 1σ LHCb sensitivities for 2 fb−1, 1 fb−1 and 0.5 fb−1 of
integrated luminosity, assuming the SM. Where available, the smallest official
LHCb 2 fb−1 sensitivity estimate is also shown. Only Ref. [128] is directly com-
parable with this work, although LHCb signal yield estimates have been revised
downwards since its release [8, 72].

aBased on the sensitivity to AIm, which is the CP average of the I9 angular term while A9

is the CP asymmetry. See also Sec. 4.3.

2 fb−1 estimate is also shown for comparison. The same ordering procedure can

be used to estimate the contours for the q2 dependent quantities. In this case the

contours are found as with the integrated quantities, but with a fixed value of q2.

Doing this at many values of q2 results in the bands shown in Fig. 6.7.

6.5.1 Analysis

The sensitivities shown in Tab. 6.1 follow a pattern hinted at in Sec. 6.1. The

observable with the largest absolute size, as shown in Fig. 6.2, is FL. This can be

extracted using only the θK∗ decay angle with Eq. (6.7). This is borne out by re-

cent Belle experimental results [75]. The ratio of uncertainties for 〈AFB〉1−6 GeV2

and 〈FL〉1−6 GeV2 is similar to that found by Belle. The estimated sensitivity

on 〈S5〉1−6 GeV2 is poorer still. 〈FL〉1−6 GeV2 may be extracted by performing fits

in two bins, as can 〈AFB〉1−6 GeV2 . To extract 〈S5〉1−6 GeV2 requires six angular

bins; experimental systematic effects are also likely to be a concern due to a more

challenging angular acceptance.

We also study the sensitivity to S3, which is related to the well known ob-

servable A
(2)
T [55]. Its smallness in the SM means that, as found in Ref. [107], the

experimental resolutions obtained are poor, as seen in Fig. 6.7c. In the presence

of significant NP in C ′ eff
7 , this term can be considerably enhanced [57], however

it will be challenging to find an unambiguous NP signal in the first few years

with this observable alone. Fig. 6.2b shows the S3 distribution in various NP

scenarios, including the GMSSM which has C ′ eff
7

NP = 0.174 + 0.174i. While the
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Figure 6.6: Figs (a) and (b) show histograms of the q2 values at which the AFB

and S5 distributions shown in Figs 6.7a and 6.7b respectively are equal to zero.
Figs (c)-(f) show the ensemble of q2 integrated observables for 2 fb−1 of simulated
SM data. In each figure the input distribution is shown as a dashed black line.
The median value of the ensemble as a function of q2 is shown as a solid red line.
The light and dark bands show estimates of the one and two sigma confidence
levels that would be found if these fits were performed on 2 fb−1 of SM like data.
In addition the very dark blue bands indicate those events in the ensemble which
fall outside of the two sigma contour.
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enhancement seen is significant, the overall magnitude is still rather small. In this

chapter, those observables which are numerically large are favoured for pragmatic

reasons and so S3 will be left for other works less bound by these considerations,

notably Ref. [1].

Both AFB and S5 have zero-crossings in the SM. These are of interest as they

provide additional opportunities for comparison with theoretical predictions and

have reduced hadronic theoretical uncertainties [7]. As discussed in Sec. 4.3.2,

the experimental uncertainty on a zero-crossing point is approximately linearly

related to the gradient of the distribution as it goes through the zero. We define

these gradients for AFB and S5 as

G0(AFB) =
dAFB

dq2

∣∣
q20(AFB)

and G0(S5) =
dS5

dq2

∣∣
q20(S5)

. (6.16)

In the SM treatment used in this chapter, these have the ratio

G0(S5)

G0(AFB)
≈ 1.75. (6.17)

The ratio of the estimated q2
0(AFB) and q2

0(S5) uncertainties shown in Tab. 6.1 is

actually greater than this due to the long negative tail in the q2
0(AFB) ensemble,

see Fig. 6.6a; the RMSs of the two distributions are closer to the expected value

of two. This is significant, as it offers the chance to access q2
0(S5) with better

statistical precision than for q2
0(AFB) for the same integrated luminosity.

Finally the CP asymmetries A7 and A9 are considered. As can be seen in

Fig. 6.3, these asymmetries vanish in the SM, but may be significantly enhanced

in some NP models. The experimental sensitivity, as seen from Tab. 6.1 and

Fig. 6.7 is quite limited. As explained in Ref. [106], 〈A9〉1−6 GeV2 has some promise

as it may be extracted using just two angular bins in the φ decay angle. Current

limits on CP violation are rather poor, and any constraint would be worthwhile.

The sensitivities for a 10 fb−1 full-angular analysis are shown in Fig. 4.8. The im-

provement is significantly better than would be expected from naive scaling of the

uncertainties. It may require an analysis of this sort before these measurements

reach the precision required to exclude more realistic NP models.

Consideration of Tab. 6.1 shows that the counting analyses presented, while

generic, are not optimal. The LHCb Bd → K∗0µ+µ− signal yield estimates

have recently been revised downwards [8]. This is reflected in this work, but

not in those referenced in Tab. 6.1. The sensitivities presented in this chapter

are expected to be relatively conservative and may be improved once dedicated

methods have been developed and LHCb data taking has further progressed.
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6.6 Model-independent constraints on NP

Experimental results can be used to constrain NP contributions, CNP
i , of the

Wilson coefficients, Ci, where Ci = CSM
i + CNP

i . We can then determine possi-

ble model-independent effects of NP on Bd → K∗0µ+µ−. The most important

constraints on the Wilson coefficients are the following:

B(Bs → µ+µ−): This is used to constrain the possible NP contribution to the

scalar and pseudoscalar operators. To calculate the branching ratio the standard

result from Ref. [56] is used. In agreement with existing results, we find the SM

prediction BR(Bs → µ+µ−) = (3.70 ± 0.31) · 10−9 to be well below the current

experimental upper bound 3.6 · 10−8 [122].

B(B → Xsl
+l−): We compare NP predictions for B(B → Xsl

+l−)1−6 GeV2 to

the mean experimental value (1.60±0.51)·10−6, as adopted in Ref. [106] combining

the results of BABAR, (1.8± 0.7± 0.5) · 10−6 [130], and Belle, (1.49+0.41
−0.32± 0.50) ·

10−6 [131]. This helps to constrain the NP contribution to C
(′) eff
7,8,9 as well as C(′)

S,P .

Being an inclusive mode, the calculation for the region q2 ∈ [1, 6] GeV2/c4 of the

branching ratio is theoretically clean. We use the expression for the differential

decay distribution in Ref. [132], but also include the NLO corrections computed

in Ref. [133], and the contribution of the primed operators as in Ref. [134]. Using

our parameters we predict B(B → Xsl
+l−) = (1.97± 0.11) · 10−6 for the SM.

