
Tool-flows for mapping CNNs into FPGAs: 
Trends and Challenges 

Christos Bouganis
ccb98@ic.ac.uk

Intelligent Digital Systems Lab 
Electrical and Electronic Engineering Department
Imperial College London



Artificial Intelligence - Machine Learning – Deep Neural Networks

Artificial Intelligence

Machine Learning

Deep Neural 
Networks

CNNs

YOLO v2



Convolutional Neural Network

Christos Bouganis

Feature Extractor Fully connected

3



Convolutional Neural Network - Trends
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A Deep Learning Software Ecosystem
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CNN Deployment Flow
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CNN Deployment Flow
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CNNs: An opportunity for tool-flows for Reconfigurable Hardware

In the last few years, significant progress in generic FPGA HLS tools

• Vivado HLS, Intel OpenCL, MaxCompiler, LegUp, etc.

• Generate designs based on the mapping and scheduling of low-level primitive 

operations à Large design space.

• Low-level entry point

CNN workloads are highly structured

• Layers with pre-defined types and parametrisation

Opportunity for domain-specific frameworks for CNNs

• Generate optimised architectures
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Existing CNN-to-FPGA tool-flows

Toolflow Name Interface Year Venue
fpgaConvNet Caffe & Torch May 2016 FCCM 2016
DeepBurning Caffe June 2016 DAC 2016
Angel-Eye Proprietary July 2016 FPGA 2016
ALAMO Proprietary August 2016 FPL 2016
DnnWeaver Caffe October 2016 MICRO 2016
Caffeine Caffe November 2016 ICCAD 2016
FINN Theano February 2017 FPGA 2017
FP-DNN TensorFlow May 2017 FCCM 2017
SysArrayAccel C June 2017 DAC 2017
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Key aspects for consideration – How do they compare?
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• Key aspects for consideration
• Neural Network Support
• Front-End Support
• Design Portability
• Hardware Architectures
• Design Space Exploration
• Precision support
• Objective function 
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Supported Neural Network models
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• Mainstream models include
• CNNs
• Recurrent Neural Networks (RNNs)
• Binarised Neural Networks (BNNs)
• Ternary Neural Networks

• DeepBurning and FP-DNN
• RNNs
• LSTMs
• Residual connections in CNNs (FP-

DNN)
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Supported Front-Ends
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• Critical for reaching a wide user base
• Two options

• Integration with existing frameworks
• FpgaConvNet, DeepBurning, DNNWeaver

Caffeine
• Proprietary front-ends

• SysArrayAccel, Angle-Eye, CNN RTL

Christos Bouganis



Design Portability

Def.: The degree to which a tool-flow can target:
1. devices by multiple vendors and families
2. different setups (SoCs, host-FPGA servers, stand-alone FPGAs).

13

0

10

20

30

40

50

60

Percentage of toolflows (%)

Supported setup

SoC Standalone Host + FPGA

0

20

40

60

80

Percentage of toolflows (%)

Supported FPGA 
vendors

Xilinx Intel

Highest portability: 
DnnWeaver

Christos Bouganis



Hardware Architecture

Two types of architectures

1. Streaming architectures

2. Single computation engine
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Hardware Architecture – Streaming Architectures
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Characteristics:
• Coarse pipeline of hardware stages
• One hardware stage per layer
• fpgaConvNet, DeepBurning, FINN

Advantages:
+ Customisation
+ Concurrent execution of layers
+ Flexible allocation of resources per layer, 

tailored to the target network

Disadvantages:
− Flexibility
− New bitsream for each CNN à long 

compilation times
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Hardware Architecture – Single Computation Engine

16

Characteristics:
• Processing element-based design
• Fixed architecture, time-shared between layers
• Control via microinstructions
• Angel-Eye, ALAMO, DnnWeaver, Caffeine, 

FP-DNN, SysArrayAccel

Advantages:
+ Flexibility
+ One bistream can target many CNNs

Disadvantages:
− Customisation
− High performance variability across CNNs
− Inefficiencies due to processor-like control 

mechanisms

Christos Bouganis



Design Space Exploration

Each toolflow defines an architectural design space
• Parameter Space:

» Which trade-offs and alternative designs can be explored?

• Exploration Method
» How it the design space traversed? 
» Which objectives are optimised?

Observations
• Toolflows with streaming architectures define a finer-grained space.

