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 •  Conservation equations 

• What is CFD 

•  Solution method 

•  CFD grids and boundary types 

•  Turbulence models 

•  Boron dilution transient 

•  Pressure drop in spacer grid 

•  Thermal stripping in T-junction 
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Conservation of mass 

•  Conservation of mass, often called “Continuity”, in Cartesian tensor 
notation: 

 
   =density,       
   =velocity,        
   =mass injection rate. 
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Conservation of momentum 

•  Conservation of momentum: 

 
 
   =pressure, 
   =gravity vector, 
   =stress tensor, 
   =momentum sources, external forces. 
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Stress tensor 

•  The stress tensor in the momentum equation is: 

•  The rate of strain tensor: 

•  Kronecker delta: 
                        
                         when                ;                         when 
 
 
•  Reynolds stresses due to turbulent motion: 
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Conservation of energy 

•  Conservation of thermal energy: 

 
   =enthalpy, 
   =thermal conductivity, 
   =temperature, 
   =external heat sources. 
 

•  Diffusional heat flux due to turbulent motion = 

( ) Qhu
x
Thu

x
h

t j
j

j
j

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
ʹ′ʹ′+

∂

∂
−

∂

∂
+

∂

∂
ρλρρ

h
λ
T
Q

hu j ʹ′ʹ′ρ



4 

NTEC 

2014 

7 
35 

 

What is CFD 

•  CFD stands for Computational Fluid Dynamics. 
•  For a given set of boundary conditions at A & B we can calculate the mean 

flow velocity between A & B using the momentum equation. 
•  A simplified momentum equation could be: 

A B 

U 

PA −PB = K
1
2
ρU 2
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A simple solution method 

1.  Guess PC. 
2.  Calculate U1 and U2 using the momentum equation. 
3.  Check mass balance:                                             
4.  Stop if mass balance is achieved, if not continue. 
5.  Adjust PC in order to change U1 and U2 such that mass balance is achieved: 

–  If inflow is higher than outflow then increase PC. 
–  If inflow is lower than outflow then decrease PC. 

6.  Repeat calculation from Step 2. 

? Change Pc by how much? 
 A B 

U1 U2 

C 

(ρAU)1 = (ρAU)2
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Pressure correction method 

•  The exact mass balance equation:                                               . 
•  Velocities U*1 and U*2 obtained from the momentum equation may not satisfy 

mass balance exactly. 

•  Correction to velocities to achieve mass balance is: 

•  Velocity correction in terms of pressure correction: 
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Multi-dimensional CFD 

•  Generalise the solution method to 2 and 3 dimensions for arbitrary geometry 
and include the time dependent term.  

A B 
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A CFD solution procedure 

1.  Guess pressure. 
2.  Calculate velocity using the momentum equation. 
3.  Solve pressure correction equation according to mass balance. 
4.  Adjust pressure and velocity. 
5.  Repeat calculation from Step 2 until convergence (i.e. all residuals reached 

acceptable level). 

•  Residual is typically the sum of absolute error (ε) of all cells. 
•  ε=abs(LHS-RHS) of equation. 
 

A B 
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CFD grids 

Tetrahedral Trimmed hexahedral 

Polyhedral 
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CFD boundary types 

•  Inlet  
–  All boundary values are specified. 
–  A negative velocity would mean outflow (suction). 

•  Outlet  
–  Outflow only. 

•  Pressure  
–  Outflow and inflow are allowed (fully developed flow). 

•  Wall  
–  Slip or no-slip, stationary or moving. 

•  Symmetry  
–  Plane or axis. 

•  Periodic plane 
–  Works in pair. 
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2D asymmetric model of vertical pipe 

Void 

g 

Sub-cooled water 

Water + steam 

Wall heat 

flux 

Heated wall 

Pipe axis 

Inflow 

Outflow Symmetry plane 

Symmetry axis 
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A. Shams, F. Roelofs, E.M.J. Komen and E. Baglietto - CALIBRATION OF A PEBBLE 

BED CONFIGURATION FOR DIRECT NUMERICAL SIMULATION    – NURETH14 

3D periodic model 

Periodic plane 

Periodic plane 
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CFD today 

•  Typical CFD model today has order of 100,000 to 1 million computational 
cells. 