B(B → Xsγ): The recent theoretical result of Ref. [49], (3.28 ± 0.25) · 10−4,

is used and NP effects are included as in Ref. [57]. This can be compared to the

current experimental average for Eγ > 1.6 GeV, B(B → Xsγ) = (3.52 ± 0.23 ±
0.09) · 10−9 found by the Heavy Flavour Averaging Group (HFAG) [20].

S(B → K∗γ): The time-dependent CP asymmetry of B → K∗0γ is sensitive

to the photon polarization, and hence to C ′ eff
7 . Our result of S(B → K∗γ) =

(−0.26 ± 0.05) · 10−1 agrees with that of Ref. [106] within uncertainties. This

should be compared to S(B → K∗γ) = (−1.6± 2.2) · 10−1 from experiment [20].

〈AFB〉1−6GeV2 for Bd → K∗0µ+µ−: Belle has a recent measurement of

〈AFB〉1−6 GeV2 equal to −0.26 ± 0.29 [75]. This is to be compared to the SM

prediction of 0.04 ± 0.03, made using the underlying amplitudes of the decay

model presented in Chap. 5 and compatible with the value found in Ref. [111]

once the sign convention change has been taken into account. While BABAR

has a comparable measurement [77], it is made in a larger q2 window which is
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Observable Experiment SM Theory

B(Bs → µ+µ−) 3.6 · 10−8 [122] (3.70± 0.31) · 10−9

B(B → Xsl
+l−)1−6 GeV2 (1.60± 0.51) · 10−6 [106] (1.97± 0.11) · 10−6

B(B → Xsγ) (3.52± 0.23± 0.09) · 10−4 [20] (3.28± 0.25) · 10−4

S(B → K∗γ) (−1.6± 2.2) · 10−1 [20] (−0.26± 0.05) · 10−1

〈AFB〉1−6 GeV2 −0.26± 0.29 [75] 0.04± 0.03
〈FL〉1−6 GeV2 0.67± 0.24 [75] 0.76± 0.08

Table 6.2: Experimental measurements used as constraints, along with theoretical
predictions in the SM.

problematic to handle theoretically. An analysis which includes the BABAR data

can be found in Ref. [135].

〈FL〉1−6GeV2 forBd → K∗0µ+µ−: Belle has also recently measured 〈FL〉1−6 GeV2

to be 0.67±0.24 [75]. This should be compared to the SM prediction 0.76±0.08,

again made using the underlying decay model amplitudes. This is very compatible

with the values found in Refs [106, 111] but less so with Ref. [1].

These expressions were implemented using the framework introduced in Chap. 5.

This allowed for their value with arbitrary values of C
(′)NP
i to be calculated, for

i ∈ {7-10, S, P}. No observable considered here has sensitivity to CS,P and C ′S,P
individually. These are combined as (CS-C ′S) and (CP -C ′P ) for clarity. A semi-

random walk through parameter space was performed in order to assess the im-

pact of these constraints on the underlying Wilson coefficients in as general a

way as possible. We allow the NP components of all Wilson coefficients to vary

simultaneously, both in magnitude and phase. A simple optimization algorithm,

shown in Alg. 1 and based on the ideas of Markov Chain Monte Carlo (MCMC),

was used to sample the allowed regions of parameter space without prejudice.

It traces a path through parameter space where each point has a χ2, calculated

using the six experimental constraints above, smaller than the last point in the

chain, until a region is found that is in better agreement with data than two σ.

A probability metric was used which treats experimental uncertainties as being

normally distributed, but theoretical uncertainties as having uniform probability

within a specified range,

Pr(Ci, Pi, σCi , σPi) =

∫ (Pi+σPi )

(Pi−σPi )
Gaus[Ci, σCi ](x) dx

=
1

2
√

2σCi

[
Erf

(
Ci − x

)](Pi−σPi )

(Pi+σPi )

. (6.18)

This probability was then mapped on to the one dimensional χ2 distribution.
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Algorithm 1 The MCMC algorithm for a semi-random walk through Wilson
coefficients parameter space.

1: repeat
2: {Pick starting values}
3: for j ∈ [7, 8, 9, 10, S, P ] do
4: Cj ← Gaus(0, 1) exp(i uniform(0, 2π))
5: C ′j ← Gaus(0, 1) exp(i uniform(0, 2π))
6: end for
7: until χ2 < 5σ
8: repeat
9: total← χ2; prob← Pr(total)

10: repeat
11: for j ∈ [7, 8, 9, 10, S, P ] do
12: {Perturb both modulus and phases of all coefficients}
13: Cj ← Cj ×Gaus(0, 1− prob); C ′j ← C ′j ×Gaus(0, 1− prob)
14: end for
15: if (χ2 > total) then
16: if (uniform(0, 1000) < 997) then

17: Reset to previous values of C(′)
j

18: end if
19: end if
20: until χ2 < total
21: until total < 2σ

Using this approach, greater consistency was provided with the treatment of

theoretical uncertainties in Sec. 3.5. However the difference between this and a

traditional χ2 metric was minimal.

In order to treat the B(Bs → µ+µ−) measurement consistently with other

constraints, it was assumed that the reported exclusion contours were normally

distributed. This allowed for the ninety and ninety-five percent exclusion limits

to be converted to a central value and uncertainty. This is illustrated in Fig. 6.8.

The central value found was (1.13 ± 1.93) × 10−8. The fact that positive values

are favoured suggests that signal events were seen, but with low significance.

As shown in Alg. 1, the random walk is guided by the value of the χ2 so

that regions with higher compatibility may be identified. The additive nature

of the χ2 distribution was particularly important as some constraints were much

less computationally intensive to calculate than others. The fastest constraints

to calculate were applied first with looser bounds, so that computationally com-

plex quantities such as 〈AFB〉1−6 GeV2 were only calculated if the agreement with

other observables was already close to the level required. Using this method, a

sample of 2.5 · 105 independent sets of Wilson coefficients were produced. Each

set results in predictions for the observables listed above with better than two σ

agreement with current measurements. It was found that the agreement with the
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Figure 6.8: The contours of B(Bs → µ+µ−) from Ref. [122] assuming normal
distribution.

SM is currently excellent, with a χ2 per degree of freedom of 0.35 (91%). This

agreement is better than would normally be expected for six semi-independent

measurements. The current treatment neglects correlations between theoretical

uncertainties; the low χ2 found may suggest that a more detailed study of the

theoretical uncertainties will be required once higher precision experimental mea-

surements become available.