» Structure of the pipeline
» Allocation of resources among hardware stages

• Single computation engine toolflows focus on:
» Scaling of the computation engine with HW resources
» CNN-to-microinstructions mapping
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Design Space Exploration

Toolflow Formulation Solver Objectives
fpgaConvNet Mathematical optimisation s.t.

the rsc budget
Global Optimiser
(Simulated 
Annealing)

Throughput, latency 
or multiobjective
criteria

DnnWeaver -//- Heuristic Throughput

Caffeine Roofline model Enumeration Throughput

SysArrayAccel Mathematical optimisation s.t.
the rsc budget

Pruning + 
Enumeration

Throughput

FINN Rule-based:  rate-balancing Heuristic Throughput, latency

FP-DNN Rule-based: bandwidth-matching Heuristic Throughput

ALAMO Heuristic Throughput, latency

DeepBurning Rule-based: rate-balancing Heuristic Throughput, latency

Angel-Eye Rule-based Heuristic Throughput, latency
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Arithmetic Precision
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Performance (Quality of Result)

Achieved QoR is the most critical factor.

QoR can be evaluated with respect to two factors:
1) Comparison of QoR between toolflows for the same CNN-FPGA pair,
2) Comparison with hand-tuned accelerator for the same CNN-FPGA pair.

Fair comparisons: Each toolflow to target the same CNN-FPGA pair. 
However, the majority of existing toolflows are not open-sourced, or provide 

limited support.
• DnnWeaver targeting Zynq XC7Z020 (limited support, open sourced)
• FINN targeting Xilinx PYNQ-Z1 board (specific BNNs)
• Angel-Eye used internally by DeePhi. 
• fpgaConvNet (webpage with up-to-date benchmarking results)
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High-level Performance Observations

1) RTL-based designs tend to 
outperform their HLS counterparts.

2) Finer-grained DSE tends to offer an 
advantage in terms of obtained 
performance.

3) Single computation engines tend to 
reach higher performance for CNNs 
with a uniform structure.

4) Comparable or even better 
performance than hand-tuned 
designs
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Fig. 7. Overview of toolflow characteristics

the di�erent target devices of the two tool�ows does not allow for a meaningful performance
comparison.
The CNN RTL Compiler is designed to combine the high throughput and low latency of RTL

designs with high precision �exibility across layers. Nevertheless, precision quantisation is per-
formed manually and is not part of the automated �ow. The tool�ow uses Intel’s o�-the-shelf IPs,
including the NIOS soft processor and the scatter-gather DMA block, and hence the generated
designs are restricted and tailored for Intel FPGAs, which a�ects its portability.

Angel-Eye bases its competitive advantage on its automatic dynamic quantisation scheme. The
selected parameter space allows for the unrolling of both the input and output feature maps and
hence latency and throughput are co-optimised. However, the use of Vivado HLS restricts its
portability to Xilinx devices.

fpgaConvNet prioritises the support of various optimisation objectives based on the application-
level performance needs. In this context, distinct methodologies are used for high-throughput and
low-latency applications. Similarly to Ca�eine and Angel-Eye, the use of Vivado HLS currently
restricts fpgaConvNet to Xilinx devices.
Finally, DeepBurning’s design principle entails modularity and support of a wide range of NN

models. In this respect, the tool�ow’s RTL building blocks can target various types of NNs and
o�er �exibility with respect to precision quantisation across the layers. By design, the generated
accelerators are optimised to operate with a batch size of 1 and hence their optimisation objectives
are simultaneously high throughput and low latency.

3 THE FUTURE OF CNN-TO-FPGA TOOLFLOWS
3.1 Towards a Uniform Evaluation Methodology
The existing FPGA too�ows have employed ad-hoc evaluation methodologies, by targeting di�erent
CNN models and reporting the achieved performance in a non-uniform manner. A uniform evalua-
tion methodology is proposed here in order to enable the thorough and comparative evaluation of
CNN-to-FPGA tool�ows. The proposed methodology comprises a benchmark suite and guidelines
for evaluation metrics.

Benchmark Suite.13 A comprehensive benchmark suite should include CNNs that are widely
used and whose accuracy has been extensively studied by the deep learning community. Each CNN

13We propose a benchmark suite of representative CNNs that can be found in: http://...