•  We solve conservation equations for mass (1 eqn), momentum (3 eqn) and 
energy (1 eqn) for each cells.  
–  For 1 million cells model we have 5 million equations to solve 

simultaneously! 

•  We need to add additional equations to represent the physics, for examples: 
–  Turbulence models. 
–  Heat transfer and mass transfers. 
–  Non-Newtonian fluids. 
–  Multiphase flows. 
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Turbulence:  
Eddy viscosity model (momentum) 

•  Recalling the shear stress term in the momentum equation: 

•  Model the Reynolds stress as: 

•  Turbulent kinetic energy: 

•  Turbulent eddy viscosity: 
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Eddy viscosity model (energy) 

•  Recalling the energy equation: 

•  Model the turbulent heat flux as: 
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k-ε model 

•  The most commonly used turbulence model is the k-ε model. 
•  Equation for turbulent kinetic energy: 

•  Equation for dissipation rate of turbulent kinetic energy: 
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k-ε model (2) 

•  Production term: 

•  Model constants: 
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Anisotropic k-ε model  

§  Eddy-viscosity models: 

§  Anisotropic k- ε model  
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Reynolds stress model 

•  Reynolds stress model solves directly for the Reynolds stresses: 
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Boron Dilution transients 

§  A decrease of the boron concentration in the core leads to a 
reactivity increase and may result in a power excursion è a so-
called boron dilution transient.  

§  Slugs of under-borated coolant can be formed in the primary circuit, 
e.g. due to a malfunction of the chemical and volume control 
system, or due to an SBLOCA with partial failure of the safety 
injection system.	
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International Standard Problem (ISP) No. 43	

Scaled down model of a Babcock & Wilcox (B&W) PWR  

with height ratio of 1:4.  

Gavrilas, M et. al. International Standard Problem (ISP) No. 43, Rapid Boron-DilutionTransient 
Tests for Code Verification, Comparison Report. OECD Nuclear En-ergy Agency, Report NEA/
CSNI/R(2000)22.  
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Simplified model of PWR   [ROCOM] 

- 4 Loops PWR model, with perforated drum. 

Hertlein, R., Umminger, K., Kliem, S., Prasser, H.-M., Höhne, T., Weiß, F.-P., 
Experimental and Numerical Investigation of Boron Dilution Transients in 
Pressurized Water Reactors, Nuclear Technology (NT) vol. 141, January 2003, 
pp. 88-107 
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Internal components 

Fuel channels 

Perforated drum 
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Flow and boundary conditions  

Inlet 4 

Inlet 3 

Inlet 1 

Inlet 2 

Pressure  Outlet 
  (1 of 4) 

Inlet 1 Inlet 2 Inlet 3  Inlet 4 

Mass flow [m³/h] 185 185 185 185 

Mixing Scalar f(t): 0 0 0 

f  (
t)
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Mixing Scalar  
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Scalar mixing transient 
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Downcomer flow mixing 

Standard k-ε	
 Anisotropic k-ε	
 RSM	
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Transient scalar mixing 

And better scalar mixing in the inlet region 
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Models comparison 
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Lower Plenum Mixing 

Standard k-ε	
 Anisotropic k-ε	
 RSM	


•  The perforated drum homogenizes the flow. 

•  The influence of “turbulence modeling” is reduced. 
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International Benchmark – OECD T junction 

S.T. Jayaraju, E.M.J. Komen: Nuclear Research and Consultancy Group (NRG), Petten, The Netherlands 
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T-junction Benchmark Results – Blind test 

• Wall Resolved LES 

normalized flow profiles at 2.6 diameters 

downstream of the mixing zone 

normalized flow profiles at 1.6 diameters 

downstream of the mixing zone 

S.T. Jayaraju, E.M.J. Komen: Nuclear Research and Consultancy Group (NRG), Petten, The Netherlands 



18 

NTEC 

2014 

35 
35 

 

Summary 

•  Conservation equations of mass, momentum and energy 

•  What is CFD 

–  Solution method 

–  Grids and boundary types 

•  Turbulence models 

–  Eddy viscosity model 

–  k-ε turbulence model 

–  Anisotropic turbulence models 

•  Boron dilution transient 

–  Effect of turbulence modelling on mixing 

•  Thermal stripping 

–  Modelling flow instability 