Fig. 6.9 shows the range of values found for the phase and magnitude of the

NP contribution to C eff
7 during the parameter space exploration. It is shown at

the weak scale, µ = mW . The colour index shows the mean probability of that

point being compatible with current experimental results. Areas with probability

greater than one σ are shaded red, while those below this are shaded blue. The

outline of the one σ contour can be seen. For comparison, the values of the NP

Wilson coefficients are shown for the SM, the FBMSSM and the GMSSM. All

three models are compatible with current constraints. Similar figures are shown

for the other Wilson coefficients in Figs 6.10 and 6.11. The allowed regions of

parameter space are still large.

The ensemble of constrained NP models can also be used to explore the likely

values of q2
0(AFB) and q2

0(S5). It was found that eight percent of parameter space

points considered had no AFB zero in the range q2 ∈ [0.5, 15] GeV2/c4, and twelve

percent for S5. Theoretical uncertainties are not well controlled over this q2 range,

however, the majority of points within the one σ contour lie in the theoretically

clean region, q2 ∈ [1, 6] GeV2/c4. The distribution can be seen in Fig. 6.12a.

Fig. 6.12b shows the distribution of AFB and S5 gradients at their zero-crossing

points. There is a clear linear relationship. We find for the majority of points,

G0(S5) is greater than G0(AFB). This suggests that the improvement on the

experimental resolution of q2
0(S5) relative to q2

0(AFB) is a general feature of the
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(a) C eff
7 (b) C ′ eff

7

Figure 6.9: Allowed parameter space for the NP contribution to the Wilson
coefficients C eff

7 and C ′ eff
7 at mW . The SM point lies at the origin and is marked

with a black point. The SM point is shown in black at the origin, while the
FBMSSM is a green square and the GMSSM is an blue triangle. These models
are introduced in Chap. 5. The colour of each point in parameter space denotes
the mean degree of compatibility between current measurements and the sets
of observables which fall into that particular {abs(C

(′) eff
7

NP), arg(C
(′) eff
7

NP)} bin.
Points with a compatibility with data of sixty-eight percent or better are drawn
with a red colour pallet, while those less compatible than this are shown with a
blue pallet. All points are required to have a compatibility with data better than
five percent.
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(a) C eff
8 (b) C ′ eff

8

(c) C eff
9 (d) C ′ eff

9

Figure 6.10: Allowed parameter space for the Wilson coefficients C
(′) eff
8,9 after

applying 2009 b→ s experimental constraints. The colour coding is the same as
in Fig. 6.9.
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(a) C eff
10 (b) C ′ eff

10

(c) (CS − C′S) (d) (CP − C′P )

Figure 6.11: Allowed parameter space for the Wilson coefficients C ′ eff
10 , (CS−CS),

and (CP − CP ) after applying 2009 b → s experimental constraints. The colour
coding is the same as in Fig. 6.9.
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(a) (b)

Figure 6.12: Fig. (a) shows allowed values of the AFB and S5 zero-crossing points
in the range q2 ∈ [0.5, 15] GeV2/c4. The SM point and its uncertainty is shown as
a black ellipse. Fig. (b) shows the gradient of the AFB and S5 at the zero-point.
In each case the colour index has the same meaning as in Fig. 6.9.

decay and not just a property of the SM. Analysis of the soft form factors shows

that this prediction is robust [7].

6.7 Experimental impact

The relative impact of the different analyses presented in Sec. 4.1 can be assessed

by again considering the results of the parameter space exploration performed in

Sec. 6.6. It is assumed that LHCb will make 2 fb−1 measurements of the observ-

ables 〈AFB〉1−6 GeV2 , 〈S5〉1−6 GeV2 , 〈FL〉1−6 GeV2 , q2
0(AFB) and q2

0(S5) and that the

resultant experimental uncertainties are symmetrized versions of those given in

Tab. 6.1. In addition, we assume that there is no NP present in b → s decays

and that the extracted value of each observable is as given in Tab. 6.2. The total

χ2 for each point in parameter space is then updated to reflect the hypothetical

SM measurements. Where individual measurements are superseded they are re-

placed with no attempt at combination. However, other current constraints such

as B(B → Xsγ) are included as before. The constraining power of each analysis

can then be compared.

Fig. 6.13 shows the relative impact of these measurements on the NP com-

ponent of C eff
7 . In Fig. 6.13a, SM values of 〈AFB〉1−6 GeV2 and q2

0(AFB) are im-

posed with the estimated 2 fb−1 experimental sensitivities taken from Tab. 6.1.

Fig. 6.13b shows the impact of 〈FL〉1−6 GeV2 and Fig. 6.13c of 〈S5〉1−6 GeV2 and

q2
0(S5) for the same LHCb integrated luminosity. These should be compared with
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(a) 〈AFB〉1−6 GeV2 & q2
0(AFB) (b) 〈FL〉1−6 GeV2

(c) 〈S5〉1−6 GeV2 & q2
0(S5)

Figure 6.13: The relative impact of different proposed LHCb measurements after
2 fb−1 of integrated luminosity, assuming the SM, on the NP component of C eff

7 .
In each case the colour index has the same meaning as in Fig. 6.9.
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the currently allowed parameter space for C eff
7 , shown in Fig. 6.9. The small sta-

tistical uncertainty shown in Tab. 6.1 for q2
0(S5) allows for a stringent constraint

on parameter space to be made.

Fig. 6.14 shows the combined effect of the proposed measurements, again

assuming the SM and the estimated sensitivities from Tab. 6.1 on the NP compo-

nents of the Wilson coefficients C eff
7 , C ′ eff

7 , C eff
9 and C ′ eff

10 . These are relevant

for S5. The other Wilson coefficient components are shown in Figs 6.15 and

6.16. The amount of parameter space left after these measurements would be

significantly reduced. Most NP contributions would lie outside the one σ contour

unless there are significant NP weak phases present. This again illustrates the im-

portance of CP -asymmetries, as described in [106]. The FBMSSM and GMSSM

models would be excluded by these measurements alone. The UED could also be

excluded if proposed LHCb measurements of B(Bs → µ+µ−) were included [8].

6.8 Summary

In this chapter, angular observables in the decay distribution of Bd → K∗0(→
Kπ)µ+µ− have been studied with emphasis on finding suitable measurements for

the first few years of LHCb data taking. Techniques to extract the observables

AFB, FL, S3, S5, A7 and A9 have been presented. Two different approaches have

been investigated. The first, where a q2 integrated value is extracted, is suitable

for making both precision and low-statistics measurements. The other, where the

q2 dependence is also mapped out, offers additional NP discrimination once data

set sizes increase and allows for zero crossings to be extracted where available.

The sensitivity to the AFB and S5 zero crossings have been found. It was shown

that the sensitivity to q2
0(S5) should be considerably better than for q2

0(AFB), as

the ratio G0(S5)/G0(AFB) is close to two in the SM.