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: July 2017.
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THE FUTURE OF CNN-TO-FPGA TOOLFLOWS
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Objectives of a CNN-to-FPGA Toolflow

Objective 1. Targeting next-generation CNN models.
Trends:

1) Increased depth.
» 8-layer AlexNet (2012) à 152-layer ResNet-152 (2016), 161-layer DenseNet-161 (2017)

2) Increased workload.
» 20x in GOps/input from AlexNet (2012) to VGG-16 (2014)

3) Novel compound components.
» Inception module (GoogLeNet), residual block (ResNet), dense block (DenseNet),

residual Inception block (Inception-v4).

Challenge
• Irregular layer connectivity challenges the automation of mapping to hardware.
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Objectives of a CNN-to-FPGA Toolflow

Objective 1. Targeting next-generation CNN models.
Support for Recurrent Neural Networks (RNNs):

• TPU paper by Google – around 95% of NN workloads are RNNs.

Challenge

• RNNs are memory-bounded and require different design approach to CNNs.
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Objectives of a CNN-to-FPGA Toolflow

Objective 2. Support for compressed and sparse CNNs
Numerous schemes exploit redundancy in the model to reduce inference 
time.

• Low-rank approximations, pruning, sparsification, quantisation. 
• ASIC accelerators have introduced designs for such networks (e.g. zero-skipping 

compute units, bit-serial arithmetic, etc.)
Challenge

• Methods such as pruning can break the uniformity of computation and memory 
accesses.
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Objectives of a CNN-to-FPGA Toolflow

Objective 3. FPGA-based CNN training

GPUs are the current standard for CNN training. 
• Next-generation FPGAs demonstrate promising performance and power efficiency 

(Stratix 10, UltraScale).
• Recent advances in low-precision NN training offers space for customisation and 

variable-precision arithmetic that suits FPGAs.
• Slightly explored by the F-CNN framework.

Challenge
• Demonstrate gains of FPGAs over GPUs for CNN training.
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Objectives of a CNN-to-FPGA Toolflow

Objective 4. Hardware-Network co-design
End-to-end toolchain, from dataset and application to network and hardware 
design.

• Expose hardware performance and power consumption to the training phase, co-
optimise the CNN model and the hardware under a holistic view.

Challenge
• Long-term objective for the community towards the efficient hardware execution of high-

performing neural networks.
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Thank you - Questions
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Toolflows for Mapping Convolutional Neural Networks on FPGAs:
A Survey

STYLIANOS I. VENIERIS, ALEXANDROS KOURIS AND CHRISTOS-SAVVAS BOUGANIS,
Imperial College London

In the past decade, Convolutional Neural Networks (CNNs) have demonstrated state-of-the-art performance
in various Arti�cial Intelligence tasks. To accelerate the experimentation and development of CNNs, several
software frameworks have been released, primarily targeting power-hungry CPUs and GPUs. In this context,
recon�gurable hardware in the form of FPGAs constitutes a potential alternative platform that can be integrated
in the existing CNN ecosystem to provide a tunable balance between performance, power consumption and
programmability. In this paper, a survey of the existing CNN-to-FPGA tool�ows is presented, comprising a
comparative study of their key characteristics which include the supported applications, architectural choices,
design space exploration methods and achieved performance. Moreover, major challenges and objectives
introduced by the latest trends in CNN algorithmic research are identi�ed and presented. Finally, an evaluation
methodology is proposed, aiming at the comprehensive, complete and in-depth evaluation of CNN-to-FPGA
tool�ows.

CCS Concepts: • General and reference → Surveys and overviews; • Computing methodologies →
Neural networks; • Hardware → Recon�gurable logic and FPGAs; Electronic design automation;

Additional Key Words and Phrases: Convolutional Neural Networks, FPGA Too�ows, Deep Learning

ACM Reference format:
Stylianos I. Venieris, Alexandros Kouris and Christos-Savvas Bouganis. 2017. Tool�ows for Mapping Convolu-
tional Neural Networks on FPGAs: A Survey. ACM Comput. Surv. 1, 1, Article 1 (July 2017), 26 pages.
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1 INTRODUCTION
Convolutional Neural Networks (CNNs) [22] have demonstrated remarkable performance in com-
puter vision tasks. Being able to achieve high accuracy and frequently outperform traditional
machine vision approaches, CNNs have been employed in a vast range of applications over the last
decade, from object detection and classi�cation to mobile robot navigation. While becoming the
state-of-the-art algorithm in machine vision, CNNs are challenged to deal with tasks of continuously
increasing complexity. This leads to the design of deeper, more expressive networks at the expense
of an increase in the computational and memory requirements.
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