NTEC 2014	1 35	Lecture CFD-2
	Int	roduction to CFD, Modelling of turbulence
		Simon Lo
		CD-adapco
		Trident House, Basil Hill Road
		Didcot, OX11 7JH, UK
		simon.lo@cd-adapco.com

NTEC 2014	16 35	CFD today
• Typ cel	oical CFD ls.	o model today has order of 100,000 to 1 million computational
• We ene	solve co ergy (1 e For 1 m simulta	onservation equations for mass (1 eqn), momentum (3 eqn) and qn) for each cells. illion cells model we have 5 million equations to solve neously!
• We - - -	need to Turbule Heat tra Non-Ne Multiph	add additional equations to represent the physics, for examples: ence models. ansfer and mass transfers. wtonian fluids. ase flows.

NTEC 19 2014 35	k-ε model
• The most d • Equation for $\frac{\partial}{\partial t}(\rho k) +$	commonly used turbulence model is the k- ε model. or turbulent kinetic energy: $\frac{\partial}{\partial x_j} \left[\rho u_j k - \left(\mu + \frac{\mu_t}{\sigma_k} \right) \frac{\partial k}{\partial x_j} \right] = \mu_t P - \frac{2}{3} \left(\mu_t \frac{\partial u_i}{\partial x_i} + \rho k \right) \frac{\partial u_i}{\partial x_i} - \rho \varepsilon$
Equation f	or dissipation rate of turbulent kinetic energy:
$\frac{\partial}{\partial t}(\rho\varepsilon)$ +	$\frac{\partial}{\partial x_j} \left[\rho u_j \varepsilon - \left(\mu + \frac{\mu_t}{\sigma_\varepsilon} \right) \frac{\partial \varepsilon}{\partial x_j} \right]$
$=C_{\varepsilon 1}\frac{\varepsilon}{k}\bigg[$	$u_t P - \frac{2}{3} \left(\mu_t \frac{\partial u_i}{\partial x_i} + \rho k \right) \frac{\partial u_i}{\partial x_i} - C_{\varepsilon 2} \rho \frac{\varepsilon^2}{k}$

NTEC 20 2014 35	k-ε model (2)
Production term:	$P = S_{ij} \frac{\partial u_i}{\partial x_j}$
• Model constants:	$C_{\mu} = 0.09$ $\sigma_{k} = 1$ $\sigma_{\varepsilon} = 1.22$ $\sigma_{h} = 0.9$ $C_{\varepsilon 1} = 1.44$ $C_{\varepsilon 2} = 1.92$

NTEC 2014	35 35	Summary			
• Co	nservati	on equations of mass, momentum and energy			
What is CFD					
- Solution method					
- Grids and boundary types					
Turbulence models					
-	- Eddy viscosity model				
-	- k-ε turbulence model				
-	- Anisotropic turbulence models				
Boron dilution transient					
-	Effect	of turbulence modelling on mixing			
Thermal stripping					
-	Modell	ing flow instability			