An analysis of the parameter space allowed by experimental constraints has

been presented. There is significant room for NP contributions to b → s tran-

sitions, especially if extra weak phases from beyond the CKM mechanism are

present. It was also shown that the ratio of G0(S5)/G0(AFB) will be greater than

one for most allowed areas of parameter space, if current form factor predictions

and uncertainties are upheld.

By applying the results of hypothetical SM results, the impact of making

2 fb−1 LHCb measurements was assessed. 〈AFB〉1−6 GeV2 , 〈FL〉1−6 GeV2 , 〈S5〉1−6 GeV2 ,

q2
0(AFB), and q2

0(S5) all provide useful and complementary constraints, enabling

a number of the specific NP models considered in Chap. 5 to be excluded. The

constraining power of S5 was particularly significant due to the projected small-

ness of the q2
0(S5) uncertainty. Thus, it is recommended that an analysis of S5 is
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(a) C eff
7 (b) C ′ eff

7

(c) C eff
9 (d) C ′ eff

10

Figure 6.14: Allowed parameter space for the Wilson coefficients C eff
7 , C ′ eff

7 ,
C eff

9 and C ′ eff
10 after 2 fb−1 measurements at LHCb of 〈FL〉1−6 GeV2 , 〈AFB〉1−6 GeV2 ,

q2
0(AFB), 〈S5〉1−6 GeV2 and q2

0(S5), assuming the SM. The colour coding is the same
as in Fig. 6.9.
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(a) C eff
8 (b) C ′ eff

8

(c) C ′ eff
9 (d) C eff

10

Figure 6.15: Allowed parameter space for the Wilson coefficients C eff
8 , C ′ eff

8 ,
C ′ eff

9 , and C eff
10 after 2 fb−1 measurements at LHCb of 〈FL〉1−6 GeV2 , 〈AFB〉1−6 GeV2 ,

q2
0(AFB), 〈S5〉1−6 GeV2 and q2

0(S5), assuming the SM. The colour coding is the same
as in Fig. 6.9.
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(a) CS − C′S (b) CP − C′P

Figure 6.16: Allowed parameter space for the Wilson coefficients (CS − CS)
and (CP − CP ) after 2 fb−1 measurements at LHCb of 〈FL〉1−6 GeV2 , 〈AFB〉1−6 GeV2 ,
q2

0(AFB), 〈S5〉1−6 GeV2 and q2
0(S5), assuming the SM. The colour coding is the same

as in Fig. 6.9.

performed with the first few years of LHCb data in addition to those of AFB and

FL already planned [8].
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Chapter 7

Conclusions

At the time of writing this thesis, the LHC was just starting its 2010 run. It is to

be hoped that this will herald the start of a new era of discovery in HEP. There

are many long-standing problems with our current model of weak interactions;

however, the overall picture is one of amazing consistency between experimental

measurements and SM predictions. It seems unlikely that the SM is valid to

the Planck scale; it must break down at some energy. It is reasonable to think

that this will occur at the TeV scale, and that we may see light shed on the

mechanisms behind the electroweak symmetry breaking at the LHC.

The evidence for the existence of massive dark matter on cosmological scales

with significantly suppressed EM interactions is increasingly convincing – there

is something new to discover (see Fig. 1.1). There is no guarantee that this

discovery will be in collider physics; however, we can interpret the cosmological

relic density of dark matter as a hint that there are new massive particles to study

on weak scales.

Flavour physics offers a direct connection to the mechanisms behind elec-

troweak symmetry breaking in the SM through the Yukawa couplings. The un-

explained hierarchy of the CKM matrix, shown in Eq. (1.30), as well as the huge

t-quark mass means that if there are weak scale NP effects, they might be seen

in the interactions of the third generation.

This thesis has been focused on the discovery of NP in the b → s quark

transition through the study of rare electroweak decays. These are governed

by the CKM elements Vtb and Vts and are dominated by loop effects, giving

sensitivity to new massive virtual particles that might be present. The effects of

current b → s observables were considered in Sec. 6.6 where it was shown that

the NP parameter space is still large. The b-quark production cross-section at

the LHC is expected to be huge; even very rare decays can be studied in detail

so that the allowed parameter space can be significantly reduced.

The LHCb detector, introduced in Chap. 2, has been developed to make pre-
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cision measurements of B meson decays at the LHC. It is a single-arm spectrom-

eter with highly specialized vertex tracking, PID from two RICH detectors, and

an extensive muon system. It has been designed to operate at a luminosity of

2 × 1032 cm−2 s−1, producing a proton-proton interaction rate of 10 MHz. This

must be reduced to 2 kHz for storage; this is achieved with a two-level trigger.

The first level uses custom hardware to select high ET hadrons and photons as

well as high pT muons. The second then uses the full detector read-out to analyse

events in software. The detector provides excellent B mass and track momentum

resolutions, allowing many rare B decays to be selected with high efficiency.

Bd → K∗0µ+µ− is a rare electroweak penguin decay that will be recorded

thousands of times a year by LHCb. The presence of four charged tracks in the

final state mean that it can be selected with relative ease, and gives access to

the angular distribution, the study of which has been of primary concern in this

thesis. The decay has been introduced in Sec. 1.4, and many of the features of

LHCb that allow for its detection described in Chap. 2. It is commonly studied

in the framework of OPE, introduced in Sec. 1.3.1, using HQET, described in

Sec. 1.3.2. A model-independent treatment of the full-angular distribution can

then be derived in terms of three decay angles and one invariant mass. Several

measurements of the decay have been made at BABAR, Belle, and CDF, but,

given current experimental uncertainties, they are in good agreement with SM

predictions.

The properties of the Bd → K∗0µ+µ− angular distribution were discussed in

Sec. 3.1, and a selection of observables that have reduced theoretical uncertainties

in certain areas of phase space were introduced in Sec. 3.3. It was shown that these

observables may, in principle, be measured by considering the symmetries of the

angular distribution in Sec. 3.2. That the NP sensitivity they provide is enough

when theoretical uncertainties are taken into account was verified in Sec. 3.5.4 and

Ref. [1]. In addition, it was shown that the estimates of theoretical uncertainties

coming from ΛQCD/mb corrections, which are expected to be the dominant source

of theoretical uncertainty, are not as large as previously thought; NP effects could

in principle be distinguished using these observables.

