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Goals:
• Perceive the environment
• Understand the 

environment
• Interact with the 

environment

Challenges:
• Low latency
• Low power
• Adaptation



intelligent Digital Systems Lab
Dept. of Electrical and Electronic Engineering

GPUs – Tegra K1, X1 and X2
DSPs – Qualcomm Hexagon, 

Apple Neural Engine, …

Conventional and Unconventional Embedded Platforms for Compute

✓ High throughput
✗ Low latency
✗ Low power

Challenge: Huge design space
Our Approach: Automated toolflows4

✓ Tools ✗ Tools

FPGAs
• Custom datapath
• Custom memory subsystem
• Programmable interconnections
• Reconfigurability

✓ High throughput
✓ Low latency
✓ Low power

FPGA
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SLAMSoC

Learn to Fly

5
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Topic #1: 
SLAMSoC
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Use a series of observations to simultaneously perform Localisation and Mapping
ØTracking (Localisation): Online pose estimation of the sensor and robot. 

ØMapping: Fuse observations into a coherent model of the environment

Source: LSD-SLAM (J. Engel et al.)

SLAM
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ØEmerging algorithms have high complexity and bandwidth requirements

ØField still in a state of constant change

ØTracking robustly needs high framerate and low latency 

Sparse                                 Semi-Dense Dense SLAM
Mobile CPU                        High-end Desktop                 High Performance GPU Acceleration

Sources: ORB SLAM (R. Mur-Artal), LSD-SLAM (J. Engels et al.), ElasticFusion (T. Whelan et al.)
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50mS

ØCamera rate (30fps) 

Ø Intel i7-4770 

ØDrop frames (15 fps processed)

ØPosition Drift, Error accum.

ØProcessing <8 frames/s

ØLost tracking
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ØCommon memory space and 

Direct Memory Access

ØHardware high-level control 

from CPU

ØBoth operate simultaneously

ØBuffered high memory 

bandwidth

Direct Tracking 
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Input Unit

Mapping Core
Input Unit

Input Unit
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Processing System
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Memory 
Controller

Port 1
Port 2
Port 3
Port 4

Hardware 
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Direct Tracking Core

ØStreaming Dataflow – Designed with High Level Synthesis

ØSplitting computation into smaller blocks allows better optimisation

ØSeparating control flow from computation leads to a better design

ØRedundant computation proved more efficient than going to memory
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Mapping Coprocessor

ØVariable rate pipelines

ØStreaming dataflow processing, combined with local caches for random-access patterns
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Comparison with other platforms
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Topic #2: 
Learn to Fly
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Self-Supervised approach for autonomous 
navigation:

• Exploits solely on-board camera’s visual input

• Regression CNN to predict distance-to-collision

• Local path planner to modulate velocities

Overview
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• Robust Deep Learning models require tons of data
• External Distance Sensors to automate the collection
• Indoor Flight Dataset:

• Annotated with real-distance values
• 300.000 samples in 2000 trajectories

Self-Supervised Data Collection & Annotation

Camera FoV

Distance 
Measurements
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• CNN architecture based on AlexNet
• Regression Unit -> Parametrisable model
• Two-streams -> Spatio-temporal Features
• Architectural Parameters determined 

experimentally -> insight on 2-stream CNNs

2-stream Regression CNN Architecture & Training
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• CNN architecture based on AlexNet
• Regression Unit -> Parametrisable model
• Two-streams -> Spatio-temporal Features
• Architectural Parameters determined 

experimentally -> insight on 2-stream CNNs

2-stream Regression CNN Architecture & Training

Stream 
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Temporal 
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• The CNN predicts the distance-to-collision for three partly overlapping windows of the image

2-stream Regression CNN Architecture & Training

227

227

1 2 3
Distance-to-collision Predictions

Two-stream CNN
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Classification vs Regression-based approach
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