An important tool in developing these measurements will be simulations of

Bd → K∗0µ+µ− decays in the LHCb detector. A new model was developed as

a plug-in for EvtGen that allows simulation of the signal angular distribution,

both in the SM and model independently with NP. The EvtGen framework

was introduced in Sec. 5.1.1, and then the theoretical framework was specified in

Sec. 5.2 in a way that allows comparison with the previous generation of decay

models. The performance of the model was studied and it was shown that it is

good enough to be used in LHCb MC productions, as discussed in Sec. 5.3.
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In the first few years of LHC running, it will be important to focus on those

observables which are relatively straight-forward to measure. The most widely

studied of these observables is AFB, defined in Eq. (6.6). This can be found

by counting the number of signal events with cos θ` greater than zero and less

than zero, and then forming an asymmetry. In the SM, this vanishes at some

point in q2, known as the zero-crossing point, q2
0(AFB). The value of the zero-

crossing has reduced hadronic uncertainties in the large recoil limit, due to the LO

cancellation of the universal heavy-to-light form factors, as explained in Sec. 3.3.

The extraction of the zero-crossing has attracted significant study at LHCb.

There are a number of other observables that may be found in a similar way,

taking asymmetries in angular bins of one or more decay angles, as introduced

in Secs. 6.2 and 6.3. These observables were studied in a simplified analysis

framework that allowed for a fair comparison to be made between them. It

was shown that the zero-crossing of the observable S5 can be found with small

uncertainty due to the gradient of the S5 distribution at that point, G0(S5).

Furthermore, it was demonstrated model independently in Sec. 6.6 that G0(S5)

is greater than G0(AFB) for most of the allowed parameter space. This implies

that q2
0(S5) can often be found with an uncertainty smaller than that for q2

0(AFB),

despite the use of two decay angles. The implications for a 2 fb−1 measurement

on parameter space were assessed; it was found that an S5 measurement would

be a useful addition to those already considered by LHCb.

In later years of LHCb running, the number of Bd → K∗0µ+µ− signal events

may be great enough, and the detector well enough understood, to make a full-

angular analysis of the decay. The general framework for doing this was con-

sidered in the first three sections of Chap. 3. A number of theoretically clean

observables can be found which provide reduced hadronic theoretical uncertain-

ties and excellent sensitivity to NP. A fitting methodology was developed in

Sec. 4.1 that allowed for estimates of the LHCb sensitivities to these observables

with 10 fb−1 to be made, both for the SM and following the SUSY-b model. This

work led to many of the conceptual issues associated with making fits of this kind

being explored. It was shown in Sec. 4.3 that performing the full-angular analy-

sis provided large improvements in the sensitivity to those observables available

through angular projection fits; A
(2)
T and AFB both showed significant improve-

ment. CP -asymmetries were also considered with the aim of imposing constraints

on the NP phases of the Wilson coefficients active in the decay.

Correlations in the fit led to the discovery of an additional symmetry in the

angular distribution. The implications of this were discussed in Sec. 4.6. It seems

that while the sensitivity estimates shown in Chap. 4 are probably correct, the

presence of a fourth symmetry means that a new fitting methodology must be

132



developed before this measurement can be made. The requirements for this are

clear, however work must continue beyond the time-scale of this thesis. The

full-angular analysis remains the ultimate goal of the Bd → K∗0µ+µ− physics

programme at LHCb and has the potential to be one of the most interesting

measurements performed with the detector.

In summary, this thesis has laid out the theoretical and experimental reasons

to search for NP effects in the weak sector, and particularly in rare electroweak

b → s penguin decays like Bd → K∗0µ+µ−. Both the LHC project and the

LHCb detector have been introduced. It has been shown that the allowed regions

in parameter space for NP in b → s quark transitions are still relatively large,

despite a number of interesting measurements already made at the B-factories

and the TeVatron. A programme of measurements has been outlined that would

take the LHCb collaboration from its first measurements of the decay to its last.

Particular input to this has been made, showing that the S5 zero-crossing is an

excellent candidate for study in the first few years of running, and providing

many details on how to perform a full-angular analysis with larger data sets. In

addition, a new decay model was been developed which will allow the study of

experimental effects in the presence of NP. The author is now keenly awaiting

the first results from LHCb.
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Appendix A

Results of full-angular analysis

In this appendix, additional results for the full-angular analysis described in

Chap. 4 are presented. Firstly, Fig. A.1 shows the fit-quality of an example

10 fb−1 SM three-symmetry fit directly. The actual toy data set used in the fit

is shown; the figure shows the distributions of all four experimental observables.

Numerical projections of the full-angular PDF must be used in order to make a

direct comparison between the input data and the extracted distributions. The

solid red line shows the input distribution from which the toy data was generated

using an accept/reject algorithm. The blue line shows the distribution obtained

by performing the full-angular fit. The agreement between these two lines is

excellent for the θ` and θK∗ distributions, and slightly worse for φ. The largest

discrepancy is in the q2 distribution. This may be due to a failure of the polyno-

mial parametrization, and is particularly distinct at the high and low extremes

of the q2 window. The effect is, however, relatively small.

The other figures shown in this appendix give estimates for the statistical

uncertainties obtainable with 2 and 100 fb−1. These integrated luminosities are

the nominal values expected after one year of LHCb data taking, and at the

end of a SuperLHCb run. As explained in the main thesis body, full-angular fit

convergence may be achieved with only 2 fb−1 of integrated luminosity. Whether

an analysis can be made will depend on how well LHCb can be understood.

Estimated sensitivities are also shown for an upgraded LHCb detector at the end

of an extended run where 100 fb−1 of integrated luminosity might be expected.

In this case, the fit could provide extremely precise estimates for many angular

observables.
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Figure A.1: Numerical projections of the full polynomial fit PDF over an example
toy data set for each of the experimental observables. The points show a randomly
chosen 10 fb−1 data set, generated assuming the SM as described in Sec. 4.1.2.
The solid red line shows numerical projections over this data set with the full-
angular polynomial PDF, described in Sec. 4.1.1, with its parameters set via a
fit to the data set. The dashed line shows only the background contribution.
Underlayed on each plot is the blue line showing the input PDF. The parameters
of this PDF have been set by performing a polynomial fit to each of the K∗0 spin
amplitudes. Comparing these two lines we see that the full-angular fit is able to
extract the PDF parameters with good accuracy. The differences are largest for
the q2 distribution.
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Figure A.2: Estimated experimental sensitivities for 2 fb−1 of LHCb data assum-
ing the SM. The zero-crossing point extracted from (b) is 4.32+0.37

−0.35 GeV2/c4. The
colour scheme is the same as in Fig. 4.1.
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Figure A.3: Estimated experimental sensitivities for 100 fb−1 of LHCb data as-
suming the SM. The zero-crossing point extracted from (b) is 4.345+0.052

−0.049 GeV2/c4;
the bias on its value is now significant and could perhaps be improved by increas-
ing the order of the polynomials used in the full-angular fit. The colour scheme
is the same as in Fig. 4.1.
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(2)
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data assuming the SUSY-b scenario. The colour scheme is the same as in Fig. 4.6.
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Appendix B

Model commands and decay files

In this appendix, more detailed information of how to control the decay model

described in Chap. 5 will be presented. The model may be configured at run

time using commands in the EvtGen decay file. The syntax of this file has been

extended with a dedicated parser so that different physics models, form factors,

and options may be selected without recompiling the model. An example of this

is shown in Fig. B.1. A summary of the available commands is given in Tab. B.1,

and extra information is given below.

Alias MyK*0 K*0
Alias Myanti-K*0 anti-K*0
ChargeConj Myanti-K*0 MyK*0
EVTBTOKSTARLLDURHAM07_MODEL physicsModel(UED_Model),calcConstraints(1)
Decay B0sig
1.000 MyK*0 mu+ mu- EVTBTOKSTARLLDURHAM07;

Enddecay
CDecay anti-B0sig
Decay MyK*0
1.000 K+ pi- VSS;

Enddecay
CDecay Myanti-K*0
End

Figure B.1: An example decay file for Bd → K∗0µ+µ− with K∗0 → Kπ. The
first decay is done with the new EVTBTOKSTARLLDURHAM07 decay model, while
the second is done with the generic VSS model, which models resonant vector
to scalar scalar decay. Additional commands are passed to the model with the
command EVTBTOKSTARLLDURHAM07 MODEL. This accepts a comma separated list
of setting commands. The supported commands are given in Tab. B.1.

• calcConstraints: Calculate a set of experimental constraints for using

the selected physics and form factor models. Values are found for the zero-

crossing points of AFB, S4 and S5, the rate averages of AFB, FL and S5 in the
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Command Valid Arguments Default Value

calcConstraints(logical) 0 or 1 0
formFactorModel(number) See Tab. B.2. 0
highq2Cut(q2) 4m2

µ ≤ q2 ≤ (mB −mK∗0)
2 (mB −mK∗0)

2

lowq2Cut(q2) 4m2
µ ≤ q2 ≤ (mB −mK∗0)

2 4m2
µ

physicsModel(name) See Tab. B.3. Standard Model

wilsonCoefficients(list) See Sec. B.1. SM values
writeProbProfile(logical) 0 or 1 0

Table B.1: Model commands, their arguments and default values.

range q2 ∈ [1 GeV2/c4, 6 GeV2/c4], B(Bs → µµ), B(B → Xsγ), B(B → Xs``)

and, SCP (B → K∗0γ). More details are given in Chap. 6.

• formFactorModel: The particular model for the vector form factors used

will affect physical observables in a way which may produce better or

worse sensitivities than will be obtained from actual measurements - see

e.g. Ref. [2]. Several form factor models are provided so that this can be

explored however their use in production is not recommended.

• high/lowq2Cut: EvtGen requires each model to report the maximum

probability it could produce. The maximum probability is found by sam-

pling the available phase space as a function of q2. The highq2Cut and

lowq2Cut commands allow for bounds to be put on the region sampled in

order to cut-off poles and very low and high q2.

• physicsModel: A number of new physics models have been provided as

sets of Wilson coefficients at mW . Additional new physics models can be

added at run time by making use of the Generic Model. See Sec. B.1.

• writeProbProfile: If this option is set, the probability profile used to set

the maximum probability will be written to a file. These files may be of

particular interest in the case that a particular NP model is generating with

very low efficiency. Example output from this routine can be seen in Fig. 5.3

for the benchmark physics models.

B.1 The generic physics model

New physics models can be added at run-time by specifying a set of Wilson coeffi-

cients at mW . These may include those with complex values. Wilson coefficients

not explicitly set will default to their SM values. It is also possible to modify
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Model Ref Number

Ball ’07 [56]a 0
Ali ’01 [69] 1
Ball ’05 [104] 2
Beneke ’05 [74, 113] 3

aPrivate communication. Statistically compatible but slightly modified version of that used
in reference.

Table B.2: Available form factor models with references. The entries in the col-
umn ‘Number’ are the arguments to the command formFactorModel(n) needed
to activate that model.

a given SM Wilson coefficient from its SM value by a scaling factor using the

operators +=, -=, *= and, /=. For clarity, Cx ≡ LX and C ′x ≡ RX where x can be

in the range 1-12 for left-handed coefficients and 7-10 for right-handed version

(L11 ≡ CQ1 = (CS − C ′S) and L12 ≡ CQ2 = (CP − C ′P )). Each coefficient must be

followed by a colon.

physicsModel(Generic_Model),wilsonCoefficients(L7*1.05:R9=0.34-i0.78:)

In the following example, C7(mW ) = 1.05×C7(mW )SM and C ′9(mW ) = 0.34−0.78i.

Wilson coefficient indices out of the range i ∈ {1, .., 12} will throw an exception

at run time.

Model Name

FBMSSM FBMSSM Model

Generic Generic Model

GMSSM GMSSM Model

LHT LHT Model

SM Standard Model

UED UED Model

Table B.3: The physics model to be used can be specified in the model decay file
using the command physicsModel(Name) where the appropriate Name is shown
for each model appearing in Tab. 5.3.
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Appendix C

List of acronyms

CDF Collider Detector at Fermilab

CERN Organisation Européenne pour la Recherche Nucléaire

CKM Cabibbo-Kobayashi-Maskawa

√
s center-of-mass energy

CPU Central Processing Unit

ECAL electromagnetic calorimeter

HCAL hadronic calorimeter

EM electro-magnetic

FPGA field-programmable gate array

FBMSSM Flavour Blind MSSM

GMSSM General MSSM

FCNC flavour changing neutral current

GEM gas electron multiplier

GSL GNU Scientific Library

HEP High Energy Physics

HFAG Heavy Flavour Averaging Group

HLT High-Level Trigger

HQET heavy quark effective theory
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HPD Hybrid Photon Detector

IP interaction point

IP8 Intersection Point 8

IT Inner Tracker

L∅ Level-0

LEET large energy effective theory

LCSR Light Cone Sum Rules

LHC Large Hadron Collider

LHT Littlest Higgs with T -Parity

LO Leading Order

MC Monte Carlo

MCMC Markov Chain Monte Carlo

MFV Minimal Flavour Violation

MSSM Minimal Supersymmetric Standard Model

MWPC multiple-wire proportional chamber

NLL negative log-likelihood

NLO Next-to-Leading Order

NNLL Next-to-Next-to-Leading Log

NP new physics

OPE Operator Product Expansion

OT Outer Tracker

PDF parton distribution function

PDF probability density function

PDG Particle Data Group

PID particle identification
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PMT photomultiplier tube

PSB Proton Synchrotron Booster

PS Proton Synchrotron

SPD/PS scintillator-pad detector/pre-shower

QCD Quantum Chromodynamics

QCDf QCD factorization

QED Quantum Electrodynamics

QFT quantum field theory

QM quantum mechanics

RF radio frequency

RGE Renormalisation Group equation

RICH Ring-Imaging Čerenkov

RMS root-mean square

SCET soft-collinear effective theory

SM Standard Model

SPS Super Proton Synchrotron

ST Silicon Tracker

STFC Science and Technology Research Council

SUSY Supersymmetry

TT Tracker Turicensis

UED Universal Extra Dimensions

VELO Vertex Locator

WIMP Weakly-Interacting Massive Particle

WMAP Wilkinson Microwave Anisotropy Probe

144



Bibliography

[1] U. Egede, T. Hurth, J. Matias, M. Ramon and W. Reece, New observables

in the decay mode Bd → K∗0µ+µ−, JHEP 11 (2008) 032 [0807.2589].

[2] W. Reece and U. Egede, “Performing the full-angular analysis of

Bd → K∗0µ+µ− at LHCb.” CERN-LHCb-2008-041.

[3] LHCb Collaboration, W. Reece, Extracting angular correlations from the

rare decay Bd → K∗0µ+µ− at LHCb, Phys. Atom. Nucl. 72 (2009)

1543–1547.

[4] LHCb Collaboration, W. Reece, “Prospects for Bd → K∗0µ+µ−.”

PoS(2008LHC)086. Talk at Physics at the LHC, 29.9.-4.10.2009, Split,

Croatia.

[5] LHCb Collaboration, W. Reece, “Bd → K∗0µ+µ− at LHCb.”

PoS(BEAUTY2009)051. Talk at Beauty, 7.-11.9.2009, Heidelberg,

Germany.

[6] U. Egede, T. Hurth, J. Matias, M. Ramon and W. Reece, “New physics

reach of the mode Bd → K∗l+l−: CP violating observables.”

PoS(EPS-HEP2009)184. Talk at EPS, 16.-22.7.2009, Krakow, Poland;

U. Egede, T. Hurth, J. Matias, M. Ramon and W. Reece, “The exclusive

Bd → K∗l+l− decay: CP violating observables.” Talk at FLAVIAnet,

23.-27.7.2009, Kazimierz, Poland, 0912.1339; U. Egede, T. Hurth,

J. Matias, M. Ramon and W. Reece. In preparation.

[7] A. Bharucha and W. Reece, Constraining new physics with

Bd → K∗0µ+µ− in the early LHC era, 1002.4310.

[8] LHCb Collaboration, B. Adeva et. al., Roadmap for selected key

measurements of LHCb, 0912.4179.

[9] J. T. Moscicki et. al., Ganga: a tool for computational-task management

and easy access to Grid resources, Computer Physics Communications

180 (2009), no. 11 2303–2316 [0902.2685].

145

http://arXiv.org/abs/0807.2589
http://cdsweb.cern.ch/record/1142152?ln=en
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(2008LHC)086
http://www.fesb.hr/physicslhc/
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(BEAUTY2009)051
http://beauty2009.physi.uni-heidelberg.de/
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(EPS-HEP2009)184
http://www.ifj.edu.pl/hep2009/
http://czyz.phys.us.edu.pl/
http://arXiv.org/abs/0912.1339
http://arXiv.org/abs/1002.4310
http://arXiv.org/abs/0912.4179
http://arXiv.org/abs/0902.2685


[10] D. Clowe et. al., A direct empirical proof of the existence of dark matter,

Astrophys. J. 648 (2006) L109–L113 [astro-ph/0608407].

[11] F. Zwicky, On the masses of nebulae and of clusters of nebulae, Astrophys.

J. 86 (1937) 217–246.

[12] WMAP Collaboration, E. Komatsu et. al., Five-year Wilkinson

Microwave Anisotropy Probe (WMAP) observations: Cosmological

interpretation, Astrophys. J. Suppl. 180 (2009) 330–376 [0803.0547].

[13] J. R. Primack, Dark matter and structure formation, astro-ph/9707285.

In Formation of Structure in the Universe, Proceedings of the Jerusalem

Winter School 1996, edited by A. Dekel and J.P. Ostriker (Cambridge

University Press).

[14] G. Kane and S. Watson, Dark matter and LHC: What is the connection?,

Mod. Phys. Lett. A23 (2008) 2103–2123 [0807.2244].

[15] S. Dimopoulos and H. Georgi, Softly broken supersymmetry and SU(5),

Nucl. Phys. B193 (1981) 150.

[16] P. Huet and E. Sather, Electroweak baryogenesis and standard model CP

violation, Phys. Rev. D51 (1995) 379–394 [hep-ph/9404302].

[17] Muon (g-2) Collaboration, G. W. Bennett et. al., An improved limit on

the muon electric dipole moment, Phys. Rev. D80 (2009) 052008

[0811.1207].

[18] L. Evans and P. Bryant, LHC machine, JINST 3 (2008) S08001.

[19] J. R. Ellis, Beyond the standard model with the LHC, Nature 448 (2007)

297–301.

[20] Heavy Flavor Averaging Group (HFAG) Collaboration, E. Barberio

et. al., Averages of B–hadron properties at the end of 2006, 0704.3575.

Updated results and plots available at:

http://www.slac.stanford.edu/xorg/hfag/.

[21] S. L. Glashow, Partial symmetries of weak interactions, Nucl. Phys. 22

(1961) 579–588.

[22] S. Weinberg, A model of leptons, Phys. Rev. Lett. 19 (1967) 1264–1266.

[23] A. Salam, Weak and electromagnetic interactions, . Originally printed in

Svartholm: Elementary Particle Theory, Proceedings Of The Nobel

Symposium Held 1968 At Lerum, Sweden, Stockholm 1968, 367-377.

146

http://arXiv.org/abs/astro-ph/0608407
http://arXiv.org/abs/0803.0547
http://arXiv.org/abs/astro-ph/9707285
http://arXiv.org/abs/0807.2244
http://arXiv.org/abs/hep-ph/9404302
http://arXiv.org/abs/0811.1207
http://arXiv.org/abs/0704.3575
http://www.slac.stanford.edu/xorg/hfag/


[24] P. W. Higgs, Broken symmetries, massless particles and gauge fields,

Phys. Lett. 12 (1964) 132–133.

[25] P. W. Higgs, Spontaneous symmetry breakdown without massless bosons,

Phys. Rev. 145 (1966) 1156–1163.

[26] G. S. Guralnik, C. R. Hagen and T. W. B. Kibble, Global conservation

laws and massless particles, Phys. Rev. Lett. 13 (1964) 585–587.

[27] T. W. B. Kibble, Symmetry breaking in non-abelian gauge theories, Phys.

Rev. 155 (1967) 1554–1561.

[28] N. Cabibbo, Unitary symmetry and leptonic decays, Phys. Rev. Lett. 10

(1963) 531–533.

[29] M. Kobayashi and T. Maskawa, CP violation in the renormalizable theory

of weak interaction, Prog. Theor. Phys. 49 (1973) 652–657.

[30] T. Mannel, Effective field thories in flavour physics, Springer Tracts Mod.

Phys. 203 (2004) 1–175.

[31] M. E. Peskin and D. V. Schroeder, An introduction to quantum field

theory, . Reading, USA: Addison-Wesley (1995) 842 p.

[32] S. Weinberg, The Quantum theory of fields. Vol. 1: Foundations, .

Cambridge Univ. Pr. (1995) 609 p.

[33] S. Weinberg, The Quantum theory of fields. Vol. 2: Modern applications, .

Cambridge Univ. Pr. (1996) 489 p.

[34] R. K. Ellis, W. J. Stirling and B. R. Webber, QCD and collider physics,

Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 8 (1996) 1–435.

[35] A. V. Manohar and M. B. Wise, Heavy quark physics, Camb. Monogr.

Part. Phys. Nucl. Phys. Cosmol. 10 (2000) 1–191.

[36] C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes and R. P. Hudson,

Experimental test of parity conservation in β decay, Phys. Rev. 105

(1957) 1413–1414.

[37] C.-N. Yang and R. L. Mills, Conservation of isotopic spin and isotopic

gauge invariance, Phys. Rev. 96 (1954) 191–195.

[38] ALEPH, CDF, D0, DELPH, L3, OPAL, SLD Collaborations,

Precision Electroweak Measurements and Constraints on the Standard

147



Model, 0911.2604. Updated results and plots available at:

http://lepewwg.web.cern.ch/LEPEWWG/.

[39] Gfitter Collaboration, H. Flacher et. al., Revisiting the global Electroweak

fit of the Standard Model and beyond, Eur. Phys. J. C60 (2009) 543–583

[0811.0009]. Updated results and plots available at:

http://gfitter.desy.de/.

[40] H. Yukawa, On the interaction of elementary particles, Proc. Phys. Math.

Soc. Jap. 17 (1935) 48–57.

[41] Particle Data Group Collaboration, C. Amsler et. al., Review of

particle physics, Phys. Lett. B667 (2008) 1.

[42] L. Wolfenstein, Parametrization of the Kobayashi-Maskawa Matrix, Phys.

Rev. Lett. 51 (1983) 1945.

[43] CKMfitter Group Collaboration, J. Charles et. al., CP violation and

the CKM matrix: Assessing the impact of the asymmetric B factories,

Eur. Phys. J. C41 (2005) 1–131 [hep-ph/0406184]. Updated results and

plots available at: http://ckmfitter.in2p3.fr.

[44] UTfit Collaboration, M. Bona et. al., The unitarity triangle fit in the

standard model and hadronic parameters from lattice QCD: A reappraisal

after the measurements of ∆ms and B(B → τντ ), JHEP 10 (2006) 081

[hep-ph/0606167]. Updated results and plots available at:

http://www.utfit.org.

[45] CKMFitter Collaboration, K. Trabelsi. Talk at Beauty 2009,

11-11.09.2009, Evian, Germany. PoS(BEAUTY2009)016.

[46] T. Appelquist and J. Carazzone, Infrared singularities and massive fields,

Phys. Rev. D11 (1975) 2856.

[47] LHCb Collaboration, S. Amato et. al., “LHCb: Technical proposal.”

CERN-LHCC-98-004.

[48] R. Fleischer, Electroweak penguin effects beyond leading logarithms in the b

meson decays B− → K−Φ and B− → π−K̄0, Z. Phys. C62 (1994) 81–90.

[49] P. Gambino and P. Giordano, Normalizing inclusive rare B decays, Phys.

Lett. B669 (2008) 69–73 [0805.0271].

148

http://arXiv.org/abs/0911.2604
http://lepewwg.web.cern.ch/LEPEWWG/
http://arXiv.org/abs/0811.0009
http://gfitter.desy.de/
http://arXiv.org/abs/hep-ph/0406184
http://ckmfitter.in2p3.fr
http://arXiv.org/abs/hep-ph/0606167
http://www.utfit.org
http://beauty2009.physi.uni-heidelberg.de/
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(BEAUTY2009)016
http://cdsweb.cern.ch/record/622031?ln=en
http://arXiv.org/abs/0805.0271


[50] E. Fermi, An attempt of a theory of beta radiation. 1, Z. Phys. 88 (1934)

161–177; F. L. Wilson, Fermi’s theory of beta decay, American Journal of

Physics 36 (1968), no. 12 1150–1160.

[51] K. G. Wilson, Nonlagrangian models of current algebra, Phys. Rev. 179

(1969) 1499–1512.

[52] C. Bobeth, M. Misiak and J. Urban, Photonic penguins at two loops and

mt-dependence of B(B → xsl
+l−), Nucl. Phys. B574 (2000) 291–330

[hep-ph/9910220].

[53] C. Bobeth, A. J. Buras and T. Ewerth, B̄ → Xsl
+l− in the MSSM at

NNLO, Nucl. Phys. B713 (2005) 522–554 [hep-ph/0409293].

[54] M. Beneke, T. Feldmann and D. Seidel, Systematic approach to exclusive

B → V l+l−, V γ decays, Nucl. Phys. B612 (2001) 25–58

[hep-ph/0106067].

[55] F. Kruger and J. Matias, Probing new physics via the transverse

amplitudes of B0 → K∗0(→ K−π+)l+l− at large recoil, Phys. Rev. D71

(2005) 094009 [hep-ph/0502060].

[56] W. Altmannshofer et. al., Symmetries and asymmetries of B → K∗µ+µ−

decays in the standard model and beyond, JHEP 01 (2009) 019

[0811.1214].

[57] E. Lunghi and J. Matias, Huge right-handed current effects in

B → K∗(Kπ)l+l− in supersymmetry, JHEP 04 (2007) 058

[hep-ph/0612166].

[58] M. Gorbahn and U. Haisch, Effective Hamiltonian for non-leptonic

|∆(F )| = 1 decays at NNLO in QCD, Nucl. Phys. B713 (2005) 291–332

[hep-ph/0411071]; P. Gambino, M. Gorbahn and U. Haisch, Anomalous

dimension matrix for radiative and rare semileptonic B decays up to three

loops, Nucl. Phys. B673 (2003) 238–262 [hep-ph/0306079]; M. Gorbahn,

U. Haisch and M. Misiak, Three–loop mixing of dipole operators, Phys.

Rev. Lett. 95 (2005) 102004 [hep-ph/0504194].

[59] A. J. Buras, Weak Hamiltonian, CP violation and rare decays,

hep-ph/9806471. Les Houches Ecole d’été de physique théorique, session
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